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Abstract—Spatial methods have a rich history of reforming city
infrastructure. For example, John Snow’s 1854 London Cholera
map spurred cities to protect drinking water via sewer systems
and to increase green spaces for public health. Today, geospatial
data and mapping are among the technologies that cities use
the most due to strategic (e.g., long-term planning, land-use),
tactical (e.g., property tax, site selection, asset tracking) and
operational (e.g., E-911, situation awareness, gunshot location)
use cases. Moreover, they (e.g., Google Maps) help citizens
navigate, drones stay clear of restricted spaces (e.g., airports,
NFL games), and sharing-economy (e.g., Uber) match consumers
with nearby providers. Future spatial computing opportunities
for smart cities are even more compelling. GIS promises to help
re-imagine, redesign, see, and compare alternative infrastructure
futures to address risks (e.g., climate change, rising inequality,
population growth) and opportunities (e.g., autonomous vehicles,
distributed energy production). This paper surveys recent spatial
computing accomplishments and identifies research needs for
smart-city use-cases.

Index Terms—spatial computing, smart city, infrastructure

I. INTRODUCTION

The next 30 years will see the world’s urban population
grow by 2.5 billion [1]. The increased population will mean
the addition of much new infrastructure (mainly in Asia and
Africa) and the repair of existing infrastructure worldwide [2].
Adding to these challenges will be the impact on cities of
global climate change (e.g., sea level rise in coastal areas).
Meanwhile, there are new possibilities on the horizon like
autonomous vehicles and solar energy generation. The need for
new infrastructure provides a unique opportunity for citizens,
engineers, scientists and governments to come together and
build ‘smart cities’ that promote health and well-being, equity,
and sustainability [3]. The vision aligns with the United
Nations’ 17 goals for ensuring sustainable food, energy, and
water systems; access to education; and other benefits of
healthy sustainable communities in the future [4].

Infrastructure generally refers to the physical and orga-
nizational structure that is required for the operation of a
society. Table I lists multiple infrastructure and marks (X) their
importance in three perspectives. Core infrastructure includes
transportation, food, energy, water, public health, waste and
sanitation, and buildings. Ramaswami et al. [3] consider
green spaces infrastructure. IEEE, in its 2018 international
conference on smart-cities took an inter-city perspective and
recognized a number of other key sectors such as information
technology (e.g., communication technology) and defense [5].

TABLE I: Smart City Infrastructure
Infrastructure Type Ramaswami

[3]
IEEE SCC

[5]
PPD-21

[6]
Transportation, Mobility X X X
Food & Agriculture X X X
Energy X X X
Water X X X
Health-care, public
health

X X X

Waste and sanitation X X X
Buildings X X
Green/public spaces X
Defense Industry X X
Emergency Services X
Financial X X
Government X X
Information Technology X X
Education sector X
Law, Privacy X
Nuclear X
Chemical sector X
Commercial sector X
Private sector X
Manufacturing sector X
Dams X
Spatial Technology
(maps, positioning, GIS)

At the national level, presidential policy directive 21 (PPD-
21) [6] issued under President Obama lists 16 critical sectors
and 14 of them depend on GPS [7].

Spatial methods have often governed the transformation of
cities. For example, John Snow’s 1854 cholera map led to the
creation of sewer system, increasing green space, and urban
planning [8]. The changes occurred due to his map linking
cholera to drinking water contamination during the 1854 Broad
Street cholera outbreak in London. Figure 1 shows the map
Snow drew of the cholera cases mostly located around water
pumps. Similarly, cities today employ spatial methods for im-
proved governance. Geospatial data and mapping technologies
are used extensively for strategic (e.g., long-term planning,
land-use), tactical (e.g., property tax, site selection, asset
tracking), and operational (e.g., E-911, situation awareness,
gunshot location) use-cases by city administrations.

Traditional urban infrastructure systems that incorporate
modern Information and Communication Technologies (ICT)
can help to achieve the vision of ‘smart city’ [9]. Since a
key feature of all city infrastructure namely, transportation
networks, housing, energy, and utility systems is its spatial
nature [10]. It is important to use computing techniques
that can handle special properties of spatial data, such as
heterogeneity and auto-correlation [11]. Such techniques come
under the purview of spatial computing. Formally, spatial
computing refers to the ideas, tools, solutions, technologies978-1-5386-5959-5/18/$31.00 ©2018 IEEE



Fig. 1: Map by John Snow where hotspots of cholera cases can be seen
around the pump site(s).

and systems that are used to analyze data with geographic
information [12].

Outline: The rest of the paper is organized as follows:
In section 2 we provide a brief overview with limitations of
related work, our contribution and scope of this paper. Section
3 and Section 4 describe the accomplishments and research
needs of five broad areas of spatial computing respectively.
Section 5 concludes the paper with a look to future work.

