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Abstract

Hotspot detection aims to find sub-regions of a space
that have higher probability density of generating cer-
tain events (e.g., disease, crimes) than the other regions.
Finding hotspots has important applications in many
domains including public health, crime analysis, trans-
portation, etc. Existing methods of hotspot detection
rely on test statistics (e.g., likelihood ratio, density)
that do not consider spatial nondeterminism, leading to
false and missing detections. We provide theoretical in-
sights into the limitations of related work, and propose
a new framework, namely, Nondeterministic Normaliza-
tion based scan statistic (NN-scan), to address the is-
sues. We also propose a DynamIc Linear Approxima-
tion (DILA) algorithm to improve NN-scan’s efficiency.
In experiments, we show that NN-scan can significantly
improve the precision and recall of hotspot detection
and DILA can greatly reduce the computational cost.

1 Introduction

Given a collection of geo-located instances of an event
(e.g., disease or crime cases) in a spatial domain,
hotspot detection aims to find geographic regions with
higher probability density of generating instances of
such event than the rest of the study area.

As a core topic in spatial data mining [11], hotspot
detection has important societal applications in many
domains. For example, in public health, researchers use
hotspot detection to find regions of disease outbreak,
including childhood leukemia, Legionnaires’ disease,
cancer [1, 7, 8], etc. The hotspot found in the 1854
London cholera map ended the spread of the disease,
saved numerous lives and became a major milestone in
the development of the Germ Theory, a turning point of
the modern science [10]. The National Cancer Institute
has included hotspot detection as a standard method for
its surveillance research program [1]. In crime analysis,
ring-shaped hotspot detection is used to locate serial
criminals (e.g., arsonists) whose crime zones are often
ring-shaped areas [4]. In transportation, linear hotspots
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on road networks help authorities identify outbreaks of
road accidents or pedestrian fatalities (e.g., caused by
deteriorated road conditions) [12].

In these societal applications, the price of making
a mistake is normally very high (e.g., losing control of
a real disease outbreak or wasting resources on false
positives). Thus, the robustness of a hotspot detection
approach (e.g., statistical significance) is critical. Be-
sides the above examples, hotspot detection is also used
in many other domains, including agriculture, forestry,
astronomy, geology, etc [7, 1].

The spatial scan statistic [7, 6] is the most widely
used approach in hotspot detection. Its corresponding
software, SaTScan [2], has become a standard tool in a
variety of research fields (e.g., National Cancer Institute
[1]). Spatial scan statistics provide a hotspot detection
framework based on a likelihood ratio test. Extending
this framework, many techniques have been proposed in
the field of data mining to enable hotspot detection for
a richer set of geometric shapes, including rectangular
[8, 9], circular [7], ellipsoidal, ring [4], linear [12] and
arbitrary [3] in both Euclidean space and network
space (e.g., road and river networks). While these
approaches mainly focus on enumeration strategies of
candidate regions of different shapes, the most widely
used test statistic for candidate evaluation – likelihood
ratio – itself still has well-known issues in practice (e.g.,
favoring tiny hotspots, example in Sec. 3) [13]. We
provide detailed theoretical analyses to show that these
issues are caused by ignoring spatial nondeterminism
(formally defined in Sec. 4.1). Besides spatial scan
statistic based methods, traditional clustering methods
(e.g., DBSCAN[5], k-means, EM) can also be used to
find high-density regions. However, since these methods
do not involve statistical significance by design, they are
prone to yield many false positives (Sec. 5). Thus, they
are not commonly adopted in hotspot detection.

We propose a novel framework, namely a Nondeter-
ministic Normalization based scan statistic (NN-scan)
to address the limitations of spatial scan statistics by
explicitly modeling spatial nondeterminism. We also
propose a DynamIc Linear Approximation (DILA) al-
gorithm to improve the computational efficiency.
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Through detailed experiments under a variety of
controlled parameters, we show that the proposed NN-
scan framework can significantly improve the precision
and recall of hotspot detection. A real-world example
is also presented through a case study. In addition,
we show that the DILA algorithm can greatly reduce
execution time of the baseline NN-scan.

2 Problem Formulation

2.1 Key Concepts
Point distribution: A collection of N geo-located

instances (points) of an event (e.g., crime, disease) in a
spatial domain.

Point process: A statistical process that generates
a point distribution. It determines the probability
of each point being located at each location in the
study area. A homogeneous point process has identical
probability across locations.

