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ABSTRACT

Given remote sensing datasets in a spatial domain, we aim to detect
geospatial objects with minimum bounding rectangles (i.e., angle-
aware) leveraging deep learning frameworks. Geospatial objects
(e.g., buildings, vehicles, farms) provide meaningful information for
a variety of societal applications, including urban planning, census,
sustainable development, security surveillance, agricultural man-
agement, etc. The detection of these objects are challenging because
their directions are often heavily mixed and not parallel to the or-
thogonal directions of an image frame due to topography, planning,
etc. In addition, there is very limited training data with angle infor-
mation for most types of objects. In related work, state-of-the-art
deep learning frameworks detect objects using orthogonal bound-
ing rectangles (i.e., sides are parallel to the sides of an input image),
so they cannot identify the directions of objects and generate loose
rectangular bounds on objects. We propose an Unsupervised Aug-
mentation (UA) framework to detect geospatial objects with general
minimum bounding rectangles (i.e., with angles). The UA frame-
work contains two schemes, namely a ROtation-Vector (ROV) based
scheme and a context-based scheme. The schemes completely avoid
the need for: (1) additional ground-truth data with annotated an-
gles; (2) restructuring of existing network architectures; and (3)
re-training. Experimental results show that the UA framework can
well approximate the angles of objects and generate much tighter
bounding boxes on objects.

CCS CONCEPTS

« Information systems — Spatial-temporal systems; « Com-
puting methodologies — Neural networks; Machine learn-
ing algorithms;

KEYWORDS

Rotations; rectangles; geospatial objects; deep learning; remote
sensing

ACM Reference Format:

Yiqun Xie, Rahul Bhojwani, Shashi Shekhar and Joseph Knight. 2018. An

Unsupervised Augmentation Framework for Deep Learning based Geospa-
tial Object Detection: A Summary of Results. In 26th ACM SIGSPATIAL

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGSPATIAL 18, November 6-9, 2018, Seattle, WA, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5889-7/18/11...$15.00
https://doi.org/10.1145/3274895.3274901

Joseph Knight
Dept. of Forest Res.; Remote Sensing & Geo. Analysis Lab
University of Minnesota-Twin Cities
jknight@umn.edu

International Conference on Advances in Geographic Information Systems
(SIGSPATIAL ’18), November 6-9, 2018, Seattle, WA, USA. ACM, New York,
NY, USA, Article 4, 10 pages. https://doi.org/10.1145/3274895.3274901

1 INTRODUCTION

Given a remote sensing dataset, we aim to automatically generate
catalogs of geospatial objects (e.g., buildings, vehicles, farm fields)
by leveraging deep learning frameworks for object detection. The
detection of an object O is modeled by the Minimum Bounding
Rectangle (MBR) of O, which is the smallest rectangle (i.e., angle-
aware) that entirely covers O. Fig. 1 shows an example of an input
image and the MBR output.

(b) MBR output

Figure 1: Example input and MBR output.

Catalogs of geospatial objects are valuable assets for many sec-
tors and application domains [2, 4, 5, 15, 17]. For example, building
footprints provide meaningful information for urban planning, so-
lar suitability analysis, census, agricultural management, etc. The
tracking of vehicles or ships is important for security surveillance,
law enforcements and resource allocation. Fine-scaled farm field
data facilitates the monitoring of agricultural land-covers, yield
estimation, conservation planning, etc. With the increased avail-
ability of high-resolution remote sensing data (e.g., satellite and
UAV imagery, LIDAR), there are great opportunities to automati-
cally identify, record and track a variety of geospatial objects.

The problem is challenging because: (1) the directions of geospa-
tial objects are often not parallel to the orthogonal axes of an image
frame; (2) the availability of training dataset with annotated angles
is very limited for general types of objects, and manual generation
of such dataset is tedious and time-consuming, which also does not
take advantage of existing rich training data without angles; and
(3) Geospatial objects often have a dense distribution due to the
limited usable or allocatable space, and loose area estimations (e.g.,
bounding rectangles that are not aware of the directions of objects)
can cause heavy overlaps among detections.

In recent years, end-to-end deep learning frameworks have
shown promising results in computer vision by outperforming
traditional multi-stage methods, which are often combinations of
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Figure 2: The YOLO framework and MOBR output.

manually-constructed features from image processing techniques
(e.g., Histogram of Gradients) and classic machine learning algo-
rithms (e.g., Support Vector Machines). In particular, Convolutional
Neural Networks (CNN) have become the most popular architecture
and set new benchmark performances in image classification and
labeling [3, 16]. Compared to flat neural networks, CNN uses local-
connections between layers as well as weight-sharing schemes to
model the spatial adjacency of pixels and reduce the difficulty of
learning. In remote sensing, CNN has also shown enhancements in
learning and creating features for image classification tasks [11]. It
has also achieved high precision in land-use and land-cover classi-
fication using satellite images [6, 14]. However, the original archi-
tectures of CNN only focus on image-theme (e.g., with or without
certain objects) classification and cannot predict the locations and
sizes of objects. You-Only-Look-Once (YOLO) and its variation Sin-
gle Shot MultiBox Detector (SSD) are the recent state-of-the-art
frameworks that extend CNN for object detection using additional
regression modeling [8, 12]. The general regression ideas of these
frameworks are very similar. In the following we provide a brief
overview of YOLO’s general architecture as an example.