II. RELATED WORK AND OUR CONTRIBUTIONS

Batty et al. [9] provides a vision for smart-cities to enhance
economy, and governance. are enhanced. Yin et al. [13]
discuss developing country challenges such as, air quality
and clean water. Shelton et al. [14] explore the effect of
new technological developments and the data-driven approach
on the administration (e.g., urban policy) in Louisville and
Philadelphia. Mohanty [15] surveys the internet of things and
cyber physical challenges in smart-cities.

Angelidou [16] reviews multiple factors that affect policy
making for the development of smart-cities. For example,
national versus local strategies differ due to geographical scale,
strategies for new versus existing cities differ due to reuse,
demolition or repair of old infrastructure and technologies.
Zheng [17] examines urban computing (data management and
analytics) issues related to transportation, environment, etc.
Gruen [18] discusses the need for high-fidelity spatial data,
e.g., digital topographic models and 3D building models.

Limitations of related work: Table II lists the most widely
adopted technologies in U.S. cities over recent years (2015-
2017). It shows that geospatial and mapping technologies
are widely used. For example, all sectors of modern life,
from transportation to finance, depend on GPS. GPS is also
responsible for timing our clocks, tracking our rides, important
packages and airlines [7]. As shown in Figure 2 most of the

Fig. 2: Related Work

prior work [9], [13]–[15] does not provide a spatial perspec-
tive. Further, the related work [16]–[18] that has a spatial view
is narrowly focused on few data-types such as trajectories or
imagery. Spatial infrastructure (e.g., maps, positioning, GIS,
etc) is also missing from prior lists of city infrastructure as
shown in the last row of Table I.

TABLE II: Most widely adopted technologies city-wide
Rank 2015 [19] 2016 [20] 2017 [21]

1 (69%) Geospatial
/ Mapping

(93%) Public
Meeting records

(53%) GeoSpatial
/ Mapping

2 (67%)
Virtualization

(92%) Wireless
Infrastructure

(48%)
Cybersecurity

3 (60%)
Performance
Benchmarks

(91%) Redundant/
Offsite Data

Storage

(34%) Predictive
Policing

4 (58%) Transaction
Processing

(90%) Endpoint
Security

(32%) eDiscovery

5 (57%) Project
Management

(85%) Broadband
Infrastructure

(20%) Predictive
Analytics

Our Contributions: We consider five broad spatial com-
puting areas: (1) positioning, (2) remote sensing, (3) spatial
data science, (4) spatial database and management systems,
and (5) geographic information system (GIS) and cartography.
Positioning and remote sensing relate to the generation and
collection of geographic data. Spatial data science studies
analysis techniques for geographic data. Spatial database
management systems provide efficient storage and optimal
querying of data. Finally, GIS and cartography represent the
integrated platform where all of these areas are used to
develop useful applications. For each of the five areas, we
list concrete examples of current accomplishments and future
research needs of spatial computing to achieve various smart
city infrastructure goals.

Scope: The paper does not address social science topics
(e.g., inequality), engineering topics (e.g., managing rainwater
to reduce flood or ground sagging), etc. In addition, the paper
does not aim at exhaustive survey of spatial computing use-
cases as they may vary across cities.

III. ACCOMPLISHMENTS

This section describes the key accomplishments in each
of the five broad areas of spatial computing. The accom-
plishments have found importance in multiple domains such
as, public saefty, urban heat detection, air pollution, routing
services, and city planning among others.

A. Positioning: Positioning determines geographic coordi-
nate values in real-time. Global Navigation Satellite Systems
(GNSS) [22] (e.g., Global Positioning System or GPS [23])



are usually used for outdoor positioning. GPS is also used
to measure time and synchronize millions of computers on
Earth [24]. Further, outdoor positioning is used in cellular
devices enabling mapping and ride-hailing services. Finan-
cial (e.g., time-stamping transactions), defense (e.g., conduct
military operations), and transportation (e.g., vehicle tracking)
sectors depend on GPS for their day-to-day functioning. There
are around 2 billion GPS devices in use today and that number
is expected to increase to 7 billion by 2022.

Determination of position within closed spaces is called
indoor positioning, and is usually accomplished using RFID
and Wi-Fi based methods [25]. Indoor positioning is primarily
used in hospitals, retail sectors, large warehouses or factories,
and it is increasingly available for efficient navigation inside
airports, or large shopping complexes [26]. Both indoor and
outdoor positioning has been used to build navigation systems
for blind [27].

Beyond GPS positioning systems help public safety; for ex-
ample, sound sensors on utility poles can be used for real-time
location of a gunshot [28]. Noise source positioning [29], [30]
are useful for monitoring noise pollution in a city or around
sensitive areas such as hospitals. There are also techniques [31]
that use trajectory data to to determine avoidance regions for
early detection of urban decay.

