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Curvature of wavefront is very large near source point. However, plane wavefront assumption is adopted when
calculating traveltimes by use of finite-difference scheme. Therefore, source singularity problem exists for all
finite-difference based eikonal solvers. Traveltime error caused by the source singularity can spread from source
to the whole computational domain, and make traveltimes inaccurate. The factored eikonal equation can deal
with source singularity very well. The fast sweeping method (FSM) is chosen to solve the factored eikonal equa-
tion in this article (factored FSM). In principle, it decomposes solution of general eikonal equation into product of
two factors. The first factor can be calculated analytically or numerically, while the second factor is the underlying
function. Eikonal solver plays a significant role in velocity inversion. An accurate and efficient eikonal solver can
improve the effect of tomogram. The factored FSM is adopted in the following velocity inversion. Three evalua-
tion criteria are defined to test accuracy and convergence of velocity inversion. The first method is the root-
mean-square (RMS) of traveltime residuals. The secondmethod is the percentage perturbation of inverted agaist
initial velocity model. The third method is the percentage ratio of inverted against real velocity model. When in-
version incorporatingwith the factored FSM, numerical examples show that: (1) RMS of traveltime residuals can
converge to a smaller level, (2) percentage perturbation of inverted against initial velocity model is also smaller,
(3) percentage ratio of inverted against real velocity model can reach up to a greater value.

© 2019 Elsevier B.V. All rights reserved.
Keywords:
Source singularity
Factored eikonal equation
Velocity inversion
1. Introduction

Seismic traveltime tomography can invert a fewparameters (such as
velocity of longitudinal- and shear- wave, quality factor and Poisson
ratio, etc.). In Seismology, velocity of the Earth's interior can be inverted
by use of seismic events continuously received from deployed stations
(Aki and Lee 1976; Engdahl et al. 1998). Inverted velocitymodel is valu-
able in investigating oceanic ridges, continental plate subduction zone,
volcanic channel, geological fault, rock formation and Mohos, etc.
(Calvert and Fisher 2001; Lees 1992; Rawlinson and Fishwick 2012;
Kennett et al. 1995). In resource exploration, high-resolution seismic
profile greatly relies on an accurate velocity model. When executing
statics andmigration, one should often provide velocitymodel obtained
by seismic traveltime inversion (Vesnaver et al. 2003; Bergman et al.
2004; Zhou 2006). In civil engineering prospecting, seismic traveltime
tomography is also used to detect hidden danger of dam leakage,
groundwater pollution and foundation of building, etc. (Zelt et al.
2006; Marti et al. 2008; Ajo-Franklin et al. 2006).
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In the past a fewdecades,many traveltime calculationmethods have
been developed. However, it is difficult for ray-tracing method (such as
shooting method, bending method, and sympletic ray-tracing method,
etc.) to pass through shadow zone in very contrasted velocity models
(Cerveny 2001;Wang 2014). Shortest pathmethod is based on Fermat's
principle and graph theory (Nakanishi and Yamaguchi 1986; Moser
1991; Fischer and Lees 1993). One can add a few secondary nodes on
the edge of cells in order to improve traveltimes accuracy (Zhou and
Greenhalgh 2006; Huang et al. 2014, 2017). Bai et al. (2009, 2010)
made great efforts to improve numerical accuracy and computational
efficiency for the shortest path method. Wavefront construction
method constructs new wavefront by use of local ray-tracing method
based on the current wavefront repeatedly, until traveltimes are com-
puted for the whole computational domain (Ettrich and Gajewski
1996; Lambare et al. 1996; Vinje et al. 1993, 1999). Comparing with
other traveltime computation methods, this method often costs too
much computational amount (Leidenfrost et al. 1999). Vidale (1988,
1990) is one of the pioneers who use finite-difference scheme to calcu-
late traveltimes. Since then, many finite-differences based eikonal
solvers have been put forward (such as Hole and Zelt 1995; Qin et al.
1992; Van and Symes 1991; Podvin and Lecomte 1991; Kim and Cook
1999.). Fast-marching method (FMM) and fast sweeping method are
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Fig. 4. Diffracted waves in 2-D case. Local shadow zone exists and corner Q acts as a
secondary source.