Hotspot: A sub-region within the study area that
has a higher probability density of generating certain
instances (e.g., disease or crime cases) than its outside.
Existence of hotspots means that the point process is
not homogeneous and is biased towards hotspot regions.

2.2 Formal Problem Definition
Inputs:

(1) A distribution of N geo-located points;
(2) Candidate (sub)region enumeration scheme

(e.g., circular, rectangular or linear regions).
Output: Hotspots (if they exist).
Objectives:

(1) Solution quality (e.g., by precision and recall);
(2) Computational efficiency.

There are two key building blocks of hotspot detec-
tion. The first is to enumerate candidate regions (e.g.,
rectangular [8], circular [2], ring-shaped [4], or linear
[12]) inside the study area, and the second is to evalu-
ate if a candidate region is a true hotspot.

The scope of the present study focuses on the second
building block. Since our work is applicable to general
candidate region enumeration algorithms, we consider
the choice of enumeration algorithms as an input.

The solution quality of hotspot detection is evalu-
ated via controlled simulations of point processes. For
example, a point distribution with true hotspots can be
generated using a biased point process (Sec. 2.1), with
which we can assess how well the result of a hotspot
detection algorithm can match the true hotspots.

3 Limitations of Current Framework

3.1 Spatial scan statistic (SSS) In SSS, the shape
of candidate regions is often chosen based on domain

science. For example, the most popular circular shape is
based on the diffusion theory in epidemiology and ring-
shape is from criminology. Given the high popularity of
circular shaped hotspots in research and applications,
we use circles as the default shape of candidate regions
in the rest of the illustrations for simplicity.

Key steps: For a given N point distribution, the
spatial scan statistic (SSS) enumerates a list of candi-
date regions using a region enumeration algorithm (e.g.,
circular regions of different sizes at different locations).
For each candidate region, its score is evaluated using a
test statistic (e.g., density, likelihood ratio). The scores
represent the quality of the candidates.

Then, to confirm if the score of a candidate is high
enough to be a hotspot, SSS uses statistical significance
testing. Because hotspots are defined as regions with a
higher probability density of generating certain event
instances than the outside, the null hypothesis H0

claims that the point distribution is generated by a
homogeneous point process (i.e., no higher probability
for any region) and the alternative hypothesis H1 claims
a biased point process (i.e., probability is higher inside
hotspots). Since the exact distribution of a test statistic
is often unknown, SSS runs Monte Carlo simulation
trials to estimate the significance level. In each trial, it
generates a random N point distribution under H0, and
uses the same region enumeration algorithm to list all
candidates but only records the best test statistic score
achieved by the candidates. After a large number of
trials (e.g., 1000), it sorts all recorded best scores from
the trials (i.e., 1000 of them). Finally, for each candidate
from the real (observed) data, if its score is among the
top 1% (i.e., corresponding to significance level of 0.01)
of the simulated best scores, we are confident that it is
very unlikely for a homogeneous point process to form
such a candidate region and thus it is a hotspot. In
other words, non-hotspots are filtered out by using the
minimum of the top 1% scores as a threshold.

3.2 Test statistic: Idea of normalization A criti-
cal component of SSS is the test statistic, as it is used to
score and rank candidates, and directly determines re-
sult quality. Current methods use algebraic or exponen-
tial functions (e.g., density, density ratio and likelihood
ratio) as the test statistic. Among them, likelihood ra-
tio, which is the key contribution in the original SSS [7],
remains the most foundational and standard test statis-
tic and is used in the vast majority of SSS methods.

The key idea of the test statistics in SSS is nor-
malization, which makes candidates with different ar-
eas and counts (number of points in a candidate region)
comparable. This is the basis for significance testing in
SSS. For example, denote two candidates as C1 and C2,
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their areas as a1 and a2, and their counts as n1 and
n2. Without a normalizing test statistic, it is difficult
to tell which candidate is better (e.g., when a1 > a2 and
n1 > n2). The simplest test statistic, density, normal-
izes the candidates using area, i.e., d = n/a. Likelihood
ratio (LR) is more statistically advanced by normalizing
with the null hypothesis (final form in Eq. (3.1)).