YOLO is built on top of convolutional and pooling layers. Dif-
ferent from the original CNNs, it has a region layer at the end
to estimate the Minimum Orthogonal Bounding Rectangles
(MOBR) of objects using regression. An MOBR of an object O is
the smallest rectangle, that has its sides parallel to the sides of an
input image and entirely covers O. Fig. 2(b) shows an example of
MOBR outputs. Compared to the MBRs in Fig. 1(b), the MOBRs are
not flexible in directions.

Fig. 2(a) shows the general structure of YOLO and its region layer,
where the X)Y dimensions represent the same two-dimensional
space covered by the input image. The Z dimension of each cell
contains a list of parameters used to estimate the existence of an
object obj, location (px, py), size (pp, pw) and class C of a potential
object. In the region layer, the cell that contains the center of an
object is responsible for detecting it. Eq. (1) shows the regression
modeling used to convert the raw parameters to the final MOBR.

(cx, cy) = (x+6(px), y+a(py)), (Iw.1p) = (w-ePw, h.eph) (1)

where (cx,cy) is the center location of an MOBR estimated by
offsets to the top-left corner (x,y) of the corresponding cell in the
region layer; o() is the sigmoid function (output in the range (0, 1));
w, h are the prior (anchoring) width and height of objects; and I, I,
are the width and height of the MOBR.

Besides accuracy, another major advantage of deep learning
frameworks over traditional image processing techniques is their
demonstrated generality, which means one network architecture
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Figure 3: Novelty of the proposed approach.

can be used to detect a large variety of general objects using differ-
ent training datasets [12]. In comparison, traditional methods often
require separate multi-phase designs and calibrations for each type.

On the other hand, the major limitation of these deep learning
based object detection frameworks (e.g., YOLO [12], SSD [8], --CNN
[13]) is that they assume orthogonal directions for objects and use
Minimum Orthogonal Bounding Rectangles (MOBR) to represent
them. Thus, these frameworks do not consider the angles of objects,
which often result in inaccurate size estimations and heavy overlaps
among detections.

The main reason for this MORB design is that in general there is
very limited publicly-available training data with angle attributes,
and it is very time-consuming to generate such data for each specific
problem [7]. Although we can train a sample deep learning model by
re-creating a smaller amount training data with angle information,
it is difficult to generalize it to large-scales or new applications,
which still require large amounts of new training samples with
angle information. This significantly limits the practical use of
learning schemes that require angle information during training. It
also cannot leverage the existing rich training data of MOBRs. Fig.
3 shows a classification tree of the related and proposed work.

To overcome these limitations, we propose an Unsupervised
Augmentation (UA) framework to detect the general MBRs (i.e.,
not necessarily orthogonal) of geospatial objects (Fig. 1). The "un-
supervised augmentation" aims to address the general challenge
of the unavailability of training data with angles. Thus, it does
not require any additional data with angle information to accom-
plish the task, as compared to supervised learning schemes [7, 9].
Within this framework, we present two schemes of augmentation,
namely a ROtation-Vector (ROV) based scheme and a context-based
scheme. Overall, the UA framework avoids the need for: (1) addi-
tional ground truth datasets with annotated angles of objects; (2)
additional design of network architectures; and (3) re-training.

Through experiments, we confirmed that both ROV-Reflection
and ROV-Spatial methods are able to reduce the effects of empty
areas in rotated images, and that ROV-Spatial performs better than
ROV-Reflection when source test imagery is available. In addition,
both the ROV and the context based schemes can approximate the
angles of objects well. The context based approach is more accurate
when estimating angles while ROV is better at tightening the area
estimations of objects.

Scope and outline: The scope of this problem is to leverage ex-
isting MOBR-based deep learning frameworks to detect general
MBRs (i.e., with rotation angles and tighter bounding rectangles).
The target objects are assumed to have a general rectangular shape
from a top-down satellite view. The rest of the paper is outlined as
follows: Sec. 2 formally defines the problem, Sec. 3 discusses the
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proposed approaches, Sec. 4 presents analytical validations, Sec. 5
shows the experimental evaluations and Sec. 6 concludes the paper.

2 PROBLEM DEFINITION

The problem is formally defined as follows:
Inputs:

- Remote sensing images used for training;
— Ground truth of geospatial objects for each training image;
- Remote sensing images used for testing;

Outputs:

- A deep-learning based object detection framework, whose
outputs are MBRs of geospatial objects;

Objectives:
— Detection accuracy of geospatial objects (i.e., angle, area);
Constraints:

— The spatial resolution of the remote sensing imagery is suffi-
ciently high to distinguish the objects of interest;
- Not requiring ground truth data with angle information;

Fig. 1 (a) and (b) shows the example input and output of this
MBR-based problem formulation. The second constraint addresses
the challenge of the general unavailability of ground truth data with
MBRs. In addition, we also aim to take advantage of existing MOBR-
based deep learning framework and their training dataset of MOBRs.
Thus, ideally the solutions could avoid the requirement for extra
redesigning and retraining of separate deep learning architectures.
This guarantees that existing MOBR-based frameworks (e.g., YOLO
[12], SSD [8], r-CNN [13]) can be directly used for MBR detection.

3 THE PROPOSED UNSUPERVISED
AUGMENTATION FRAMEWORK

The goal of "Unsupervised Augmentation” (UA) is to detect Mini-
mum Bounding Rectangles (MBR) without the need for additional
training data with MBRs. It uses a MOBR-based deep learning
method as a sub-routine. Within this framework, we propose two
unsupervised augmentation schemes, namely a ROtation-Vector
(ROV) based scheme and a context based scheme.

