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ABSTRACT
This paper presents a first-arrival tomography incorporating a fast sweepingmethod (FSM) solv-
ing the factored eikonal equation (factored FSM). The traveltime calculation method plays a
significant role in velocity inversion. However, for a point source condition, all finite-difference
based eikonal solvers suffer from the source singularity problem. Numerical error caused by
source singularity will propagate from the source to all computational domains, and makes
traveltimes inaccurate. A FSM solving the factored eikonal equation can deal with the source sin-
gularity problem very well. Therefore, a first-arrival tomography is developed by incorporating
2D and 3D factored FSMs to provide more accurate traveltimes in velocity inversion. For com-
parison, an open source package PStomo_eq is used to invert the same data set. It incorporates
the traveltime calculation algorithms fdtime2d.c and fdtime3d.c. Traveltime accuracy tests show
that factored FSM can generate more accurate traveltimes than FSM, fdtime2d.c and fdtime3d.c.
Numerical and field data tests show that inversion with factored FSM can acquire much better
tomograms than inversion with fdtime2d.c and fdtime3d.c. Therefore, it is worthwhile using a
more accurate traveltime computation method in velocity inversion.
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Introduction

Seismic traveltime tomography can invert a few param-
eters (velocity of longitudinal wave and shear wave,
quality factor, anisotropic parameters, etc.) by use of
large numbers of arrival times. In seismology and geo-
dynamics, earth structures can be obtained by use of
seismic events received continuously from stations (Aki
and Lee 1976; Engdahl, Hilst, and Buland 1998). Velocity
information can be used to investigate oceanic ridges,
continental plate subduction zones, volcanic channels,
geological faults, and the interface between the man-
tle and the core (Lees 1992; Kennett, Engdahl, and
Buland 1995; Calvert and Fisher 2001; Rawlinson and
Fishwick 2012). In resource exploration, seismic travel-
time tomography is used successfully in exploring oil
and gas reservoirs, coal and nonferrous metal deposits.
Statics and seismicmigration rely greatly on an accurate
velocity model which can be obtained from traveltime
tomography (Vesnaver et al. 2003; Bergman, Tryggva-
son, and Juhlin 2004; Zhou 2006). In engineering inves-
tigations, seismic traveltime tomography is usedwidely
in thedetectionofdamwater leakageandunderground
water pollution, foundation investigations, etc. (Ajo-
Franklin, Urban, andHarris 2006; Zelt, Azaria, and Levan-
der 2006; Marti, Carbonell, and Flecha 2008).

Methods of traveltime computation are well devel-
oped, for example, the shooting and bending method,
shortest path method, wavefront reconstruction
method and finite-difference based eikonal solver. The
ray-tracing method can provide accurate traveltimes,
but it is difficult to pass through shadow zones when
the model is complicated (Cerveny 2001). The shortest
path method is based on graph theory (Nakanishi and
Yamaguchi 1986; Moser 1991; Fischer and Lees 1993;
Zhou and Greenhalgh 2006; Huang et al. 2014, 2017). It
has good numerical stability, but low accuracy and effi-
ciency (Cheng and House 1996; Leidenfrost et al. 1999).
The wavefront reconstruction method uses a local ray-
tracing method for the current wavefront repeatedly
to obtain a new wavefront, until all traveltimes are
computed for the whole computational domain (Vinje,
Iversen, and Gjoystdal 1993, 1999; Ettrich and Gajewski
1996; Lambare, Lucio, and Hanyga 1996). This method
costs too much in terms of computational time for
the same level of accuracy, compared with the finite-
difference based eikonal solver (Leidenfrost et al. 1999).
The eikonal solver is themost promisingmethod. Vidale
(1988, 1990) is a pioneer of the use of a finite-difference
scheme to calculate traveltimes. This method has been
developed and modified further by many geophysi-
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cists (Podvin and Lecomte 1991; Van Trier and Symes
1991; Qin, Luo, and Olsen 1992; Hole and Zelt 1995;
Kim and Cook 1999). Among these methods, the fast-
marching method (FMM) (Sethian and Popovici 1999)
and fast sweeping method (FSM) (Tsai Cheng, Osher,
and Zhao 2003; Zhao 2005) are the most promising.
FMM incorporates an upwind finite-difference scheme,
narrow-band technique and heap-sorting algorithm to
describe wavefront expansion. Its computational com-
plexity is O(NlogN), where N is total number of grid
points. FSM is an iterative method. It incorporates an
upwind finite-difference scheme and Gauss–Seidel iter-
ationwith alternating sweeping orderings. Its computa-
tional complexity is O(N).

