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ABSTRACT
Given remote sensing datasets in a spatial domain, we aim to detect

geospatial objects with minimum bounding rectangles (i.e., angle-

aware) leveraging deep learning frameworks. Geospatial objects

(e.g., buildings, vehicles, farms) provide meaningful information for

a variety of societal applications, including urban planning, census,

sustainable development, security surveillance, agricultural man-

agement, etc. The detection of these objects are challenging because

their directions are often heavily mixed and not parallel to the or-

thogonal directions of an image frame due to topography, planning,

etc. In addition, there is very limited training data with angle infor-

mation for most types of objects. In related work, state-of-the-art

deep learning frameworks detect objects using orthogonal bound-

ing rectangles (i.e., sides are parallel to the sides of an input image),

so they cannot identify the directions of objects and generate loose

rectangular bounds on objects. We propose an Unsupervised Aug-

mentation (UA) framework to detect geospatial objects with general

minimum bounding rectangles (i.e., with angles). The UA frame-

work contains two schemes, namely a ROtation-Vector (ROV) based

scheme and a context-based scheme. The schemes completely avoid

the need for: (1) additional ground-truth data with annotated an-

gles; (2) restructuring of existing network architectures; and (3)

re-training. Experimental results show that the UA framework can

well approximate the angles of objects and generate much tighter

bounding boxes on objects.
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1 INTRODUCTION
Given a remote sensing dataset, we aim to automatically generate

catalogs of geospatial objects (e.g., buildings, vehicles, farm fields)

by leveraging deep learning frameworks for object detection. The

detection of an object O is modeled by the Minimum Bounding
Rectangle (MBR) ofO , which is the smallest rectangle (i.e., angle-

aware) that entirely covers O . Fig. 1 shows an example of an input

image and the MBR output.

Figure 1: Example input and MBR output.

Catalogs of geospatial objects are valuable assets for many sec-

tors and application domains [2, 4, 5, 15, 17]. For example, building

footprints provide meaningful information for urban planning, so-

lar suitability analysis, census, agricultural management, etc. The

tracking of vehicles or ships is important for security surveillance,

law enforcements and resource allocation. Fine-scaled farm field

data facilitates the monitoring of agricultural land-covers, yield

estimation, conservation planning, etc. With the increased avail-

ability of high-resolution remote sensing data (e.g., satellite and

UAV imagery, LiDAR), there are great opportunities to automati-

cally identify, record and track a variety of geospatial objects.

The problem is challenging because: (1) the directions of geospa-

tial objects are often not parallel to the orthogonal axes of an image

frame; (2) the availability of training dataset with annotated angles

is very limited for general types of objects, and manual generation

of such dataset is tedious and time-consuming, which also does not

take advantage of existing rich training data without angles; and

(3) Geospatial objects often have a dense distribution due to the

limited usable or allocatable space, and loose area estimations (e.g.,

bounding rectangles that are not aware of the directions of objects)

can cause heavy overlaps among detections.

In recent years, end-to-end deep learning frameworks have

shown promising results in computer vision by outperforming

traditional multi-stage methods, which are often combinations of

https://doi.org/10.1145/3274895.3274901
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Figure 2: The YOLO framework and MOBR output.

manually-constructed features from image processing techniques

(e.g., Histogram of Gradients) and classic machine learning algo-

rithms (e.g., Support Vector Machines). In particular, Convolutional

Neural Networks (CNN) have become the most popular architecture

and set new benchmark performances in image classification and

labeling [3, 16]. Compared to flat neural networks, CNN uses local-

connections between layers as well as weight-sharing schemes to

model the spatial adjacency of pixels and reduce the difficulty of

learning. In remote sensing, CNN has also shown enhancements in

learning and creating features for image classification tasks [11]. It

has also achieved high precision in land-use and land-cover classi-

fication using satellite images [6, 14]. However, the original archi-

tectures of CNN only focus on image-theme (e.g., with or without

certain objects) classification and cannot predict the locations and

sizes of objects. You-Only-Look-Once (YOLO) and its variation Sin-

gle Shot MultiBox Detector (SSD) are the recent state-of-the-art

frameworks that extend CNN for object detection using additional

regression modeling [8, 12]. The general regression ideas of these

frameworks are very similar. In the following we provide a brief

overview of YOLO’s general architecture as an example.

YOLO is built on top of convolutional and pooling layers. Dif-

ferent from the original CNNs, it has a region layer at the end

to estimate the Minimum Orthogonal Bounding Rectangles
(MOBR) of objects using regression. An MOBR of an object O is

the smallest rectangle, that has its sides parallel to the sides of an

input image and entirely covers O . Fig. 2(b) shows an example of

MOBR outputs. Compared to the MBRs in Fig. 1(b), the MOBRs are

not flexible in directions.

Fig. 2(a) shows the general structure of YOLO and its region layer,

where the X,Y dimensions represent the same two-dimensional

space covered by the input image. The Z dimension of each cell

contains a list of parameters used to estimate the existence of an

object obj , location (px ,py ), size (ph ,pw ) and classC of a potential

object. In the region layer, the cell that contains the center of an

object is responsible for detecting it. Eq. (1) shows the regression

modeling used to convert the raw parameters to the final MOBR.

