
A TIMBER Framework for Mining Urban Tree
Inventories Using Remote Sensing Datasets

Yiqun Xie
Dept. of Computer Science

University of Minnesota

Email: xiexx347@umn.edu

Han Bao
Dept. of Geography

University of Minnesota

Email: baoxx095@umn.edu

Shashi Shekhar
Dept. of Computer Science

University of Minnesota

Email: shekhar@umn.edu

Joseph Knight
Dept. of Forest Resources

University of Minnesota

Email: jknight@umn.edu

Abstract—Tree inventories are important datasets for many
societal applications (e.g., urban planning). However, tree inven-
tories still remain unavailable in most urban areas. We aim to
automate tree identification at individual levels in urban areas
at a large scale using remote sensing datasets. The problem is
challenging due to the complexity of the landscape in urban
scenarios and the lack of ground truth data. In related work, tree
identification algorithms have mainly focused on controlled forest
regions where the landscape is mostly homogeneous with trees,
making the methods difficult to generalize to urban environments.
We propose a TIMBER framework to find individual trees in
complex urban environments and a Core Object REduction
(CORE) algorithm to improve the computational efficiency of
TIMBER. Experiments show that TIMBER can efficiently detect
urban trees with high accuracy.

I. INTRODUCTION

Tree inventories contain meaningful information for urban

planning, sustainability, natural resource management, etc. In

recent years, the invasive emerald ash borer has caused tree

deaths in the tens of millions [1], [2], and is estimated to

cost over 10 billion US dollars to manage [1]. Many state and

city governments have begun to identify and treat (or remove)

all individual ash trees. In addition, fine-scale tree inventories

are also important for green infrastructure management in

sustainable community planning [3]. However, inventories of

individual trees rarely exist in most urban areas due to the

difficulty of manual collection (e.g., limited GPS signals under

canopies, time-consuming).

We aim to automate the generation of individual tree inven-

tories using high-resolution (e.g., one meter or lower) remote

sensing datasets that are publicly available at large-scales. The

scope of the present study is to identify the locations and sizes

of individual trees in an urban area. The type of remote sensing

data that we use is the Normalized Height Model (NHM),

which is a single band image whose pixel values represent

surface heights. NHMs are LiDAR-derivatives that has been

collected and made publicly available at large scales (e.g.,

state-level or major urban areas across the US).

The tree identification problem is challenging: (1) Trees

in urban environments are often mixed with buildings, low-

vegetation, lawns, towers, etc; (2) Trees commonly appear in

groups with heavy canopy overlaps; and (3) Individual tree

inventories are rarely collected (or shared in public) at large

scales or in different urban areas, making it difficult to train

a generalizable machine learning model that can be applied

robustly in different geographical regions.

In NHMs, the canopies of trees are dome-shaped, which

makes them similar to mixtures of Guassians. However, Gaus-

sian mixture models (e.g., k-means, expectation-maximization

[4]) rely on an input number of clusters, which is unknown

in this problem. These models also do not distinguish tree

and non-tree structures (e.g., buildings, towers). In recent

years, deep learning models have shown promising results for

general computer vision problems as well as urban land-use

classification [5], [6]. However, they require a large number

of training samples from different geographies, which are

not available for the tree detection problem. In addition,

deep learning models typically target input images of specific

sizes (e.g., 416×416). For remote sensing data, this requires

additional space partitioning, which tends to break objects

on the boundaries into pieces. Tree detection algorithms have

also been studied in the field of remote sensing [7], [8], [9],

[10]. These algorithms were mainly designed for landscapes

that are mostly homogeneous with few types of trees (e.g.,

pine tree), and the data sources were specifically collected at

very high resolution (e.g., centimeters, hyperspectral). Such

datasets are still unavailable at larger scales due to their high

costs and limited public availability. Typically these algorithms

employ watershed segmentation or clustering to delineate tree

canopies. However, the segmentation methods tend to get stuck

in small local neighborhoods (e.g., sub-tree levels), and cannot

avoid non-tree structures in complex urban environments.