There are two important features in seismic trav-
eltime tomography: (1) the traveltime computation
method; and (2) a regularised inversion algorithm to
reduce the discrepancy between observed and cal-
culated traveltimes. Therefore, traveltime accuracy is
very important in seismic traveltime tomography. For
a point source condition, traveltimes calculated by
eikonal solver suffer from the source singularity prob-
lem (Qian and Symes 2002a; Waheed and Alkhalifah
2017). The numerical error of a finite-difference approx-
imation near the source point is very large. This error
can spread from the source to thewhole computational
domain and renders all finite-difference based eikonal
solvers first-order convergence at most. One approach
to dealing with the source singularity problem is to set
a homogeneous velocity block near the source point
to calculate analytical solutions for these points (Qian
and Symes 2001; Han, Zhang, andZhang2017). Another
approach is to refine the grid near the source point to
reduce large truncation errors (KimandCook 1999;Qian
and Symes 2002b). Fomel, Luo, and Zhao (2009) pro-
posed a FSM to solve the factored eikonal equation,
which deals with the source singularity problem very
well.

Here, we introduce a FSM to solve 2D and 3D fac-
tored eikonal equations. It breaks down the solution
of the eikonal equation into two factors: one factor
is calculated analytically, and the other is a necessary
modification (smoothing) in the neighbourhood of the
source point. For comparison, we use the PStomo_eq
program to implement velocity inversion incorporating
fdtime2d.c and fdtime3d.c. 2D and 3D factored FSMs are
used to replace fdtime2d.c and fdtime3d.c in PStomo_eq
to provide more accurate traveltimes for velocity inver-
sion. The traveltimes of P- and S-waves are used in trav-
eltime tomography to resolve the non-uniqueness of
the inverse problem.

The remainder of this paper is organised as follows:
(1) We introduce the methodology of seismic travel-
time tomography, factored FSM and the principle of
fdtime2d.c are also recalled briefly. (2) An analytical solu-
tion and traveltimes calculated using the factored FSMs,
FSMs, fdtime2d.c and fdtime3d.c of a constant gradient

Figure 1. 2D rectangular mesh.

Figure 2. Traveltime calculation for transmission wave. s and s′
are the slowness of the current cell and its adjacent cell.

Figure 3. Traveltime calculation for diffracted waves. A local
shadow zone is presented and corner Q acts as a secondary
source.

velocity model are used for comparison. (3) 2D and 3D
factored FSMs, fdtime2d.c and fdtime3d.c are used in the
PStomo_eq program to invert 2D and 3D checkerboard
velocity models. (4) the PStomo_eq program incorpo-
rating different traveltime computation algorithms is
used to invert 2D and 3D field data sets. (5) Conclu-
sions are drawn about factored FSM and its application
in numerical and field examples.

Methodology

Seismic traveltime tomography

Linearisation and discretisation are used in seismic trav-
eltime tomography (Lees and Crosson 1989). The com-
putational domain is often discretised with a certain
mesh size. The slowness of each cell or grid is assumed
to be constant. The ray path and traveltime for each
source and receiver pair can be calculated after the
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Figure 4. Traveltime accuracy test for a 2D velocity model. (a) 2D constant gradient velocity model. (b) Traveltime contour map:
green line, analytical solution; red line, traveltimes computed by factored FSM; black line, traveltimes calculated by FSM; blue line,
traveltimes calculated by fdtime2d.c.