B. Remote Sensing: Unlike traditional time and resource
consuming manual land surveys, remote sensing technology
continuously monitors the earth, including urban areas, using
advanced sensor platforms (e.g., satellites, aircrafts, unmanned
aerial vehicles). The versatility of these sensors allows the
collection of spectral (e.g., both visible and non-visible) and
elevation data. Remote sensing data is valuable in smart
city monitoring, management, planning, and can help monitor
infrastructures such as buildings, energy, green spaces, etc.

High-resolution (e.g., 1 meter) aerial imagery and Li-
DAR datasets (i.e., sources of topographical models) have
been made available (e.g., National Agriculture Imagery Pro-
gram [32], Minnesota LiDAR repository [33]), and support
general land-use classification (e.g., built areas, green space,
water, roads) based on machine learning and, more recently,
deep learning techniques [34], [35]. Rule-based data mining
techniques have also been applied on LiDAR data to classify
different types of infrastructure at city or state scales [36] as
shown in Fig. 3(b). Such classification helps decision-making
in city management and planning. For example, a classification
map can be used to evaluate residents’ access to green spaces
(e.g., park) at different city locations and allocate new tree
resources to regions with lower accessibility, thus helping
smart cities meet well-being and equity goals.

Remote sensing research has also explored the detection and
analysis of urban heat islands and urban sprawl [37], [38],
which aims to improve the sustainability of city development.
In addition, LiDAR data has been used to facilitate the use
of renewable solar energy in smart cities (Fig. 3(c)). The
high-resolution elevation information allows identification of
flood risks, estimation of drinking water quantity, physics-
based simulation methods to estimate the seasonal or annual

Fig. 3: Example remote sensing use cases in smart cities. (Best in color)

energy generated by sunlight (e.g., determined by sun angle,
climate, obstacle, etc.) at specific locations (e.g., roof of a
household) [39]–[41].

C. Spatial Data Science: John Snow’s Cholera map (1)
illustrates the power of spatial data science [42] in detecting
useful, interesting, novel, and non-trivial patterns such as
hotspots. Spacial data science generalize traditional statistics,
data mining, and machine learning to deal with spatial auto-
correlation, heterogeneity and other geographic challenges.

It has been applied to a variety of infrastructures (e.g.,
transportation, sanitation, and security) in smart cities. Specif-
ically, urban hotspot detection, which finds geographic regions
with statistically high concentration of certain events, helps (1)
alert public health officials to outbreaks of disease (e.g., flu
outbreaks) [43], [44]; (2) police locate serial criminals [45];
(3) cities identify roads that are in poor condition or lack
necessary safety infrastructure [46]; etc. Co-occurence pattern
detection can be used in transportation and energy sectors
to discover highly correlated associations between certain
vehicle behaviors (e.g., braking) and high combustion or
energy cost [47]. Spatial outlier detection has also been used
to find anomalies in river water flow and to send pollution
and contamination warnings [48]. Spatial machine learning
has played an important role in city security surveillance
(e.g., face matching [49], license plate reading [50]), land-use
classification and monitoring [35], [51], travel-time prediction
[52], etc.

D. Spatial Database Management Systems: A database



Fig. 4: Example data model in SDBMS.

management system (DBMS) is a computerized system
for defining, creating, querying, updating, and managing a
database. A traditional DBMS provides persistence across
failures; concurrency control, which allows different parts of
a transaction to be executed out-of-order without affecting the
final outcome; and scalability to search queries on very large
datasets which do not fit inside main memories of computers.
While a traditional DBMS is efficient for non-spatial queries,
such as listing the names of all roads, it is not efficient for
spatial queries, like listing the name of all roads within one
kilometer of a building. In order to facilitate the use of spatial
data (e.g., aerial imagery), we need Spatial DBMS.

A Spatial DBMS is a software module that can work
with an underlying DBMS. It supports spatial data models,
spatial abstract data types (ADTs), and a query language
from which these ADTs are callable. It also supports spatial
indexing, efficient algorithms for processing spatial operations,
and domain specific rules for query optimization.

Two commonly used spatial data models are field-based and
object-based models. Figure 4(a) shows an example of the
spatial data of a park. An object-based model represents the
information with three polygons (Figure 4(b)); a field-based
model represents the information as a mapping from a spatial
framework (a partition of space) to an attribute domain (e.g.,
land cover) (Figure 4(c)). Each object in an object-based model
is a distinct identifiable thing relevant to an application, which
has spatial and non-spatial attributes as well as operations.
Spatial attributes of objects can be represented as points, lines,
polygons, as well as collections of them. Operations on spatial
objects in an object-based model generally can be classified
into four groups as shown in Table III, namely, set-based,
topological, directional, and metric operations. Operations for
field-based models are of three types: local, focal, and zonal.
The value of a local operation’s result at a given location
depends only on the value of the input field at the location
(e.g. thresholding), while that of a focal operation depends on
a small neighborhood around the location (e.g. gradient). Zonal
operations are naturally associated with aggregate functions.
Their results at a location are determined by a zone.