(cx , cy ) =
(
x+σ (px ), y+σ (py )

)
, (lw , lh ) =

(
w ·epw , h·eph

)
(1)

where (cx , cy ) is the center location of an MOBR estimated by

offsets to the top-left corner (x ,y) of the corresponding cell in the

region layer; σ () is the sigmoid function (output in the range (0, 1));
w ,h are the prior (anchoring) width and height of objects; and lw , lh
are the width and height of the MOBR.

Besides accuracy, another major advantage of deep learning

frameworks over traditional image processing techniques is their

demonstrated generality, which means one network architecture

Figure 3: Novelty of the proposed approach.

can be used to detect a large variety of general objects using differ-

ent training datasets [12]. In comparison, traditional methods often

require separate multi-phase designs and calibrations for each type.

On the other hand, the major limitation of these deep learning

based object detection frameworks (e.g., YOLO [12], SSD [8], r-CNN

[13]) is that they assume orthogonal directions for objects and use

Minimum Orthogonal Bounding Rectangles (MOBR) to represent

them. Thus, these frameworks do not consider the angles of objects,

which often result in inaccurate size estimations and heavy overlaps

among detections.

The main reason for this MORB design is that in general there is

very limited publicly-available training data with angle attributes,

and it is very time-consuming to generate such data for each specific

problem [7]. Althoughwe can train a sample deep learningmodel by

re-creating a smaller amount training data with angle information,

it is difficult to generalize it to large-scales or new applications,

which still require large amounts of new training samples with

angle information. This significantly limits the practical use of

learning schemes that require angle information during training. It

also cannot leverage the existing rich training data of MOBRs. Fig.

3 shows a classification tree of the related and proposed work.

To overcome these limitations, we propose an Unsupervised

Augmentation (UA) framework to detect the general MBRs (i.e.,

not necessarily orthogonal) of geospatial objects (Fig. 1). The "un-

supervised augmentation" aims to address the general challenge

of the unavailability of training data with angles. Thus, it does

not require any additional data with angle information to accom-

plish the task, as compared to supervised learning schemes [7, 9].

Within this framework, we present two schemes of augmentation,

namely a ROtation-Vector (ROV) based scheme and a context-based

scheme. Overall, the UA framework avoids the need for: (1) addi-

tional ground truth datasets with annotated angles of objects; (2)

additional design of network architectures; and (3) re-training.

Through experiments, we confirmed that both ROV-Reflection

and ROV-Spatial methods are able to reduce the effects of empty

areas in rotated images, and that ROV-Spatial performs better than

ROV-Reflection when source test imagery is available. In addition,

both the ROV and the context based schemes can approximate the

angles of objects well. The context based approach is more accurate

when estimating angles while ROV is better at tightening the area

estimations of objects.

Scope and outline: The scope of this problem is to leverage ex-

isting MOBR-based deep learning frameworks to detect general

MBRs (i.e., with rotation angles and tighter bounding rectangles).

The target objects are assumed to have a general rectangular shape

from a top-down satellite view. The rest of the paper is outlined as

follows: Sec. 2 formally defines the problem, Sec. 3 discusses the
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proposed approaches, Sec. 4 presents analytical validations, Sec. 5

shows the experimental evaluations and Sec. 6 concludes the paper.

2 PROBLEM DEFINITION
The problem is formally defined as follows:

Inputs:
– Remote sensing images used for training;

– Ground truth of geospatial objects for each training image;

– Remote sensing images used for testing;

Outputs:
– A deep-learning based object detection framework, whose

outputs are MBRs of geospatial objects;

Objectives:
– Detection accuracy of geospatial objects (i.e., angle, area);

Constraints:
– The spatial resolution of the remote sensing imagery is suffi-

ciently high to distinguish the objects of interest;

– Not requiring ground truth data with angle information;

Fig. 1 (a) and (b) shows the example input and output of this

MBR-based problem formulation. The second constraint addresses

the challenge of the general unavailability of ground truth data with

MBRs. In addition, we also aim to take advantage of existing MOBR-

based deep learning framework and their training dataset ofMOBRs.

Thus, ideally the solutions could avoid the requirement for extra

redesigning and retraining of separate deep learning architectures.

This guarantees that existing MOBR-based frameworks (e.g., YOLO

[12], SSD [8], r-CNN [13]) can be directly used for MBR detection.

3 THE PROPOSED UNSUPERVISED
AUGMENTATION FRAMEWORK

The goal of "Unsupervised Augmentation" (UA) is to detect Mini-

mum Bounding Rectangles (MBR) without the need for additional

training data with MBRs. It uses a MOBR-based deep learning

method as a sub-routine. Within this framework, we propose two

unsupervised augmentation schemes, namely a ROtation-Vector

(ROV) based scheme and a context based scheme.

3.1 Proposed Scheme 1: A Rotation-Vector
based Approach

The ROtation-Vector (ROV) based approach augments each test

image by rotating it at different angles using a rotation vector:

Definition 1. Rotation Vector. A rotation vectorV is a vector of
m distinct rotation angles (counter-clock direction), whereVi ∈ [0, 2π )
and π is the radian corresponding to 180◦.

Note that ROV is not applicable to training because rotation will

change the correct size of an MOBR and that change is undecidable

with only one MOBR known at a fixed angle.

The idea of ROV is to get rotated representations of each object

in the augmented test data, and then use detected MOBRs at these

different angles to derive the best angle and size of its MBR. The

key question is then how to rotate the image.