Figure 5. Traveltime differences for a 2D case. (a) Discrepancy between traveltimes calculated using an analytical solution and trav-
eltimes computed by fdtime2d.c code. (b) Discrepancy between traveltimes calculated using an analytical solution and traveltimes
computed by factored FSM.

source and receiver have been specified. According to
inverse theory, traveltime perturbation is the integral
of slowness perturbation along the ray path. Therefore,
traveltime perturbation bi can be written as a linearised
equation bi =

∑
aijxj, where aij is the ray length of the

ith ray through the jth cell, and xj is slowness perturba-
tion in the jth cell. When there are a large number of
source and receiver pairs, a large and sparse system of
linearised equations can be used to express the seismic
traveltime tomographic equation (Nolet 2008):

Ax = b, (1)

The damping least-square solution of Equation (1)
can be expressed by an inverse matrix (Phillips and
Fehler 1991):

A−1
g = (ATA + λI)−1AT, (2)

where I is the identity matrix, λ is the damping factor
and A−1

g is the inverse of matrix Ag.
The observed data should be weighted by the recip-

rocal of estimation errors. Therefore, Equation (2) canbe
further written as:

A−1
g = (ATC−1

d A + λI)−1ATC−1
d , (3)
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Figure 6. Traveltime accuracy test for a 3D case. (a) 3D constant gradient velocity model. (b) 3D traveltime iso-surfaces at 1.1s. (c,d)
Vertical slice of 3D traveltimes and its expandedmap: green line, analytical solution; red line, traveltimes computed by factored FSM;
black line, traveltimes calculated by FSM; blue line, traveltimes calculated by fdtime3d.c.

a) b)

Figure 7. Traveltimedifferences for a 3D case. (a) Discrepancy between traveltimes calculatedusing an analytical solution and travel-
times computedby fdtime3d.c. (b)Discrepancybetween traveltimes calculatedusingananalytical solutionand traveltimes computed
by factored FSM.

where C−1
d is a diagonal matrix. Diagonal elements

of this matrix are variance in estimation errors. In
order to suppress high wavenumber noises, a smooth-
ness constraint operator is also added in the regu-
larisation equation (Lees and Crosson 1989; Toomey,
Solomon, and Purdy 1994; Tryggvason, Rognvaldsson,
and Flovenz 2002). Therefore, the inversion expression
and its matrix form can be written as:

A−1
g = (ATC−1

d A + λD)−1ATC−1
d , (4)

and [
C−1/2
d A
λD

]
x =

[
C−1/2
d b
0

]
, (5)

where D is the smoothness constraint operator. Lees
and Crosson (1989) explained that the smoothness con-
straint operator is a constraint condition for the rough-
ness of themodel. The smoothness constraint equation

of the jth cell in a 2D model can be expressed as:

4xj − (xj+1 + xj−1 + xj+n + xj−n) = 0. (6)

where xj is the slowness perturbation of the jth cell, and
n is the cell number in each row. In order to obtain a rea-
sonable velocity model, we also specify the upper and
lowerboundsof the velocitymodel (Zhou, Sinadinovski,
and Greenhalgh 1992). These methods and equations
are adopted in the PStomo_eq package.

Fast sweepingmethod solving the factored eikonal
equation

For a point source condition, there is a source singu-
larity problem when a finite-difference scheme is used
to solve the eikonal equation. In order to resolve the
source singularity problem, a factorisation method is
introduced (Fomel, Luo, and Zhao 2009; Luo and Qian
2011, 2012). Here, the factorisation method is recalled
briefly.
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Figure 8. 2D inversion results for comparison of the P-wave. (a) P-wave checkerboard model. (b) Inversion with factored FSM. (c)
Inversion with fdtime2d.c.