We propose a two-phase TIMBER1 (Tree Inference by

Minimizing Bound-and-band ERrors) framework to identify

individual trees in urban environments. The first phase infers

the locations and sizes of tree-like structures by optimizing

tree-like approximators (e.g., Gaussians) to minimize the dif-

ference with tree canopy bounds (i.e., bound errors). The

second phase integrates additional city infrastructure data (e.g.,

buildings, roads) to train a deep convolutional neural network

to filter out non-tree results. The deep network predictions are

formed by the band values of the input remote sensing data, so

we consider this training process as a minimization of band

errors. A Core Object REduction (CORE) algorithm is also

proposed to improve the computational efficiency.

1Source code: https://www-users.cs.umn.edu/%7exiexx347/timber.html

1344

2018 IEEE International Conference on Data Mining

978-1-5386-9159-5/18/$31.00 ©2018 IEEE
DOI 10.1109/ICDM.2018.00183

Through detailed experiments we show that the proposed

TIMBER framework significantly improves precision, recall

and F1-scores compared to related work and the CORE

algorithm speeds up execution by 1.5x to 2x.

II. PROBLEM DEFINITION

A. Key concept

A Normalized height model (NHM), also known as a canopy

height model [8], is a single-band image (satellite view) whose

pixel values represent the height of objects (e.g., buildings,

trees) instead of colors. It is a LiDAR-derivative and has been

collected at large scales (e.g., many states in the US).

Fig. 1. Example of input and output. (best in color)

B. Formal problem formulation

Inputs:
– A normalized height model in a spatial domain D;

– Min and max tree sizes, rmin and rmax, to detect in D;

Outputs: Locations and sizes of trees in D;

Objectives:
– Accuracy of tree detection;

– Computational efficiency;

Constraint: Trees of minimum size rmin must be recog-

nizable at the spatial resolution snhm of the NHM.

Fig. 1 shows an example of inputs and outputs, where the

shapes of trees are approximated by circles.

III. A TIMBER FRAMEWORK FOR TREE IDENTIFICATION

TIMBER has two phases. Phase 1 estimates the locations

and sizes of tree-like structures using localized optimizations.

To remove the non-tree structures, Phase 2 constructs a deep

learning filter using a combination of the detections from

Phase 1 and city infrastructure datasets (e.g., buildings, roads).

A. Phase 1: Optimization of tree locations and sizes

In a normalized height model, the structure of a tree is

represented by a dome-shaped bound on the top of its canopy,

which can be approximated by a mathematical approximator

with a varying set of parameters (e.g., Gaussian). We consider

the difference between a tree bound and an approximator as

the bound error Eb. In Phase 1, TIMBER optimizes a given

mathematical approximator to minimize Eb of each tree. Note

that Phase 1 yields both trees and tree-like structures (e.g.,

buildings, towers). The non-trees are filtered out in Phase 2.

Flexible location initializer with local maxima: We use

local maxima to initialize the rough locations of trees (i.e.,

center peaks of tree canopies) [8] in an urban environment.

A local maximum in an NHM is defined as a pixel whose

value is the largest in a local window.Since trees do not have

perfect dome-shapes, the bounds of their canopies are not

smooth and have small height fluctuations. This often results

in multiple local maxima on top of a tree canopy, or makes

a local maximum not at the center of a tree. Thus, the local

maxima are just rough estimations of actual tree locations.

To achieve better estimations, our optimization formulation

considers flexible locations of a local maximum. That is,

all locations within its circular neighborhood of radius rmin

become candidate centers for its corresponding object and the

best location will be returned as the center.

Optimization of mathematical approximators: We use

mathematical approximators (e.g., [11], [12]) to approximate

the dome-shapes of trees in NHMs by minimizing the bound

error Eb between the approximator and the actual tree bound.