3.1 Proposed Scheme 1: A Rotation-Vector
based Approach

The ROtation-Vector (ROV) based approach augments each test
image by rotating it at different angles using a rotation vector:

DEFINITION 1. Rotation Vector. A rotation vectorV is a vector of
m distinct rotation angles (counter-clock direction), where V; € [0, 27)
and 7 is the radian corresponding to 180°.

Note that ROV is not applicable to training because rotation will
change the correct size of an MOBR and that change is undecidable
with only one MOBR known at a fixed angle.

The idea of ROV is to get rotated representations of each object
in the augmented test data, and then use detected MOBRSs at these
different angles to derive the best angle and size of its MBR. The
key question is then how to rotate the image.

Choice of pivot and angles in ROV: Note that a rotation angle «
is not the only parameter in a rotation operation; we also need to
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(a) No empty area (b) Empty areas at n/4  (c) Empty areas at 57/16

Figure 4: Detections with and without empty areas.

determine which pixel to use as the pivot. Intuitively, if we rotate
the image by « at the center of an object, we can guarantee that the
object in the rotated image is also rotated by «. However, in this
object detection problem, since the object centers are unknown, this
approach may lead to rotated images at all pixels in a test image,
which will introduce a significant amount of computational and
space cost. Besides, the second decision to make is the set of rotation
angles to choose. In Def. 1, each angle is limited to range (radian)
[0, 27r) by default because of the general periodicity of angles. For
example, with a fixed pivot, the rotation by 0 is exactly the same
as the rotation by 2. Since the goal here is to identify the angles
of objects using the rotations, the periodicity can potentially be
different. If a smaller periodicity exists, we can leverage it to reduce
the size of the rotation vector (i.e., eliminating unnecessary angles).

To avoid lengthy analysis of the choices, here we directly present
the key findings and decisions, which will be validated through
theorems and proofs in Sec. 4 on analytical validation:

— We only need to rotate an image at its center regardless of
the locations and angles of objects as well as the rotation
angle o (Thm. 1, Sec. 4);

— The rotation vector only needs to consider angles in range
[0, 7/2) without losing completeness (Thm. 2, Sec. 4).

Empty areas: Rotating an image generates empty areas around
the boundary (Fig. 4). These empty areas (i.e., black triangles) may
cause errors in detection. For example, the zero values of those
"null" pixels could potentially reduce the activation values in the
network layers, leading to lower confidence for objects near the
boundary. Such effects may vary case by case and are generally
hard to quantify and neutralize. Thus, the output tends to miss
objects that are close to the empty areas (Fig. 4 (b) and (c)).

To address this issue, we propose two completion algorithms,
namely ROV-Reflection and ROV-Spatial, to mitigate the effects of
empty areas.

The input of a deep learning framework (e.g., YOLO, SSD) often
has the same number of rows and columns (i.e., a square image). If it
does not, it will be resized to a square shape. Thus, to avoid potential
shape distortions of geospatial objects, we assume square-shaped
input images in the remainder of the paper.

3.1.1  ROV-Reflection. ROV-Reflection completes the empty ar-
eas by reflecting the scenes in the image itself using the image
borders as the mirror lines. As shown in Fig. 5, the black space on
the top-left corner is completed using reflections from the inside
of the image with the light-blue line as the mirror line. As we can
see, the scenes in the red dashed triangles are symmetric along the
mirror line. The other black spaces are filled in similarly.
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Figure 5: ROV-Reflection: Filling the black space by mirror-
ing the scenes in the test image. (best in color)

There are four borders of a square-shaped test image (i.e., the
lines between the image and the empty areas), and each of them can
be used as a mirror line in reflection. For each pixel in the empty
areas, we use its nearest border as the mirror line. Consider the
bottom-left pixel of a rotated image (including empty areas) as the
origin (0,0) of the coordinate system S that we use for reflection, and
the width of a pixel as the unit length in S. For a pixel at row u and
column v in a W X W image, we have its coordinates in S as (py, py),
where py = v—1and p; = W —u. Denote the set of four mirror lines
as L, where L; is represented by Ajx + Biy+C; =0, Vi =1,...,4.
The reflected coordinate (p. py,) is:

LAPx +Bpy +C*
(A*)Z + (B*)Z
LAPx +Bpy +C*

(A*)Z + (B*)Z
|Ai - px + Bi - py + Cil

[42 | p2
A5 + B;

The corresponding row u” and column v’ of (p., py) are then
u’ = [W -py]land v = [p} +1]. The line parameters A;, B;, C; for
each line in L can be derived based on the rotation angle « (counter-
clock direction) being used. For example, the parameters for L;

(top-left corner) are: A; = tana, By = —-1,C1 = @~%—1.

P =—2A + Py
py =—2B

A*,B*,C* = argmin
A;,B;,Ci€L

3.1.2  ROV-Spatial. While ROV-Reflection completes the empty
areas and makes the resulting image visually contiguous, the mirror-
ing may still generate non-natural things (e.g., sharp angles caused
by reflection) that could potentially affect the results. To address
this, ROV-Spatial fills in the empty areas using original scenes from
their corresponding spatial extents. This requires access to the large
source imagery that was used to generate the test images, or nec-
essary spatial references (e.g., projection, coordinates) of the test
images which can be used to combine them into a single mosaic.