TABLE III: Classifying Operations in Object-based Models

Operation Class Examples
Set-based Union, Intersection, Contain, Within,...
Topological Touch, Disjoint, Overlap, ...
Directional South, Northeast, ...
Metric 500 miles away, ...

Spatial databases are becoming increasingly accessible
nowadays. Example include US land-parcel database with 150
million parcels, census, remote sensing images (in Google
Earth Engine or Amazon web-services Earth [53], Seattle On-
line Crime Maps [54], Chicago Crime Map [55]), metro transit
(e.g. Chicago Transit Trackers [56]), apartments (e.g. Apart-
ments.com), roads (e.g. Google Maps), etc. Spatial DBMS
applications are ubiquitous in smart cities. Waze, a software
providing turn-by-turn navigation based on a road map, user-
submitted travel times, and route details, is a good example of
a Spatial DBMS [57]. Spatial DBMS is also utilized to hold
locations of all underground infrastructure (e.g., water mains,
gas lines, telephone wires, broadband) for use cases from
public safety (e.g., before digging to reduce collateral damage)
to proactive maintenance of all co-located infrastructure types
at a site to reduce repeated digging at a site. Other applications
of Spatial DBMS include E911 which was introduced to
provide the location of callers to 911 operators [58], as well
as enforcing restricted zones such as airports for Unmanned
Aerial Vehicles [59].

E. GIS/Cartography: A geographic information system
(GIS) is an integrated platform to collect, manage, analyze and
visualize spatio-temporal information. As shown in Table II,
GIS has been widely used in smart-city projects for urban
planning, development, and management. In India, smart cities
will have command & control centers that will utilize a GPS
equipped ecosystem (e.g.,trash bins, vehicles, streets, poles
etc.) to monitor and manage resources [60]. Japan has also
been using GIS to help with city master planning, regulation
revision and city planning ordinance revision [61]. In order to
improve the functionality of GIS, research has been conducted
on generating maps and their annotation [62], map-matching
spatial data to existing maps [63], and evacuation planning
that considers the capacity of spatial networks [64].

IV. RESEARCH NEEDS

This section describes the research needs in each of the five
broad areas of spatial computing. These needs have emerged
from existing challenges such as GPS jamming and spoofing
attack, or need for advancement in existing technologies
such as aerial imagery. Furthermore, spatial data has unique
properties that require attention when devising algorithms and
methods for their analysis. Finally, with the increased use
of spatial technologies, application driven requirements (e.g.,
routing services) have emerged that needs to be addressed.

A. Positioning: Reverse E911 automatically provides the
location of a caller to a dispatcher; however, it cannot provide
vertical position or altitude. This shortcoming can become a
major hindrance to determining the accurate location of callers
from high rise buildings. Further, positional knowledge of var-
ious infrastructure interdependence is necessary for improved
resilience of city infrastructure to man-made disasters (e.g.,
construction work rupturing nearby gas pipelines) and emer-
gencies. Furthermore, high-fidelity maps with road furniture
information and accurate positioning can help to improve the



accuracy of self-driving cars. However, it is important that the
position of marked objects be verified manually.

GPS is used for positioning as well as time service by two
Billion GPS receivers in smart phone, vehicles, computers,
sensors, etc. across all critical infrastructures listed in Table I.
Thus, GPS disruption by jamming or spoofing or satellite
failures can massively disrupt our civilization by disrupting
cell-phones, ATMs, sharing-economy (e.g., uber), Amazon de-
livery, etc. Unfortunately, it is trivial to jam GPS by purchasing
widely available and cheap devices and tens of thousands of
attacks have occurred in transportation sector from airports to
trucks to ride-sharing services. In addition, adversaries have
exhibited capability to destroy satellites. This calls for steps
to improve the existing satellite systems to increase the signal
strength and create positioning backup systems [65] such as
Enhanced Long Range Navigation (eLORAN). The integrity
of GPS needs to be strengthened through modernization,
“survivability” (e.g., through redundancy), setting of manu-
facturing standards, and understanding of resiliency against
multiple hazards [66].

Outdoor positioning based on GPS needs further research to
understand space weather and its effects on signal delay and
accuracy. There is a need for broader coverage and improved
observation of ionospheric and atmospheric parameters. Fur-
ther, the development of space and weather products should
take into account user requirements (e.g., terms of accuracy,
availability and integrity).

