2018 IEEE International Conference on Data Mining

A TIMBER Framework for Mining Urban Tree
Inventories Using Remote Sensing Datasets

Han Bao
Dept. of Geography
University of Minnesota

Yiqun Xie
Dept. of Computer Science
University of Minnesota
Email: xiexx347 @umn.edu

Abstract—Tree inventories are important datasets for many
societal applications (e.g., urban planning). However, tree inven-
tories still remain unavailable in most urban areas. We aim to
automate tree identification at individual levels in urban areas
at a large scale using remote sensing datasets. The problem is
challenging due to the complexity of the landscape in urban
scenarios and the lack of ground truth data. In related work, tree
identification algorithms have mainly focused on controlled forest
regions where the landscape is mostly homogeneous with trees,
making the methods difficult to generalize to urban environments.
We propose a TIMBER framework to find individual trees in
complex urban environments and a Core Object REduction
(CORE) algorithm to improve the computational efficiency of
TIMBER. Experiments show that TIMBER can efficiently detect
urban trees with high accuracy.

I. INTRODUCTION

Tree inventories contain meaningful information for urban
planning, sustainability, natural resource management, etc. In
recent years, the invasive emerald ash borer has caused tree
deaths in the tens of millions [1], [2], and is estimated to
cost over 10 billion US dollars to manage [1]. Many state and
city governments have begun to identify and treat (or remove)
all individual ash trees. In addition, fine-scale tree inventories
are also important for green infrastructure management in
sustainable community planning [3]. However, inventories of
individual trees rarely exist in most urban areas due to the
difficulty of manual collection (e.g., limited GPS signals under
canopies, time-consuming).

We aim to automate the generation of individual tree inven-
tories using high-resolution (e.g., one meter or lower) remote
sensing datasets that are publicly available at large-scales. The
scope of the present study is to identify the locations and sizes
of individual trees in an urban area. The type of remote sensing
data that we use is the Normalized Height Model (NHM),
which is a single band image whose pixel values represent
surface heights. NHMs are LiDAR-derivatives that has been
collected and made publicly available at large scales (e.g.,
state-level or major urban areas across the US).

The tree identification problem is challenging: (1) Trees
in urban environments are often mixed with buildings, low-
vegetation, lawns, towers, etc; (2) Trees commonly appear in
groups with heavy canopy overlaps; and (3) Individual tree
inventories are rarely collected (or shared in public) at large
scales or in different urban areas, making it difficult to train

978-1-5386-9159-5/18/$31.00 ©2018 IEEE

DOI 10.1109/ICDM.2018.00183

Email: baoxx095@umn.edu

1344

Shashi Shekhar
Dept. of Computer Science
University of Minnesota
Email: shekhar@umn.edu

Joseph Knight
Dept. of Forest Resources
University of Minnesota
Email: jknight@umn.edu

a generalizable machine learning model that can be applied
robustly in different geographical regions.

In NHMs, the canopies of trees are dome-shaped, which
makes them similar to mixtures of Guassians. However, Gaus-
sian mixture models (e.g., k-means, expectation-maximization
[4]) rely on an input number of clusters, which is unknown
in this problem. These models also do not distinguish tree
and non-tree structures (e.g., buildings, towers). In recent
years, deep learning models have shown promising results for
general computer vision problems as well as urban land-use
classification [5], [6]. However, they require a large number
of training samples from different geographies, which are
not available for the tree detection problem. In addition,
deep learning models typically target input images of specific
sizes (e.g., 416x416). For remote sensing data, this requires
additional space partitioning, which tends to break objects
on the boundaries into pieces. Tree detection algorithms have
also been studied in the field of remote sensing [7], [8], [9],
[10]. These algorithms were mainly designed for landscapes
that are mostly homogeneous with few types of trees (e.g.,
pine tree), and the data sources were specifically collected at
very high resolution (e.g., centimeters, hyperspectral). Such
datasets are still unavailable at larger scales due to their high
costs and limited public availability. Typically these algorithms
employ watershed segmentation or clustering to delineate tree
canopies. However, the segmentation methods tend to get stuck
in small local neighborhoods (e.g., sub-tree levels), and cannot
avoid non-tree structures in complex urban environments.

