
Coordinated pitch and torque control of wind farms for power tracking

Carl R. Shapiro,1 Johan Meyers,2 Charles Meneveau,1 and Dennice F. Gayme1

Abstract— Improved integration of wind farms into fre-
quency regulation services is vital for increasing renewable
energy production while ensuring power system stability. This
work generalizes a recently proposed model-based receding
horizon wind farm controller for secondary frequency regula-
tion to arbitrary wind farm layouts and augments the controller
to enable power modulation through storage of kinetic energy in
the rotor. The new design explicitly includes actuation of blade
pitch and generator torque, which facilitates implementation in
existing farms as it takes advantage of current wind turbine
control loops. This generalized control design improves control
authority by individually controlling each turbine and using
kinetic energy stored in the rotor in a coordinated manner to
achieve farm level control goals. Numerical results demonstrate
the effectiveness of this approach; in particular, the controller
achieves accurate power tracking and reduces loss of revenue
in the bulk power market by requiring less setpoint reduction
(derate) than the power level control range.

I. INTRODUCTION

Control designs that allow wind farms to participate in a
variety of grid services are vital for increasing wind power
penetration in the electric power grid. As growing wind
power generation displaces conventional power plants that
typically provide frequency regulation services, regulators
are considering requiring wind plants to provide these ser-
vices [1], [2]. Use of wind farms to provide secondary fre-
quency regulation, a service where participating generators
follow a power reference signal sent by the grid operator, is
a particular area of growing interest [2], [3], [4].

Power plants participating in secondary frequency regula-
tion typically provide power in both the bulk power market
and the regulation market. The bulk power is supplied at
some fixed level and the regulation service entails following
a regulation signal sent by the grid operator. While current
wind turbine controllers operate at the maximum power
point, participation in the secondary frequency regulation
market — which includes increased power demand over the
bulk power setpoint — requires a wind farm to reduce the
amount of power it provides to the bulk power market [2],
[5], [6], [7], [8], [9]. New control designs should therefore
enable wind farms to provide power tracking [2], [10] while
reducing lost revenue in bulk power markets [5], [6].
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For a single turbine, this power set point reduction (derat-
ing) can be accomplished by changing the tip speed ratio or
blade pitch angle such that the power coefficient is less than
optimal. A particularly effective approach [7] is to modify the
generator torque control law such that the turbine operates at
a higher-than-optimal tip speed ratio, thereby storing energy
in the rotating rotor. Since a single wind turbine cannot
provide power production greater than the maximum power
point for an extended period, the derated generation setpoint
is the maximum power point minus the regulation power.

While the single-turbine approach is effective when all
wind turbines are operating in unwaked conditions, control-
ling the power output of an entire farm is complicated by
wind turbine wakes and wake interactions. Control actions
at an individual wind turbine modify the strength and char-
acteristics of the wake behind the rotor, which in turn affects
the subsequent power production of downstream turbines
as the wake travels downwind. For example, suppose a
turbine at the beginning of the farm pitches its blades from a
feathered configuration toward the optimal pitch angle. The
power generation at that turbine will increase, reducing the
velocity in the turbine’s wake. As a result, the generation
of downstream turbines will decrease, but only after the
wake has traveled to the downstream turbine. This complex
and time-varying aerodynamic coupling of upstream turbine
control actions and downstream turbine power generation
is a particular challenge for secondary frequency regulation
because the travel time of the wind from one turbine to the
next and the time it takes the wind to travel the length of the
farm is routinely the same or longer than the duration and
frequency of typical regulation signals.

Several solutions have been proposed to address the
technical challenges of controlling a wind farm’s power
output to track a reference signal. Attempts to use single-
turbine approaches for multiple turbines in a farm resulted
in significantly reduced power tracking performance [9]. To
address these limitations, a proportional-integral controller
was proposed that employs the same single-turbine control
strategy but compensates for underperforming turbines by
increasing the power production of other turbines operating
below the maximum power point [4]. The resulting closed-
loop wind farm provides good tracking performance in tests
employing high-fidelity simulations as a wind farm model.
However, the derate used in [4] was larger than the regulation
power, sacrificing considerable revenue in the bulk power
market. Finally, controllers based on static wake models that
neglect wake travel dynamics are also unable to provide
adequate power tracking performance [11].