Fig. 2. Rectangular mesh. An interior grid point O with four neighboring points A, B, C
and D.

Fig. 1. A Cartesian coordinate grid configuration. In this rectangular domain, wave
slowness is 1 s/km and grid spacing is 1 km. Traveltime of grid point O is set to 0 s.
Traveltimes of point A and B are initialized along edges. Traveltime of point C needs to
be calculated along the characteristic line.

Fig. 5. 2-D constant gradient velocity model.
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two most promising finite-difference methods for solving the eikonal
equation. Fast-marching method for the isotropic eikonal equation is
put forward by Sethian and Popovici (1999). It uses narrow-band tech-
nique to describe wavefront expansion approximately when solving
eikonal equation. This method is unconditionally stable and has high
computational efficiency (O(NlogN), N is the total number of grid
points. Fast sweepingmethod for the isotropic eikonal equation is an it-
erative method which is proposed by Tsai et al. (2003), and detailedly
introduced by Zhao (2004). It uses upwind finite-difference scheme
and Gauss-Seidel iterations to solve the discretized eikonal equation.
This method can converge fast when given the causality condition,
and it also has high computational efficiency O(N).
Fig. 3. Transmission wave in 2-D case. s and s′ are slowness of the current and its adjacent
cells.
According to inverse theory, traveltime calculation method and in-
version algorithm both play significant roles in seismic traveltime to-
mography. Therefore, accuracy of traveltime computation method is
very important. For point source condition, source singularity problem
exists for all finite-difference based eikonal solvers. Because seismic
wave propagates along cell edges near source point, when one initializ-
ing traveltimes for grid points around the source. Actually, curvature of
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Fig. 6. Comparison of traveltime accuracy. (a) traveltimes calculated by analyticalmethod,
the FSM, the factored FSM and the Podvin method. (b) zoom-in map at 0.8 s (Green line:
analytical method; red line: the factored FSM; black line: the FSM; blue line: the Podvin
method).



Fig. 7. Percentage error between calculated against analytical traveltimes. (a) Percentage
error for the Podvin method. (b) Percentage error for the FSM. (c) Percentage error for
the factored FSM.
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wavefront is very large near source point, plane wavefront assumption
is unreasonable. Traveltime error caused by the source singularity can
make traveltimes inaccurate, even for high-order finite-difference
based eikonal solver. In this study, we introduce fast sweeping method
for the factored eikonal equation in order to enhance traveltime accu-
racy. Based on this eikonal solver, seismic traveltime tomography can
improve the effect of tomogram to a certain extent.

The outline of the paper is as follows: In Section 2, traveltime error is
discussed which is caused by finite-difference based eikonal solver.
Large traveltime error is whywe should dealwith the source singularity
problem. Then, we introduce fast sweeping method for the factored
eikonal equation in order to deal with the source singularity. As a com-
parative method, another traveltime calculation method (we called it
Podvin method) is recalled briefly which is proposed by Podvin and
Lecomte (1991), because this method is included in the PStomo_eq ve-
locity inversion program (Tryggvason et al. 2002). Besides, three
methods to evaluate accuracy and convergence of velocity inversion
are introduced. In Section 3, traveltime accuracy is compared among
the analytical solution, the factored FSM, the FSM, and the Podvin
method. In Section 4, the factored FSM and the Podvin method are
used in PStome_eq program to invert theoretical models and a field
dataset, respectively. Accuracy and convergence of velocity inversion
are discussed. Finally, conclusions are made for the factored FSM, and
its improvement on accuracy and convergence for velocity inversion.

2. Methodology

2.1. Source singularity problem of eikonal solver

Fig. 1 is a rectangular domain with grid spacing 1 km. The wave
slowness is 1 s/km in the domain. O is the source point with TO = 0 s.
According to finite-difference method for eikonal equation, traveltimes
of grid pointA and B can be calculated accurately TA= TB=1s. Then,we
assume that seismic wave propagates along the characteristic line.
Therefore, traveltime of grid point C can be calculated with plane
wavefront assumption TC = 1+

ffiffiffi
2

p
=2. However, the analytical solution

of grid point C is
ffiffiffi
2

p
. Percentage error of numerical traveltime against

analytical solution can reach up to 20.7% for grid point C. This error al-
ways exists throughout the whole computation. It will contaminate to
the whole computational domain with evolution of seismic wavefront,
and makes traveltime field inaccurate.