LR =
Likelihood(H1)

Likelihood(H0)
=
(n
e

)n(N − n
N − e

)N−n
I(3.1)

where N and n are the number of points in the entire
study area and the candidate region, respectively; e =
N · (a/A) is the expected number of points in the
candidate region under the null hypothesis (A and
a are the area of the study area and the candidate
region, respectively); H1 and H0 are alternative and null
hypotheses; and I = 1 if n

a > N−n
A−a and 0 otherwise, is

an added indicator function enforcing that a candidate’s
density is higher than its outside (i.e., not sparse).

Comparing these normalizations, density based test
statistics, although intuitive, are known to be biased
towards smaller candidate regions [9]. Here we formally
show the limit of density in hotspot detection. Denote
d∗ as the density threshold returned by significance
testing (e.g., separating the top 1% and the rest 99%
for the significance level of 0.01), and N as the total
number of points in the distribution. We have:

Theorem 3.1. Density, if used with SSS framework,
cannot detect hotspots with an area greater than N/d∗.

Proof. The proof is straightforward. Given the density
definition d = n/a, d > d∗ means d∗ < n/a ≤ N/a.

While Thm. 3.1 is easy to prove, its implication is
significant in practice. For example, for a 10× 10 study
area with N = 200 points, d∗ returned by 1000-trial
Monte Carlo simulation is d∗ = 40012.1. This means
SSS, when using density as the test statistic, cannot
detect hotspots of an area larger than 0.005, which is
only 0.005% of the study area. With such bias, it either
detects no hotspot or returns extremely small hotspots
that are not interesting in applications.

To mitigate this, likelihood ratio based SSS incor-
porates probabilistic models. Its goal is to assess how
much more likely a candidate is formed by the alter-
native hypothesis H1 rather than the null hypothesis
H0 (denominator). With such normalization, likelihood
ratio is expected to favor candidates that are actual
hotspots. This also means it needs to be fair about can-
didate regions of different areas because actual hotspots
could potentially have any area a ∈ (0, A]. In other
words, candidate regions of different areas need to have

Figure 1: Areas of candidate regions with highest LR.

equal chance of having high likelihood ratios in a com-
pletely random point distribution. However, experiment
results reveal that candidate regions of very small areas
have a much greater chance of having high likelihood
ratios. We generated 1000 random distributions of 200
points in a 10 × 10 space. For each distribution, we
recorded the area of the candidate region that achieved
the highest likelihood ratio. Fig. 1 shows the frequency
of the areas of best candidate regions and over 95% of
them are smaller than 1, out of a maximum area of 100.
In fact, 90% are smaller than 0.1 and 69% smaller than
0.01. This shows likelihood ratio still has a bias towards
smaller candidates (a concrete example in Sec. 4.1).

4 Proposed: Nondeterministic Normalization
based Scan Statistic (NN-scan)

4.1 Spatial Nondeterminism First, we examine
the theoretical reason behind likelihood ratio’s bias.
The analysis will be illustrated through a simple ex-
ample, namely Pattern TINY:

Definition 1. Pattern TINY: A region whose area
is 0+ = 1/∞ and has only a single point inside.

As a degenerate case, Pattern TINY is neither an
interesting pattern nor hotspot. However, its likelihood
ratio (+∞) indeed dominates those of all other candi-
dates. In fact, this likelihood ratio definition leads to a
seemingly ”probabilistic paradox”, as shown by the
”contradiction” between Propositions 4.1 and 4.2.

Proposition 4.1. According to the likelihood ratio in
Eq. (3.1), the likelihood (i.e., probability) of having
Pattern TINY under a homogeneous point process is 0.

Proof. The likelihood ratio (Eq. (3.1)) of Pattern TINY
is +∞. As a probability, the likelihood of H1 ∈ [0, 1].
Thus, the likelihood of H0 is 0.

Proposition 4.2. In any random point distribution,
the probability of observing Pattern TINY is 1.

Proof. One can simply create an infinitely small region
around any point in a distribution.
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To resolve this ”probabilistic paradox”, we define
two key concepts: best candidate region and spatial
nondeterminism. Denote CRa as the set of all candidate
regions of area a and |CRa(i)| as the number of points
inside the ith candidate region in CRa.

Definition 2. Best candidate region: The best
candidate region of area a is CRa(i∗), where i∗ =
argmax

i
|CRa(i)|.

Definition 3. Spatial nondeterminism: The phe-
nomenon that the location of CRa(i∗) is nondetermin-
istic in point distributions generated by a homogeneous
point process (null hypothesis).