We propose a two-phase TIMBER' (Tree Inference by
Minimizing Bound-and-band ERrors) framework to identify
individual trees in urban environments. The first phase infers
the locations and sizes of tree-like structures by optimizing
tree-like approximators (e.g., Gaussians) to minimize the dif-
ference with tree canopy bounds (i.e., bound errors). The
second phase integrates additional city infrastructure data (e.g.,
buildings, roads) to train a deep convolutional neural network
to filter out non-tree results. The deep network predictions are
formed by the band values of the input remote sensing data, so
we consider this training process as a minimization of band
errors. A Core Object REduction (CORE) algorithm is also
proposed to improve the computational efficiency.

ISource code: https://www-users.cs.umn.edu/%7exiexx347/timber.html

IEEE
computer
® psoaety

Through detailed experiments we show that the proposed
TIMBER framework significantly improves precision, recall
and Fl-scores compared to related work and the CORE
algorithm speeds up execution by 1.5x to 2x.

II. PROBLEM DEFINITION
A. Key concept
A Normalized height model (NHM), also known as a canopy
height model [8], is a single-band image (satellite view) whose
pixel values represent the height of objects (e.g., buildings,

trees) instead of colors. It is a LiDAR-derivative and has been
collected at large scales (e.g., many states in the US).

Height
(m)

e,
nce

Fig. 1. Example of input and output. (best in color)

B. Formal problem formulation

Inputs:

— A normalized height model in a spatial domain D;
— Min and max tree sizes, 7'y, and 7,44, to detect in D;

Outputs: Locations and sizes of trees in D;
Objectives:

— Accuracy of tree detection;
— Computational efficiency;

Constraint: Trees of minimum size 7,,;, must be recog-
nizable at the spatial resolution s,;,, of the NHM.

Fig. 1 shows an example of inputs and outputs, where the
shapes of trees are approximated by circles.

III. A TIMBER FRAMEWORK FOR TREE IDENTIFICATION

TIMBER has two phases. Phase 1 estimates the locations
and sizes of tree-like structures using localized optimizations.
To remove the non-tree structures, Phase 2 constructs a deep
learning filter using a combination of the detections from
Phase 1 and city infrastructure datasets (e.g., buildings, roads).

A. Phase 1: Optimization of tree locations and sizes

In a normalized height model, the structure of a tree is
represented by a dome-shaped bound on the top of its canopy,
which can be approximated by a mathematical approximator
with a varying set of parameters (e.g., Gaussian). We consider
the difference between a tree bound and an approximator as
the bound error E}. In Phase 1, TIMBER optimizes a given
mathematical approximator to minimize £} of each tree. Note
that Phase 1 yields both trees and tree-like structures (e.g.,
buildings, towers). The non-trees are filtered out in Phase 2.

Flexible location initializer with local maxima: We use
local maxima to initialize the rough locations of trees (i.e.,
center peaks of tree canopies) [8] in an urban environment.

1345

A local maximum in an NHM is defined as a pixel whose
value is the largest in a local window.Since trees do not have
perfect dome-shapes, the bounds of their canopies are not
smooth and have small height fluctuations. This often results
in multiple local maxima on top of a tree canopy, or makes
a local maximum not at the center of a tree. Thus, the local
maxima are just rough estimations of actual tree locations.

To achieve better estimations, our optimization formulation
considers flexible locations of a local maximum. That is,
all locations within its circular neighborhood of radius 7.,y
become candidate centers for its corresponding object and the
best location will be returned as the center.