2.2. Fast sweeping method for the factored eikonal equation

In order to deal with source singularity problem, different kinds of
methods have already been put forward (Qian and Symes, 2002;
Fomel et al. 2009; Luo and Qian 2012). Among which the factored
FSM is one of the most effective methods. Here, we recall its principle
briefly.

In Seismology, first-arrival traveltime is the viscosity solution of
eikonal equation (Lions 1982), and the eikonal equation can be
expressed as

∇T xð Þj j2 ¼ S2 xð Þ; x∈Rn: ð1Þ

It describes seismic wavefronts T(x) propagates in a slowness model
S(x), in space x ∈ Rn. According to the principle of factorization, solution
of general eikonal equation is decomposed into a product of two factors:
the first factor is solution of a simple eikonal equation, and the second
factor is a necessary correction or modification. Let us consider a fac-
tored decomposition for Eq. (1)

S xð Þ ¼ S0 xð Þα xð Þ; ð2Þ

T xð Þ ¼ T0 xð Þτ xð Þ; ð3Þ
we assume that

∇T0 xð Þj j2 ¼ S0
2 xð Þ; ð4Þ

where T0 and S0 are both canculated from analytical solution or a previ-
ous numerical computation. According to Eqs. (2)–(4), Eq. (1) can be
transformed into a factorization form (Fomel et al. 2009):

T2
0 xð Þ ∇τ xð Þj j2 þ 2T0 xð Þτ xð Þ∇T0 xð Þ � ∇τ xð Þ þ τ2 xð Þ−α2 xð Þ� �

S0
2 xð Þ

¼ 0; ð5Þ

where α(x) is a constant or a slowly varying variable.
An upwind finite-difference scheme is designed in order that it can

follow causality of the original eikonal equation. Numerical algorithm
can be illustrated on a rectangular mesh (Fig. 2). There are four grid
points (A, B, C, D) around the center point O. We can discretize Eq. (5)
on these four triangles (ΔOAD, ΔOAB, ΔOBC and ΔOCD). Taking the tri-
angle ΔOBC as an example, the discretized formulation for Eq. (5) can
be written as:

T2
0 Oð Þ τO−τB

h
;
τO−τC

h

� ���� ���2 þ 2T0 Oð ÞτO∇T0 Oð Þ � τO−τB
h

;
τO−τC

h

� �
þ τ2O−α2 Oð Þ� �

S20 Oð Þ ¼ 0; ð6Þ

the upwind finite-difference scheme can follow causality condition
when solving this equation.



Fig. 8. Traveltime difference between calculated and analytical traveltimes. (a) traveltime
difference for the Podvin method. (b) traveltime difference for the FSM. (c) traveltime
difference for the factored FSM.
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In general, One or two real roots exist for Eq. (6). If no real root, or
roots could not satisfy causality condition, themethod of characteristics
is adopted to pass information of τ from B to O, and from C to O.

With (τx,τy) = (p,q), characteristic equation of Eq. (5) can be writ-
ten as:

dx
dt

;
dy
dt

� 	
¼ 2T2

0pþ 2τT0T0x;2T
2
0qþ 2τT0T0y

� �
¼ 2T0∇T

dτ
dt

¼ 2T2
0 p2 þ q2

 �þ 2τT0 T0xpþ T0yq


 � ¼ 2T0∇τ � ∇T

8>><
>>: ð7Þ

By solving Eq. (7), two solutions (τBO and τCO) along BO
�!

and CO
�!

can
be obtained.

Fomel et al. (2009) have already presented a local solver to calculate
traveltime field for the whole computation domain. It mainly uses
Gauss-Seidel iteration to sweep the computational domainwith four al-
ternating orderings repeatedly. Implementational procedures of the fast
sweeping method for the factored eikonal equation are listed:

(1) Initialization: assign initial boundary condition for boundary grid points.
(2) Gauss-Seidel iteration: executing four sweeping orderings for the whole com-
putational domain:

(a) i = 1 : I, j = 1 : J (b) i = 1 : I, j = J : 1
(c) i = I : 1, j = 1 : J (d) i = I : 1, j = J : 1
(2.1) Discretize the factored eikonal equation on these four triangles and calculate
traveltimes. For example, solve eq. (5) for two real roots τO, 1 and τO, 2 on triangle
ΔOBC.