Figure 9. 2D inversion results for comparison of the S-wave. (a) S-wave checkerboard model. (b) Inversion with factored FSM. (c)
Inversion with fdtime2d.c.

The eikonal equation

|∇T(x)|2 = S2(x), x ∈ Rn, (7)

describes traveltime T(x) propagating in a slowness
model S(x), in spacex ∈ Rn.Webreakdown the solution
of eikonal equation into two factors: one is calculated

analytically or numerically, and the other is a necessary
modification in the neighbourhood of the source point.
For Equation (7), it can be broken down as

S(x) = S0(x)α(x), (8)

T(x) = T0(x)τ (x), (9)
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Figure 10. 3D inversion results comparison of P-wave. (a) P-wave checkerboard velocitymodel. (b) Result obtained by inversionwith
3D factored FSM. (c) Result obtained by inversion with fdtime3d.c.

Figure 11. 3D inversion results comparison of S-wave. (a) S-wave checkerboard velocity model. (b) Inversion with 3D factored FSM.
(c) Inversion with fdtime3d.c.
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Figure 12. Vertical slices of 3D P-wave inversion results. (a) P-
wave checkerboard velocity model. (b) Inversion with 3D fac-
tored FSM. (c) Inversion with fdtime3d.c.

Figure 13. Vertical slices of 3D S-wave inversion results. (a) S-
wave checkerboard velocity model. (b) Inversion with 3D fac-
tored FSM. (c) Inversion with fdtime3d.c.

We assume that

|∇T0(x)|2 = S0
2(x), (10)

T0 and S0 canbothbe calculated froman analytical solu-
tion. According to Equations (8) to (10), Equation (7) can
be written as a factored eikonal equation (Fomel, Luo,
and Zhao 2009):

T20 (x)|∇τ(x)|2 + 2T0(x)τ (x)∇T0(x) · ∇τ(x)

+ [τ 2(x) − α2(x)]S02(x) = 0. (11)

where α(x) is a constant or a variable.
The upwind finite-difference scheme is designed

after discretising Equation (11) to follow the causality of
the general eikonal equation. The numerical algorithm
is presented on a 2D rectangular mesh. There are four
grid points (A, B, C, D) around centre point O (Figure 1).
We can discretise Equation (11) on the four triangles:
�OAD, �OAB, �OBC and �OCD. Taking triangle �OBC
as an example, the discretised equation can be written
as:

T20 (O)

∣∣∣∣
(

τO − τB

h
,
τO − τC

h

)∣∣∣∣
2

+ 2T0(O)τO∇T0(O)

·
(

τO − τB

h
,
τO − τC

h

)
+ [τ 2O − α2(O)]S20(O) = 0,

(12)

There may one or two real roots in Equation (12). If
there is no real root in Equation (12), or these real roots
cannot satisfy the causality condition, the method of
characteristics can be used to pass information for τ

from B to O and from C to O along edges
−→
BO and

−→
CO,

respectively.
With (τx , τy) = (p, q), the characteristic equation can

be written as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
dx

dt
,
dy

dt

)
= (2T20p + 2τT0T0x , 2T20q + 2τT0T0y)

= 2T0∇T

dτ

dt
= 2T20 (p2 + q2) + 2τT0(T0xp + T0yq)

= 2T0∇τ · ∇T

.

(13)
τBO and τCO can be calculated using the method of
characteristics along two edges.

Fomel, Luo, and Zhao (2009) presented a local solver
to calculate traveltimes. It uses a Gauss–Seidel iteration
to sweep the whole computational domain with four
alternating orderings, repeatedly. The detailed proce-
dures of the factored FSM are given below.

(1) Initialisation: assign the initial boundary condition
for boundary grid points.