Optimization of mathematical approximators: We use
mathematical approximators (e.g., [11], [12]) to approximate
the dome-shapes of trees in NHMs by minimizing the bound
error Ej, between the approximator and the actual tree bound.
Our optimization method can be generally applied to dome-
shaped mathematical surfaces. The general optimization for-
mulation for a single approximator on a single tree is:

. H (Y(X) - fapz(X»aauvr)) :]l(XTvlJfaT)Hg
min T (1)
apr IL(XT, g, 7)1
st It = onazll2 < Tmin @
Tmin Tmin Tmazx
: 1., |— 3
e {’—thm]’ ’—th’m-| b ’ ’—thmw} ()
1, if ||(X)T — <
L—(XT,u,r):{ X sl =T
0, otherwise.

where the subscript ¢ indicates the i*" row of a matrix or
vector; X € Zf %2 is a matrix containing locations (i.e., row
and column IDs in the input NHM) of all pixels, and N is
the total number of pixels; « is the parameter vector of an
input approximator function f,p,(); p € Zﬁ_ is a vector of
the center location (row and column IDs) of the approximator
and r is its radius; 1() is an indicator function defined in Eq.
(4) that returns a vector indicating if a location in X is within
the radius r from the center of the approximator; y(X) is a
vector of the actual height values in the NHM at locations in
X; and p,,,, is the location of a local maximum on the tree.

The objective function aims to minimize the mean differ-
ence between the approximator and the tree bound inside a
circular spatial domain of size r. Constraint (2) reflects the
search distance used in the flexible center formulation. Its limit
is set to 7, to avoid moving into the center of another tree.
Constraint (3) defines the set of candidate radii (in pixels)
constrained by the input minimum and maximum tree sizes,
Tmin and T4, and the spatial resolution S, p,, of the NHM.

To make our discussion more concrete, we illustrate the
optimization process with two approximators, i.e., a negative
quadratic function and a Gaussian probabilistic function:

1) Optimization with quadratic surfaces: Negative
quadratic functions form dome-shaped mathematical surfaces.
Our quadratic approximator f, is defined as follows:

fo(X)T e, p,r) = —ar - |(X)T —pl3 +a (5)

where subscript ¢ denotes the it" row of a matrix; o € «
controls the vertical stretch of the dome-shape; and s € o
adjusts the vertical intercept (height) of f;; a > 0.

According to Eq. (1), the decision variables to optimize are
a, p and r, among which r € Z, and p € 72 2 are integer
variables in units of pixels of the input NHM. In addition, 7 is
a threshold in the indicator function 1(), making it difficult to
derive its optimal value in close-form or by gradient descent.

Since this optimization is done individually for each local
maximum, the total number of combinations of r and p to
consider is in fact limited, especially considering that tree
sizes are often not very large numbers in real-world urban
environments. Thus, we enumerate through all combinations
of p and r to obtain the optimal solutions. For parameter
vector ¢, we have the following Theorems 1 and 2:

Theorem 1. For a fixed combination of (r, w), the solutions
for a can be evaluated in closed form:

1) TS) (B yali) — (30, By
(2~ (5, 1) (5, 2212
o = [(3, yili) + ea (32, Z71)]/ 32, 1
where Z; = ||(X;)T —]2, 1; = 1((X:)T, p, 1), y5 = y(X5).
Proof. For a valid and fixed combination (r,), we can get rid

of Constraints (2) and (3) since they must be satisfied. Thus,
we are left with:

1(y(X) — fq(Xvayuvr)) X,) 3/11(XT, pr) b
—H (Y(a1 - 2% + ao) - LX) [3/110(XT g,
i [(Z4 — 2a1a2Z2 + a2 +201Z;y; — 200y + yf)
L] /31
where Z°? denotes the Hadamard (element-wise) square of Z.
Taking partial derivatives and setting them to Os, we get:

al(zi Z;'l]li) - az(Zi Z?Hi) + Zz Z?Yiﬂi =0
—ai (30, Z71) + (3, 1) — 2 yili =0

Solving this linear system with two equations and two
unknowns, we get the solutions stated in the theorem. O

1;)

1

(6)

Next we show that valid solutions are unique via Thm. 2.