Our optimization method can be generally applied to dome-

shaped mathematical surfaces. The general optimization for-

mulation for a single approximator on a single tree is:

min
α,μ,r

‖(y(X)− fapx(X,α,μ, r)
) · �(XT ,μ, r)‖22

‖�(XT ,μ, r)‖1 (1)

s.t. ‖μ− μmax‖2 ≤ rmin (2)

r ∈ {� rmin

snhm
�, � rmin

snhm
�+ 1, ..., � rmax

snhm
�} (3)

�i (X
T ,μ, r) =

{
1, if ‖(Xi)

T − μ‖2 ≤ r

0, otherwise.
(4)

where the subscript i indicates the ith row of a matrix or

vector; X ∈ Z
N×2
+ is a matrix containing locations (i.e., row

and column IDs in the input NHM) of all pixels, and N is

the total number of pixels; α is the parameter vector of an

input approximator function fapx(); μ ∈ Z
2
+ is a vector of

the center location (row and column IDs) of the approximator

and r is its radius; �() is an indicator function defined in Eq.

(4) that returns a vector indicating if a location in X is within

the radius r from the center of the approximator; y(X) is a

vector of the actual height values in the NHM at locations in

X; and μmax is the location of a local maximum on the tree.

The objective function aims to minimize the mean differ-

ence between the approximator and the tree bound inside a

circular spatial domain of size r. Constraint (2) reflects the

search distance used in the flexible center formulation. Its limit

is set to rmin to avoid moving into the center of another tree.

Constraint (3) defines the set of candidate radii (in pixels)

constrained by the input minimum and maximum tree sizes,

rmin and rmax, and the spatial resolution snhm of the NHM.

To make our discussion more concrete, we illustrate the

optimization process with two approximators, i.e., a negative

quadratic function and a Gaussian probabilistic function:

1) Optimization with quadratic surfaces: Negative

quadratic functions form dome-shaped mathematical surfaces.

Our quadratic approximator fq is defined as follows:

fq
(
(Xi)

T ,α,μ, r
)
= −α1 · ‖(Xi)

T − μ‖22 +α2 (5)

1345

where subscript i denotes the ith row of a matrix; α1 ∈ α
controls the vertical stretch of the dome-shape; and α2 ∈ α
adjusts the vertical intercept (height) of fq; α > 0.

According to Eq. (1), the decision variables to optimize are

α, μ and r, among which r ∈ Z+ and μ ∈ Z
2
+ are integer

variables in units of pixels of the input NHM. In addition, r is

a threshold in the indicator function �(), making it difficult to

derive its optimal value in close-form or by gradient descent.

Since this optimization is done individually for each local

maximum, the total number of combinations of r and μ to

consider is in fact limited, especially considering that tree

sizes are often not very large numbers in real-world urban

environments. Thus, we enumerate through all combinations

of μ and r to obtain the optimal solutions. For parameter

vector α, we have the following Theorems 1 and 2:

Theorem 1. For a fixed combination of (r, μ), the solutions
for α can be evaluated in closed form:

α1 =
(
∑

i �i)
−1(

∑
i Z

2
i�i)(

∑
i yi�i)− (

∑
i Z

2
iyi�i)

(
∑

i Z
4
i�i)− (

∑
i �i)−1 · (∑i Z

2
i�i)2

α2 = [(
∑

i yi�i) +α1(
∑

i Z
2
i�i)]/

∑
i �i

where Zi = ‖(Xi)
T −μ‖2, �i = �((Xi)

T ,μ, r), yi = y(Xi).

Proof. For a valid and fixed combination (r, μ), we can get rid

of Constraints (2) and (3) since they must be satisfied. Thus,

we are left with:

‖(y(X)− fq(X,α,μ, r)
) · �(XT ,μ, r)‖22/‖�(XT ,μ, r)‖1

=‖(y(X) + (α1 · Z◦2 +α2) · �(XT ,μ, r)‖22/‖�(XT ,μ, r)‖1
=
∑

i

[(
α2

1Z
4
i − 2α1α2Z

2
i +α2

2 + 2α1Ziyi − 2α2yi + y2
i

)
· �i

]
/
∑

i �i

where Z◦2 denotes the Hadamard (element-wise) square of Z.