(2.2) If two real roots τO, 1 and τO, 2 exist, then

• If τO, 1 and τO, 2 satisfy causality condition, then choose the minimal traveltime
TBC = min {τO, 1T0(O),τO, 2T0(O)}.

• If only τO, 1 satisfies causality condition, then TBC = τO, 1T0(O).
• If only τO, 2 satisfies causality condition, then TBC = τO, 2T0(O).
(2.3) If both τO, 1 and τO, 2 can not satisfy causality condition, then calculate τBO and
τCO using the method of characteristics. These two values should satisfy the
causality condition τBOT0(O) ≥ TB and τCOT0(O) ≥ TC, and choose TBC = min {τBOT0
(O),τCOT0(O)}.

(2.4) Repeat (2.1)–(2.3) for TAD, TAB, TCD in the remaining three triangles ΔOAD,
ΔOAB and ΔOCD, respectively. Then, we choose the smallest one from these four
traveltimes: TO = min {TDA,TAB,TBC,TCD}.

(2.5) Calculate τO = TO/T0(O).

2.3. Eikonal solver in PStomo_eq program: podvin method

The PStomo_eq program is an open-source seismic traveltime tomo-
graphic method which is originally developed by Harley M. Benz at the
U.S. Geological Survey (Benz et al. 1996). This program was further
modified by Tryggvason et al. (2009) in order to perform local earth-
quake tomography. It has already been used to invert velocity model
and locate seismicity (Tryggvason et al. 2009; Yordkayhun et al.
2009). Traveltime computation method in the program is written by
Podvin and Lecomte (1991). And the Podvin method was further mod-
ified in order to satisfy the principle of reciprocity by Tryggvason and
Bergman (2006). The Podvin method is based on finite-difference ap-
proximation and Huygens principle. Transmitted waves, diffracted
waves and headwaves are all considered in the Podvin method. We re-
call its principle in this section briefly.

First arrivals generated by transmission waves. In Fig. 3, when grid
point Q and R are timed only, the direction of wave propagation for
point O is not entirely defined. According to the formulation of eikonal
equation, two estimates for the time gradient can be computed:

∂t
∂x

¼ tR−tQ
h

;
∂t
∂y

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2−

tR−tQ
h

� 	2

;

s
ð8Þ

if the sign of ∂t/∂y is known, an estimate of arrival time at pointO can
be computed if it is reached by this wavefront, i.e. if 0≤ðtR−tQ Þ≤hs=

ffiffiffi
2

p
.

And if ∂t/∂y ≥ 0, then arrival time can be computed by:

tO ¼ tR þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hsð Þ2− tR−tQ


 �2
;

q
ð9Þ

In 2-D case, eight different traveltime estimates for the current point
need be computed.

First arrivals generated by head waves. For transmission waves, one
need to use slowness s in the current cell to compute traveltime. If slow-
ness s of the current cell is larger than slowness s′ of its adjacent cell,
then a head wave should travel along edge RO. Arrival time for grid
point O can be computed by tO = tR + hs′. In fact, a smaller slowness
should always be chosen to calculate arrival time. Therefore, estimate
of arrival time caused by head waves can be calculated with:

tO ¼ tR þ hmin s; s0ð Þ: ð10Þ

In 2-D case, four different estimates of arrival time need be com-
puted for the current point.

First arrivals generated by diffracted waves. Estimates of arrival time
for grid point O are not realiable if a local shadow zone exists in the cur-
rent cell (Fig. 4). Then, the point Q can be considered as a secondary
source, and it emits diffracted waves propagating through point O. In



Fig. 9. Comparison of inversion results. (a) velocity model with four block anomalies.
(b) the percentage perturbation of real model against the initial model. (c) velocity
model obtained by the Method II. (d) velocity model obtained by the Method I.