Theorem 2. The solutions of a1 and oy are unique when the
mathematical surface is a valid approximation of a tree-shape,
and the result of the negative quadratic function (Eq. (5)) is in
the valid range (0, hynaz|, Where hupay is the maximum height
of a tree in the spatial domain of interest.

Proof. First, trees have concave shapes rather than convex or
flat shapes in the normalized height models. This requires
ay be positive in the negative quadratic function (Eq. (5)).
If a3 < 0, the combination or hypothesis (r, @) should be
directly rejected. Then, based on the derivatives, the only sit-
uation when the linear system does not have a single solution
appears when (3, Z}) — (32, 1,) 7 - (30, Z?)? (last term of
a1’s solution) is 0: (1) Possible outcome 1: infinite number
of (a1, a2) which satisfy the conditions in Eq. (6). However,

1346

in this case, the optimal solution for a; must be negative (ao
must be positive) in order to achieve the minimum objective,
according to the expansion of the objective function at the
beginning of Thm. 1’s proof (note that y(X;) > 0, Vi); (2)
Possible outcome 2: ¢y becomes infinitely large. This is also
invalid because ary — 400 will make the result of Eq. (5)
exceed Npqq (also another type of non-tree shape). O

2) Optimization with Gaussian surfaces: Our TIMBER
framework can be applied to general mathematical approxi-
mators. The negative quadratic function provides a concrete
example for the polynomial family, and here we show TIM-
BER’s use with a Gaussian approximator for the exponential
family. We skip the proofs to reduce redundancy.

Since we use circles to approximate the 2D shapes of trees
from a satellite view, the covariance matrix of the Gaussian
function is diagonal and the diagonal elements are the same
(i.e., same variance o2 for each direction). In addition, original
Gaussian functions have inflection points (one dimension) or
hyperplanes (multiple dimensions) where the second order
derivatives change signs (e.g., from a concave dome-shape to
a convex bow-shape). Since trees have concave shapes, our
approximator uses only the “concave” part, that is, the dome-
surface towards the inside of the inflection boundary. In each
direction of a Gaussian, the inflection points are located at
(u=£0). Thus, each element in ((X;)T —) is rescaled to the
range of [0, +c]. The Gaussian approximator is:

exp(— d (2I) 1di)
(v/(2m)?[021])

where d; =) The solutions to o and o are given
by (in the final solutlon o is canceled out due to rescaling):

Z eyil; (Z]l) 1(213’7]11)(2161]12)
(2m) (3 efLa) — (2rm) 71 (3, e Li)?

=20, yils) —oam (3 ely)] /[2(30; 1))

where e; = exp(— [l (X:) ﬂtllz)

3) Regularizations: The objective function (Eq. (1)) evalu-
ates the mean square error of an approximator and selects the
set of parameters that minimizes the mean error. While the
mean is already a normalization of errors for different sizes
(r) of an approximator, the objective function is still biased
towards smaller sizes. Since the parameters ¢ are optimized to
adjust the shape of the approximator to minimize the errors, it
is easier to reduce the mean errors or even eliminate them with
smaller number of y(X;). As an analogy, in linear regression,
it is easier to fit a perfect hyperplane to a smaller number of
points. We develop two regularizers to reduce the bias.

Vertical interval regularization: The bias towards smaller
sizes mainly causes problems for large trees, which may
have small “bumps” on top of their canopy, and this may
lead to underestimation of the tree size 7. One characteristic
of such “bumps” is that they also tend to have a very
small range of height values in the vertical direction. Denote

fo (X)) a,p,r) = a - +ay (7)

(e8])

a1 =

vo as inf{y(X;)|Vi : 1((X;)T,u,r) = 1}, and v; as
sup{y(X;) |Vi: 1((X;)T, u,r) = 1}. The vertical interval is
then (v1 —wg). Since squared errors (L2 norm) are used in the
objective function, here we use the squared vertical interval
(v1 — vg)? to regularize the error. If we denote f,; as the
objective function, the regularized form is: fop;/(v1 — vo)%.