Once the source test imagery is located, ROV-Spatial rotates it
at the geographic center of the test image by the same angle o and
clip it using the bounding box of the rotated test image (red box
in Fig. 6). This guarantees that each black space is filled with its
actual missing data. As shown in Fig. 6, ROV-Spatial’s augmentation
introduces fewer artificial effects to the test image compared to
ROV-Reflection. Note that the detections outside the rotated image
(defined by the yellow dashed box) will be removed from the results.

3.1.3 Filtering, projection and grouping. Since the objects in a
test image can have different rotation angles, it is not appropriate
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Figure 7: Filtering and projection.

to use detections from a single rotation to represent the MBRs of
all objects in the image. To address this issue, we propose a three-
phase algorithm to identify the MBR of each individual object.
For each image, the first phase filters out the detections that are
outside the original image frame. The second phase projects the
remaining detections from the rotated images (i.e., augmentations)
to the original image, which creates multiple detections at different
angles for each object. Finally, the last phase clusters the detections
into local groups, each of which contains detections of the same
object. Once the three phases are completed, we can identify the
MBRs by selecting the detection with the minimum area in each
group. For simplicity, we will use the bottom-left corner of each
image as the origin (0,0) of its coordinate system, the bottom-border
as the direction of the X-axis, and the left-border as the Y-axis.
Filtering: The filtering phase removes detections whose centers
are not within the extent of the original image (i.e., the rotated
square in Fig. 7(a)). Similar to Sec. 3.1.1, the borders of the original
image in Fig. 7(a) are represented by the four lines L (x,y) = 0 to
L4(x,y) = 0, where L;j(x,y) = Aix + Bijy + C;. For example, the

parameters for L are A; = tana, By = -1, and C1 = (%) .
(= cos a )-1.
sin(z /4+a)

According to Fig. 7(a), we have the regions inside the origi-
nal image as Syq47;4 = NML1(x,y) = 0, La(x,y) > 0, L3(x,y) <
0, L4(x,y) < 0}. Then, if the center of a detection (x¢, y¢) € Syalids
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Figure 8: Area distribution by angles.

we remove it from the results. Fig. 7(b) shows the remaining and
removed detections in green and red, respectively.

Projection: This phase maps all the detections from the ro-
tated image back to the original image frame. Denote Pp s, =
[Xbase> Ybasel and P’pase =[x, .y, ] as the top-left corner
of the original image in the rotated and the original image, respec-
tively (Fig. 7 (c) and (d)). Denote P = [x,y] € R**? as a matrix of
four corner points belonging to a detection in the rotated image
frame, and P’ = [x’,y’] as the projected matrix in the original
image frame. As shown in Fig. 7(c) and (d), the projection of each
point can be computed using its distance to Pp .. and the angle f,
which is the difference between angle y and the rotation angle a.
The derivation is as follows:

Y= tan_l((x = Xpase) @ (Y — Ybase))

B, = T+y;—a, ify; <0
! yi—a, otherwise.

x’ ZD([x, v1 [*Xpases ybase]) O sin(f)
y, =w- D([X, v [Xpase- ybase]) O cos(f)

where B and y are vectors containing angles of each corner point
of a detection; the subscript i denotes the i th element of a vector; @
and © denote element-wise division and multiplication operations
(i.e., Hadamard division and product), respectively; D() is a distance
function of two input matrices of points, whose output is a vector
d with d; = ||[x;,¥;] = [*base> Ubaselll2; and w is the side length
of the original image.

Grouping: After all valid detections are projected back to the
original image frame, we have multiple detections at different angles
for each object in the scene. In order to group the detections by
their corresponding objects, we keep the detections generated by
different rotation angles in separate layers. Then, starting with
a single detection d generated by a specific rotated angle a1, we
identify its nearest detection d’ in each of the other layers and
insert d’ into the group if the distance between the centers of d
and d’ is smaller than min(d.diag, d’.diag)/2, where diag denotes
the diagonal length of a detection. If there does not exist a valid
d’ in a layer, then we do not add anything into the group from
that layer. Fig. 8 shows the distributions of detection’s areas in two
example groups. As we can see, the areas gradually converge to the
minimum area from its two sides. By the definition of MBR (Sec. 2),
we select the detection with the minimum area in each group as
the best approximation of the object’s MBR.

Alg. 1 shows the overall structure of the ROV method. In line 5,
the "completeEmptySpace()" method takes an optional input imgs,
which is the source test imagery. If imgg is provided, ROV-Spatial

SIGSPATIAL ’18, November 6-9, 2018, Seattle, WA, USA

Detections from ROV images (line 3-8) for 3 angles

A O | X e/, S

| Layer 2.0=/8 [77 15,15)] | Detection Projected

' H! e ! D |[x|y D |x|y
' lszI**:Plss P1’ (3|1
! s MGG =T[5 |4
: : P3 |68 P3* |45
i (0,0) SEIEE P4 |1]3

Output (line 18) Min area (line 16)  Groups (line 10-15) i’rojeciions (line 9)

Figure 9: Execution steps of Algorithm 1 (best in color).

will be used, and ROV-Reflection otherwise. Fig. 9 shows the high-
level execution trace step by step from line 9 to line 18 in Alg. 1.
The example uses only three angles for simplicity. The tables in the
figure shows the projection results for one rectangle (red).