While Proposition 4.1 and 4.2 seem contradictory,
there is a critical difference in how the null hypothesis
is considered in each. In the current definition of
likelihood ratio, the likelihoods are computed assuming
that the candidate region is at a fixed location (i.e., a
fixed bi-partition of the study area). In other words,
after a dense region is found at location locx in our
observed data, the likelihood of the null hypothesis is
computed as the probability of recreating this dense
region at locx under a homogeneous point process.

If we only consider a region at a fixed location,
then indeed, as its area goes to zero, the probability of
randomly placing a point in it is zero (Proposition 4.1).
However, according to spatial nondeterminism, we do
not necessarily have the best candidate region at a fixed
location (in fact, it is very unlikely). So this probability
going to zero does not mean that this pattern is not
from a homogeneous point process.

In contrast, Proposition 4.2 considers spatial non-
determinism (Def. 3). As long as a random point distri-
bution is valid (not empty), we can always find Pattern
TINY although its location is nondeterministic.

Spatial nondeterminism explains why Pattern
TINY is not statistically meaningful or interesting,
which conforms to our intuition. It reveals the core issue
in the current use of likelihood ratio in hotspot detec-
tion, which is the ignorance of spatial nondeterminism.

4.2 Nondeterministic Normalization The bias in
current test statistics mainly leads to issues of incorrect
ranking among candidate regions. For example, a non-
hotspot may have a higher test statistic score than an
actual hotspot. Since in significance testing a threshold
of the score (i.e., splitting point of the top 1% scores
and the rest 99% from Monte Carlo trials, Sec. 3.1)
is used to determine if a candidate region is significant
(i.e., true hotspot), incorrect ranking among candidate
regions will result in a situation where we either miss
true hotspots or include false ones.

The goal of nondeterministic normalization is to in-
corporate spatial nondeterminism into the test statistic
to eliminate such situations and guarantee correctness of
ranking. Essentially, significance testing aims to select
hotspot candidates that are very unlikely to be formed
by chance under a homogeneous point process (i.e., null
hypothesis). In this context, we formally define the cor-
rectness of ranking in Def. 4. Denote C1 and C2 as
two candidate regions, a1 and a2 as their areas, and n1
and n2 as their contained number of points. Denote p1
as the probability of observing any candidate of area a1
with at least n1 points under the null hypothesis, and
similarly p2 as the probability of observing any candi-
date of area a2 with at least n2 points. The correctness
of ranking is defined by:

Definition 4. Correctness of ranking A test statis-
tic must give a higher score for C1 than C2 if p1 < p2.

In significance testing, we only need to select a
single threshold of test statistic score using the given
significance level α (e.g., 0.01). All candidates satisfying
it will be returned as hotspots. Thus, based on Def. 4,
we define a slightly relaxed version of correctness:

Definition 5. Correctness of ranking (relaxed) A
test statistic must give a higher score for C1 than C2

only if p1 < α and p2 ≥ α (implying p1 < p2).

To guarantee correct ranking (Def. 5), our Nonde-
terministic Normalization Index (NNI) directly evalu-
ates if a candidate region can be formed under the null
hypothesis with spatial nondeterminism:

Definition 6. Nondeterministic Normalization
Index (NNI):

(4.2) NNI =
f(n, a,N,A)

f(n∗, a,N,A)

(4.3) n∗ = max
x

x, s.t. p(x, a) ≥ α

where n and a are the number of points and area of a
candidate region, and N and A are the total number
of points and the entire area of the study area, α is
the significance level, and p(x, a) is the probability of
observing at least one candidate region of area a with
x or more points (may appear at any locations) in a
point distribution under H0, n∗ is the best we can get
under the null hypothesis and significance level α, and
f is an inner-level statistic (e.g., density) that will be
normalized by spatial nondeterminism (i.e., using n∗).

The key parameter and difference maker in the
NNI is n∗, which gives the best we can get with the null
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Figure 2: Ranking of candidate regions (best in color).

hypothesis under a desired significance level α. Function
f can be any traditional test statistic (e.g., density) but
must satisfy a monotonicity property: with fixed (a, N ,
A), f must increase monotonically as n increases. With
this necessary property, we can conclude that:

(4.4)

{
p(n, a) < α (e.g., 0.01), if NNI > 1

p(n, a) ≥ α, otherwise

From Eq. (4.4) we can see that the correctness of
ranking (Def. 5) is guaranteed by the NNI through n∗.
In addition, the threshold of the NNI is always 1 for
different significance levels, because significance level α
determines the value of n∗. In the rest of the paper, we
will by default use f(n, a,N,A) = n for function f (i.e.,
NNI = n/n∗) for illustration purposes; this does not
affect our theorems and proofs.