(2) Gauss–Seidel iteration: execute four sweepings for
the computational domain
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Figure 14. Horizontal slices of 3D P-wave inversion results (z = 8m). (a) P-wave checkerboard velocity model. (b) Inversion with 3D
factored FSM. (c) Inversion with fdtime3d.c.

a. i = 1 : I, j = 1 : J b. i = 1 : I, j = J : 1
c. i = I : 1, j = 1 : J d. i = I : 1, j = J : 1.

(2.1) Discretise the factored eikonal equation on
four triangles and calculate traveltimes. For
example, solving Equation (12) for two real
roots τO,1 and τO,2 on triangle �OBC.

(2.2) If two real roots τO,1 and τO,2 exist, then
• if τO,1 and τO,2 satisfy the causality condi-

tion, choose the minimal traveltime τBC =
min{τO,1T0(O), τO,2T0(O)};

• if only τO,1 satisfies the causality condition,
then τBC = τO,1T0(O);

• if only τO,2 satisfies causality condition,
then τBC = τO,2T0(O).

(2.3) If neither τO,1 nor τO,2 satisfy the causal-
ity condition, then calculate τBO and τCO

using the method of characteristics. These
two values should satisfy the causality con-
dition τBOT0(O) ≥ TB and τCOT0(O) ≥ TC , and
choose τBC = min{τBOT0(O), τCOT0(O)}.

(2.4) Repeat steps (2.1)–(2.3) for the remaining
three triangles, and choose the smallest
from the four traveltimes TO = min
{TDA, TAB, TBC , TCD}.

(2.5) Calculate τO = TO/T0(O).

PStomo_eq package and its traveltime calculation
algorithm

PStomo_eq is a seismic traveltime tomographic open
source package originally developed by Harley M. Benz
(Benz et al. 1996). This package was modified by
Tryggvason, Schmelzbach, and Juhlin (2009) for joint
inversion of the P- and S-waves for local tomography.
Velocity inversionofPStome_eq is recalledbriefly above.
This package has been used widely in many appli-
cations (Tryggvason, Schmelzbach, and Juhlin 2009;
Yordkayhun et al. 2009). Traveltime calculation algo-
rithms (fdtime2d.c and fdtime3d.c) in the PStomo_eq
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Figure 15. Horizontal slices of 3D S-wave inversion results (z = 8m). (a) S-wave checkerboard velocity model. (b) Inversion with 3D
factored FSM. (c) Inversion with fdtime3d.c.

package are provided by Podvin and Lecomte (1991).
The two algorithms aremodified slightly by Tryggvason
and Bergman (2006). This method is based on a finite-
differenceapproximationandHuygensprinciple.Differ-
ent propagation modes (transmitted waves, diffracted
body waves and head waves) are considered in the
traveltime computation algorithm. Here, we recall the
traveltime calculation method according to these three
types of wavemodes (Figure 2).

First arrivals generated by transmission waves
WhenonlypointsQ andR are timed, and thedirectionof
wave propagation for pointO is unknown, according to
the eikonal equation, twoestimates of the timegradient
can be computed as:

∂t

∂x
= tR − tQ

h
,

∂t

∂y
= ±

√
s2 −

(
tR − tQ

h

)2

, (14)

where h is mesh size, s is slowness in the cell defined by
points Q, R and O. If the sign of ∂t/∂y is known, an esti-
mate of arrival at point O can be computed. If point O is
reached by this wavefront, then 0 ≤ (tR − tQ) ≤ hs/

√
2;

and if ∂t/∂y ≥ 0, then arrival time can be computed
using the second term in Equation (14):

tO = tR +
√

(hs)2 − (tR − tQ)2, (15)

There are eight traveltime estimates for the current
pointwhich shouldbe computed according to 2D trans-
mission waves.