Choice of pivot and angles in ROV: Note that a rotation angle α
is not the only parameter in a rotation operation; we also need to

Figure 4: Detections with and without empty areas.

determine which pixel to use as the pivot. Intuitively, if we rotate

the image by α at the center of an object, we can guarantee that the

object in the rotated image is also rotated by α . However, in this

object detection problem, since the object centers are unknown, this

approach may lead to rotated images at all pixels in a test image,

which will introduce a significant amount of computational and

space cost. Besides, the second decision to make is the set of rotation

angles to choose. In Def. 1, each angle is limited to range (radian)

[0, 2π ) by default because of the general periodicity of angles. For

example, with a fixed pivot, the rotation by 0 is exactly the same

as the rotation by 2π . Since the goal here is to identify the angles

of objects using the rotations, the periodicity can potentially be

different. If a smaller periodicity exists, we can leverage it to reduce

the size of the rotation vector (i.e., eliminating unnecessary angles).

To avoid lengthy analysis of the choices, here we directly present

the key findings and decisions, which will be validated through

theorems and proofs in Sec. 4 on analytical validation:

– We only need to rotate an image at its center regardless of

the locations and angles of objects as well as the rotation

angle α (Thm. 1, Sec. 4);

– The rotation vector only needs to consider angles in range

[0,π/2) without losing completeness (Thm. 2, Sec. 4).

Empty areas: Rotating an image generates empty areas around

the boundary (Fig. 4). These empty areas (i.e., black triangles) may

cause errors in detection. For example, the zero values of those

"null" pixels could potentially reduce the activation values in the

network layers, leading to lower confidence for objects near the

boundary. Such effects may vary case by case and are generally

hard to quantify and neutralize. Thus, the output tends to miss

objects that are close to the empty areas (Fig. 4 (b) and (c)).

To address this issue, we propose two completion algorithms,

namely ROV-Reflection and ROV-Spatial, to mitigate the effects of

empty areas.

The input of a deep learning framework (e.g., YOLO, SSD) often

has the same number of rows and columns (i.e., a square image). If it

does not, it will be resized to a square shape. Thus, to avoid potential

shape distortions of geospatial objects, we assume square-shaped

input images in the remainder of the paper.

3.1.1 ROV-Reflection. ROV-Reflection completes the empty ar-

eas by reflecting the scenes in the image itself using the image

borders as the mirror lines. As shown in Fig. 5, the black space on

the top-left corner is completed using reflections from the inside

of the image with the light-blue line as the mirror line. As we can

see, the scenes in the red dashed triangles are symmetric along the

mirror line. The other black spaces are filled in similarly.
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Figure 5: ROV-Reflection: Filling the black space by mirror-
ing the scenes in the test image. (best in color)

There are four borders of a square-shaped test image (i.e., the

lines between the image and the empty areas), and each of them can

be used as a mirror line in reflection. For each pixel in the empty

areas, we use its nearest border as the mirror line. Consider the

bottom-left pixel of a rotated image (including empty areas) as the

origin (0,0) of the coordinate system S that we use for reflection, and
the width of a pixel as the unit length in S . For a pixel at row u and

columnv in aW ×W image, we have its coordinates in S as (px ,py ),
wherepx = v−1 andpy =W −u. Denote the set of four mirror lines

as L, where Li is represented by Aix + Biy +Ci = 0, ∀i = 1, ..., 4.

The reflected coordinate (p′x ,p
′
y ) is:

p′x = − 2A
∗
A∗px + B

∗py +C
∗

(A∗)2 + (B∗)2
+ px

p′y = − 2B
∗
A∗px + B

∗py +C
∗

(A∗)2 + (B∗)2
+ py

A∗,B∗,C∗ = argmin

Ai ,Bi ,Ci ∈L

|Ai · px + Bi · py +Ci |√
A2

i + B
2

i

The corresponding row u ′ and column v ′ of (p′x ,p
′
y ) are then

u ′ = [W −p′y ] and v
′ = [p′x + 1]. The line parameters Ai ,Bi ,Ci for

each line in L can be derived based on the rotation angle α (counter-

clock direction) being used. For example, the parameters for L1

(top-left corner) are:A1 = tanα , B1 = −1,C1 =
√
2W
2
· cosα
sin(π /4+α ) −1.

3.1.2 ROV-Spatial. While ROV-Reflection completes the empty

areas andmakes the resulting image visually contiguous, the mirror-

ing may still generate non-natural things (e.g., sharp angles caused

by reflection) that could potentially affect the results. To address

this, ROV-Spatial fills in the empty areas using original scenes from

their corresponding spatial extents. This requires access to the large

source imagery that was used to generate the test images, or nec-

essary spatial references (e.g., projection, coordinates) of the test

images which can be used to combine them into a single mosaic.

Once the source test imagery is located, ROV-Spatial rotates it

at the geographic center of the test image by the same angle α and

clip it using the bounding box of the rotated test image (red box

in Fig. 6). This guarantees that each black space is filled with its

actual missing data. As shown in Fig. 6, ROV-Spatial’s augmentation

introduces fewer artificial effects to the test image compared to

ROV-Reflection. Note that the detections outside the rotated image

(defined by the yellow dashed box) will be removed from the results.