In recent years, dynamic models have been proposed that



account for the movement of wakes through the wind farm

as well as turbulent mixing of wakes with the surrounding

air, either as extensions of the classic Jensen wake model [3],

[12] or as an implementation of the two-dimensional Navier-

Stokes equations [13]. A frequency regulation approach was

proposed in [3], [11] that builds a controller around a

dynamic wake model. It employs a model-based receding

horizon controller, coupled with an ensemble Kalman filter

for state and parameter estimation [14], to provide power

tracking by modulating the thrust coefficients of each row of

wind turbines. When this algorithm was tested using a high-

fidelity simulation of an 84-turbine wind farm as a plant

model, the controlled wind farm was shown to provide good

power tracking while reducing the required derate.

In this work, we extend the model-based receding horizon

controller proposed and validated in [3], [11] in three ways.

First, we explicitly include actuation of blade pitch angle

and generator torque, which were previously assumed to be

parameterized by the thrust coefficient. Second, the wake

model, which was previously one dimensional, is extended

to two dimensions to allow for irregular wind farm config-

urations. Third, we include first-order drive train dynamics

of the turbines, which enables the control of rotor speed and

storage of kinetic energy in the rotating rotor. The rotor’s

ability to store kinetic energy has been shown to be useful

in reducing turbulent power fluctuations in wind farms [15]

and providing inertial frequency regulation [7]. The new

generalized control framework is easier to implement in

existing wind farms because it can be directly tied to existing

wind turbine control loops and improves control authority by

allowing direct control of each wind turbine. Numerical sim-

ulations illustrate the application of the approach to two wind

farm configurations and demonstrate how the kinetic energy

reserves are exploited to achieve the tracking objectives.

The remainder of this paper is organized as follows.

Section II describes the improved wake model. The controller

design is discussed in Section III. Simulations are discussed

in Section IV. Conclusions are made in Section V.

II. WAKE AND TURBINE MODEL

The time-varying wake and turbine model described in this

section is an extension of the model first proposed and vali-

dated in [3]. That model augmented the well-known Jensen

model [16] to derive a one-dimensional dynamic model of

the time evolution of the turbine wakes. It parameterized the

turbine actions through the local thrust coefficient C ′
T and

assumed that each row of turbines operated collectively. The

extended model proposed here explicitly includes blade pitch

angle β and generator torque Q. It also incorporates the first-

order drive train equations with inertia and rotational speed,

and generalizes the superposition equations to accommodate

irregular wind farm configurations.

Consider an N -turbine wind farm whose horizontal co-

ordinates parallel and orthogonal to the prevailing wind

U∞ with density ρ are denoted as x and y, respectively.

Here the wind direction is assumed to remain constant,

although future work could extend the model to allow for

changing orientations. The corresponding streamwise and

lateral spatial extents of the farm are denoted as Lx and

Ly , respectively. Each turbine has a rotor diameter of D
and the n-th turbine is located at (x, y) = (sxn, s

y
n). Each

turbine rotor has a moment of inertia J and rotates at a

speed ωn. Turbine n is controlled via blade pitch angle βn

and generator torque Qn.

The turbines are represented using an actuator disk model,

where the control actions of the n-th turbine modify the

thrust force and aerodynamic power via the thrust CTn and

power CPn coefficients [17]. These coefficients are assumed

to be functions of the pitch angle βn and tip speed ratio

λn = ωnD
2U∞

[17], [18]. We define the local [19], [20] thrust

coefficient, power coefficient, and tip speed ratio as

C ′
Tn=

CTn

(1− an)2
, C ′

Pn=
CPn

(1− an)3
, andλ′

n=
λn

1− an
, (1)

where an = 1− û/u∞n is the induction factor described by

the ratio between the rotor-averaged velocity at the turbine

ûn and the upstream velocity u∞n. Using the actuator disk

model [19], [20], the induction factor is given by 4an(1 −
an) = CTn.