Minimum analysis window regularization: Vertical in-
terval regularization cannot penalize the case when a small
”bump” on a large tree can be perfectly fit by an approximator,
because the zero error will be invariant to the ratio-based reg-
ularizer. Thus, we use a minimum analysis window size to fur-
ther penalize this scenario. Denote w;;, as the minimum size.
If the local circular window formed by {(y(X;),X;)|Vi :
1((X;)T, ,7) = 1 } has a radius r smaller than wyp, it
will be resampled to a higher resolution with size w,,;, (i.e.,
from a circular region inside a (2r + 1) x (2r + 1) window to
a circular region inside a (2Wimin + 1) X (2Wpin + 1) window)
using nearest-neighbor. Practically, we use the median of the
input range of radii as wy,;,. The nearest-neighbor resampling
method is used to reduce the chance of a small "bump” being
perfectly fit by an approximator.

The two regularizers do not affect the closed form solutions
for parameter « in the approximators.

B. Phase 2: Deep Learning based Urban Tree Filter

The first phase finds tree-like structures using the approxi-
mators, but it can potentially include false detections of non-
tree structures. In Phase 2, we remove the non-tree structures
using a deep learning filter. One issue for machine learning
in the tree detection problem is the unavailability of ground
truth training data. Thus, rather than using a deep learning
model to detect the trees directly, we only use it as a filter,
which is not trained on actual ground truth data but instead
on a combination of Phase 1 detections, NHMs, and available
city infrastructure data in a subset of study areas.

Many cities routinely collect and update digital information
about building footprints, roads and other infrastructure such
as street lights and utility towers. Such data can help determine
if a detection in Phase 1 is more likely to be a tree or non-tree.

CNN-based Urban Tree Filter: The deep learning frame-
work we use for this phase is a Convolutional Neural Network
(CNN) [13]. Our CNN architecture takes input image patches
of size 32 x 32 x 1, and has two convolutional layers (kernel
size 5 x 5), two max-pooling layers with strides of 2, and two
fully connected layers at the end. Its training data includes a
set of image patches and their labels. To construct the tree
filter, we first extract a local image patch from the NHM for
each detection (p*,r*) in the areas where city infrastructure
data is available. For our tree filtering purpose, we are only
interested in a binary labeling: [1: tree, O: non-tree]. Using the
city infrastructure data, we label an image patch as a “non-
tree” if the center pu* of its corresponding detection is within
the polygons of non-tree infrastructures (e.g., buildings, roads).
The training dataset we use here is not perfect ground truth
data, and it may contain some noise such as incorrect labels.
Thus, the goal of this trained CNN-filter is not to detect trees,

1347

TABLE I
SUMMATION UNITS IN ¢ SOLUTIONS

X, 1 v Xy, 1 i
ar | 3 Z304, 30,28 | Xyl | X 23yl | X L
as Xz iyl - il

but to help remove non-tree objects when city infrastructure
data is not available or not complete.

C. TIMBER Acceleration

The CNN in Phase 2 is in general very efficient during
prediction. For Phase 1, we propose a Core Object REduction
(CORE) algorithm for acceleration.

TIMBER_Base: A direct observation is that, for each
combination of size and location (r,) at a local maximum,
we only need to check the elements (e.g., X;, y;) against
the indicator function 1((X;)”, u,r) within the local square
neighborhood of size (2r + 1,2r + 1) centered at p. Further,
the optimization processes at different local maxima are inde-
pendent so they can be parallelized on multiple CPU cores.

TIMBER_CORE: While a; and oo can be evaluated
in closed form, their computations can be expensive. For
simplicity, here we use the solutions for the negative quadratic
approximator (Thm. 1) as an example. The strategy is the same
for the Guassian approximator.

In Thm. 1, there are many summation operations needed to
compute elements in X, y and 1 as well as their cross prod-
ucts. These summations introduce most of the computations.
Here we consider each summation as a summation unit. Table
I lists all summation units without duplicates. The row names
identify the parameter that the summation units belong to, and
the column names show where the participating elements in
the summations are from. The idea of the CORE algorithm is
to identify the core objects in the solutions that can be shared
across multiple optimization processes to reduce computation.