3.1.3 Filtering, projection and grouping. Since the objects in a

test image can have different rotation angles, it is not appropriate

Figure 6: ROV-Spatial: Filling the black space by source.

Figure 7: Filtering and projection.

to use detections from a single rotation to represent the MBRs of

all objects in the image. To address this issue, we propose a three-

phase algorithm to identify the MBR of each individual object.

For each image, the first phase filters out the detections that are

outside the original image frame. The second phase projects the

remaining detections from the rotated images (i.e., augmentations)

to the original image, which creates multiple detections at different

angles for each object. Finally, the last phase clusters the detections

into local groups, each of which contains detections of the same

object. Once the three phases are completed, we can identify the

MBRs by selecting the detection with the minimum area in each

group. For simplicity, we will use the bottom-left corner of each

image as the origin (0,0) of its coordinate system, the bottom-border

as the direction of the X -axis, and the left-border as the Y -axis.
Filtering: The filtering phase removes detections whose centers

are not within the extent of the original image (i.e., the rotated

square in Fig. 7(a)). Similar to Sec. 3.1.1, the borders of the original

image in Fig. 7(a) are represented by the four lines L1 (x ,y) = 0 to

L4 (x ,y) = 0, where Li (x ,y) = Aix + Biy + Ci . For example, the

parameters for L1 are A1 = tanα , B1 = −1, and C1 = (
√
2wα
2

) ·
( cosα
sin(π /4+α ) ) − 1.

According to Fig. 7(a), we have the regions inside the origi-

nal image as Svalid = ∩{L1 (x ,y) ≥ 0, L2 (x ,y) ≥ 0, L3 (x ,y) ≤
0, L4 (x ,y) ≤ 0}. Then, if the center of a detection (xc ,yc ) < Svalid ,
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Figure 8: Area distribution by angles.

we remove it from the results. Fig. 7(b) shows the remaining and

removed detections in green and red, respectively.

Projection: This phase maps all the detections from the ro-

tated image back to the original image frame. Denote Pbase =
[xbase ,ybase ] and P’base = [x ′base ,y

′
base ] as the top-left corner

of the original image in the rotated and the original image, respec-

tively (Fig. 7 (c) and (d)). Denote P = [x,y] ∈ R4×2 as a matrix of

four corner points belonging to a detection in the rotated image

frame, and P′ = [x′,y′] as the projected matrix in the original

image frame. As shown in Fig. 7(c) and (d), the projection of each

point can be computed using its distance to Pbase and the angle β ,
which is the difference between angle γ and the rotation angle α .
The derivation is as follows:

γ = tan−1 ((x − xbase ) ⊘ (y − ybase ))

βi =



π +γ i − α , if γ i < 0

γ i − α , otherwise.

x′ =D
(
[x,y], [xbase ,ybase ]

)
⊙ sin(β )

y′ =w − D
(
[x,y], [xbase ,ybase ]

)
⊙ cos(β )

where β and γ are vectors containing angles of each corner point

of a detection; the subscript i denotes the ith element of a vector; ⊘

and ⊙ denote element-wise division and multiplication operations

(i.e., Hadamard division and product), respectively;D () is a distance
function of two input matrices of points, whose output is a vector

d with di = ∥[xi ,yi ] − [xbase ,ybase ]∥2; and w is the side length

of the original image.

Grouping: After all valid detections are projected back to the

original image frame, we havemultiple detections at different angles

for each object in the scene. In order to group the detections by

their corresponding objects, we keep the detections generated by

different rotation angles in separate layers. Then, starting with

a single detection d generated by a specific rotated angle α1, we
identify its nearest detection d ′ in each of the other layers and

insert d ′ into the group if the distance between the centers of d
and d ′ is smaller than min(d .diaд,d ′.diaд)/2, where diaд denotes

the diagonal length of a detection. If there does not exist a valid

d ′ in a layer, then we do not add anything into the group from

that layer. Fig. 8 shows the distributions of detection’s areas in two

example groups. As we can see, the areas gradually converge to the

minimum area from its two sides. By the definition of MBR (Sec. 2),

we select the detection with the minimum area in each group as

the best approximation of the object’s MBR.

Alg. 1 shows the overall structure of the ROV method. In line 5,

the "completeEmptySpace()" method takes an optional input imдS ,
which is the source test imagery. If imдS is provided, ROV-Spatial

Figure 9: Execution steps of Algorithm 1 (best in color).

will be used, and ROV-Reflection otherwise. Fig. 9 shows the high-

level execution trace step by step from line 9 to line 18 in Alg. 1.

The example uses only three angles for simplicity. The tables in the

figure shows the projection results for one rectangle (red).

Algorithm 1: Rotation-vector based method

Require: (1) A test image imд; (2) A rotation vector

V = [α1, ...,αn]; (3) (optional) Source imagery imдS ;
1: Ltemp = []

2: Lout = []

3: for α in V do
4: imдα = rotate(imд, α )
5: imд′α = completeEmptySpace(imдα , α , optional: imдS )
6: mobrListα = deepCNN(imд′α )
7: Ltemp .addLayer(mobrListα )
8: end for
9: Ltemp = filter_and_project(Ltemp , V )

10: for rect in Ltemp .getLayer(1) do
11: дroup = [rect]
12: for layer in Ltemp .getLayer([2,len(V )]) do
13: rect ′ = getNearest(rect , layer )
14: дroup.addMember(rect ′)
15: end for
16: Lout .addObject(дroup.getMBR())

17: end for
18: return Lout

3.2 Proposed Scheme 2: A Context-based
Approach

Context data contains spatial context information of certain types

of objects, which can be used to infer the rotation angles of the

objects. For example, roads and topographic models can serve as

the context of vehicles, buildings and farm fields/plots. The context-

based approach uses available context data to augment detections

from MOBR-based deep learning frameworks. It assumes that there

exists certain contexts that be used to determine the direction of

objects, and is not applicable otherwise.