The thrust and power coefficient curves are modeled using

blade element momentum theory [21]. Transformed curves

based on the local rotor-averaged velocity C ′
T (β, λ

′) and

C ′
P (β, λ

′) are obtained using interpolation. These relation-

ships are implemented as lookup tables that are interpolated

using monotone piecewise cubic interpolation [22].

As in the Jensen model [16], we assume that the diameter

of the wake behind the n-th turbine grows linearly as it

moves downstream at a rate kn. This asymptotic linear

growth is expressed by the normalized and smooth function

dn(x) = 1 + kn ln

]
1 + exp

)
x− sxn −D

D/2

[ (
, (2)

such that the wake diameter is dn(x)D. Applying momen-

tum and mass conservation across an infinitesimal control

volume [3], the velocity deficit δun(x, t) in the wake of the

n-th turbine is governed by

∂δun

∂t
+ U∞

∂δun

∂x
= −wn(x)δun(x, t) + fn(x, t), (3)

where the wake decay function

wn(x) = 2
U∞
dn(x)

d

dx
dn(x) (4)

describes the expansion of the wake through the normalized

wake diameter function dn(x), and the forcing function

fn(x, t) =
2U2

∞
d2n(x)

C ′
Tn(β(t), λ

′(t))
4 + C ′

Tn(β(t), λ
′(t))

G(x− sn) (5)

describes the effect of the turbine’s thrust force on the wake

velocity deficit itself. As described above, the local thrust

coefficient is a function of the pitch angle and local tip speed

ratio. The function

G(x− sn) =
1

Δ
√
2π

exp

)
− (x− s2n)

2

2Δ2

[
(6)



is a normalized Gaussian smoothing function with width

Δ = D/2 that spreads the velocity deficit forcing in the

streamwise direction to ensure continuous velocity deficits.

After calculating the velocity deficits induced by each

turbine, the wakes are combined to determine the velocity

field using a modified version of the square-superposition

approach in [16]. In particular, the velocity field is given by

u(x, y, t) = U∞ −
)∑N

n=1δu
2
n(x, t)In(x, y)

(1/2

, (7)

where In(x, y) is the indicator function specifying the width

of the wake defined by the normalized wake diameter

In(x, y) = H(dn(x− sxn)D/2− |y − syn|), (8)

and H(x) is the Heaviside (unit step) function. The rotor-

averaged velocity at each turbine is subsequently calculated

by sampling this velocity field as

ûn(t) =

Lx

0

Ly

0

u(x, y, t)G(x− sxn)H̃(y − syn) dy dx, (9)

where H̃(y) = D−1H(D/2 − |y|) is a normalized top-hat

function. The rotational speed ωn(t) of the rotor is governed

by first order drive-train dynamics [18]

dωn

dt
=

1

J

)
P̂n(t)

ωn(t)
−Qn(t)

[
, (10)

where P̂n(t) =
1
8ρπD

2C ′
Pnû

3
n(t) is the aerodynamic power.

The power delivered by the generator to the power grid is

Pn(t) = Qn(t)ωn(t). (11)

We next present the controller design that uses the wake

model described above to calculate control actuation.

III. CONTROLLER DESIGN

The control goal in secondary frequency regulation ap-

plications is tracking a reference signal Pref(t). Here we

propose a method to achieve this regulation by controlling

the power output of a wind farm, via actuating the blade pitch

angles βn(t) and generator torques Qn(t) of each turbine.