First arrivals generated by headwaves
s is the slowness of the current cell. If the slowness of the
current cell is greater than slowness of the adjacent cell
(s′), a head wave will be induced, travelling along edge
RO. The arrival time at O can be computed by tO = tR +
hs′. Therefore, a lower slowness value should be chosen
for traveltime calculation. Arrival time for pointO can be
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Figure 16. Distribution of first-arrivals vs. geophone depths.

expressed as:

tO = tR + hmin(s, s′), (16)

in the 2D case, four different estimates of arrival time
should be computed for the current point.

First arrivals generated by diffracted waves
Estimates of arrival time for point O are not reliable if
only these two schemes are used when there is a local
shadow zone in the current cell (see Figure 3). In fact,
point Q can be considered a secondary source. It emits
diffracted waves propagating through pointO. On such
anoccasion, the arrival time at pointO canbe calculated
by:

tO = tQ + hs
√
2. (17)

in a 2D data structure, four estimates of arrival time
should be computed for the current point.

Traveltime accuracy test

2D traveltime accuracy test

In this section, we test accuracy of factored FSM, FSM
and fdtime2d.c on a 2D constant gradient velocity
model to show the superiority of factored FSM. For a
point source condition, there are analytical traveltimes
for a certain velocity model. If the exact source location
x0 is known, the slowness function can be written as:

1
S(x)

= 1
S0

+ G0 · (x − x0), (18)

where S0 is a constant value andG0 is constant gradient
of velocity. The analytical traveltime can be written as
(Fomel, Luo, and Zhao 2009):

T(x) = 1
|G0| arccos h

(
1 + 1

2
S(x)S0|G0|2|x − x0|2

)
,

(19)

where arccosh is an inverse hyperbolic cosine function

arccos h(z) = ln
(
z +

√
z2 − 1

)
. (20)

Model parameters are given as:

• x0 = (0.0, 0.0);
• the computational domain is [0.0, 1.0]× [0.0, 0.5]

(km);
• mesh size is 0.00625 km× 0.00625 km;
• S0 = 2.0 s/km;
• G0 = 1.0 1/s, the constant gradient of velocity.

Figure 4 shows analytical traveltimes and traveltimes
calculated by the factored FSM, FSM and fdtime2d.c
algorithms. The time interval of the contour lines is 0.1 s.
In order to better know the traveltime accuracy, trav-
eltimes on a portion of the model (40× 40 meshes)
are shown in Figure 4(b). Traveltimes calculated by the
factored FSM are much closer to the analytical solu-
tions than that computed by FSM and fdtime2d.c in
Figure 4(c).

Traveltime discrepancies between the analytical
solution and numerical traveltimes are also made on
40× 40 meshes (Figure 5). The maximal error between
the analytical solution and traveltimes calculated by
fdtime2d.c is 7.8e–3 s (Figure 5a). The maximal error
between the analytical solution and traveltimes com-
puted by the factored FSM is 9.8e–4 s (Figure 5b). The
ratio of these two errors can reach 7.9, andmay become
greater as the wave propagates further.

3D traveltime accuracy test

The 2D slowness model can be extended to the 3D case
(Figure 6a), and can be used to test traveltime accuracy
for 3D factored FSM, 3D FSM and fdtime3d.c.

Parameters for the 3Dmodel set-up are:

• x0 = (0.0, 0.0, 0.0);
• the computational domain is [0.0, 1.0]× [0.0, 0.75]×

[0.0, 0.5] (km);
• cell size is 0.0125 km× 0.0125 km× 0.0125 km;
• S0 = 2.0 s/km;
• G0 = 1.0 1/s.

Figure 6(b) shows four iso-surfaces at 1.1 s for an
analytical solution and traveltimes calculated by 3D
factored FSM, 3D FSM and fdtime3d.c. From the ver-
tical slice and the expanded map in Figure 6(c) and
6(d), we can see that traveltimes calculated by 3D fac-
tored FSM are much closer to the analytical solution
than other traveltimes. Traveltime discrepancies are
also found between the analytical solution and travel-
times computed by 3D factored FSM and fdtime3d.c.
The maximal error between the analytical solution and
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Figure 17. Initial velocity model and ray path distribution between wells (M31D–G20–G19). (a) Initial velocity model built using
distances between shot and geophone in horizontal direction divided by its first-arrivals. (b) Ray path distribution between three
wells.

