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ABSTRACT
Building footprints are among themost predominant features in urban
areas, and provide valuable information for urban planning, solar
energy suitability analysis, etc. We aim to automatically and rapidly
identify building footprints by leveraging deep learning techniques
and the increased availability of remote sensing datasets at high spatial
resolution. The task is computationally challenging due to the use of
large training datasets and large number of parameters. In related
work, You-Only-Look-Once (YOLO) is a state-of-the-art deep learning
framework for object detection. However, YOLO is limited in its capacity
to identify small objects that appear in groups, which is the case for
building footprints. We propose a LOcally-COnstrained (LOCO) You-
Only-Look-Once framework to detect small and densely-distributed
building footprints. LOCO is a variant of YOLO. Its layer architecture is
determined by the spatial characteristics of building footprints and it
uses a constrained regression modeling to improve the robustness of
building size predictions. We also present an invariant augmentation
based voting scheme to further improve the precision in the prediction
phase. Experiments show that LOCO can greatly improve the solution
quality of building detection compared to related work.
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1. Introduction

Building footprints are among the most visually conspicuous features in urbanized areas,
and they provide valuable information to a variety of domains such as urban planning
and city management (Chau et al. 2007, Kubota et al. 2008, Joshi and Kono 2009), census
(e.g. population estimation) Wu et al. 2018, solar energy suitability analysis (Rylatt et al.
2001, Compagnon 2004), environmental science (Locke et al. 2014), etc. For example,
distribution of buildings can help urban researchers or city administrators monitor
urbanization and population expansion, or help environmental scientists to study the
physical conditions (e.g. air flow, heat accumulation) of different city zones. Coverage of
building rooftops can also help energy specialists to estimate the current solar potential
in the areas of interest. In face of natural disasters or emergencies, up-to-date building
catalogs are important for decision makers to accurately locate the affected people and
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properties. Despite the valuable information contained in building footprint data, many
cities in the US and around the globe still do not have a good and up-to-date coverage
of buildings in their data catalogs.

With advancements in remote sensing techniques, satellite imagery (e.g. visual bands)
has been collected at broad scales (e.g. national level). Moreover, those datasets are
becoming available at high spatial resolution and temporal frequency. For example, the
National Agriculture Imagery Program (NAIP) (National Agriculture Imagery Program
2018) at the US Farm Service Agency provides national-scale one-meter resolution
imagery on an annual basis. The availability of such broad-scale datasets opens up
a great opportunity for detecting building footprints and making timely updates of
existing building footprint catalogs.

Given a collection of satellite imagery (visual bands) in a set S of spatial regions (e.g.
zones in several cities), and existing building footprint data in a subset S0 � S, we aim to
automatically identify building footprints in S� S0 using a deep learning model trained
from the data in S0. The two objectives are solution quality (e.g. precision and recall) and
computational efficiency. The constraint is that the spatial resolution of the satellite
imagery must be sufficiently high (e.g. two meters) in order to maintain feasibility.

Detection of building footprints has three major challenges. First, it is difficult to
tell the class of a single pixel (e.g. building or non-building) without examining
neighboring pixels in a local context. For example, a pixel on a road can share
very similar visual band values with a pixel on a building roof-top. The appropriate
neighborhood size to consider often varies from small (e.g. 10 meters) to large
building footprints (e.g. 200 meters). Second, building footprints are often densely
distributed in urban areas. A 500 m by 500 m region, for example, may contain
hundreds of residential houses in the United States, and some of the buildings may
be separated by only a few pixels in an image. Third, deep learning frameworks
demand high computational power due to the large size of the training datasets and
the large number of parameters.