Fig. 11. Curve of RMS of traveltime residuals. (a) linewith circle: convergence curve of the
Method II. (b) line with asterisk: convergence curve of the Method I.
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such an occasion, arrival time for point O can be calculated as:

tO ¼ tQ þ hs
ffiffiffiffiffi
2:

p
ð11Þ

In 2-D data structure, four estimates of arrival time need be com-
puted for the current point.

2.4. Accuracy and convergence property of velocity inversion

Actually, it is impossible for inverted model to be the same as real
model, regardless of theoretical or real model. Comparing with real
model, inverted model can be only recovered to a certain extent. It is
meaningful to estimate accuracy and convergence properties for veloc-
ity inversion. Some methods have already been proposed to evaluate
Fig. 10. Percentage perturbation of inverted against the input velocity model.
(a) percentage perturbation for the Method II, (b) percentage perturbation for the
Method I.
the capability for velocity inversion so far (Bai and Greenhalgh 2005;
Bai et al. 2017). In order to test the superiority of the factored FSM in ve-
locity inversion, three different kinds of evaluation criteria are listed:

Convergence level of the Traveltime Residual.
When updated model approaches to real model gradually, synthetic

traveltimes can fit observed traveltimes better. Root-mean square
(RMS) of traveltime residuals is defined as:

RMS δTð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑M

i¼1 tiobs−tisyn
� �2

M
:

vuut
ð12Þ

where tobs is observed traveltime, and tsyn is synthetic traveltime. M is
the total number of source-receiver pairs.

Percentage Perturbation of Real against the Initial Model.
When an input velocity model is given, anomalies of velocity model

can be recovered to a certain extent both in numerical value and shape.
Recovery ratio of velocity model is a very important appraising index.
Percentage perturbation of real against the initial model can be defined
Fig. 12. Curve of percentage ratio of inverted against the real model. (a) line with circle:
curve of percentage ratio for the Method II. (b) line with asterisk: curve of percentage
ratio for the Method I.



Fig. 13. Comparison of inverted velocitymodels. (a) the real checkerboard velocitymodel.
(b) velocitymodel obtained by theMethod II. (c) velocitymodel obtained by theMethod I.

Fig. 15. Curve of RMS of traveltime residuals. (a) linewith circle: convergence curve of the
Method II. (b) line with asterisk: convergence curve of the Method I.
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as:

Vratio ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1
Vi
syn−Vi

input

Vi
true−Vi

input

� 	2

N

vuuut
; ð13Þ

where Vinput, Vsyn, Vtrue are input velocitymodel, updated velocitymodel
and true velocity model, respectively. N is total number of unknowns in
the velocity model.

Percentage Ratio of Inverted against the Real Model.
In theory, if RMS of traveltime residuals equals to zero in velocity in-

version, then inverted velocity model should be the same as real veloc-
itymodel. Actually, RMS of traveltime residuals can not be zero, because
multiple solutions always exist for velocity inversion in theory. There-
fore, invertedmodel always can not be the same as realmodel. Percent-
age ratio of inverted against the real velocity model can be defined as:

Vdiff ¼
Vsyn−Vtrue

Vtrue
� 100%: ð14Þ
Fig. 14. Percentage perturbation of inverted against the input velocity model.
(a) percentage perturbation for the Method II. (b) percentage perturbation for the
Method I.
This index shows to what an extent the velocity model can be
recovered.

3. Traveltime accuracy test

In order to domenstrate traveltime accuracy for the factored FSM, a
constant gradient velocity model is chosen as a test model (Fig. 5).
The FSM and the Podvin method are chosen as comparative methods.
Analytical solution for the constant gradient velocity model is provided
as a reference for the three methods.

For the velocity model, if one knows the exact location x0 of source
point, then the slowness function can be expressed as (Fomel et al.
2009):

1
S xð Þ ¼

1
S0

þ G0 � x−x0ð Þ; ð15Þ

where S0 is a constant value, and G0 is constant gradient of velocity.
Fig. 16. Curve of percentage ratio of inverted against the real model. (a) line with circle:
curve of percentage ratio for the Method II. (b) line with asterisk: curve of percentage
ratio for the Method I.



Fig. 19. Comparison of inverted velocity models. (a) velocity model obtained by the
Method II, (b) velocity model obtained by the Method I.