Figure 18. Inverted velocity profiles between three wells. (a) Inversion with fdtime2d.c. (b) Inversion with 2D factored FSM.

traveltimes calculated by fdtime3d.c is 0.0238. The max-
imal error between the analytical solution and travel-
times computed by 3D factored FSM is 0.0045395. The
ratio between these two errors reaches 5.242. This sug-
gests that traveltimes calculated by 3D factored FSM
are more accurate than those calculated by fdtime3d.c.
(Figure 7)

Numerical examples

2D checkerboardmodel reconstruction test

PStomo_eq incorporating 2D factored FSM and
fdtime2d.c is used to invert a 2D checkerboard model.
The model size is 104m× 304m (Figures 8a and 9a).
The size of the small checkers is 21m× 20m at a depth

of 0–160m. The size of big checkers is 34m× 35m
at a depth of 160–304m. Velocity perturbation is 10%
of the background model. The background velocity of
the P-model is 1700 m/s and that of the S-model is
1000m/s. Some 75 shots are distributed evenly on the
left well with �S = 4m. Likewise, 75 receivers are dis-
tributed evenly on the right well with �R = 4m. Mesh
size is 4m× 4m, and there are 1976 unknowns. How-
ever, there are 5625 source–receiver pairs. A specified
level of Gaussian noise is added to synthetic traveltimes
(noise level: 5%× random× σ̄ob, where “random” is a
numerical value in the range [−1 1], and σ̄ob is the aver-
age variation of common shot gather traveltimes). The
backgroundmodel is taken as the initial velocitymodel.
Parameters are the same for two inversions, when they
incorporate factored FSMand fdtime2d.c, andbothhave
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Figure 19. Initial velocity model for 2.5D traveltime inversion.

Figure 20. Velocity profile obtained by inversion with
fdtime3d.c.

15 iterations for these two inversions. The results for a P-
wave are shown in Figure 8(b) and 8(c), and the results
for an S-wave are shown in Figure 9(b) and 9(c). Com-
pared with the real model, the model recovered better
when inversion incorporating factored FSM was used
compared with inversion incorporating fdtime2d.c.

3D checkerboardmodel reconstruction test

PStomo_eq packages incorporating 3D factored FSM
and fdtime3d.c are also used to invert a 3D checker-
board model. The model size is 204m× 204m× 104m
(Figures 10a and 11a). The size of the checkers is
30m× 30m× 15m. Velocity perturbation is 10% of
the background model, the background velocity of
the P-model is 1700 m/s and that of the S- model is
1000m/s. The shot well is located at (90m, 90m) on
the surface. Some 51 shots are distributed evenly in
the well with �S = 2m, and 2500 receivers are dis-
tributed evenly on the surface with�Rx = �Ry = 2m.
Mesh size is 2m× 2m× 2m, and there are 541,008
unknowns. There are 127,500 source–receiver pairs.
Likewise, 5%Gaussiannoise is added into synthetic trav-
eltimes. Homogeneousmodels with 1700 and 1000m/s
are taken as initial P- and S-wave velocity models,

Figure 21. Velocity profile obtained by inversion with 3D fac-
tored FSM.

respectively. All input parameters are the same for the
two inversions. After 15 iterations for the two inversions,
the P- and S- wave results shown in Figure 10(b) and
10(c), and Figure 11(b) and 11(c) are obtained. Checkers
with a low velocity obtained by inversion with factored
FSM are much clearer than those obtained by inver-
sionwith fdtime3d.c. Vertical and horizontal slices of the
tomograms are shown in Figures 12–15. Figures 12 and
13 are vertical slices of the models. In the vicinity of the
shot well, checkers obtained by inversion with factored
FSM are much clearer. Figures 14 and 15 are horizontal
slices of themodels (z = 8m). Again, checkers obtained
by inversion with factored FSM are much clearer.