Prior to the advent of deep learning, object detection algorithms most commonly
employed traditional image processing techniques to construct manual features, and
then feed them into a machine learning classifier (e.g. support vector machine) to
predict the objects. The same strategies were used in building detection. The earlier
methods mainly focused on detecting a few large building footprints in a single aerial
image. Lin and Nevatia (1998) used fragmented linear features (e.g. roof boundaries) to
construct one or several cubes to represent the three-dimensional large buildings in
a skewed aerial image. Similarly, the Hough transform was used to identify the linear
features in an image, followed by a semi-automatic scheme to annotate a few large
buildings in the scene (Cui et al. 2008). Besides linear features, critical feature points (e.g.,
SIFT) were also employed to identify the locations of buildings in a delineated urban
area (Sirmacek and Unsalan 2009). Beyond these geometric features, zonal features were
explored to assist building detection. Cohen et al. (2016) used a combination of several
image processing techniques to construct manual features of building shadows, and was
able to recover the sizes of well-separated large buildings based on shadow character-
istics. In addition, multi-spectral imagery was also used to build local HOG (histogram of
oriented gradients) features, which are fed into a support vector machine to identify the
pixels of building footprints (Konstantinidis et al. 2017).
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In recent years, deep learning has revolutionized computer vision with its greatly
improved performance over traditional image processing methods (Krizhevsky et al.
2012, Razavian et al. 2014, LeCun et al. 2015). Specifically, convolutional neural net-
works (CNN) (Goodfellow et al. 2016, Shin et al. 2016), which are locally connected
deep neural networks, have become the new state-of-the-art in image classification
and labeling. For remote sensing images, CNN has demonstrated improved ability in
feature construction, compared to the traditional manual features (e.g., HOG)
(Nogueira et al. 2017). CNN has also been applied to classify the land use and land
cover themes of aerial image patches with high precision (Romero et al. 2016, Kussul
et al. 2017). However, as shown above, the main objective of CNN is to predict the
theme of an input image patch (e.g., building scene, non-building scene), and it does
not output the actual locations and sizes of the objects in an image. Thus, CNN is not
well-suited for building footprint detection in its original structure. To extend CNN’s
capability, You-Only-Look-Once (YOLO) frameworks (Redmon et al. 2016, Redmon and
Farhadi 2017) were proposed to predict the bounding boxes of objects in an image
through additional regression modeling. Taking advantage of the end-to-end learning
scheme, the YOLO framework directly outputs all the bounding boxes of objects in its
final network layer, and avoids the need for a separately-designed preprocessing
phase (e.g. image patching). As indicated by its name, YOLO needs only one pass of
an image through the network to get all the results, which significantly improves its
performance during the prediction phase. While YOLO is a state-of-the-art framework
for object detection, it is still limited in finding small objects appearing in groups
(Redmon et al. 2016, Redmon and Farhadi 2017). In the building detection problem,
small and densely distributed buildings are commonly observed in urban areas,
making it difficult for YOLO to correctly recognize and separate out individual build-
ings in remote sensing data. Besides object-based YOLO and its variations, semantic
segmentation is another branch of CNN which focuses on pixel-level classification.
Through per pixel label predictions, recent work has tried to use semantic segmenta-
tion (Zhao et al. 2017, Chen et al. 2018, Yuan 2018) to obtain exact boundaries of
building footprints. Semantic segmentation methods require exact boundaries of
building footprints as training data, which may introduce more noises considering
the pixel-level match between the footprint data and the imagery (e.g. tree canopies
covering a corner of a building). In addition, the accuracy of semantic segmentation
methods are often evaluated at pixel-level, which does not necessarily reflect the
solution quality at the object-level.

In this work, we focus on the object-based branch of CNN. Specifically, we address the
limitations of YOLO by proposing a LOcally-COnstrained (LOCO) You-Only-Look-Once
framework to identify small and densely distributed building footprints in remote
sensing datasets. Our design decisions in LOCO are theoretically grounded on an
analysis of the ”receptive field” (Dumoulin and Visin 2016, Luo et al. 2016) in convolu-
tional neural networks, which helps explain why a deep learning architecture may or
may not be suitable for the building detection problem. In addition, we propose
a constrained regression modeling for bounding box construction in the output layer
to improve the robustness of building size prediction. To further improve the precision
of detections, we present an invariant augmentation based voting scheme which can be
applied without any changes in the training process.
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To validate the proposed techniques, we compared the solution quality of YOLO,
LOCO and two intermediate frameworks using identical training and testing datasets.
We also tested four semantic segmentation schemes such as PSPNet (Zhao et al. 2017)
and DeepLabV3+ (Chen et al. 2018) to compare the object-based and pixel-based CNN
branches. The results showed that the LOCO framework can significantly boost F1 scores
(a statistical measure combining precision and recall) of detection results. We also
presented the visualizations of detections from the candidate frameworks at multiple
scales to highlight the improvements.