Algorithm 1: Rotation-vector based method

Require: (1) A test image img; (2) A rotation vector
V = [a1, ..., an]; (3) (optional) Source imagery imgs;

: Ltemp =]

: Loyt = []

: forainV do

imgq = rotate(img, )

img), = completeEmptySpace(imgy, @, optional: imgsg)

mobrList, = deepCNN(img,,)

Ltemp-addLayer(mobrListy)

: end for

. Ltemp = filter_and_project(Lsemp, V)

10: for rect in Lyemp.getLayer(1) do

1. group = [rect]

122 for layer in Lemp.getLayer([2,len(V)]) do

13: rect’ = getNearest(rect, layer)

14: group.addMember(rect”)

15:  end for

16:  Loyt.addObject(group.getMBR())

17: end for

18: return Loy

R B U A

3.2 Proposed Scheme 2: A Context-based
Approach

Context data contains spatial context information of certain types
of objects, which can be used to infer the rotation angles of the
objects. For example, roads and topographic models can serve as
the context of vehicles, buildings and farm fields/plots. The context-
based approach uses available context data to augment detections
from MOBR-based deep learning frameworks. It assumes that there
exists certain contexts that be used to determine the direction of
objects, and is not applicable otherwise.

Since appropriate contexts can differ across different types of
objects, here we use buildings and roads as an example to illustrate
the use of this context-based method.
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Figure 10: Roads as a context for buildings.

As shown in Fig. 10, buildings are often built in the context of
nearby roads and their directions are often parallel to the roads,
even in scenarios where the roads are curved. While this is a well
established pattern, there is a few cases where buildings may not
follow it. Fig. 10 shows two anomalies in the orange dashed-boxes:
(1) buildings that are far away from roads; (2) buildings around the
end of roads. In those cases, we do not rotate the detections.

Alg. 2 shows the general process of the context-based approach.
The third input f is the radian of the angle between the direction
of the context and the object. For example, f = x/4 or n/3 for
vehicle-parking lot (one way) by design standards, and = 0 for
road-building. In Line 4 of Alg. 2, the function "getContextItem()"
needs to be defined based on specific context-object relationship.
For example, for road-building, the function returns the nearest
road segment of a building. For road-vehicle, it is the intersecting
road segment. Note that the context based approach only adjusts
the angles of the detections but does not re-estimate their areas
(only have detections from the original non-rotated image), which
is a difference to ROV. Fig. 11 shows the high-level execution steps
of Alg. 2 (lines 3 to 10) through a building-road example.

Algorithm 2: Context-based method

Require:
(1) A test image img;
(2) A list of context objects Lesxt;
(3) A context-object angle f;
¢ Lyesyir = new List()
¢ Liypopr = deepCNN(img)
: for MOBR in L, do
¢ = getContextltem(MOBR, L,0pr)
a = getContextAngle(c)
a’ = getRotationAngle(a, f)
MOBR’ = rotate(obj: MOBR, pivot: MOBR.center,
angle: a’)
8 Lyesulr-append(MOBR')
9: end for
10: return L,.q,7;

N TR Wy

Summary of data requirements: Within the Unsupervised
Augmentation (UA) framework, there are different data require-
ments of solutions that may affect their usability in different appli-
cation scenarios. Table 1 shows the data requirements for the ROV
and the context based methods.
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Table 1: Data requirements for the proposed methods

Requirements Context ROV- ROV-
Reflection  Spatial

Access to context data v

Access to source test data v

Access to plain test data v v v

4 ANALYTICAL VALIDATION

In this section, we formally validate the design decisions in the
ROV scheme (Sec. 3.1) through theorems and mathematical proofs.

First, Thm. 1 shows that we only need to rotate an image at a
single pixel (e.g., center for convenience) regardless of the locations
and angles of objects as well as the rotation angle a.

THEOREM 1. An object in an image is rotated by o no matter which
pixel is used as the pivot to rotate the image by a. In addition, the size
of the resulting image is independent of the choice of the pivot.

Proor. First, in Fig. 12, suppose A and B are two points on
the boundary of an object where edge AB is parallel to (i.e., the
same as) the direction of the object, and suppose the intersection
P of the axes is the pivot of the rotation (the rotation angle is
a in the counter-clock direction). L is a line passing through P
and AP 1 L. Edge A’B’ is the rotated version of AB, and L’ is
the rotated version of L. The dashed lines in Fig. 12(a) show the
rotation from A to A’ by a. Since P is the pivot point, the rotation
from A to A’ follows an arc on the circle with center P and radius
r. In addition, since L’ (passing P) is also rotated by «, we have
A’P 1 L. Similarly, Fig. 12(b) shows that APBC = PB’C’ because
PB = PB’, /BPC = /B’PC’ and /BCP = /B’C’P. Thus, we have
BC = B'C’ = uand CP = C’P’ = v. The angle § between AB
and L is then equal to the angle 8’ between A’B’ and L’ because
B = tan™! =L = B’ Thus, the angle between AB and A'B’ is equal
to the angle between L and L, which is a. Then, we show that the
size of the rotated image does not depend on the choice of pivot
pixel. As an array, an image always has a rectangular shape in a
two-dimensional space (i.e., heightxwidth). Here we ignore the
dimension of its depth since it is not relevant to the rotations. If we
consider the input image as a rectangle R;mg, the size of the rotated
image is defined by the MOBR of the rotated Rj;4 to minimize the
empty areas. Denote the side length of R;mg as W (square input).
No matter which pixel is used as the pivot, the resulting side length
is always W - (| sina| + | cos a]). ]
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Figure 12: Rotations of objects.

Through Lemma 1 and Thm. 2, we further show that it is suffi-
cient to only use a set of @ € [0, 7/2) instead of @ € [0, 2;r). The
radian 7 is equivalent to 180°. In the following we denote MBR,
as the MBR of an object at a specific angle a. For example, MBRy
(a = 0) is the MOBR.