Since appropriate contexts can differ across different types of

objects, here we use buildings and roads as an example to illustrate

the use of this context-based method.
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Figure 10: Roads as a context for buildings.

As shown in Fig. 10, buildings are often built in the context of

nearby roads and their directions are often parallel to the roads,

even in scenarios where the roads are curved. While this is a well

established pattern, there is a few cases where buildings may not

follow it. Fig. 10 shows two anomalies in the orange dashed-boxes:

(1) buildings that are far away from roads; (2) buildings around the

end of roads. In those cases, we do not rotate the detections.

Alg. 2 shows the general process of the context-based approach.

The third input β is the radian of the angle between the direction

of the context and the object. For example, β = π/4 or π/3 for

vehicle-parking lot (one way) by design standards, and β = 0 for

road-building. In Line 4 of Alg. 2, the function "getContextItem()"

needs to be defined based on specific context-object relationship.

For example, for road-building, the function returns the nearest

road segment of a building. For road-vehicle, it is the intersecting

road segment. Note that the context based approach only adjusts

the angles of the detections but does not re-estimate their areas

(only have detections from the original non-rotated image), which

is a difference to ROV. Fig. 11 shows the high-level execution steps

of Alg. 2 (lines 3 to 10) through a building-road example.

Algorithm 2: Context-based method

Require:
(1) A test image imд;
(2) A list of context objects Lctxt ;
(3) A context-object angle β ;

1: Lr esult = new List()

2: Lmobr = deepCNN(imд)
3: forMOBR in Lmobr do
4: c = getContextItem(MOBR, Lmobr )

5: α = getContextAngle(c)
6: α ′ = getRotationAngle(α , β)
7: MOBR′ = rotate(obj:MOBR, pivot:MOBR.center ,

angle: α ′)
8: Lr esult .append(MOBR′)
9: end for
10: return Lr esult

Summary of data requirements: Within the Unsupervised

Augmentation (UA) framework, there are different data require-

ments of solutions that may affect their usability in different appli-

cation scenarios. Table 1 shows the data requirements for the ROV

and the context based methods.

Figure 11: Execution steps of Algorithm 2 (best in color).

Table 1: Data requirements for the proposed methods

Requirements Context ROV- ROV-

Reflection Spatial

Access to context data ✓
Access to source test data ✓
Access to plain test data ✓ ✓ ✓

4 ANALYTICAL VALIDATION
In this section, we formally validate the design decisions in the

ROV scheme (Sec. 3.1) through theorems and mathematical proofs.

First, Thm. 1 shows that we only need to rotate an image at a

single pixel (e.g., center for convenience) regardless of the locations

and angles of objects as well as the rotation angle α .

Theorem 1. An object in an image is rotated by α no matter which
pixel is used as the pivot to rotate the image by α . In addition, the size
of the resulting image is independent of the choice of the pivot.

Proof. First, in Fig. 12, suppose A and B are two points on

the boundary of an object where edge AB is parallel to (i.e., the

same as) the direction of the object, and suppose the intersection

P of the axes is the pivot of the rotation (the rotation angle is

α in the counter-clock direction). L is a line passing through P

and AP ⊥ L. Edge A′B′ is the rotated version of AB, and L′ is
the rotated version of L. The dashed lines in Fig. 12(a) show the

rotation from A to A′ by α . Since P is the pivot point, the rotation

from A to A′ follows an arc on the circle with center P and radius

r . In addition, since L′ (passing P ) is also rotated by α , we have

A′P ⊥ L′. Similarly, Fig. 12(b) shows that △PBC � PB′C ′ because
PB = PB′, ∠BPC = ∠B′PC ′ and ∠BCP = ∠B′C ′P . Thus, we have
BC = B′C ′ = u and CP = C ′P ′ = v . The angle β between AB

and L is then equal to the angle β ′ between A′B′ and L′ because

β = tan
−1 u−r

v = β ′. Thus, the angle between AB and A′B′ is equal
to the angle between L and L′, which is α . Then, we show that the

size of the rotated image does not depend on the choice of pivot

pixel. As an array, an image always has a rectangular shape in a

two-dimensional space (i.e., height×width). Here we ignore the

dimension of its depth since it is not relevant to the rotations. If we

consider the input image as a rectangle Rimд , the size of the rotated

image is defined by the MOBR of the rotated Rimд to minimize the

empty areas. Denote the side length of Rimд asW (square input).

No matter which pixel is used as the pivot, the resulting side length

is alwaysW · ( | sinα | + | cosα |). □
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Figure 12: Rotations of objects.