Taking partial derivatives and setting them to 0s, we get:{
α1(

∑
i Z

4
i�i)−α2(

∑
i Z

2
i�i) +

∑
i Z

2
iyi�i = 0

−α1(
∑

i Z
2
i�i) +α2(

∑
i �i)−

∑
i yi�i = 0

(6)

Solving this linear system with two equations and two

unknowns, we get the solutions stated in the theorem.

Next we show that valid solutions are unique via Thm. 2.

Theorem 2. The solutions of α1 and α2 are unique when the
mathematical surface is a valid approximation of a tree-shape,
and the result of the negative quadratic function (Eq. (5)) is in
the valid range (0, hmax], where hmax is the maximum height
of a tree in the spatial domain of interest.

Proof. First, trees have concave shapes rather than convex or

flat shapes in the normalized height models. This requires

α1 be positive in the negative quadratic function (Eq. (5)).

If α1 ≤ 0, the combination or hypothesis (r, μ) should be

directly rejected. Then, based on the derivatives, the only sit-

uation when the linear system does not have a single solution

appears when (
∑

i Z
4
i) − (

∑
i �i)

−1 · (∑i Z
2
i)

2 (last term of

α1’s solution) is 0: (1) Possible outcome 1: infinite number

of (α1, α2) which satisfy the conditions in Eq. (6). However,

in this case, the optimal solution for α1 must be negative (α2

must be positive) in order to achieve the minimum objective,

according to the expansion of the objective function at the

beginning of Thm. 1’s proof (note that y(Xi) ≥ 0, ∀i); (2)

Possible outcome 2: α1 becomes infinitely large. This is also

invalid because α1 → +∞ will make the result of Eq. (5)

exceed hmax (also another type of non-tree shape).

2) Optimization with Gaussian surfaces: Our TIMBER

framework can be applied to general mathematical approxi-

mators. The negative quadratic function provides a concrete

example for the polynomial family, and here we show TIM-

BER’s use with a Gaussian approximator for the exponential

family. We skip the proofs to reduce redundancy.

Since we use circles to approximate the 2D shapes of trees

from a satellite view, the covariance matrix of the Gaussian

function is diagonal and the diagonal elements are the same

(i.e., same variance σ2 for each direction). In addition, original

Gaussian functions have inflection points (one dimension) or

hyperplanes (multiple dimensions) where the second order

derivatives change signs (e.g., from a concave dome-shape to

a convex bow-shape). Since trees have concave shapes, our

approximator uses only the ”concave” part, that is, the dome-

surface towards the inside of the inflection boundary. In each

direction of a Gaussian, the inflection points are located at

(μ±σ). Thus, each element in ((Xi)
T −μ) is rescaled to the

range of [0,±σ]. The Gaussian approximator is:

fg
(
(Xi)

T ,α,μ, r
)
= α1 · exp(−dT

i (σ
2I)−1di)

(
√
(2π)2|σ2I|) +α2 (7)

where di =
σ((Xi)

T−μ)
r . The solutions to α1 and α2 are given

by (in the final solution σ is canceled out due to rescaling):

α1 =

∑
i eiyi�i − (

∑
i �i)

−1(
∑

i yi�i)(
∑

i ei�i)

(2π)−1(
∑

i e
2
i�i)− (2rπ)−1(

∑
i ei�i)

2

α2 =
[
2(
∑

i yi�i)−α1π
−1(

∑
i ei�i)

]
/
[
2(
∑

i �i)
]

where ei = exp(−‖(Xi)
T−μ‖2

2

2r2).
3) Regularizations: The objective function (Eq. (1)) evalu-

ates the mean square error of an approximator and selects the

set of parameters that minimizes the mean error. While the

mean is already a normalization of errors for different sizes

(r) of an approximator, the objective function is still biased

towards smaller sizes. Since the parameters α are optimized to

adjust the shape of the approximator to minimize the errors, it

is easier to reduce the mean errors or even eliminate them with

smaller number of y(Xi). As an analogy, in linear regression,

it is easier to fit a perfect hyperplane to a smaller number of

points. We develop two regularizers to reduce the bias.