LEMMA 1. For an object, its MBR, is the same as its MBR ., z.

Proor. Fig. 12(d) shows the MBR,, of an object, where the axes
are also shown in « directions. The black points denote the vertices
of the bounded object that lie on the boundary of MBR,,. First, if we
reset d and d” as the orthogonal directions in this two dimensional
space, then MBR, becomes the MOBR. Similarly, if we reset d +
7/2 and d’ + /2 as the orthogonal directions, then MBRy /2
becomes the MOBR (Fig. 12(e)). By definition, any two orthogonal
directions differ by /2 radian in a two-dimensional space. Thus,
an MOBR must remain orthogonal (and minimum by definition) if
the orthogonal directions are rotated by /2 (Fig. 12(f)). Thus, the
two MOBRs must be the same = MBR, = MBROH%. ]

THEOREM 2. For two rotation vectors u = {u; | u; € [0,7/2), Vi €
{L,2,..omp) and v ={vi | V(jyp.m) = wi+2- 5, V2 €{0,1,2,3},i €
{1,2,...,m}}, the set of distinct rotation angles covered by them (u
and v) is the same.

Proor. Based on Lemma 1, we know that the MBR,, of an object
has the same direction as MBRaJr%. Thus, having an angle v; =
u; + /2 does not generate an MBR of a distinct direction (i.e.,
rotation angle) compared to the original u;. With this, it is straight
forward to show the same result for other integer multipliers z (i.e.,
vi=u;+z-1/2, Yz €0,1,2,3) using induction. O

Thm. 2 shows that the rotation angles in a rotation vector should
be listed in the range [0, 7/2) to avoid redundancy in angle enu-
meration.

5 EXPERIMENTAL EVALUATIONS

Fig. 13 shows the general design of the experiments, where the
data and methods are discussed in detail in Sec. 5.1. The design
aims to answer the following five evaluation questions (First three:
sensitivity analysis; Last two: comparative analysis):

— Do empty areas in rotated images affect solution quality?
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Figure 13: Experiment design.

- Does ROV-Tuning reduce the effect of empty areas?

- Do the completion algorithms (i.e., ROV-Reflection, ROV-Spatial)
reduce the effect of empty areas?

— Do the proposed ROV and context based approaches improve
accuracy on angle estimation?

- Do the proposed ROV and context based approaches improve ac-
curacy on area estimation (i.e., tightening the rectangular bounds
on objects)?

5.1 Experiment Setup

5.1.1 Candidate Approaches. Since the focus of this paper is on
unsupervised augmentation (i.e., no need for ground-truth MBRs)
of deep learning frameworks, which has not been well-studied, our
candidate approaches mainly considered the two ROV methods (i.e.,
ROV-Reflection to ROV-Spatial) and the context-based approach.
We also added the original YOLO framework as a baseline to show
the improvements on object angle and area estimation compared
to pure MOBR detections. In addition, to show the effects of empty
areas in rotated images (Sec. 3.1), we also added the following two
methods:

ROV-Empty: This method directly work with rotated test images
without any completion of empty areas;

ROV-Tuning: We fine-tune a trained model using images with
artificially-inserted empty areas, which cover the boundary regions
of the training images. The ground-truth building footprints in the
inserted empty areas are removed for correctness. This method
requires fine-tuning of an existing model as well as access to its
training dataset. The goal is to evaluate if this fine-tuning helps
mitigate the empty-area issue or causes more confusion in training.

In summary, the candidate approaches in the evaluation are:
(1) YOLO (orthogonal); (2) ROV-Empty; (3) ROV-Tuning; (4) ROV-
Reflection; (5) ROV-Spatial; and (5) the context-based approach
(Context). Note that all candidate methods (except ROV-Tuning)
used exactly the same set of trained weights for fair compar-
isons.

5.1.2  Dataset. In order to quantitatively evaluate the accura-
cies on object angle and area estimation of different candidate ap-
proaches, we need to select a geospatial object for which there exists
such a dataset that we can use to generate MBRs for evaluation pur-
poses (still trained with MOBR). Datasets that meet this criterion for
general objects are very difficult to find in our exploration. Thus, we
chose building as an example in the experiments, and used the free
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Figure 14: Distribution of building angles.
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Figure 15: Sensitivity analysis in test areas. (best in color)

and publicly available Massachusetts Buildings Dataset (digitized
Esri shapefile) in [1, 10]. The imagery data we used were standard
county mosaics from the National Agricultural Imagery Program
(NAIP), which is also freely available. The resolution of the NAIP
imagery is one-meter. We used about 127,282 building footprints
in the dataset for training the MOBR-based YOLO framework, and
51,326 for testing. The NAIP imagery was split into 1022 test images
of size 208 x 208 to feed into the YOLO framework. The total area of
the test region is about 45 km?. In order to show possible variations
of result quality in different sub-areas of the test region, we split the
test region into three contiguous areas (i.e., Area A1-A3) to evaluate
and present the statistics. The number of test images in the three
areas are 340, 341 and 341, and the number of buildings are 17376,
18954 and 14996, respectively. We also adjusted the layer architec-
ture of YOLO to improve the detection accuracy for buildings. Since
layer design is not the focus of this paper, we do not describe it in
detail. All the candidate methods (except ROV-tuning) share the
same trained weights. To facilitate the training process, we used
transfer learning with pre-trained weights from the PASCAL VOC
dataset [12]. The training and prediction related operations with
YOLO were performed using a NVIDIA Tesla K40 GPU, and the
YOLO framework was implemented using TensorFlow.