To show the robustness of NNI, Fig. 2 shows a
ranking example of four test statistics. The green points
represent a set of candidate regions (different areas and
counts) with p(n, a) < 0.01 and the red crosses represent
those with p(n, a) ≥ 0.01. Each probability is computed
experimentally with 1000 Monte Carlo trials. In each
trial, we generate a random point distribution under
the null hypothesis and then see if a candidate region
with area a and at least n points exists. The X-axis in
Fig. 2 shows the test statistic scores from low to high.
The Y-axis is just for a clear visual separation of the
two groups of candidates so that the green points are
vertically above the red crosses. The exact values on the
Y-axis should be ignored. Based on Def. 5, incorrect
ranking happens if the test statistic scores of the red
crosses are better (higher) than those of green points.

We can see that current test statistics all contain
incorrect rankings, which create confusion zones among
candidates. Looking at the extent of the confusion
zones, likelihood ratio does have an improvement over

density (n/a) and density ratio ( n/a
(N−n)/(A−a) ). Finally,

we can see that with NNI the incorrect rankings are
eliminated by addressing spatial nondeterminism.

4.3 NN-scan: Baseline Algorithm While NNI
maintains ranking correctness, computing it is challeng-
ing as there still does not exist a closed-form approach
to directly compute or evaluate the statistical distribu-
tion of the key parameter n∗ (more specifically, p(x, a)
in Eq. (4.3), which involves spatial nondeterminism).
Thus, we use Monte-Carlo simulation to estimate n∗.

Algorithm 1 shows the Monte Carlo framework for
n∗ of candidate regions with an area a. In each trial, we
generate a random point distribution under H0 and use
the candidate region enumeration scheme (Sec. 2.1) to
yield a list of candidate regions of area a across the study
area (lines 3, 4). Among them, we find the maximum
number of points contained in a single region, and insert
this maximum number into a descendingly ordered list
nList. After all M trials, n∗ is estimated as the (αM )th

largest value in nList, where α is the significance level.

Algorithm 1: Monte Carlo estimation of n∗

Require: • candidate region area a • number of
points N • candidate region enumeration scheme
enumCR() • significance level α
• number of Monte Carlo trials M

1: nList = new List(M)
2: for i = 1 to M do
3: datar = RandomPointDistribution(N )
4: for cr in enumCR(datar, a) do
5: ncr =cr.getInsidePoints(datar).count()
6: nList(i) = max(nList(i), ncr)
7: end for
8: end for
9: nlist.sort(’DESC’)

10: return n∗ = nList(ceil(α ·M))

Since we can generate an infinite number of different
region areas (i.e., continuous variable) of a certain shape
(e.g., circles), for computability of NNI, we use a finite-
length area vector Varea to represent all the areas to
be considered. The total number of areas k is given as
a user-input. In addition, since the Monte Carlo trials
(line 2, Alg. 1) are independent, the baseline algorithm
parallelizes them across CPU cores to reduce time cost.

4.4 Acceleration: the DynamIc Linear Approx-
imation (DILA) Algorithm Monte Carlo simulation
is the most time-consuming task in NNI computation,
since the number of trials M often needs to be large
(e.g., 1000, 10000) to accurately estimate the distribu-
tion. The goal of DILA is to create tight lower and up-
per bounds of n∗ (Eq. (4.3)) to directly filter out some
candidates without Monte Carlo trials. To get tight
bounds on n∗, we first need to study the relationship
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Figure 3: Trend of n∗ and its lower bounds.

between n∗ (discrete) and region area a (continuous).

Definition 7. Break points of area: A break point
is an area a, which if we reduce any infinitely small area
∆a from it, its corresponding n∗ will reduce by 1.