Field data from awater-contaminated site

Field data test: 2D case

Velocity inversionswith 2D factored FSMand fdtime2d.c
are applied to a field data set. The field site is near an
electric power plant in Pinellas County, Florida, USA.
This investigation is to analyse contaminated liquid dis-
tribution underground. Three wells (M31D, G20 and
G19) are selected for the traveltime inversion. M31D,
G20 and G19 are located at x = 0.2, 3.17 and 5.47m,
respectively. G20 is a shot well, M31D and G19 are
receiver wells. Mesh size for this computational domain
is 56× 64 with a cell size of 2m× 2m. The number of
unknowns is 896. There are 2798 source–receiver pairs.
The curve between first-arrivals and the depth of geo-
phones is shown in Figure 16. If the initial model is
much closer to the real model, inversion convergence
is faster and easier. However, if the initial model differs
greatly from the real model, the inversion result also
differs greatly from real model (Kissling et al. 1994; Liu
et al. 2010). Therefore, the initial model in this inver-
sion is built using the horizontal distance between the
shot and geophone divided by its first-arrival. The ini-
tial velocity model is shown in Figure 17(a). Ray path
distribution is shown in Figure 17(b) after 20 inver-
sion iterations. A previous study showed that the strata
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between these three wells are mildly polluted (Ajo-
Franklin, Urban, and Harris 2006). Figure 18 shows
results of inversion incorporating factored FSM and
fdtime2d.c. There are two apparent low-velocity zones
(see areas marked by arrow notation), which are much
clearer in Figure 18(b) than in Figure 18(a).

Field data test: 2.5D case

Velocity inversion with 3D factored FSM and fdtime3d.c
is also applied to the same field data set. Eight wells
(G16, G17, G18, M34D, RW12, G19, G20 and M31D) are
used to join traveltime inversion. There are four shot
wells (G17,M34D, RW12 andG20) and five receiverwells
(G16, G18, M34D, G19 and M31D). Among them, M34D
is both a shot well and a receiver well. The 2.5D ini-
tial velocity model is built using the horizontal distance
between the shot and geophone divided by its first-
arrival. The initial model is shown in Figure 19. Velocity
profiles obtainedby inversionwith 3D factored FSMand
fdtime3d.c are shown in Figures 20 and 21. There are
many low-velocity anomalies, which may be caused by
contaminated liquid. Areas marked by arrows are much
clearer in Figure 21 than in Figure 20. Contaminated liq-
uid diffuses and migrates laterally along the strata and
accumulates in some unconsolidated deposits.

Conclusions

First-arrival tomography incorporating 2D and 3D fac-
tored FSMs is presented. The factored FSM can deal
with the source singularity problem for a point source
condition. Therefore, it can generate more accurate
traveltimes than other finite-difference based eikonal
solvers. The traveltime computation method has a sig-
nificant role in first-arrival tomography. A robust and
accurate traveltime computation method can improve
the tomographical result to a certain extent. Traveltimes
of P- and S-waves are incorporated in the regularisa-
tion equation. In 2D and 3D checkerboardmodel recon-
struction tests, the results obtained by inversion with
factored FSM are much clearer than those inverted by
the PStomo_eqpackage. Velocity inversion is performed
for a field data set in water-contaminated land to delin-
eate areas polluted by toxic liquid. In the 2D and 2.5D
cases, the results obtained by inversion with factored
FSMdelineate anyvelocity anomaliesmore clearly. Low-
velocity zones may be caused by toxic liquid that dif-
fuses and migrates along strata, and finally deposits in
some unconsolidated formations.
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