Through Lemma 1 and Thm. 2, we further show that it is suffi-

cient to only use a set of α ∈ [0,π/2) instead of α ∈ [0, 2π ). The
radian π is equivalent to 180

◦
. In the following we denoteMBRα

as the MBR of an object at a specific angle α . For example,MBR0
(α = 0) is the MOBR.

Lemma 1. For an object, itsMBRα is the same as itsMBRα+ π
2

.

Proof. Fig. 12(d) shows theMBRα of an object, where the axes

are also shown in α directions. The black points denote the vertices

of the bounded object that lie on the boundary ofMBRα . First, if we
reset d and d ′ as the orthogonal directions in this two dimensional

space, then MBRα becomes the MOBR. Similarly, if we reset d +
π/2 and d ′ + π/2 as the orthogonal directions, then MBRα+π /2
becomes the MOBR (Fig. 12(e)). By definition, any two orthogonal

directions differ by π/2 radian in a two-dimensional space. Thus,

an MOBR must remain orthogonal (and minimum by definition) if

the orthogonal directions are rotated by π/2 (Fig. 12(f)). Thus, the
two MOBRs must be the same⇒ MBRα = MBRα+ π

2

. □

Theorem 2. For two rotation vectorsu = {ui | ui ∈ [0,π/2), ∀i ∈
{1, 2, ...,m}} and v = {vi | v(i+z ·m) = ui +z · π

2
, ∀z ∈ {0, 1, 2, 3}, i ∈

{1, 2, ...,m}}, the set of distinct rotation angles covered by them (u
and v) is the same.

Proof. Based on Lemma 1, we know that theMBRα of an object

has the same direction as MBRα+ π
2

. Thus, having an angle vi =
ui + π/2 does not generate an MBR of a distinct direction (i.e.,

rotation angle) compared to the original ui . With this, it is straight

forward to show the same result for other integer multipliers z (i.e.,
vi = ui + z · π/2, ∀z ∈ 0, 1, 2, 3) using induction. □

Thm. 2 shows that the rotation angles in a rotation vector should

be listed in the range [0,π/2) to avoid redundancy in angle enu-

meration.

5 EXPERIMENTAL EVALUATIONS
Fig. 13 shows the general design of the experiments, where the

data and methods are discussed in detail in Sec. 5.1. The design

aims to answer the following five evaluation questions (First three:

sensitivity analysis; Last two: comparative analysis):

– Do empty areas in rotated images affect solution quality?

Figure 13: Experiment design.

– Does ROV-Tuning reduce the effect of empty areas?

– Do the completion algorithms (i.e., ROV-Reflection, ROV-Spatial)

reduce the effect of empty areas?

– Do the proposed ROV and context based approaches improve

accuracy on angle estimation?

– Do the proposed ROV and context based approaches improve ac-

curacy on area estimation (i.e., tightening the rectangular bounds

on objects)?

5.1 Experiment Setup
5.1.1 Candidate Approaches. Since the focus of this paper is on

unsupervised augmentation (i.e., no need for ground-truth MBRs)

of deep learning frameworks, which has not been well-studied, our

candidate approaches mainly considered the two ROVmethods (i.e.,

ROV-Reflection to ROV-Spatial) and the context-based approach.

We also added the original YOLO framework as a baseline to show

the improvements on object angle and area estimation compared

to pure MOBR detections. In addition, to show the effects of empty

areas in rotated images (Sec. 3.1), we also added the following two

methods:

ROV-Empty: This method directly work with rotated test images

without any completion of empty areas;

ROV-Tuning: We fine-tune a trained model using images with

artificially-inserted empty areas, which cover the boundary regions

of the training images. The ground-truth building footprints in the

inserted empty areas are removed for correctness. This method

requires fine-tuning of an existing model as well as access to its

training dataset. The goal is to evaluate if this fine-tuning helps

mitigate the empty-area issue or causes more confusion in training.

In summary, the candidate approaches in the evaluation are:

(1) YOLO (orthogonal); (2) ROV-Empty; (3) ROV-Tuning; (4) ROV-

Reflection; (5) ROV-Spatial; and (5) the context-based approach

(Context). Note that all candidate methods (except ROV-Tuning)

used exactly the same set of trained weights for fair compar-

isons.

5.1.2 Dataset. In order to quantitatively evaluate the accura-

cies on object angle and area estimation of different candidate ap-

proaches, we need to select a geospatial object for which there exists

such a dataset that we can use to generate MBRs for evaluation pur-

poses (still trained with MOBR). Datasets that meet this criterion for

general objects are very difficult to find in our exploration. Thus, we

chose building as an example in the experiments, and used the free
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Figure 14: Distribution of building angles.

Figure 15: Sensitivity analysis in test areas. (best in color)

and publicly available Massachusetts Buildings Dataset (digitized

Esri shapefile) in [1, 10]. The imagery data we used were standard

county mosaics from the National Agricultural Imagery Program

(NAIP), which is also freely available. The resolution of the NAIP

imagery is one-meter. We used about 127,282 building footprints

in the dataset for training the MOBR-based YOLO framework, and

51,326 for testing. The NAIP imagery was split into 1022 test images

of size 208×208 to feed into the YOLO framework. The total area of

the test region is about 45 km
2
. In order to show possible variations

of result quality in different sub-areas of the test region, we split the

test region into three contiguous areas (i.e., Area A1-A3) to evaluate

and present the statistics. The number of test images in the three

areas are 340, 341 and 341, and the number of buildings are 17376,

18954 and 14996, respectively. We also adjusted the layer architec-

ture of YOLO to improve the detection accuracy for buildings. Since

layer design is not the focus of this paper, we do not describe it in

detail. All the candidate methods (except ROV-tuning) share the

same trained weights. To facilitate the training process, we used

transfer learning with pre-trained weights from the PASCAL VOC

dataset [12]. The training and prediction related operations with

YOLO were performed using a NVIDIA Tesla K40 GPU, and the

YOLO framework was implemented using TensorFlow.