Fig. 17. Distribution of first-arrivals versus depths of geophones.
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Analytical solution for the velocity model can be written as:

T xð Þ ¼ 1
G0j j arccosh 1þ 1

2
S xð ÞS0 G0j j2 x−x0j j2

� 	
; ð16Þ

where arccosh is the inverse hyperbolic cosine function

arccosh zð Þ ¼ ln zþ
ffiffiffiffiffiffiffiffiffiffiffiffi
z2−1

p� �
: ð17Þ

Here, a 2-D example setup with the following parameters:

• x0 = (0.0, 0.0) km;
• Computational domain is [0.0, 1.0] × [0.0, 0.5] km;
• S0 = 2.0 s/km;
• G0 = {0.0, 1.0} 1/s, we set G0= 1.0 in this example.

Analytical solution and traveltimes calculated by the Podvinmethod,
the FSM and the factored FSM are shown in Fig. 6 (a). Among which,
green line stands for analytical solution, red line stands for traveltimes
calculated by the factored FSM, blue line stands for traveltimes calcu-
lated by the Podvinmethod, and black line stands for traveltimes calcu-
lated by the FSM. Fig. 6(b) is a zoom-inmap at t=0.8 s. Comparingwith
the Podvinmethod and the FSM, one can see that traveltimes calculated
Fig. 18. Initial velocity model, and raypath distribution for M31D-G20 and G20-G19.
(a) Initial velocity model built with horizontal distances and first-arrivals. (b) raypath
distribution for wells M31D-G20 and wells G20-G19, after performing 20 iterations.
by the factored FSM are much closer to analytical solution. In other
words, the factored FSM is more accurate than the other two methods.

In order to compare traveltimes calculated with the three methods
quantitatively, percentage error and traveltime difference between cal-
culated against the analytical solution are computed. In Fig. 7, one can
see that percentage error of the factored FSM is much smaller than
that of the other two methods. Likewise, the traveltime difference of
the factored FSM is also smaller than that of the other two methods in
Fig. 8. Maximal error between analytical solution and traveltimes calcu-
lated by the Podvin method is 9.64e-3. Maximal error between analyti-
cal solution and traveltimes calculated by the FSM is 8.09e-3. However,
maximal error between analytical solution and traveltimes calculated
by the factored FSM is 1.26e-3. According to percentage error and
traveltime difference, we can see that the factored FSM can deal with
source singularity better.

4. Numerical examples

In this section, block anomaly velocity model, checkerboard velocity
model, and field dataset are used for inversion. The first inversion
method uses the PStomo_eq program directly, while the second inver-
sion method uses the factored FSM to replace the original Podvin
Fig. 20. Curve of RMS of traveltime residuals. (a) linewith circle: convergence curve of the
Method II, (b) line with asterisk: convergence curve of the Method I.
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method in the PStomo_eq program. Here, we call the former one
“Method I”, and the latter one “Method II” in short.

4.1. Recovery test of velocity model with four block anomalies

In order to explore the capability of velocity inversionwhen it incor-
porates with different traveltime computation methods (the Podvin
method and the factored FSM), we test them on a velocity model with
four block anomalies. The only difference for traveltime calculation
method is that one is the factored FSM, and the other is the Podvin
method. Fig. 9(a) is the velocitymodel inwhich two anomalieswith ve-
locity 2.2 km/s, and another two anomalies with velocity 1.8 km/s. The
computational domain is 204 × 204 m, and mesh size is 51 × 51. 50
shots are distributed along top and left edges evenly, meanwhile 50 re-
ceivers are distributed along right and bottom edges evenly. Observed
first-arrivals are calculated with the factored FSM on the model with
mesh size 201 × 201. All input parameters for the two inversions are
the same. The starting model for velocity inversion is a homogeneous
model with velocity 2.0 km/s, and the percentage perturbation of real
against the initial model is shown in Fig. 9(b). After performing 15 iter-
ations for two inversions, the inversion results are shown in Fig. 9(c)-
(d). From which we can see the magnitude of blocks inverted by the
Method II ismuch closer to realmodel than that inverted by theMethod
I. Fig. 10 shows the percentage perturbation of inverted against the ini-
tial model. Maximal value in Fig. 10(a) is smaller than that in Fig. 10(b).
RMS of traveltime residuals is shown in Fig. 11 for the two inversions.
These two inversions can both converge to a stable and small level,
but the Method II can converge to a smaller level than Method I.
Fig. 12 shows the percentage ratio of inverted against the real model.
Percentage ratio can reach up to 78% for the Method II, while the per-
centage ratio is 72% for the Method I.