Lemma 4.1. Given an ordered (ascending) list of break
points of area {a1, a2, ..., aZ}, the value of (ai − ai−1)
monotonically increases as i increases ∀i = 2, ..., Z.
(proof in Appx. A.1)

Based on Lemma 4.1, we know n∗ increases more
slowly as region area a increases, as shown in Fig. 3.
This ”slower-growing” trend of n∗ also conforms to the
intuition that, no matter how large area a is, n∗ is at
maximum N , which is the total number of points in
the study area. This means n∗ reaches a growing speed
of zero at the end. Based on Lemma 4.1, we further
develop the lower and upper bounds for n∗ of area a:

Theorem 4.1. Given two areas ai, aj (not necessarily
break points) and their corresponding n∗ values n∗i , n∗j ,
the n∗ value of any area a ∈ [ai, aj ] is lower bounded by:
LB(n∗) = bn∗i + a−ai

aj−ai
(n∗j −n∗i )c. (proof in Appx. A.2)

Theorem 4.2. Given two areas ai and aj (not neces-
sarily break points) satisfying conditions: (1) sign(ai −
a) = sign(aj − a), (2) |ai − a| > |aj − a|, and (3)
|n∗i −n∗j | ≥ 1, we have n∗ upper bounded by: UB(n∗) =

n∗i + a−ai

aj−ai
(n∗j + 1− n∗i ). (proof in Appx. A.3)

For the upper bound, we evaluate UB(n∗) of area
a from two sides (i.e., ai > aj > a and ai < aj < a) and
take the minimum of the two. With upper and lower
bounds, exact n∗ values only need to be computed if
the observation n ∈ (LB(n∗), UB(n∗)).

DynamIc Linear Approximation (DILA): The
idea is to dynamically tighten the bounds as more exact
n∗ values are computed. In the following we use lower
bound initialization and update rules to illustrate DILA;
the same strategy also applies to upper bounds.

To initialize the lower bounds for all areas, one can
compute exact n∗ values of the smallest and largest
areas, and then estimate the lower bounds for other
areas using Thm. 4.1. This is shown by the red dash-
line in Fig. 3. While candidates in the region below can

be filtered out, there is still a large gap with the exact
values. To tighten this initial bound, DILA starts with a
three-point lower bound construction. Compared
to the previous strategy, this construction involves the
n∗ value of an extra area: the median area of the area-
vector (i.e., the vector with k areas to be enumerated).
This three-point based lower bound is approximated by
the yellow dash-line (Fig. 3), which greatly narrows the
gap with the exact values (i.e., blue line).

As DILA progresses, whenever a new exact n∗ value
is computed for a new area anew, the algorithm finds
anew’s two nearest areas a1 and a2 whose exact n∗ values
are already computed. Formally, denote Sa as the set
of areas with exact n∗ values computed. We have:

(4.5)

{
a1 = maxax

{ax|ax < anew, ax ∈ Sa}
a2 = minax

{ax|ax > anew, ax ∈ Sa}

Then, DILA updates the lower bound LB(n∗x) of
each area ax (ax /∈ Sa) by LB(n∗x) =:{
bn∗1 + ax−a1

anew−a1
(n∗new − n∗1)c, if ax ∈ (a1, anew)

bn∗new + ax−anew

a2−anew
(n∗2 − n∗new)c, if ax ∈ (anew, a2)

where n∗1, n∗2, n∗new are the n∗ values of a1, a2 and anew.
In Fig. 3, the green dash-lines show one update

after the lower bound initialization. For this example,
the lower bound is already very close to the exact values.
Updates on upper bounds apply the same idea.

Time complexity: Denote N as total number of
points, k as area vector size, M as the number of
Monte-Carlo simulation trials and λ as the number of
CPU cores. Since the candidate region enumeration
scheme is an input, we denote its time complexity for
enumerating all regions of an area as r(N). Assuming f
in Eq. (4.2) can be computed in O(1) time (e.g., simple
density), we have the time complexity of the baseline
algorithm as O((M · r(N)/λ+M logM + k) · k). Since
the core of DILA is to reduce the number of exact n∗

computations on different areas, we denote the number
of pruned areas as k′. The time complexity of DILA is
thus O((M · r(N)/λ+M logM + k)(k − k′)).

5 Validation

We evaluated NN-scan through detailed controlled ex-
periments and a real-world example.

5.1 Controlled experiments of solution quality
The solution quality of hotspot detection can be ex-
perimentally evaluated using controlled synthetic data:
(1) point distributions generated by biased point pro-
cesses, in which we artificially insert true hotspots (i.e.,
higher probability density than outside); (2) point dis-
tributions by a homogeneous point process, which does
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not contain any hotspot. The former evaluates how well
an algorithm can detect the true hotspots, and the latter
tests if an algorithm is robust against false positives (i.e.,
dense regions created by random chance under H0).