The power tracking goal is represented by the cost functional

J =
t0+T

t0

)
N∫

n=1

Qn(t)ωn(t)− Pref(t)

[ 2

dt, (12)

where Qn(t)ωn(t) is the power generated by turbine n and

t0 is the current time. The control is then accomplished by

solving the following minimization problem

minimize
ϕ(t),q(x,y,t)

J (q(x, y, t)) (13)

subject to W(q(x, y, t),ϕ(t)) = 0 (14)

Qn(t) = (1− αn(t))
P̂n(t)

ωn(t)
. (15)

The control inputs ϕ(t) = [βn(t),αn(t)] include the

blade pitch angle and an auxiliary control variable α(t)

that specifies the imbalance between the aerodynamic and

generator torques; i.e. the torques P̂n(t)/ωn(t) − Qn(t) =
αn(t)P̂n(t)/ωn(t) are balanced when α = 0. This auxiliary

control variable increases the computational efficiency of

the minimization problem. The states of the wind farm

model q(x, y, t) = [δu(x, t), u(x, y, t), û(t),ω(t)] are re-

spectively the wake velocity deficits, superposed veloc-

ity field, rotor-averaged velocities, and rotor speeds. The

dynamics of the states are governed by the wind farm

model W(q(x, y, t),ϕ(t)) = 0 in (2)–(11). This wind farm

model and generator torque equation (15) are represented in

discrete-time state space form as

qk+1 = f(qk,ϕk) (16)

zk = h(qk,ϕk). (17)

The nonlinear functions f(qk,ϕk) are first-order temporal

and spatial discretizations of (2)–(10) and (15). The outputs

are the power output of each turbine z(t) = P(t), and the

nonlinear output equation h(qk,ϕk) corresponds to (11).

The controller calculates control trajectories for pitch an-

gle and generator torque by solving a reformulation of (13)–

(15) using a receding horizon approach, where T is the length

of the time horizon considered. The horizon length is selected

to include a significant fraction of the advection time through

the farm; i.e. T ∼ Lx/U∞. Instead of directly solving the

PDE-constrained optimization problem (13)–(15), we solve

the related unconstrained minimization of the reduced cost

functional J̃ (ϕ) = J (ϕ,q(ϕ)), where q(ϕ) denotes the

solution of (14). The reduced cost functional is evaluated

by integrating the wind farm model forward in time, and

its gradient is evaluated using adjoint equations derived

analytically using the formal Lagrangian approach [24]. The

minimization is performed using a limited-memory bound-

constrained quasi-Newton method [25]. The optimization

method is described in detail in [3].

IV. RESULTS

The controller design is validated using a model of a 16-

turbine wind farm based on (2)–(11). Each turbine is an

NREL 5MW offshore reference turbine [23] with a rotor

diameter of D = 126 m. Two layouts (regular and irregular),

shown in Figure 1, are used with an inflow velocity of

U∞ = 9 m/s and a constant wake expansion coefficient

of kn = 0.05. This coefficient value is typical of offshore

wind farms [26], and the inlet velocity chosen assumes each

turbine is operating in region 2. The first layout is composed

of four aligned rows with streamwise and spanwise spacings

of 7D and 5D, respectively. The second irregular layout

is formed by randomly offsetting turbines from the first

layout. The full block diagram of the controlled wind farm

considered is shown in Figure 2. The same wake and turbine

model discussed in Section II (2)–(11) is used both in the

controller and as the wind farm plant model.

All controlled cases are compared to the behavior of a

wind farm operating under the traditional maximum power

point control paradigm; i.e. each turbine operates at its

maximum power point in region 2. In this regime, the blade
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Fig. 1. Two wind farm layouts considered, each with sixteen NREL 5MW turbines [23]. The regular wind farm (left) has four aligned rows of turbines,
with streamwise and spanwise spacings shown. The irregular layout (right) has been randomly offset from the regular layout. The inflow velocity, which
is the same for each layout, is shown to the left and the extent of the wakes with k = 0.05 is shown in blue.