Vertical interval regularization: The bias towards smaller

sizes mainly causes problems for large trees, which may

have small ”bumps” on top of their canopy, and this may

lead to underestimation of the tree size r. One characteristic

of such ”bumps” is that they also tend to have a very

small range of height values in the vertical direction. Denote

1346

v0 as inf{y(Xi) | ∀i : �((Xi)
T ,μ, r) = 1}, and v1 as

sup{y(Xi) | ∀i : �((Xi)
T ,μ, r) = 1}. The vertical interval is

then (v1−v0). Since squared errors (L2 norm) are used in the

objective function, here we use the squared vertical interval

(v1 − v0)
2 to regularize the error. If we denote fobj as the

objective function, the regularized form is: fobj/(v1 − v0)
2.

Minimum analysis window regularization: Vertical in-

terval regularization cannot penalize the case when a small

”bump” on a large tree can be perfectly fit by an approximator,

because the zero error will be invariant to the ratio-based reg-

ularizer. Thus, we use a minimum analysis window size to fur-

ther penalize this scenario. Denote wmin as the minimum size.

If the local circular window formed by {(y(Xi),Xi) | ∀i :
�((Xi)

T ,μ, r) = 1 } has a radius r smaller than wmin, it

will be resampled to a higher resolution with size wmin (i.e.,

from a circular region inside a (2r+1)× (2r+1) window to

a circular region inside a (2wmin+1)×(2wmin+1) window)

using nearest-neighbor. Practically, we use the median of the

input range of radii as wmin. The nearest-neighbor resampling

method is used to reduce the chance of a small ”bump” being

perfectly fit by an approximator.

The two regularizers do not affect the closed form solutions

for parameter α in the approximators.

B. Phase 2: Deep Learning based Urban Tree Filter

The first phase finds tree-like structures using the approxi-

mators, but it can potentially include false detections of non-

tree structures. In Phase 2, we remove the non-tree structures

using a deep learning filter. One issue for machine learning

in the tree detection problem is the unavailability of ground

truth training data. Thus, rather than using a deep learning

model to detect the trees directly, we only use it as a filter,

which is not trained on actual ground truth data but instead

on a combination of Phase 1 detections, NHMs, and available

city infrastructure data in a subset of study areas.

Many cities routinely collect and update digital information

about building footprints, roads and other infrastructure such

as street lights and utility towers. Such data can help determine

if a detection in Phase 1 is more likely to be a tree or non-tree.

CNN-based Urban Tree Filter: The deep learning frame-

work we use for this phase is a Convolutional Neural Network

(CNN) [13]. Our CNN architecture takes input image patches

of size 32× 32× 1, and has two convolutional layers (kernel

size 5×5), two max-pooling layers with strides of 2, and two

fully connected layers at the end. Its training data includes a

set of image patches and their labels. To construct the tree

filter, we first extract a local image patch from the NHM for

each detection (μ∗, r∗) in the areas where city infrastructure

data is available. For our tree filtering purpose, we are only

interested in a binary labeling: [1: tree, 0: non-tree]. Using the

city infrastructure data, we label an image patch as a ”non-

tree” if the center μ∗ of its corresponding detection is within

the polygons of non-tree infrastructures (e.g., buildings, roads).

The training dataset we use here is not perfect ground truth

data, and it may contain some noise such as incorrect labels.

Thus, the goal of this trained CNN-filter is not to detect trees,

TABLE I
SUMMATION UNITS IN α SOLUTIONS

X, � y, � X, y, � �

α1
∑

i Z
2
i�i,

∑
i Z

4
i�i

∑
i yi�i

∑
i Z

2
iyi�i

∑
i �i

α2
∑

i Z
2
i�i

∑
i yi�i -

∑
i �i

but to help remove non-tree objects when city infrastructure

data is not available or not complete.

C. TIMBER Acceleration

The CNN in Phase 2 is in general very efficient during

prediction. For Phase 1, we propose a Core Object REduction

(CORE) algorithm for acceleration.