Parameter setting: We considered a variety of
parameters in synthetic data generation: (1) Number
of points N ; (2) Effect size es: for a hotspot, this
represents how many times the probability density
inside is higher than outside; (3) Radius of hotspot r
(circular shape is used in the experiments since it is
based on diffusion theory and is used in most real-world
applications); (4) Number of hotspots h. To evaluate
the effect of a single parameter, we kept the rest fixed at
their default values (N = 400, es = 3, r = 1 (dimension
of study area is 10 × 10) and h = 3) and varied that
single parameter through a series of experiments.

We implemented and included five candidate meth-
ods for comparison: (1) Proposed NN-scan with sig-
nificance level α = 0.01, (2) Spatial scan statistic (SSS)
with likelihood ratio and α = 0.01 (performances of den-
sity and density ratio based versions were also evaluated
but their results were very poor), (3) DB-6: DBSCAN
[5] with density threshold ε = 0.6, (4) DB-9: DBSCAN
with ε = 0.9 and (5) DB-12: DBSCAN with ε = 1.2.
For DBSCAN, the minimum number of points MinPts
was set to 5% of the total number of points, which is the
best threshold that we found with the above ε values in
our experiments (additional results in Appendix C).

Fig. 4 shows the precision ( |detections∩true||detections| ), recall

( |detections∩true||true| ) and F1-scores ( 2
precision−1+recall−1 ) of

the candidate methods under a variety of scenarios.
Each performance statistic (e.g., precision) value was
computed using 100 repeated runs (i.e., a summary of
detection results from 100 point distributions generated
by the same parameter set (N, es, r, d)). Since the
geometric shape of hotspots used in the experiments
was circular, we converted DBSCAN results to circles
by using the mean coordinates of a cluster as the center
and then generating a minimum bounding circle.

The general trend is that NN-scan overall main-
tained the highest F1-scores under different parameter
settings except in very few cases (e.g., very small effect
size). With significance testing, NN-scan and SSS kept
the highest precision among the methods. While DB-
9 and DB-12 were able to reach the best recall, they
mostly had very low precision, leading to low F1-scores.
In addition, the rank of DBSCAN methods changed
across experiments, showing its sensitivity to the thresh-
olds. Compared to SSS, NN-scan achieved much higher
recall in general (e.g., above 20% in many scenarios).

Effect of number of points N (Fig. 4(a)): The
solution quality of NN-scan and SSS gradually improved

Figure 4: Precision, recall and F1-scores. (best in color)

as the number of points increased. This is expected
statistically as it is easier to confirm hotspots with
more observed samples. The major dominance zone
of NN-scan is at smaller numbers of points where we
can see a 30% − 40% difference. This is meaningful
for many societal applications because it is better to
confirm outbreaks of disease, crime etc. at an earlier
stage to reduce their effects. In addition, many real
world applications do not always have large numbers
of samples, such as transportation-related fatalities and
major crimes (e.g., arson) within a city. For DBSCAN
methods, the performance dropped with more samples,
because more false positives were detected when the
density of data increased. This again shows that
DBSCAN’s performance is very sensitive to thresholds.

Effects of effect size es and hotspot size r
(Fig. 4(b) and (c)): The two parameters determine
how likely a point will emerge within a hotspot. Note
that es must be greater than 1 for hotspots to exist;
otherwise the probability density is not biased in the
study area. For hotspot size (i.e., radius r), when it
is small its corresponding probability mass may also be
small despite good effect sizes. This means it can be
very difficult to detect hotspots with low es or r values
and confirm their statistical significance. On the bright
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Figure 5: Example results when true hotspots exist.

side, if NN-scan or SSS find hotspots of small size, we
can have higher confidence on them as the effect size
is likely to be very large (especially when N is small).
The results of DBSCAN methods were not robust (e.g.,
DB-9 worked well for large r but poor for large es).

Effect of number of hotspots h (Fig. 4(d)):
NN-scan maintained high solution quality consistently
for different h in the experiment. SSS faced difficulty
for larger h values. DB-6 and DB-9 only worked okay
here for specific values of h. DB-12 did not work well.