Controller Wind farm model
Pref(t) β(t),Q(t) P(t)

Fig. 2. Controlled wind farm system block diagram showing the model-
based receding horizon controller and model wind farm. Pref(t) is the power
reference signal, β(t) is the vector of pitch angles, Q(t) is the vector of
generator torque, and P(t) is the vector of measured power generation.

pitch angle is kept fixed at the optimal value β = β∗
and the generator torque Q = Kω2 has a gain K =
1
2ρπ

D
2

(5 CP∗
λ3∗

[18] that drives the tip speed ratio to the

optimal power coefficient CP∗ = CP (λ∗, β∗). Since each

turbine operates to maximize its own power production,

rather than farm-level power, this operating condition is

sometimes referred to as “greedy” control [27].

The reference signal is composed of a fixed power gen-

eration level P0, which would typically be sold in the bulk

power market, and a power regulation reserve ΔP that can

be provided in the regulation market. The resulting signal is

Pref(t) = P0 +ΔP r(t), (18)

where the regulation signal−1 ≤ r(t) ≤ 1 is used by the grid

operator to modulate the regulation power delivered by the

farm. We select a bulk power supply of P0 = 0.85P∗, where

P∗ is the “greedy” pre-control generation, and a regulation

supply of ΔP = 0.3P∗. This corresponds to a derate (power

setpoint reduction) of only 50% of ΔP . We use a synthetic

regulation signal r(t), shown in red in Figure 3, that declines

to r(t) = 0 for the first 10 minutes before requesting an

up-regulation of r(t) = 1 between 10:00 min and 15:00

min. The up-regulation ramp is ΔP = 0.3P∗ and lasts for 5

minutes, which is approximately the travel time of the wind

through the entire farm.

In both the regular and irregular layout, the controlled

power output closely follows the power reference signal, as

shown in Figure 3. The root mean square error

RMSE =

⎞
⎠ 1

T

T

0

]
N∫

n=1

Qn(t)ωn(t)− Pref(t)

⎛2

dt

⎝
〈

1
2

(19)

Fig. 3. Total wind farm power output of both regular and regular layouts
P (t) =

∑N
n=1 Pn(t) (– – –) compared to reference signal Pref(t) (——).

The regulation signal r(t) is also shown on the right side ordinate.

is 0.24% and 0.56% of P∗ for the regular and irregular

configurations, respectively. This tracking performance is

achieved with a signal that exceeds the “greedy” control

power for a short period of time. This short-term over

production is achieved by storing energy in the flow field

and adjusting the rotational speed to hold kinetic energy in

the rotors of the turbines, as described in more detail below.

In the regularly arranged layout, the wakes do not expand

enough to create spanwise interactions. As a result, the

controller selects pitch and torque signals that are the same

for all turbines in a particular row; i.e. the signals for

turbines 1, 5, 9, and 13 are all the same. In a real wind

farm, turbulent fluctuations in the wind field would break

the equivalence of the control actions within a row. The

power generation response of the controller for the turbines

in the first column (turbines 1–4) is shown in Figure 6. The

controller reduces the power generation of the first and last

rows just preceding the up-regulation period, while keeping

the generation of the second and third rows of turbines close

to the pre-control power. The resulting generation during the

up-regulation period is higher than the pre-control period

for all downstream turbines, but this effect could not be

sustained indefinitely. Since the first row of turbines cannot

sustain generation higher than the optimal power point for

five minutes, the first turbine produces near its pre-control

output during the up-regulation period.



Fig. 4. Response of regular layout turbines 1 (——), 2 (– – –), 3 (- - -), and 4 (— -) showing the pitch angle β, the auxiliary control variable α,
generator torque Q, rotor speed ω, rotor-averaged velocity û, local tip speed ratio λ′, local thrust coefficient C′

T , local power coefficient C′
P , and the

generated power P . The up-regulation period r(t) > 0.5 is shaded gray between minutes 10 and 15.

Fig. 5. Response of all turbines in the irregular layout. The panels show the pitch angle β, generator torque Q, and generated power P . The up-regulation
period r(t) > 0.5 is shaded gray between minutes 10 and 15. Colors denote turbines 1–4 (——), 5–8 (——), 9–12 (——), 13–16 (——).