5.2 Experimental Results
Fig. 14 shows the distribution of building angles in the entire test

region. As we can see, the angles of buildings are heavily mixed

and only about 13% of buildings align well with the orthogonal

direction (i.e., 0
◦ − 5

◦
: 7% and 85

◦ − 90
◦
: 6%). This indicates

that the orthogonal direction is not a good representation for the

building footprints in this region. The angle distribution can also

lead to overestimation of object areas in most of the test region if

pure MOBRs are used. For example, the overestimation of areas

could reach above 100% for buildings with a 45
◦
angle.

Table 2: Precision, recall and F1 scores in Areas A1 to A3

Area ID- YOLO ROV- ROV- ROV- ROV-

Metric reflect. spatial empty tuning

A1-Precision 79.8% 81.0% 81.6% 86.4% 83.4%

A1-Recall 69.1% 64.7% 68.1% 52.8% 38.9%

A1-F1 score 74.1% 72.0% 74.2% 65.5% 53.0%

A2-Precision 80.5% 82.4% 83.0% 87.1% 85.3%

A2-Recall 72.8% 68.0% 71.7% 54.9% 44.8%

A2-F1 score 76.5% 74.5% 77.0% 67.4% 58.7%

A3-Precision 78.3% 82.1% 83.2% 87.3% 87.3%

A3-Recall 74.1% 66.8% 71.1% 55.8% 42.5%

A3-F1 score 76.1% 73.6% 76.6% 68.0% 57.1%

5.2.1 Sensitivity analysis. First we conducted sensitivity anal-

ysis to assess the effect of empty spaces in rotated images on the

detection accuracy of ROV methods. Here we included the results

of YOLO (MOBR version) as a baseline to measure the effect since

it does use any rotation and is not affected by the empty areas. For

the context based approach, its precision, recall and F1-scores are

mostly the same as those of YOLO (e.g., less than 1% difference).

The effect of empty areas in rotated images on solution
quality: Table 2 shows the precision, recall and F1 scores of the

candidate approaches in the three test areas. The statistics are also

visualized in Fig. 15. Aswe can see, the recall (i.e.,
|detect ions∩true |

|true | )

of ROV-Empty is only 50% to 55% in the Areas A1 to A3, which is

10%-20% lower than that of YOLO (i.e., no empty areas). This result is

consistent with our analysis in Sec. 3.1, that says empty/zero-valued

pixels could lead to low activation values (e.g., ReLU) in deep net-

work layers, and reduce the probability score on objects. This effect

is particularly large around the borders between the image and the

empty areas (Fig. 4). Other than the effects on recall, the empty ar-

eas did not have much impact on precision (i.e.,
|detect ions∩true |
|detect ions | ).

Its F1-scores (i.e.,
2

(precision−1+r ecall−1 ) are lower mainly due to

the lower recalls.

The performance of artificial fine-tuning (ROV-Tuning)
on reducing the effect of empty areas: Table 2 shows that ROV-
Tuning has consistently lower precision, recall and F1 scores than

those of ROV-Empty in the three test areas. This means that fine-

tuning not only did not improve the performance but made it even

worse (i.e., about a 10% drop for both the recall and F1 scores). The

reason might be that: (1) it is difficult to offset the effects of large

chunks of zero pixels; (2) the kernels which were learned to reduce

such effects along the bordermay have hurt the predictions at places

which have no empty areas around (i.e., introducing confusion into

the training). This shows that artificial fine-tuning could not help

improve the accuracies based on our experiments.

The performance of the proposed completion algorithms
(i.e., ROV-Reflection, ROV-Spatial) on reducing the effect of
empty areas: Compared to ROV-Empty, ROV-Reflection and ROV-

Spatial do have on average 10% to 15% increases in both recall and

F1-scores. The F1 scores are also at the same level as or higher

than those of YOLO. This indicates that the completion algorithms

are able to mitigate the effects of empty areas and improve the
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Table 3: Errors of angles and areas in Areas A1 to A3

Area ID- YOLO ROV- ROV- ROV- ROV- Con-

Metric reflect. spatial empty tuning text

A1-Er 26.5
◦

9.9
◦

9.1
◦

11.0
◦

7.3
◦

3.5
◦

A1-Ea 57.2% 29.8% 29.0% 33.2% 32.0% 57.2%

A2-Er 22.8
◦

9.2
◦

8.6
◦

10.7
◦

7.3
◦

3.6
◦

A2-Ea 48.2% 26.3% 25.5% 28.9% 28.2% 47.8%

A3-Er 19.0
◦

10.2
◦

9.8
◦

10.9
◦

9.3
◦

4.7
◦

A3-Ea 44.6% 27.2% 26.8% 29.2% 30.0% 44.4%

*Notation: Ea = Error of area (%), Er = Error of rotation angle (
◦
)

detection rate of objects around the borders. ROV-Spatial performed

consistently better than ROV-Reflection with small margins, which

shows that the high fidelity of true spatial fillings do help improve

the solution quality. On the other hand, ROV-Spatial requires access

to source test imagery in order to be usable, whereas ROV-Reflection

can work directly on plain test images. Thus, there is a trade-off

between the solution quality and generality.