Mixed parameters (Fig. 4(e)): The mixed setup
was implemented for each different number of hotspots
h. For each h, the biased point process uses different es
and r (randomly chosen from es ∈ {1.5, 2, 3, 5} and r ∈
{0.5, 1, 1.5}) for different hotspots. In a mixed scenario,
it is more difficult to detect hotspots with relatively
smaller probability mass, which led to a decrease in
general solution quality. NN-scan was able to maintain
the best performance consistently in the experiment.

Besides quantitative metrics, Fig. 5 visualizes how
the methods compare on an example point distribution
(more in Appendix B) with artificially inserted true
hotspots. DB-12’s result was poor and skipped.

Robustness against false positives: Due to the
high-cost nature of false alarms in real world applica-
tions (e.g., disease outbreak), it is critical for hotspot
detection methods to filter out ”dense” regions formed
by random chance under a homogeneous point process
(i.e., no hotspot). Fig. 6 shows the number of false posi-
tives detected by the methods across 100 point distribu-
tions generated by a homogeneous point process. Both
NN-scan and SSS had very few false positives with sig-
nificance testing. In contrast, DBSCAN based methods
all resulted in hundreds of false detections. This lim-
its the use of DBSCAN in real world hotspot detection.
Fig. 7 visualizes an example point distribution with-
out hotspot. Both NN-scan and SSS did not return any

Figure 6: Number of mistakenly detected hotspots.

Figure 7: Detection results on data generated by homo-
geneous point process (i.e., no hotspot). Both NN-scan
and SSS did not output any hotspot (same as (a)).

hotspot whereas DBSCAN gave multiple false positives.

5.2 Real-world Example: Crime Hotspots We
also evaluated NN-scan on a real-world Motor-Part
Theft dataset from the Minneapolis (USA) Police De-
partment. Fig. 8(a) shows the 124 instances displayed
on top of the city map. We picked a small dataset since
one advantage of NN-scan over SSS is on finding signif-
icant hotspots with small data. We can see there is a
dense region around the middle of the map (i.e., cover-
ing downtown), and another at the bottom right (next
to a lake, a river park and a major airport). As we can
see in Fig. 8(c), NN-scan was able to identify the two
hotspots under significance level 0.01. The NNI values
of both hotspots indicates that they cannot be recreated
under the null hypothesis. By contrast, using SSS (Fig.
8(b)), we were able to find the larger hotspot around
downtown but missed the other hotspot. This result is
consistent with our earlier experiments (Sec. 5.1). We
also expect the smaller hotspot to have a fairly large
effect-size based on our analysis with synthetic data.

5.3 Execution-time Experiments The baseline
algorithm includes a multi-core parallelization of the
Monte-Carlo simulation. The same is applied to DILA.
The experiments were performed on a 16-core node
(Intel Haswell E5-2680v3 processor). Fig. 9 shows
the time comparison between baseline and DILA algo-
rithms. The top row shows the performance on data
with true hotspots (more difficult to prune), and the
bottom on data without hotspots. Within each row, the
two charts show the effects of total number of points N
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Figure 8: Statistically significant crime hotspots.

Figure 9: Execution time: Baseline vs. DILA.

(left) and the size k of the area-vector (right), respec-
tively. When evaluating effect on N , k was fixed to
40. For effect on k, N was fixed to 400. The number
of Monte-Carlo trials was 1,000 for both. The overall
trend is that DILA ran much faster than the baseline
algorithm on both data (with and without hotspots). In
addition, the improvements were greater for data with-
out hotspots (bottom row). When there is no hotspot,
it is less likely for a region to have a number of points
exceeding the tight lower bound. Also, while the core
of DILA is pruning, its execution time did not increase
linearly as k increased. An insight is that, in practice,
DILA may only need a small number of exact n∗ values
to tighten the lower bounds (e.g., Fig. 3).

6 Conclusions and Future Work

We showed the limitations of current theoretical foun-
dations of hotspot detection, and proposed a NN-scan
framework to address them by explicitly modeling spa-
tial nondeterminism. We also proposed a DILA algo-
rithm to improve its efficiency. Experiments showed
that NN-scan greatly improved solution quality and
DILA greatly reduced time cost. In future work, we will
explore the use of NN-scan with DBSCAN to leverage
its ability to enumerate arbitrarily shaped zones while
maintaining statistical robustness. We will also study

the use of NN-scan with polygon input data and the ef-
fects of the f function in NNI. Other new opportunities
include temporal, network and Poisson NN-scan, etc.

Appendices and code are shared at: https://www-
users.cs.umn.edu/%7exiexx347/nnscan.html.
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