Fig. 6. Power generation of regular layout turbines 1 (——), 2 (– – –),
3 (- - -), and 4 (— -) normalized by their “greedy” pre-control power
generation compared to Pref(t)/P∗ (——). Only one column is shown
because all turbines in a row of the regular layout have the same control.
Increased generation of turbines 2–4 for the 5-minute up-regulation period
is enabled by storing energy in the flow field and rotation of the rotors.

The pitch angle β, auxiliary control variable α, generator

torque Q, rotor speed ω, rotor-averaged velocity û, local

tip speed ratio λ′, local thrust coefficient C ′
T , local power

coefficient C ′
P , and the generated power P trajectories for

the first column of the regular layout are shown in Figure 4.

The controller sequentially decreases the thrust and power

coefficients of the upstream turbines, turbine 1 around t =
5:30 min, turbine 2 around t = 7:00 min, and turbine 3

around t = 8:30 min. These decreases in thrust coefficient

reduce the magnitude of the wakes between the turbines, thus

allowing higher velocity air to reach downstream turbines.

The time of the decreases is closely tied to the advection

time between turbines (≈ 90 s), allowing the velocity at

each turbine to peak around 10:00 min.

The controller simultaneously uses pitch and generator

torque to reduce the power production of the upstream

turbines prior to the up-regulation period. All turbines pitch

to feather between 8:00 min and 10:00 min, dropping the

power and thrust coefficients. Furthermore, the generator

torques are increased to slow down the rotor speed and

reduce the tip speed ratio. On the other hand, the last turbine

keeps its rotor speed slightly higher than the optimal tip

speed ratio. This action stores kinetic energy that can later

be extracted during the up-regulation period at 10:00 min.

The input and output trajectories for each turbine of

the irregular layout are shown in Figure 5. In this layout,

each turbine has a different wake state and therefore the

output power and control signals follow unique trajectories.

However, the general trends of the regular configuration

are also seen in these results. The thrust coefficients of

upstream turbines decline prior to the up-regulation period

via pitch-to-feather and increased generator torque actuation.

Downstream turbines show a slight over-speeding of their

rotors to store energy for the up-regulation period.

V. CONCLUSIONS

We present a generalized dynamic wake model that allows

for irregular wind farm configurations, explicitly includes ac-

tuation of blade pitch angle and generator torque, and incor-

porates first-order drive train dynamics. These improvements

are a significant step towards implementation of previously

proposed model-based receding horizon control using exist-

ing wind turbine control loops. Control authority is improved

by separately controlling each turbine and accounting for

kinetic energy stored in the rotors.
Testing of the controller using wind farm plants consisting

of the wake and turbine model and a synthetic power

reference signal demonstrate the potential of this control

design. Accounting for wake interactions and exploiting the

storage of kinetic energy in the rotor, the controller is able to

provide regulation power with derates less than the amount

of regulation provided; i.e. P0 < P∗ − ΔP . Further work

includes adding a state and parameter estimation model [14]

as well as testing the closed-loop controller in high-fidelity

wind farm simulations [11] and operating wind farms. More

work is also needed to directly compare our model-based

approach to other potential controllers built around alterna-

tive models or proposed proportional-integral methods [4].

Finally, other ongoing work includes extending the model

and control approach to yawing turbines and changing wind

directions.