5.2 Experimental Results

Fig. 14 shows the distribution of building angles in the entire test
region. As we can see, the angles of buildings are heavily mixed
and only about 13% of buildings align well with the orthogonal
direction (i.e., 0° — 5° : 7% and 85° — 90° : 6%). This indicates
that the orthogonal direction is not a good representation for the
building footprints in this region. The angle distribution can also
lead to overestimation of object areas in most of the test region if
pure MOBRs are used. For example, the overestimation of areas
could reach above 100% for buildings with a 45° angle.
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Table 2: Precision, recall and F1 scores in Areas Al to A3

Area ID- YOLO ROV- ROV- ROV- ROV-
Metric reflect. spatial empty tuning
Al-Precision 79.8% 81.0% 81.6% 86.4%  83.4%
Al-Recall 69.1% 64.7%  68.1%  52.8% 38.9%
A1-F1 score 74.1% 72.0% 74.2%  655%  53.0%

A2-Precision 80.5%  82.4% 83.0% 87.1%  85.3%
A2-Recall 72.8%  68.0% 71.7%  54.9%  44.8%
A2-Flscore 765% 74.5% 77.0%  67.4%  58.7%

A3-Precision 78.3% 82.1% 83.2% 87.3% 87.3%
A3-Recall 74.1%  66.8% 71.1% 55.8% 42.5%
A3-F1 score 76.1%  73.6% 76.6% 68.0% 57.1%

5.2.1 Sensitivity analysis. First we conducted sensitivity anal-
ysis to assess the effect of empty spaces in rotated images on the
detection accuracy of ROV methods. Here we included the results
of YOLO (MOBR version) as a baseline to measure the effect since
it does use any rotation and is not affected by the empty areas. For
the context based approach, its precision, recall and F1-scores are
mostly the same as those of YOLO (e.g., less than 1% difference).

The effect of empty areas in rotated images on solution
quality: Table 2 shows the precision, recall and F1 scores of the

candidate approaches in the three test areas. The statistics are also

. . A . detectionsNtrue
visualized in Fig. 15. As we can see, the recall (i.e., W)

of ROV-Empty is only 50% to 55% in the Areas A1l to A3, which is
10%-20% lower than that of YOLO (i.e., no empty areas). This result is
consistent with our analysis in Sec. 3.1, that says empty/zero-valued
pixels could lead to low activation values (e.g., ReLU) in deep net-
work layers, and reduce the probability score on objects. This effect
is particularly large around the borders between the image and the
empty areas (Fig. 4). Other than the effects on recall, the empty ar-

|detectionsﬁtrue|)
|detections| ’

are lower mainly due to

eas did not have much impact on precision (i.e.,

2
> (precision™'+recall™1)

Its F1-scores (i.e.

the lower recalls.

The performance of artificial fine-tuning (ROV-Tuning)
on reducing the effect of empty areas: Table 2 shows that ROV-
Tuning has consistently lower precision, recall and F1 scores than
those of ROV-Empty in the three test areas. This means that fine-
tuning not only did not improve the performance but made it even
worse (i.e., about a 10% drop for both the recall and F1 scores). The
reason might be that: (1) it is difficult to offset the effects of large
chunks of zero pixels; (2) the kernels which were learned to reduce
such effects along the border may have hurt the predictions at places
which have no empty areas around (i.e., introducing confusion into
the training). This shows that artificial fine-tuning could not help
improve the accuracies based on our experiments.

The performance of the proposed completion algorithms
(i.e., ROV-Reflection, ROV-Spatial) on reducing the effect of
empty areas: Compared to ROV-Empty, ROV-Reflection and ROV-
Spatial do have on average 10% to 15% increases in both recall and
F1-scores. The F1 scores are also at the same level as or higher
than those of YOLO. This indicates that the completion algorithms
are able to mitigate the effects of empty areas and improve the
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Table 3: Errors of angles and areas in Areas A1l to A3

AreaID- YOLO ROV- ROV- ROV- ROV- Con-
Metric reflect. spatial empty tuning text

Al-E, 26.5°  9.9° 9.1° 11.0° 7.3° 3.5°
Al-E, 57.2% 29.8%  29.0% 332% 32.0% 57.2%

A2-E, 22.8°  9.2° 8.6° 10.7° 7.3° 3.6°
A2-E, 48.2%  26.3% 25.5%  289%  28.2%  47.8%

A3-E, 19.0° 10.2° 9.8° 10.9° 9.3° 4.7°
A3-E, 44.6% 27.2% 26.8%  29.2%  30.0%  44.4%

“Notation: E,; = Error of area (%), E, = Error of rotation angle (°)

detection rate of objects around the borders. ROV-Spatial performed
consistently better than ROV-Reflection with small margins, which
shows that the high fidelity of true spatial fillings do help improve
the solution quality. On the other hand, ROV-Spatial requires access
to source test imagery in order to be usable, whereas ROV-Reflection
can work directly on plain test images. Thus, there is a trade-off
between the solution quality and generality.

5.2.2  Comparative analysis. We evaluated the improvements on
angle and area estimation achieved by the proposed UA framework
by comparing to the baseline YOLO.