5.2.2 Comparative analysis. We evaluated the improvements on

angle and area estimation achieved by the proposed UA framework

by comparing to the baseline YOLO.

The performance of the proposed ROV and context based
methods on improving the accuracy of angle estimation: Ta-
ble 3 shows the errors for angles Er (i.e., difference from the true

angles) in the three test areas. The statistics are also visualized in

Fig. 16. Since the default YOLO framework models objects with

MOBRs, it cannot estimate the angles of objects well when they are

not aligned with the orthogonal directions of a test image. Thus,

YOLO had high errors of angles (i.e., about 20
◦
to 25

◦
) in the test ar-

eas. ROV-Reflection and ROV-Spatial were able to reduce the errors

to about 9
◦
. Here the ROV methods used a rotation vector with 8

angles, so the distance between nearest angles was 11.25◦. If a true

angle is right at the middle of two nearby angles in the rotation

vector, then it will incur an error of at least 11.25◦/2 = 5.625◦. This

may partially contribute to the 5
◦
error gap between ROV and the

context based method. In the three test areas, the context-based

method was able to reduce the errors to 3
◦
to 4
◦
, achieving the best

performance. Fig. 17 (top) shows the distribution of angle errors

across 100 test images, where the X and Y axes represent image IDs

and angle errors, respectively. To avoid too much overlap in the

visualization, we plotted the errors of three representative methods:

YOLO, ROV-Spatial and the context based approach. As we can see,

the error reductions from YOLO to both ROV and Context were

significant, and Context was slightly better than ROV.

The performance of the proposed ROV and context based
approaches on area estimation: In Table 3, the area error Ea for

each detection was evaluated as
|a−atrue |
atrue , where a and atrue are

the areas of the detected object and the true object, respectively.

As we can see, the ROV methods were able to reduce the area

errors from on average 45%-55% to on average 25%-30%. To better

see the error, for a residential house of size 10m × 10m, a 25%

difference corresponds to a size of about 11.2m × 11.2m or 8.7m ×
8.7m. However, since the context based approach only focuses on

Figure 16: Comparative analysis in test areas. (best in color)

Figure 17: Errors in 100 test image samples. (best in color)

the angles, it was not able to reduce the errors on areas in the

experiments. Fig. 17 (bottom) shows the distribution of area errors

across 100 test images. ROV-Spatial showed better performance

over both YOLO and the context-based approach.

Visualization: Besides statistics, we also compared the solution

quality of the six candidate approaches through map visualizations

in Fig. 18. The two rows in the figure correspond to two test images,

and the columns represent different methods. As we can see, the

results of YOLO only contained MOBRs of buildings, which also

created loose bounds on building areas and led to overlaps among

detections (Fig. 18(a)). Note that such overlaps also caused missing

detections in places where buildings are very dense, because YOLO

employs overlap removal to avoid duplicated detections. In contrast,

ROV-Reflection and ROV-Spatial (Fig. 18(b) and (c)) were able to

capture the angles of building footprints and generate tighter rect-

angular bounds on the buildings. The results of ROV-Spatial were

more complete compared to ROV-Reflection. In Fig. 18(d) and (e),

we can see that ROV-Empty was affected by the empty areas and

had fewer detections especially along the boundaries of the images.

ROV-Tuning did not improve the solution quality and missed more

buildings. Finally, the context based approach performed the best in

terms of angle estimation. While it did not tighten the area bounds,

the overlaps were reduced because of the corrected angles.

6 CONCLUSIONS AND FUTUREWORK
We proposed two unsupervised augmentation schemes, namely a

ROtation-Vector (ROV) based scheme and a context based scheme,
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Figure 18: Visualization of detection results in two test images. (best in color)

to detect MBRs of geospatial objects without the need for: (1) addi-

tional training dataset with angle information; (2) redesign of net-

work architecture; and (3) re-training. Within the ROV scheme, we

also developed two completion algorithms, namely ROV-Reflection

and ROV-Spatial, to mitigate the issue of missing detections caused

by empty areas in rotated images. Through experiments, we showed

that both the ROV and the context based schemes can estimate the

rotation angles with high accuracy. While the context based scheme

performed better on angle prediction, it could not tighten the esti-

mations of objects’ areas. The ROV scheme was able to significantly

improve the accuracy of area estimation.

Future work: One limitation of the current ROV scheme is that

it cannot cover all possible angles due to the discrete angle repre-

sentation in the rotation vector. In future work, we aim to explore

new techniques to further refine the angles without introducing

much computational overhead (e.g., a very high-resolution rotation

vector). While this work mainly considers the solution qualities,

we will investigate computational refinements to improve the effi-

ciency. In addition, since ROV performed better on area estimation

and the context based method was better on angle estimation, we

will explore an integrated approach of the two to further improve

the solution quality. We will also investigate integrations with other

unsupervised techniques (e.g., Hough transform) and experiment

with more deep networks.
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