APPENDIX

The adjoint equations and the gradient of the reduced

cost functional are derived using the formal Lagrangian

approach [24]. We define the Lagrangian of the PDE-

constrained problem by adding the inner product 〈·, ·〉
of the constraining set of equations (14)–(15), denoted

as B(q,ϕ), and a suitable set of Lagrange multipliers

q∗ = [δu∗(x, t), u∗(x, y, t), û∗(t),ω∗(t)] to the cost func-

tional (13) L (ϕ,q,q∗) = J (ϕ,q) + 〈B(q,ϕ),q∗〉 .
The adjoint equations B∗(ϕ,q,q∗) are found by repre-

senting the Gateaux derivative of the Lagrangian with re-

spect to the state variables in its Riesz representation form

Lq(Δq) = 〈B∗(ϕ,q,q∗),Δq〉. The adjoint equations

−∂δu∗
n

δt
− U∞

∂δu∗
n

∂x
= −wn(x)δu

∗
n(x, t) + f∗

n(x, t) (20)

u∗(x, y, t) =
N∫

n=1

G(x− sxn)
In(x, y)

Ddn(x)
û∗
n(t) (21)

û∗
n(t) =UJn(t) + Uωn(t)ω

∗
n(t)

+ Uδun(t)
Lx

0

fn(x, t)δu
∗
n(x, t) dx

(22)

−dω∗
n

dt
=WJn(t) +Wωn(t)ω

∗
n(t)

+Wδun(t)
Lx

0

fn(x, t)δu
∗
n(x, t) dx.

(23)

are integrated backward in time with final time boundary

conditions. The forcing for the adjoint velocity deficits and

the terms on the right hand sides of (22) and (23) are

f∗
n(x, t) = −δun(x, t)

Ly

0

In(x, y)u
∗(x, y, t)

)
N∫

m=1

δu2
m(x, t)Im(x, y)

[ −1/2

dy



UJn(t) =− 2

)
N∫

m=1

[1− αm(t)] P̂m(t)− Pref(t)

[

[1− αn(t)] P̂n(t)

]
3

ûn(t)
− ωn(t)R

C ′
Pn(t)û

2
n(t)

∂C ′
Pn

∂λ′
n

(

Uωn(t) =
αn(t)

J
P̂n(t)

]
3

ωn(t)ûn(t)
− R

C ′
Pn(t)û

2
n(t)

∂C ′
Pn

∂λ′
n

(

Uδun(t) =− 4

C ′
Tn(t)

1

4 + C ′
Tn(t)

∂C ′
Tn

∂λ′
n

ωn(t)R

û2
n(t)

WJn(t) =− 2

)
N∫

m=1

[1− αm(t)] P̂m(t)− Pref(t)

[

[1− αn(t)] P̂n(t)
1

C ′
Pn(t)

∂C ′
Pn

∂λ′
n

R

ûn(t)

Wωn(t) =
αn(t)

J

]
P̂n(t)

ωn(t)

1

CPn′(t)

∂C ′
Pn

∂λ′
n

R

ûn(t)
− P̂n(t)

ω2
n(t)

⎛

Wδun(t) =
4

C ′
Tn(t)

1

4 + C ′
Tn(t)

∂C ′
Tn

∂λ′
n

R

ûn(t)
.

The gradient of the reduced cost functional ∂J̃ /∂ϕ is

found by representing the Gateaux derivative of the La-

grangian with respect to the control variables in its Riesz

representation form Lϕ(Δϕ) =
〉
∂J̃ /∂ϕ,Δϕ

∑

∂J̃

∂αn
=

]
−2

)
N∫

m=1

[1− αm(t)] P̂m(t)− Pref(t)

[

−ω∗
n(t)

J
P̂n(t)

1

ωn(t)

(
P̂n(t)

(24)

∂J̃

∂βn
=BJn(t) +Bωn(t)ω

∗
n(t)

+Bδun(t)
Lx

0

fn(x, t)δu
∗
n(x, t) dx,

(25)

where the coefficients are

BJn(t) =2

)
N∫

m=1

[1− αm(t)] P̂m(t)− Pref(t)

[

[1− αn(t)] P̂n(t)
1

C ′
Pn(t)

∂C ′
Pn

∂βn

Bωn(t) =− αn(t)

J
P̂n(t)

1

ωn(t)

1

C ′
Pn(t)

∂C ′
Pn

∂βn

Bδun(t) =− 4

C ′
Tn(t)

1

4 + C ′
Tn(t)

∂C ′
Tn

∂βn
.
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