TIMBER Base: A direct observation is that, for each

combination of size and location (r,μ) at a local maximum,

we only need to check the elements (e.g., Xi, yi) against

the indicator function �((Xi)
T ,μ, r) within the local square

neighborhood of size (2r + 1, 2r + 1) centered at μ. Further,

the optimization processes at different local maxima are inde-

pendent so they can be parallelized on multiple CPU cores.

TIMBER CORE: While α1 and α2 can be evaluated

in closed form, their computations can be expensive. For

simplicity, here we use the solutions for the negative quadratic

approximator (Thm. 1) as an example. The strategy is the same

for the Guassian approximator.

In Thm. 1, there are many summation operations needed to

compute elements in X, y and � as well as their cross prod-

ucts. These summations introduce most of the computations.

Here we consider each summation as a summation unit. Table

I lists all summation units without duplicates. The row names

identify the parameter that the summation units belong to, and

the column names show where the participating elements in

the summations are from. The idea of the CORE algorithm is

to identify the core objects in the solutions that can be shared

across multiple optimization processes to reduce computation.

First, examining the values of Zi = ‖(Xi)
T − μ‖2, we

can find that although the values of Xi and μ can all differ,

their differences remain the same for a fixed radius r across all

locations. For example, consider the local windows of radius r
(in pixels) centered at all μ. If we compute the Zi values for

the pixels in all these local windows, all resulting matrices

will be identical despite their different Xi and μ values.

Furthermore, all these local windows of a fixed size r will

share the same indicator function values as well. Combining

these two observations, we can conclude that the results of

all summation units of
∑

i Z
2
i�i,

∑
i Z

4
i�i and

∑
i �i are the

same for all optimizations with the same size r.

For summation units
∑

i Z
2
iyi�i and

∑
i yi�i, their values

are different at each location μ because yi values can differ

across locations and they are not neutralized by μ as in Zi.

Nevertheless, here we can see that all these summations still

involve the values of the indicator function � and Zi. Since

for each size r, the values of � and Zi remain the same in all

the local windows, we can keep their values in two matrices of

1347

size (2r+1, 2r+1), that is, the size of the minimum bounding

square of a local window with a radius r. These matrices can

then be shared across all optimizations of the same size r.

All these core objects for all candidate sizes {r} only need

to be computed once at the beginning of TIMBER; they then

become inputs to the computations of α.

D. Computational Complexity Analysis

Here we evaluate the time complexity of the first phase

of TIMBER as it is the computational bottleneck. Denote

the number of local maxima and tree sizes as N and M ,

respectively, the maximum tree size (in pixels) as rmax, the

window size for the flexible tree center search as w, and the

number of CPU cores as C. The CORE algorithm reduces

the necessary number of summations (Table I) to a constant

portion ρ of all summations. While it does not change the

asymptotic complexity of the optimization process, which is

O(C−1NMw2r2max), the constant scaling could still result in

a significant amount of savings for a long execution time.

IV. VALIDATION

We validated the solution quality of TIMBER through a

case study, and confirmed the computational savings achieved

by the CORE algorithm using controlled experiments.

A. Case Study

We conducted the case study in Minneapolis, US, which is

a well populated and urbanized region with a well-maintained

green infrastructure (e.g., trees) across its district zones.

The total area of the zones in our case study was about

6,500 acres, one third of which was used to generate the

training data of the second phase of TIMBER (i.e., CNN-based

urban tree filter). Transfered learning was used to facilitate the

convergence. Overall, we implemented 6 candidate algorithms

for tree detection in this comparison:

(1) TIMBERQ: TIMBER framework with the approximator

of negative quadratic functions. (2) TIMBERG: TIMBER with

the Gaussian approximator. (3) YOLO: You-Only-Look-Once

(YOLO) [6] is a state-of-the-art convolutional neural network

for object detection. Since we did not have actual ground truth

data, YOLO was trained with the same data used by our CNN

classifier in Phase 2, which was the best that we could do.

(4) Watershed-SEG: Watershed segmentation is the most used

framework for tree detections in remote sensing communities

[7], [8], [9]. (5) Spatial-SEG: Mean-shift segmentation [14],

[10] is a commonly used method for segmenting spatial

datasets which considers both spatial and spectral similarities.