1.1. Scope and outline

This paper investigates bounding-box based deep learning frameworks for building
footprint detection using the visual bands of satellite imagery. Specifically, we study
a common challenging scenario where an image may contain hundreds of small and
densely distributed buildings.1 The goal of this work is not to replace the role of human
experts in building cataloging. Instead, we consider the output building footprints as
suggestions which will go through manual inspection before being archived in building
catalogs. In other words, the role of deep learning is to assist human experts in the
process of data generation.

The rest of the paper is organized as follows. Sec. 2 introduces the key concepts and
formally defines the problem, Sec. 3 presents the proposed LOcally-COnstrained (LOCO)
You-Only-Look-Once framework, Sec. 4 summarizes the experiment results, Sec. 5 dis-
cusses challenges and opportunities, and Sec. 6 concludes the key contributions of the
paper with future work.

2. Problem formulation

We first introduce the following key concepts before formal problem definition:
Features: Features are variables that are used to predict target values (e.g. class labels)

in a machine learning algorithm. In this problem, features are the visual bands and their
derivatives in a satellite image.

Minimum Orthogonal Bounding Rectangle (MOBR): For a two-dimensional polygon, its
MOBR satisfies three conditions: (1) it is rectangular in shape; (2) it is orthogonal in
direction; and (3) it covers the entire polygon with a minimum area. In this problem, we
use MOBRs to approximate locations and sizes of building footprints.

Ground truth: A collection of geo-located MOBRs of building footprints in the study
area. Part of the ground truth is used for training, and the rest is used to test the solution
quality. Training data and test data must be mutually exclusive.

Threshold for spatial resolution: A constraint on the spatial resolution of satellite
imagery. It requires that the resolution is sufficiently high (e.g. smaller than 2-meter)
to make it feasible for detecting building footprints. An input imagery is not valid if it
fails the threshold.

Threshold for spatial extent: It defines the minimum size of an input image, and is used
(1) to reduce the number of building footprints that intersect with the boundary of
a spatial region, and (2) to allow large building footprints to be contained inside the
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extent. For example, if a spatial region is of size 100 m by 100 m, then its area is not
sufficient to cover buildings of larger sizes (e.g. parking ramp, hospital, mall).

With the key concepts, the building detection problem is formally defined as follows:
Inputs:
– Satellite imagery (visual bands) in a set S of spatial regions (e.g. zones in several
cities);

– Ground truth data in a set S0 of spatial regions, where S0 � S;
– A threshold for minimum spatial extent: te;
– A threshold for minimum spatial resolution: tr .
Output:
– Building footprints for the set of spatial regions in S� S0;
Objectives:
– Solution quality (e.g. precision, recall, F1 score);
– Computational efficiency;
Constraints:
– The extent (i.e. width, height) of each spatial region satisfies te;
– The spatial resolution of input remote sensing data satisfies tr .

3. Locally constrained deep learning framework

In this section, we propose a LOcally COnstrained (LOCO) You-Only-Look-Once frame-
work to identify small and densely distributed building footprints in remote sensing
datasets. Here ”small” is relative to the spatial extent covered by an input image. The size
of buildings can vary greatly based on their purpose. For example, in the United States,
a typical size of residential houses in an urban area could be less than 15 meters,
whereas a large office complex, shopping mall or a grocery store could span hundreds
of meters. Thus, the spatial extent of an image needs to be at least the same as most of
the largest buildings in a target area. If the spatial extent is too small (e.g. 100 m by
100 m), then an image may be entirely taken up by just a part of a building roof. In
addition, the larger the spatial extent of an image, the smaller the portion of building
footprints that are clipped at the boundaries. In this work, we set the minimum spatial
extent te (Sec. 2) to 400 m.

Our proposed LOCO framework is based on the You-Only-Look-Once (YOLO) framework
(Redmon et al. 2016, Redmon and Farhadi 2017). In Sec. 3.1, we first demonstrate the
limitations of YOLO for building detection through both detailed analysis and intuitive
examples. These analyses are used to inform the design of our LOCO framework in Sec. 3.2.
In Sec. 3.3, we propose a constrained regression modeling scheme to improve the robust-
ness of building size estimation. Finally, Sec. 3.4 presents a voting scheme (test time
augmentation) to further eliminate false detections and improve the precision of results.