B. Remote Sensing: Remote sensing presents new chal-
lenges and research opportunities in smart city infrastructure
management. One key challenge is generating inventories of
objects in a city at a fine-scale (e.g., individual trees and
their species as part of green infrastructure), which require
object detection techniques. Recent advances in deep learn-
ing have shown promising results in recognizing objects in
everyday images [67], [68] as well as improved ability to
construct features for remote sensing data [69]. While deep
learning is a potentially powerful tool for detecting objects in
remote sensing imagery, we still need the unique signatures
of different object classes that distinguish one class from
another. However, in many critical smart city applications,
such signatures remain unclear.

In the last decade the invasive species Emerald Ash Borer
has spread to many countries and killed millions of ash trees,
posing a severe threat to green infrastructure in northern cities.
In Europe, the ash tree has been predicted to face extinction
[70], and in the US, the cost for curing or removing all ash
trees has been estimated to be over 10 billion US dollars
[71]. To respond to this and potentially similar threats for
other species, (e.g., Oak Wilt, Mountain Pine beetle), many
cities have decided to create inventories of individual trees
(e.g., location, size, species). However, the current resolution
of satellite imagery is typically not sufficiently high to provide
distinct signatures of different tree species from an aerial view.

Fig. 5 shows an example of a 1-meter resolution satellite
imagery and four tree canopies, where the blue circles rep-
resent elm trees and red circles represent ash. In the visual

Fig. 5: Trees in remote sensing imagery (1m resolution). (Best in color)

Fig. 6: Urban garden in 1m and 7cm resolution imagery. (Best in color)

bands of the images, the canopies from the two different genus
share mostly the same color and texture, making it difficult
to separate them into distinct classes. On the other hand,
related research has demonstrated that detailed leaf shapes
and textures in higher resolution aerial imagery can be used to
construct unique signatures of tree species using deep learning
models [72]. Hyper-spectral imagery has also demonstrated
usefulness in tree species classification [73]. This motivates
collection of very high resolution (e.g., 7cm, hyperspectral)
remote sensing data in spatial or spectral dimensions at large
scales. Besides green infrastructure, improved high-resolution
imagery also offers new opportunities to detect other inter-
esting infrastructure objects such as urban gardens (Fig. 6).
Availability of night time thermal imagery can help determine
poorly insulated buildings.

C. Spatial Data Science: As the popularity of data science
(e.g., data mining, statistics, machine learning) increases, more
and more emphasis is being placed on a transdisciplinary view
of data science techniques to improve the interpretability and
robustness of results [42], [74]. This is particularly important
for smart city applications due to the high cost (e.g., stigmati-
zation, economic & political cost) of false positives (e.g., spu-
rious disease outbreak warnings) and inaccurate classification
and prediction (e.g., causing autonomous driving accidents,
wrong flu peak estimation). Research challenges include space
partitioning impact on statistics, real-time, fairness, etc.

Statistics and space partitioning: In data science, samples
are usually assumed to follow an i.i.d. (identically and in-
dependently distributed) distribution, which is the foundation
of many techniques (e.g., linear regression, decision trees,
random forest, neural network). However, this i.i.d. assumption
is not valid for geospatial data, which are often spatially auto-
correlated [42]. Direct application of i.i.d. based methods on
spatial data can lead to salt-and-pepper errors or fragmented



Fig. 7: Effect of space partitioning on statistics. (Best in color)
results [75], [76]. In addition, breaking up the spatial de-
pendence between samples may lead to opposite statistical
conclusions from the true phenomenon.

Fig. 7(a) shows an example distribution of two diseases
A and B and a potential cause C in a spatial domain. In
order to apply traditional statistical measures to evaluate
the correlation between the disease and the cause, a typical
preprocessing step is to break the space into a few partitions
such as counties, or census blocks (Fig. 7(b)) and examine
how frequently the diseases and the cause appear together
in each partition using i.i.d. based measures (e.g., Pearson’s
correlation coefficient) [42]. With this space partitioning, the
distribution vector v of a disease or cause x can be constructed
as v(i) = count(instances ofx inside ith partition), where i is
the ID of a partition. For example, the distribution vector of
disease A is [2, 0, 1, 0].