First, examining the values of Z; = [|(X;)T — pll2, we
can find that although the values of X; and p can all differ,
their differences remain the same for a fixed radius r across all
locations. For example, consider the local windows of radius r
(in pixels) centered at all p. If we compute the Z; values for
the pixels in all these local windows, all resulting matrices
will be identical despite their different X; and p values.
Furthermore, all these local windows of a fixed size r will
share the same indicator function values as well. Combining
these two observations, we can conclude that the results of
all summation units of Y, Z?1;, >, Z}1; and }, 1, are the
same for all optimizations with the same size r.

For summation units), Z?yi]li, and), y;1;, their values
are different at each location p because y; values can differ
across locations and they are not neutralized by p as in Z;.
Nevertheless, here we can see that all these summations still
involve the values of the indicator function 1 and Z,. Since
for each size r, the values of 1 and Z; remain the same in all
the local windows, we can keep their values in two matrices of

size (2r+1,2r+1), that is, the size of the minimum bounding
square of a local window with a radius r. These matrices can
then be shared across all optimizations of the same size 7.

All these core objects for all candidate sizes {r} only need
to be computed once at the beginning of TIMBER; they then
become inputs to the computations of cx.

D. Computational Complexity Analysis

Here we evaluate the time complexity of the first phase
of TIMBER as it is the computational bottleneck. Denote
the number of local maxima and tree sizes as N and M,
respectively, the maximum tree size (in pixels) as 7,44, the
window size for the flexible tree center search as w, and the
number of CPU cores as C. The CORE algorithm reduces
the necessary number of summations (Table I) to a constant
portion p of all summations. While it does not change the
asymptotic complexity of the optimization process, which is
O(C~INMw?r2,), the constant scaling could still result in

max

a significant amount of savings for a long execution time.

IV. VALIDATION

We validated the solution quality of TIMBER through a
case study, and confirmed the computational savings achieved
by the CORE algorithm using controlled experiments.

A. Case Study

We conducted the case study in Minneapolis, US, which is
a well populated and urbanized region with a well-maintained
green infrastructure (e.g., trees) across its district zones.

The total area of the zones in our case study was about
6,500 acres, one third of which was used to generate the
training data of the second phase of TIMBER (i.e., CNN-based
urban tree filter). Transfered learning was used to facilitate the
convergence. Overall, we implemented 6 candidate algorithms
for tree detection in this comparison:

(1) TIMBERq: TIMBER framework with the approximator
of negative quadratic functions. (2) TIMBER: TIMBER with
the Gaussian approximator. (3) YOLO: You-Only-Look-Once
(YOLO) [6] is a state-of-the-art convolutional neural network
for object detection. Since we did not have actual ground truth
data, YOLO was trained with the same data used by our CNN
classifier in Phase 2, which was the best that we could do.
(4) Watershed-SEG: Watershed segmentation is the most used
framework for tree detections in remote sensing communities
[71, [8], [9]. (5) Spatial-SEG: Mean-shift segmentation [14],
[10] is a commonly used method for segmenting spatial
datasets which considers both spatial and spectral similarities.
(6) GMM-EM: The Gaussian-Mixture-Model (GMM) cluster-
ing algorithm with Expectation-Maximization (EM) [4] has
also been used to estimate tree canopy sizes. We used height
and locations as the features in GMM, and initialized its EM
optimization with the local maxima in the NHM to facilitate
the convergence. Since we did not know the number of clusters
(trees), we used the number of local maxima as an estimate.

Fig. 2. Comparison of detections. The imagery was collected one year after
the NHM, so several trees (removed) may only show up in the NHM. The
imagery is only used for visual assistance. (best in color)

Result postprocessing: We used digital city infrastructure
data (e.g., buildings, towers, roads, etc.) to filter out the non-
tree detections in Watershed-SEG, Spatial-SEG and GMM-
EM (otherwise much lower accuracy). This is not doable for
regions without such data. In addition, the irregular tree shapes
detected by the three methods were approximated to circles.