3.1. A spatial angle: network architecture and building detection

In this section, we take a spatial perspective, and using the concept of ”receptive field”
(Dumoulin and Visin 2016, Luo et al. 2016), we analyze the spatial information propaga-
tion in YOLO to better understand its effects on building detection. This analysis will
then be used to inform the architecture design of our proposed LOCO framework.
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3.1.1. Spatial information propagation: receptive field in CNN
In the human eye, the receptive field of a sensory neuron refers to the visual field that
affects the firing of the neuron. By analogy, the receptive field of a cell in a CNN layer
defines the spatial extent in the input space that contributes to the value of the cell
(Dumoulin and Visin 2016).

For example, in the input layer, the receptive field of all cells is just the cells
themselves. If we have a convolutional layer of size 3� 3, then after one convolution,
the receptive field of each output cell becomes 3� 3.

To compute the exact receptive field of each cell, we have to additionally consider
the location of the cell, the dimensions of the input, as well as the padding method
being used. As an example, the receptive field of a cell that is close to a border of the
input can be limited by its distance to the border, and that limit is often not symmetric
along each dimension. Since such details are not necessary for a general understanding
of spatial information propagation in a CNN, here we only consider kernel size k and
stride s in the calculation. The resulting size of the receptive field is then the maximum
size of receptive fields of all elements in the output. The size of a receptive field at the lth

layer is calculated as:

Wl ¼ maxfD0; ðkl � 1Þ �
Yl

i¼1

si þWl�1g (1)

where Wl is the side length of the receptive field at the lth layer, D0 is the side length of

the input (or the 0th layer), kl is the kernel size of the lth layer, and si is the stride of the ith

layer.
The process of spatial information propagation, as described by the receptive field,

has profound implications on building detection.

3.1.2. Information propagation effects on building detection
While increasing the depth of a neural network can improve its expressive power
(Cybenko 1989), the increased sizes of receptive fields may not always be beneficial
for the learning process. In scenarios such as small building detection, a large receptive
field can actually introduce a large volume of noise which may hurt the training.

In the following, we first analyze the receptive fields of two YOLO frameworks, full
YOLO, which has 24 layers, and tiny YOLO, which has 15. Figure 1(a,b) show how the
receptive field grows as an input flows through the layers.

By the last layer, full YOLO and tiny YOLO’s receptive fields have grown to 374� 374
and 318� 318, respectively. In addition, starting from layer 19 in full YOLO and layer 11
in tiny YOLO (highlighted in Figure 1), the kernel size of convolutional operations
becomes 96� 96 (pixels in the original input image).

In YOLO frameworks, a common input image size is 416 rows � 416 columns. Figure 2
visualizes the expansion of the receptive field on an everyday image and a satellite image.

The ability to expand the receptive field of an image is very beneficial for detecting
objects in everyday images because the objects are often quite large in proportion to
the pixels they cover in the frame. For example, the cow in Figure 2 covers a substantial
portion of the image frame. In such cases, it is meaningful to construct ”large” features
with an increased number of convolutional and pooling layers. By contrast, the buildings
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in satellite images are often very small relative to the frame size. A typical house in a US
residential area might measure 8� 15 meters. For one-meter resolution imagery (e.g.
NAIP), that only covers less than 0.07% of a 416� 416 image frame. This means that if
the receptive field covers the entire image frame, then most of the information being
considered is actually irrelevant or noise. Thus, in these scenarios, it is no longer mean-
ingful to have a large receptive field.

Figure 1. Expansion of receptive fields in full and tiny YOLO. The third and fourth columns both
show the size of the convolutional kernel and pooling window at the corresponding layer. The
difference is that in the third column, the size is measured by the number of grid cells at the current
layer, whereas in the fourth it is measured by the number of pixels in the original input image. The
underlined sizes highlight the increases in kernel size caused by the max-pooling layers.

Figure 2. Visualization of growth in kernel size and receptive field in YOLO. The yellow bounding
boxes represent two example target objects in the images (i.e. a cow and a building). The red and
blue boxes show the kernel sizes and receptive fields at corresponding layers. For objects in
everyday images, the large kernel size and receptive field are meaningful and necessary to provide
the information needed for detecting the object. However, for buildings in remote sensing images,
the large extent introduces a huge volume of noise and increases the difficulty of learning. (Best
viewed in color).