Table IV shows the Pearson’s correlation coefficients com-
puted using the vectors, where the negative value ”-1” for
disease B and cause C means that B and C are completely
repulsive in the spatial domain. However, looking at the point
distribution, we can see that the locations of both disease
A and B tend to appear near the locations of C, which
indicates that both diseases are spatially correlated with C.
Since such adjacency was broken by the space partitioning,
a direct use of Pearson’s correlation coefficient led to the
opposite conclusion. Similar errors are exhibited by support
measure used by association rule in data mining. With a spatial
neighbor graph (Fig. 7(c)) [42], such spatial relationship can
be maintained, so we can reach correct conclusions as shown
by the high participation index [77] values (range [0, 1]) in
Table IV, where both values are 1 meaning both diseases are
spatially colocated. Ripley’s cross-K may help as well.
TABLE IV: Pearsons correlation coefficient, participation index, and Support

for disease and cause pairs

Disease
& cause

Pearsons Corr.
Coefficient

Ripley’s
cross-K

Participation
Index Support

(A,C) 0.9 0.5 1.0 0.5
(B,C) -1.0 0.5 1.0 0

This example shows that traditional statistical measures and
approaches (e.g., machine learning) based on the i.i.d. assump-
tion are inadequate for spatial data. Arbitrary space partition-
ing should not be directly used to transform spatial samples
into i.i.d. samples. Sometimes in human environments, how-
ever, space partitioning is unavoidable (e.g., political district
zoning). This leads to a well-known phenomenon called the
”Modifiable Areal Unit Problem” (MAUP) [78], also referred
to as the aggregation effect. Formally, the problem states that
the output of aggregate measures depends on the size and

shape of the partition or modifiable area units. Therefore, the
analysis or findings may differ as the partitioning change.

Gerrymandering, one of the most popular examples of
MAUP [79], is when a political party boosts the chance of win-
ning in an election by manipulating the boundaries of electoral
constituencies. Figure 8 shows an example of how space par-
titioning can affect the calculation of majority measurement.
Figure 8(a) shows input data with 15 A and 10 B votes shown
by red and green respectively. Vertical(Figure 8(b)) and Hori-
zontal(Figure 8(c)) partitioning results in A winning a majority
of the partitions, 3 and 5 respectively. However, partitioning
where B can win despite overall minority status is shown
in Figure 8(d). Gerrymandering threatens citizens’ sense of
fairness in political elections. A MAUP problem is typically
handled by using a point dataset. However, when point datasets
are not available, policies (e.g., formation of electoral districts)
and conclusions (e.g., poverty stricken areas [80]) should be
made conditional to the underlying spatial partitioning.

Fig. 8: Modifiable Areal Unit Problem, e.g., gerrymandering. (Best in color)

Real-time: Determination of emerging spatial patterns in
real-time can be useful for critical infrastructure protec-
tion [81]. Real-time spatial patterns can aid in assessing
and reducing damage to infrastructure and improving city
resiliency. For example, emerging circular hotspots [82] have
been designed to detect outbreaks of disease and crime and
help contain cases of disease outbreak. Computationally, find-
ing spatial patterns in real-time is costly due to the high
volume, velocity, and variety of data. However, techniques
such as parallel processing [83] and incremental algorithms
can be used to reduce computational cost.

Fairness: As data science techniques continue to improve
the efficiency and quality of people’s lives, fairness of results
is gradually becoming a critical concern [84]. Given that
equity is an important smart city goal [3], spatial data science
methods should also consider potential fairness aspects during
algorithm design. For example, in a ride sharing system, while
it is important for algorithms to quickly match consumers
and drivers and try to minimize the commute time, it is also
important to address the fairness among individual consumers
(e.g., in a pool scenario) [85]. Service providers should also
be considered in the decision making [86]. To fulfill the equity
goal in smart cities, algorithmic fairness should be given more
attention in future research.

D. Spatial Database Management Systems: New research
is necessary in order for Spatial DBMS to handle emerging
societal needs. Due to the pervasive use of location aware
smartphones, it is easy for companies to keep track and record
users’ location and time. For example, this data can be easily
analysed to know an individual’s work and home locations.



Therefore, research needs to devise policies (e.g., EU General
Data Protection Regulation [87]), laws and norms that balance
the needs of national security, businesses and civil society.

Another active research area is route selection. Effort has
been made to estimate time of arrival based on historical travel
data and road maps [88], [89]. However, smaller time cost does
not necessarily mean smaller energy consumption. The time
cost of a vehicle traveling along a route is determined by the
route’s length and the vehicle’s average speed, the vehicle’s
energy consumption is also affected by geographic factors like
weather, terrain, road angle/layout and intersection properties,
as well as the vehicle’s kinetic intensity and weight. Therefore,
energy consumption should be treated differently than time
cost. Meanwhile, the energy consumption of traveling along
two adjacent road segments is not independent, so the method
of estimating the energy consumption of each road segment
separately and then summing up the energy consumption of
the road segments along the route to find the route’s energy
consumption is inaccurate. The traditional routing methods
from graph theory (e.g., Dijkstra’s, A*) which treat the cost
of each road segment independently need to be adjusted for
dependency between adjacent row segments.

Order-dispatch matching —pairing service providers and
customers such that criteria on travel distance and waiting time
are met —is an important problem in the sharing economy.
Research is needed to satisfy many conflicting requirements
for the broker (e.g. keeping the system alive), customers (e.g.
minimizing travel distance and waiting time), and service
providers (e.g. maximizing revenue). A study [90] was con-
ducted to match service providers and consumers in a fair
manner.