4.2. Recovery test of checkerboard velocity model

The two inversions are also tested on a checkerboard velocity model
(Fig. 13(a)). The computational domain is 104 × 304m, mesh size is 27
× 77. Size of checker is 21 × 20m at depth of 0–160 m, however size of
checker is 34 × 35 m at depth of 160–304 m. Velocity of sinusoidal
anomalies is 10% perturbation of the background model (1.7 km/s). 75
shots are distributed evenly at the right well, meanwhile 75 receivers
are distributed evenly at the rightwell. Observed first-arrivals are calcu-
lated with the factored FSM on the model withmesh size 79 × 229. The
backgroundmodel is taken as an initial model. All input parameters are
the same for the two inversions. After iterating 15 times, inverted
models are shown in Fig. 13(b)-(c). Fromwhich, one can see that check-
ers obtained by Method II are much clearer than that inverted by
Method I. Fig. 14 shows the percentage perturbation of inverted against
the initial velocity model. The maximal value in Fig. 14(a) is smaller
than that in Fig. 14(b). RMS of traveltime residuals is shown in Fig. 15.
One can see that Method II can converge to a smaller level thanMethod
I. The percentage ratio of inverted against the real velocity model is
shown in Fig. 16. Percentage ratio for Method II can reach up to 73%,
while the percentage ratio for Method I is 66%.

4.3. Field data from water contaminated site

In this example, the two inversions are used to invert a field dataset.
The goal of the project is to analyze distribution of underground con-
taminated liquid. First arrivals of three wells (M31D, G20, and G19)
are picked as observed traveltimes for velocity inversion. Well M31D,
G20 and G19 locate at x = 0.2 m, x = 3.17 m and x = 5.47 m, respec-
tively. G20 is a shot well, while M31D and G19 are receiver wells.
There are 2798 source-receiver pairs in total. The computational do-
main is 5.6 × 6.4 m. Mesh size is 29 × 33, so the grid spacing is 0.2 ×
0.2 m. Curve of first-arrival versus geophone depth is shown in Fig. 17.
According to inverse theory, initial model plays a significant role in
velocity inversion. Therefore, initial model is built with horizontal dis-
tance of source-receiver pairs divided by the first-arrivals. Initial veloc-
ity model is shown in Fig. 18(a). After performing 20 iterations for both
inversions, raypath distribution between three wells is shown in Fig. 18
(b). From which we can see ray coverage is inferior at the top and bot-
tom of the computational domain. Therefore, inversion result at these
districts is not that reliable as in the middle district. Previous study
shows that strata are mildly polluted by contamninated liquid (Ajo-
Franklin et al. 2006). For the two inversions, all input parameters and
initial model are the same. Fig. 19(a) is velocity model inverted by the
Method II. Fig. 19(b) is velocity model inverted by the Method I. We
can see two apparent low velocity areas exist at the depth of 3–6 m,
but they are much clearer inverted by the Method II. Convergence
curves for the two inversions are shown in Fig. 20. Similarly, Method II
can converge to a smaller level than Method I.

5. Conclusions

A2-D traveltime tomographybased on the fast sweepingmethod for
the factored eikonal equation is presented. The factored FSM can deal
with source singularity problem very well when one uses finite-
difference scheme solving the eikonal equation. Traveltime accuracy
has been improved when it tests on a constant gradient velocity
model. Eikonal solver plays a significant role in velocity inversion. Inac-
curate traveltimes may distort inverted velocity model. In other words,
eikonal solver has an influence on accuracy and convergence level for
velocity inversion. When inversion incorporating with the factored
FSM, numerical examples show that: (1) RMS of traveltime residuals
can converge to a smaller level, (2) percentage perturbation of inverted
against initial velocity model is smaller, (3) percentage ratio of inverted
against the real velocity model can reach up to a greater value.
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