(6) GMM-EM: The Gaussian-Mixture-Model (GMM) cluster-

ing algorithm with Expectation-Maximization (EM) [4] has

also been used to estimate tree canopy sizes. We used height

and locations as the features in GMM, and initialized its EM

optimization with the local maxima in the NHM to facilitate

the convergence. Since we did not know the number of clusters

(trees), we used the number of local maxima as an estimate.

Fig. 2. Comparison of detections. The imagery was collected one year after
the NHM, so several trees (removed) may only show up in the NHM. The
imagery is only used for visual assistance. (best in color)

Result postprocessing: We used digital city infrastructure

data (e.g., buildings, towers, roads, etc.) to filter out the non-

tree detections in Watershed-SEG, Spatial-SEG and GMM-

EM (otherwise much lower accuracy). This is not doable for

regions without such data. In addition, the irregular tree shapes

detected by the three methods were approximated to circles.

Since individual tree locations and canopy sizes are rarely

collected or publicly available, we selected four areas in the

test region (not seen in training), and went through a time-

consuming manual inspection to generate the ground truth

data for testing. We also involved spatial data experts to help

improve the data collection using functionalities of spatial

software (e.g., 3D profiling, visualization enhancement).

Fig. 2 visualizes an example of the data, ground truth, and

representative results from four candidate methods. As we can

see, TIMBER better captured the tree locations and canopy

sizes in the ground truth. Since watershed segmentation is a

rigid segmentation based on geometric properties, it got stuck

in the local fluctuations on large tree tops, splitting a single

tree into many smaller pieces. YOLO’s main limitation is on

detecting small objects appearing in groups, so it experienced

difficulties in finding and separating out the trees.

The four test areas had different landscapes (e.g., mixtures

of trees and small or large buildings). The number of trees in

test Areas 1 to 4 was 1270, 1393, 972 and 1193, respectively.

We evaluated the precision, recall and F1-scores for the 6

methods over the four test areas. The results are presented

in Fig. 3 (a)-(c), and the F1 scores are detailed in Table II.

1348

TABLE II
F1 SCORES OF DETECTIONS IN TEST AREAS

Methods Area 1 Area 2 Area 3 Area 4
TIMBERQ 84.1% 87.8% 90.2% 88.4%
TIMBERG 71.9% 72.8% 76.6% 76.1%
YOLO 35.5% 31.5% 40.0% 31.4%
Watershed-SEG 51.9% 51.8% 52.3% 49.6%
Spatial-SEG 24.1% 23.2% 17.9% 18.5%
GMM-EM 23.6% 22.9% 22.7% 21.5%

Fig. 3. Solution quality statistics and execution time.

The statistics are consistent with our visual comparison in Fig.

2. TIMBERQ achieved the highest precision (90-95%), recall

(80-85%) and F1-scores (85-90%) in all four test areas. While

TIMBERG also performed consistently better than related

work, there was about a 10% gap with TIMBERQ. This is

an interesting result since it suggests that negative quadratic

function is a better approximator of tree shapes compared

to Gaussian. Among approaches from related work, YOLO

achieved the highest precision (50-60%) but had low recall

(∼25%), leading to low F1 scores, while Watershed-SEG had

good recall (∼65%) but suffered from low precision (40-45%).

This could be due to its tendency to split individual large

trees into smaller pieces. Neither Spatial-SEG nor GMM-EM

performed well in the test areas.

B. Computational Performance

In the complexity analysis of the optimization process (Sec.

III-D), most of the parameters are related to the maximum

tree size rmax. In real world applications, especially in urban

environments, rmax is often fairly limited (e.g., 15, 20 meters).

Thus, compared to the total number of local maxima N ,

rmax and other parameters are relatively stable (similar to

constants). Thus, our analysis focused on the effect of N ,

which was varied by changing the size of the study area.