The performance of the proposed ROV and context based
methods on improving the accuracy of angle estimation: Ta-
ble 3 shows the errors for angles E; (i.e., difference from the true
angles) in the three test areas. The statistics are also visualized in
Fig. 16. Since the default YOLO framework models objects with
MOBRs, it cannot estimate the angles of objects well when they are
not aligned with the orthogonal directions of a test image. Thus,
YOLO had high errors of angles (i.e., about 20° to 25°) in the test ar-
eas. ROV-Reflection and ROV-Spatial were able to reduce the errors
to about 9°. Here the ROV methods used a rotation vector with 8
angles, so the distance between nearest angles was 11.25°. If a true
angle is right at the middle of two nearby angles in the rotation
vector, then it will incur an error of at least 11.25°/2 = 5.625°. This
may partially contribute to the 5° error gap between ROV and the
context based method. In the three test areas, the context-based
method was able to reduce the errors to 3° to 4°, achieving the best
performance. Fig. 17 (top) shows the distribution of angle errors
across 100 test images, where the X and Y axes represent image IDs
and angle errors, respectively. To avoid too much overlap in the
visualization, we plotted the errors of three representative methods:
YOLO, ROV-Spatial and the context based approach. As we can see,
the error reductions from YOLO to both ROV and Context were
significant, and Context was slightly better than ROV.

The performance of the proposed ROV and context based

approaches on area estimation: In Table 3, the area error E, for

la=atruel
Atrue

the areas of the detected object and the true object, respectively.
As we can see, the ROV methods were able to reduce the area
errors from on average 45%-55% to on average 25%-30%. To better
see the error, for a residential house of size 10m X 10m, a 25%
difference corresponds to a size of about 11.2m X 11.2m or 8.7 m X
8.7 m. However, since the context based approach only focuses on

each detection was evaluated as , where a and a;,ye are

SIGSPATIAL ’18, November 6-9, 2018, Seattle, WA, USA

3 Error of angle estimation Error of area estimation

20° 0.4
IYoLo
) [IROV-Reflect
10 0.2 [IROV-Spatial

IIROV-Empty
[EROV-Tuning
\:’ Context

0 0
AreaA1 AreaA2 AreaA3 AreaA1 AreaA2 AreaA3

Figure 16: Comparative analysis in test areas. (best in color)

s Errors of angles (degree)

b . | / [-=YoLo
10 i VAk ¥ |¥ |+ROV-Spatial
p A,
0 ﬁﬁa ' gl " Context
X-axis: Test Image ID
i T Errors of areas (percentage) i
0.8 -] r| ] o |
m 28 dhlve o ‘Jﬁ;”
] @ [ | i |
L] ] a i -
An“ ' rlgﬂ_“‘ & L'ﬂ"iJ % ) " ‘-‘F:_?
M}‘ll}" IMA“A»\. | [=-yoLo
¥ —+-ROV-Spatial
0 Context

X-axis: Test Image ID
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the angles, it was not able to reduce the errors on areas in the
experiments. Fig. 17 (bottom) shows the distribution of area errors
across 100 test images. ROV-Spatial showed better performance
over both YOLO and the context-based approach.

Visualization: Besides statistics, we also compared the solution
quality of the six candidate approaches through map visualizations
in Fig. 18. The two rows in the figure correspond to two test images,
and the columns represent different methods. As we can see, the
results of YOLO only contained MOBRs of buildings, which also
created loose bounds on building areas and led to overlaps among
detections (Fig. 18(a)). Note that such overlaps also caused missing
detections in places where buildings are very dense, because YOLO
employs overlap removal to avoid duplicated detections. In contrast,
ROV-Reflection and ROV-Spatial (Fig. 18(b) and (c)) were able to
capture the angles of building footprints and generate tighter rect-
angular bounds on the buildings. The results of ROV-Spatial were
more complete compared to ROV-Reflection. In Fig. 18(d) and (e),
we can see that ROV-Empty was affected by the empty areas and
had fewer detections especially along the boundaries of the images.
ROV-Tuning did not improve the solution quality and missed more
buildings. Finally, the context based approach performed the best in
terms of angle estimation. While it did not tighten the area bounds,
the overlaps were reduced because of the corrected angles.

6 CONCLUSIONS AND FUTURE WORK

We proposed two unsupervised augmentation schemes, namely a
ROtation-Vector (ROV) based scheme and a context based scheme,
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Figure 18: Visualization of detection results in two test images. (best in color)

to detect MBRs of geospatial objects without the need for: (1) addi-
tional training dataset with angle information; (2) redesign of net-
work architecture; and (3) re-training. Within the ROV scheme, we
also developed two completion algorithms, namely ROV-Reflection
and ROV-Spatial, to mitigate the issue of missing detections caused
by empty areas in rotated images. Through experiments, we showed
that both the ROV and the context based schemes can estimate the
rotation angles with high accuracy. While the context based scheme
performed better on angle prediction, it could not tighten the esti-
mations of objects’ areas. The ROV scheme was able to significantly
improve the accuracy of area estimation.

Future work: One limitation of the current ROV scheme is that
it cannot cover all possible angles due to the discrete angle repre-
sentation in the rotation vector. In future work, we aim to explore
new techniques to further refine the angles without introducing
much computational overhead (e.g., a very high-resolution rotation
vector). While this work mainly considers the solution qualities,
we will investigate computational refinements to improve the effi-
ciency. In addition, since ROV performed better on area estimation
and the context based method was better on angle estimation, we
will explore an integrated approach of the two to further improve
the solution quality. We will also investigate integrations with other
unsupervised techniques (e.g., Hough transform) and experiment
with more deep networks.
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