Since individual tree locations and canopy sizes are rarely
collected or publicly available, we selected four areas in the
test region (not seen in training), and went through a time-
consuming manual inspection to generate the ground truth
data for testing. We also involved spatial data experts to help
improve the data collection using functionalities of spatial
software (e.g., 3D profiling, visualization enhancement).

Fig. 2 visualizes an example of the data, ground truth, and
representative results from four candidate methods. As we can
see, TIMBER better captured the tree locations and canopy
sizes in the ground truth. Since watershed segmentation is a
rigid segmentation based on geometric properties, it got stuck
in the local fluctuations on large tree tops, splitting a single
tree into many smaller pieces. YOLO’s main limitation is on
detecting small objects appearing in groups, so it experienced
difficulties in finding and separating out the trees.

The four test areas had different landscapes (e.g., mixtures
of trees and small or large buildings). The number of trees in
test Areas 1 to 4 was 1270, 1393, 972 and 1193, respectively.
We evaluated the precision, recall and Fl-scores for the 6
methods over the four test areas. The results are presented
in Fig. 3 (a)-(c), and the F1 scores are detailed in Table II.

1348

TABLE II
F1 SCORES OF DETECTIONS IN TEST AREAS
Methods Areal Area2 Area3 Aread
TIMBERg 84.1% 87.8% 90.2% 88.4%
TIMBER¢g 71.9% 72.8% 76.6% 76.1%
YOLO 35.5% 31.5% 40.0% 31.4%
Watershed-SEG 51.9% 51.8% 52.3% 49.6%
Spatial-SEG 24.1% 23.2% 17.9% 18.5%
GMM-EM 23.6% 22.9% 22.7% 21.5%
1, Precision 1 Recall

FaTimeer,,

& TIMBER
YoLo

I+ Watershed-SEG|

fammesr,
|oTiMeER
08f———o—— 6| 000

|+ watershed-s€5|

| Spatial-SEG Spatial-SEG

08 - cincen - cincen
P e SIESe o
02

P Vi B S

oL - - - Area ID 0 Area ID

1 2 3 4 1 2 3

(@) (®)
17F1-Score [emwezr, | 100007 ©) TIMBER Execution time

BrBase
% CORE

A,,__IA———A‘A |e-TMBER

08 |+voLo 8000
b Lausness

| spatiar-ses

08 |=-cmmeem
e - < - - - * - Hm e AR 6000

04
4000

02 e e

2000 =,
0 N ;Area ID =T ’ N

Fig. 3. Solution quality statistics and execution time.

The statistics are consistent with our visual comparison in Fig.
2. TIMBER(achieved the highest precision (90-95%), recall
(80-85%) and F1-scores (85-90%) in all four test arcas. While
TIMBER¢ also performed consistently better than related
work, there was about a 10% gap with TIMBER(. This is
an interesting result since it suggests that negative quadratic
function is a better approximator of tree shapes compared
to Gaussian. Among approaches from related work, YOLO
achieved the highest precision (50-60%) but had low recall
(~25%), leading to low F1 scores, while Watershed-SEG had
good recall (~65%) but suffered from low precision (40-45%).
This could be due to its tendency to split individual large
trees into smaller pieces. Neither Spatial-SEG nor GMM-EM
performed well in the test areas.

B. Computational Performance

In the complexity analysis of the optimization process (Sec.
III-D), most of the parameters are related to the maximum
tree Size rpq.. In real world applications, especially in urban
environments, 7,4, is often fairly limited (e.g., 15, 20 meters).
Thus, compared to the total number of local maxima N,
Tmaz and other parameters are relatively stable (similar to
constants). Thus, our analysis focused on the effect of NN,
which was varied by changing the size of the study area.