We evaluated the proposed algorithms on a 24-core com-

puting node in a Linux environment. Since the results were

very similar for TIMBERQ and TIMBERG, here we present

those of the former for illustration purposes. Fig. 3(d) shows

the execution time for the baseline and CORE algorithms. As

discussed in Sec. III-D, CORE does not change the asymptotic

complexity but reduces the number of summation units (Table

I) to a constant proportion. Through Fig. 3(d) we can see that

the speedup is about 1.5X to 2X in the experiments. In the

largest area studied (i.e., a 3.5×2.5km2 region corresponding

to the maximum N), the CORE algorithm saved more than

20 hours of CPU time (about one hour of wall-time).

V. CONCLUSIONS AND FUTURE WORK

We proposed a two-phase TIMBER framework to generate

individual tree inventories from remote sensing datasets as

well as a CORE algorithm to improve computational effi-

ciency. Through experiments, we showed that TIMBER can

significantly improve accuracy compared to related work and

the CORE algorithm can speed up the computation. In future

work, we aim to generate a benchmark tree inventory to

facilitate future research on tree species classification at a

real-world large scale. In addition, we aim to design new

acceleration methods to further reduce the computational time.

ACKNOWLEDGMENT

This material is based upon work supported by the National

Science Foundation under Grants No. 1737633, 1541876,

1029711, IIS-1320580, 0940818 and IIS-1218168, the US-

DOD under Grants HM0210-13-1-0005, ARPA-E under Grant

No. DE-AR0000795, USDA under Grant No. 2017-51181-

27222, NIH under Grant No. UL1 TR002494, KL2 TR002492

and TL1 TR002493 and the OVPR U-Spatial and Minnesota

Supercomputing Institute at the University of Minnesota. We

also thank Kim Koffolt for improving the paper’s readability.

REFERENCES

[1] “Emerald ash borer,” https://www.nrs.fs.fed.us/disturbance/invasive
species/eab/effects impacts/cost of infestation/, 2018.

[2] BBC News, “Ash tree set for extinction in europe,”
http://www.bbc.com/news/science-environment-35876621, 2016.

[3] “Green infrastructure,” www.esri.com/about-esri/greeninfrastructure.
[4] D. Reynolds, “Gaussian mixture models,” Encyclopedia of biometrics,

pp. 827–832, 2015.
[5] K. Nogueira, O. A. Penatti, and J. A. dos Santos, “Towards better

exploiting convolutional neural networks for remote sensing scene
classification,” Pattern Recognition, vol. 61, pp. 539–556, 2017.

[6] J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger,” in Com-
puter Vision and Pattern Recognition (CVPR), 2017 IEEE Conference
on. IEEE, 2017, pp. 6517–6525.

[7] M. Maltamo, J. Peuhkurinen et al., “Predicting tree attributes and quality
characteristics of scots pine using airborne laser scanning data,” SILVA
FENNICA, vol. 43, no. 3, 2009.

[8] H. Kaartinen, J. Hyyppä, et al., “An international comparison of individ-
ual tree detection and extraction using airborne laser scanning,” Remote
Sensing, vol. 4, no. 4, pp. 950–974, 2012.

[9] L. Wallace et al., “Evaluating tree detection and segmentation routines
on very high resolution uav lidar data,” IEEE Transactions on Geo-
science and Remote Sensing, vol. 52, no. 12, pp. 7619–7628, 2014.

[10] “Segment mean shift,” http://desktop.arcgis.com/en/arcmap/latest/manage-
data/raster-and-images/segment-mean-shift-function.htm, 2018.

[11] Y. Xie, G. Tang et al., “Crater detection using the morphological
characteristics of chang’e-1 digital elevation models,” IEEE Geoscience
and Remote Sensing Letters, vol. 10, no. 4, pp. 885–889, 2013.

[12] P. Tittmann, S. Shafii et al., “Tree detection and delineation from lidar
point clouds using ransac,” in Proceedings of SilviLaser, 2011.

[13] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning.
MIT press Cambridge, 2016, vol. 1.

[14] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward
feature space analysis,” IEEE Transactions on pattern analysis and
machine intelligence, vol. 24, no. 5, pp. 603–619, 2002.

1349