E. GIS/Cartography: While most current work in GIS
and cartography focuses on outdoor spaces, within a smart
city context, indoor space is also important for a variety of
applications, including indoor navigation, building evacuation
and rescue during emergencies (e.g., fire), energy and waste
management, anomaly detection (e.g., sensors), etc. To utilize
spatial computing indoors, the collection and integration of
indoor spatial data needs to be improved. Several spatial data
standards have been established. For example, CityGML [91]
and IndoorGML [92] (GML stands for Geography Markup
Language) include standardized data models and exchange
formats for indoor spatial data.

While these standards define general spatial data models
(e.g., visualization, navigation), they have limited applications
for many critical smart city infrastructures, such as energy, the
Building Information Model (BIM) [93] (e.g., for fire safety)
is another indoor standard widely used in the engineering
field, which covers a broader set of building information (e.g.,
energy) [94] that is closely related to smart city infrastructure.
We envision that an integration of existing models (e.g., BIM,
IndoorGML) will lead to a more complete and meaningful
data model, one which can be easily used with spatial data
science techniques (e.g., hotspot and anomaly analysis [45],
[48], and optimization [76], [95]) to better assist decision-
making in indoor environments.

Most indoor data has yet to be collected or converted
to standard GIS formats. For example, detailed floor plans
of many buildings may only be documented on paper or
in AutoCAD formats. However, this information can be
potentially converted to GIS data formats using rule-based
methods or machine learning (e.g., deep learning). In addition,
volunteered geographic information (VGI) can be utilized to
improve indoor data collection for public properties. With
the help of VGI, detailed information (e.g., visual texture,
room type) may be added to enrich existing building datasets.
With all potential benefits of growing the indoor data volume
and quality, privacy concerns should always be considered
and addressed carefully. For example, information on private
properties should remain protected to its owners or authorized
users, and some information may only be accessed by specific
users (e.g., building manager). Access to building information
can be controlled at multiple levels with the help of spatial
database management systems detailed in the previous section.

V. CONCLUSIONS AND FUTURE WORK

Spatial computing is playing a vital role both in improving
smart city infrastructure (e.g., transportation, building, green
space) and achieving smart city goals (i.e., health and well
being, equity, sustainability). Our discussion covered five
broad areas within spatial computing, i.e., positioning, remote
sensing, spatial data science, spatial database management
systems and GIS/cartography. For each domain, we illustrated
the use of related spatial computing techniques through their
current accomplishments in smart city development, and then
highlighted research needs to better solve challenging prob-
lems for critical infrastructure enhancement.

Research results, if successful, may help future cities in
many ways. Next generation GPS and positioning may make
it possible to locate E-911 callers inside high-rise buildings
or underground spaces. Higher resolution and continuous
remote sensing may help monitor sensitive areas, map tree
species (e.g., ash) or poorly-insulated buildings and create
high-fidelity maps for self-driving vehicles. Spatial databases
may help cities identify under-served areas and geographic
interdependence across infrastructures (e.g., water main above
a train tunnel with a crucial optical fiber) to improve access
and resilience. Spatial data science may identify infrastructure
deprivation hotspots and their correlates (e.g., co-locations,
tele-connections) to generate hypotheses for theory formation.

Research should go beyond technology to consider societal
issues, since technological developments often pose dilemmas
for society [96]. An understanding of these dilemmas may
help guide an appropriate reaction to such changes. For
example, increased use of surveillance cameras can increase a
city’s monitoring and security capabilities, but it also reduces
individuals’ privacy [97]. Such concerns need to be resolved
with increased awareness and community engagement to im-
prove the adaptability of technology within the community.
Furthermore, there is a need to formulate thoughtful policies
that align new technologies with societal needs.



ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grants No. 1541876, 1029711,
IIS-1320580, 0940818 and IIS-1218168, the USDOD un-
der Grants No. HM1582-08-1-0017 and HM0210-13-1-0005,
ARPA-E under Grant No. DE-AR0000795, USDA under Grant
No. 2017-51181-27222, NIH under Grant No. UL1 TR002494,
KL2 TR002492 and TL1 TR002493 and the OVPR Infras-
tructure Investment Initiative and Minnesota Supercomputing
Institute (MSI) at the University of Minnesota. We thank our
NSF Smart and Connected Communities project parteners,
namely, Hennepin County, and cities of Minneapolis, St. Paul
and Tallahassee for sharing use-cases and datasets. We would
like to thank Jamal Golmohammadi for helping with the
figures and Kim Koffolt, Samantha Detor and the spatial
computing research group for their helpful comments and
refinement.