We evaluated the proposed algorithms on a 24-core com-
puting node in a Linux environment. Since the results were
very similar for TIMBERg and TIMBERg, here we present
those of the former for illustration purposes. Fig. 3(d) shows
the execution time for the baseline and CORE algorithms. As
discussed in Sec. III-D, CORE does not change the asymptotic

complexity but reduces the number of summation units (Table
I) to a constant proportion. Through Fig. 3(d) we can see that
the speedup is about 1.5X to 2X in the experiments. In the
largest area studied (i.e., a 3.5x2.5km? region corresponding
to the maximum [N), the CORE algorithm saved more than
20 hours of CPU time (about one hour of wall-time).

V. CONCLUSIONS AND FUTURE WORK

We proposed a two-phase TIMBER framework to generate
individual tree inventories from remote sensing datasets as
well as a CORE algorithm to improve computational effi-
ciency. Through experiments, we showed that TIMBER can
significantly improve accuracy compared to related work and
the CORE algorithm can speed up the computation. In future
work, we aim to generate a benchmark tree inventory to
facilitate future research on tree species classification at a
real-world large scale. In addition, we aim to design new
acceleration methods to further reduce the computational time.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grants No. 1737633, 1541876,
1029711, 11S-1320580, 0940818 and IIS-1218168, the US-
DOD under Grants HM0210-13-1-0005, ARPA-E under Grant
No. DE-AR0000795, USDA under Grant No. 2017-51181-
27222, NIH under Grant No. UL1 TR002494, KL2 TR002492
and TL1 TR002493 and the OVPR U-Spatial and Minnesota
Supercomputing Institute at the University of Minnesota. We
also thank Kim Koffolt for improving the paper’s readability.

REFERENCES

[1] “Emerald ash borer,” https://www.nrs.fs.fed.us/disturbance/invasive_
species/eab/effects_impacts/cost_of_infestation/, 2018.

[2] BBC News, “Ash tree set for extinction in europe,”
http://www.bbc.com/news/science-environment-35876621, 2016.

[3] “Green infrastructure,” www.esri.com/about-esri/greeninfrastructure.

[4] D. Reynolds, “Gaussian mixture models,” Encyclopedia of biometrics,
pp. 827-832, 2015.

[S] K. Nogueira, O. A. Penatti, and J. A. dos Santos, “Towards better
exploiting convolutional neural networks for remote sensing scene
classification,” Pattern Recognition, vol. 61, pp. 539-556, 2017.

[6] J. Redmon and A. Farhadi, “Yo0lo9000: Better, faster, stronger,” in Com-

puter Vision and Pattern Recognition (CVPR), 2017 IEEE Conference

on. IEEE, 2017, pp. 6517-6525.

M. Maltamo, J. Peuhkurinen et al., “Predicting tree attributes and quality

characteristics of scots pine using airborne laser scanning data,” SILVA

FENNICA, vol. 43, no. 3, 2009.

H. Kaartinen, J. Hyyppi, et al., “An international comparison of individ-

ual tree detection and extraction using airborne laser scanning,” Remote
Sensing, vol. 4, no. 4, pp. 950-974, 2012.
[9] L. Wallace et al., “Evaluating tree detection and segmentation routines
on very high resolution uvav lidar data,” IEEE Transactions on Geo-
science and Remote Sensing, vol. 52, no. 12, pp. 7619-7628, 2014.
[10] “Segment mean shift,” http://desktop.arcgis.com/en/arcmap/latest/manage-
data/raster-and-images/segment-mean-shift-function.htm, 2018.

[11] Y. Xie, G. Tang et al., “Crater detection using the morphological
characteristics of chang’e-1 digital elevation models,” IEEE Geoscience
and Remote Sensing Letters, vol. 10, no. 4, pp. 885-889, 2013.

[12] P. Tittmann, S. Shafii et al., “Tree detection and delineation from lidar
point clouds using ransac,” in Proceedings of SilviLaser, 2011.

[13] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning.
MIT press Cambridge, 2016, vol. 1.

[14] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward
feature space analysis,” IEEE Transactions on pattern analysis and
machine intelligence, vol. 24, no. 5, pp. 603-619, 2002.

[7

(8

=

1349