REFERENCES

[1] American Psychological Association, “Toward an urban psychology:
Research, action, and policy,” Washington, DC: Author, 2005.

[2] T. Hartig, R. Mitchell, S. De Vries, and H. Frumkin, “Nature and health,”
Annual review of public health, vol. 35, pp. 207–228, 2014.

[3] A. Ramaswami, A. G. Russell, P. J. Culligan, K. R. Sharma, and
E. Kumar, “Meta-principles for developing smart, sustainable, and
healthy cities,” Science, vol. 352, no. 6288, pp. 940–943, 2016.

[4] U. SDGs, “United nations sustainable development goals,” 2015.
[5] “4th ieee international smart cities conference (isc2),” https://bit.ly/

2vn20bl, 2018.
[6] B. Obama, “Presidential policy directive 21: Critical infrastructure

security and resilience,” Washington, DC, 2013.
[7] P. Tullis, “The world economy runs on gps. it needs a backup plan,”

2018. [Online]. Available: https://bloom.bg/2mGg8IN
[8] J. A. Peterson, The birth of city planning in the United States, 1840–

1917. JHU Press, 2003.
[9] M. Batty, K. W. Axhausen, F. Giannotti, A. Pozdnoukhov, A. Bazzani,

M. Wachowicz, G. Ouzounis, and Y. Portugali, “Smart cities of the
future,” The European Physical Journal Special Topics, vol. 214, no. 1,
pp. 481–518, 2012.

[10] M. Batty, Big data and the city. Alexandrine Press, 2016.
[11] N. Cressie, “Statistics for spatial data,” Terra Nova, vol. 4, no. 5, pp.

613–617, 1992.
[12] S. Shekhar, S. K. Feiner, and W. G. Aref, “Spatial computing,” Com-

munications of the ACM, vol. 59, no. 1, pp. 72–81, 2015.
[13] C. Yin, Z. Xiong, H. Chen, J. Wang, D. Cooper, and B. David, “A

literature survey on smart cities,” Science China Information Sciences,
vol. 58, no. 10, pp. 1–18, 2015.

[14] T. Shelton, M. Zook, and A. Wiig, “The actually existing smart city,”
Cambridge Journal of Regions, Economy and Society, vol. 8, no. 1, pp.
13–25, 2015.

[15] S. P. Mohanty, U. Choppali, and E. Kougianos, “Everything you wanted
to know about smart cities: The internet of things is the backbone,”
IEEE Consumer Electronics Magazine, vol. 5, no. 3, pp. 60–70, 2016.

[16] M. Angelidou, “Smart city policies: A spatial approach,” Cities, vol. 41,
pp. S3–S11, 2014.

[17] Y. Zheng, L. Capra, O. Wolfson, and H. Yang, “Urban computing:
concepts, methodologies, and applications,” ACM Transactions on In-
telligent Systems and Technology (TIST), vol. 5, no. 3, p. 38, 2014.

[18] A. Gruen, “Smart cities: The need for spatial intelligence,” Geo-spatial
Information Science, vol. 16, no. 1, pp. 3–6, 2013.

[19] J. Grenslitt, “15th annual digital cities survey - 2015 results,” 2015.
[Online]. Available: https://bit.ly/1kpWDAO

[20] J. Grenslitt, “Digital cities survey 2016 winners announced,” 2016.
[Online]. Available: https://bit.ly/2elsSmy

[21] J. Grenslitt, “Digital cities survey 2017 winners announced,” 2017.
[Online]. Available: https://bit.ly/2mbZe7E

[22] W. Lechner and S. Baumann, “Global navigation satellite systems,”
Computers and Electronics in Agriculture, vol. 25, no. 1-2, pp. 67–85,
2000.

[23] Y. Masumoto, “Global positioning system,” May 11 1993, uS Patent
5,210,540.

[24] R. T. Brunts, “Gps based time determining system and method,” Mar. 3
1998, uS Patent 5,724,316.

[25] C. Caron, D. Chamberland-Tremblay, C. Lapierre, P. Hadaya, S. Roche,
and M. Saada, “Indoor positioning,” in Encyclopedia of GIS. Springer,
2008, pp. 553–559.

[26] D. Han, S. Jung, M. Lee, and G. Yoon, “Building a practical wi-fi-based
indoor navigation system,” IEEE Pervasive Computing, vol. 13, no. 2,
pp. 72–79, 2014.

[27] L. Ran, S. Helal, and S. Moore, “Drishti: an integrated indoor/outdoor
blind navigation system and service,” in Pervasive Computing and
Communications, 2004. PerCom 2004. Proceedings of the Second IEEE
Annual Conference on. IEEE, 2004, pp. 23–30.

[28] R. L. Showen and J. W. Dunham, “Automatic real-time gunshot locator
and display system,” Oct. 26 1999, uS Patent 5,973,998.
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