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 7



In Figure 3, we mark two example locations (blue crosses), one on an everyday image
and one on a satellite image. The locations are about 50–100 pixels away from the
centers of the objects (red crosses), and are within the final receptive field of each image
(e.g. layer 23 in Figure 2). We can see that the information is very helpful to determine
the boundary of the cow object in Figure 3(a) but is irrelevant for the target building
object in Figure 3(b). In addition, the information at the upper blue cross in Figure 3(b)
contains information about several buildings other than the target one. If that informa-
tion is actually used to determine the size of the target building, the estimation may
significantly deviate from the true size. Indeed, such information introduces noise into
the learning process, and it may become a difficult task for the model to identify the
small amount of information that is useful.

3.2. LOCO network architecture

Using the spatial information propagation analysis and its effects on building detection,
here we present our LOcally-COnstrained (LOCO) You-Only-Look-Once framework. In the
LOCO framework, ”locally constrained” means that the receptive field will be constrained
to a smaller local region by the network architecture design.

LOCO aims to leverage existing large-scale high quality datasets, such as the pre-
viously described US NAIP imagery, which has one-meter resolution, and is collected and
integrated annually on a national scale. It is also important that images in the datasets
have a sufficiently large spatial extent to allow large buildings to be contained.

Our LOCO framework targets one-meter high-resolution data, and each image input
is 416� 416 in size, corresponding to a 416-meter by 416-meter spatial extent. Since the
desired receptive fields for small and large buildings are very different (e.g. dozens vs.
hundreds of pixels), our overall network structure includes a bifurcation of tasks as
shown in Figure 4. Specifically, the upper branch is for small building detection and
the lower branch is for large building detection. The two branches require separate
training on different ground truth data (i.e. small and large buildings). To split building
footprints into ”small” and ”large” groups, we used 32 meters as the threshold for the
side-length of a building’s bounding box. The threshold was determined by clustering all
the sizes of building footprints in our data. Other thresholds could be used as long as

Figure 3. Usefulness of information that is far away from an object in (a) an everyday image and (b)
a satellite image. The target objects are marked by the yellow bounding box, and their centers are
marked by the red crosses. The information is meaningful to estimate the size of the cow object but
becomes noise for estimating the target building size. (Best viewed in color).
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they fit the receptive fields of the two branches in the architecture (Sec. 3.2.1 and 3.2.2).
In addition, this hard-thresholding scheme can potentially be improved by soft-
thresholding through future research.

3.2.1. Small and densely distributed building footprints
Our design decision is based on the spatial information propagation analysis and the
spatial properties of the input (i.e. 416 m by 416 m at one-meter resolution). According
to Figure 1(a), full YOLO has 24 layers in total, which contributes to its large receptive
field. Even in the 15-layer tiny YOLO, the receptive field reaches 318� 318 in size.

Since tiny YOLO has the smaller receptive field, we use it as the base of our LOCO
framework. As shown in Figure 1(b), most of the expansion in the receptive field of tiny
YOLO is introduced by the last two max-pooling layers. Thus, in our architecture we skip the
down-resolution operations from the last two max-pooling layers. In other words, the new
max-pooling layer only replaces a cell’s value by the maximum value at its local 2� 2 region
but does not reduce the resolution (i.e. same as max-pooling� in Figure 1(b)). Table 1 shows
the difference in convolutional kernel sizes and receptive fields among full YOLO, tiny YOLO,
and LOCO.

LOCO architecture is designed to avoid the majority of the non-relevant information
in the receptive field and thus reduce the difficulty of learning for small buildings. Since
small buildings form the dominating landscape in many urban areas, we expect this
specialized design for small building detection to improve the precision of a major
proportion of all buildings.

3.2.2. Large building footprints
For large building footprints, we may need information from a large spatial extent (e.g.,
side length of hundreds of pixels) in the corresponding input image in order to determine
their locations and sizes. This scenario becomes very similar to object detection in everyday
images, so it is appropriate to use network architectures that create a large receptive field.
Thus, for the lower branch in Figure 4, we use the full YOLO architecture to detect large
building footprints and this completes the general framework of LOCO.

Figure 4. The overall deep learning framework of LOCO. The architecture has two branches. The
upper branch uses the proposed locally-constrained design, which is based on the spatial propaga-
tion of information. The lower branch uses the full YOLO architecture. In a building detection task,
the upper and lower layers are responsible for detecting small and large building footprints,
respectively.

Table 1. Convolutional kernel sizes and receptive fields at different layers.
Kernel size Receptive field

Layer ID 7 13 19 24 7 13 19 24

Full YOLO 12 48 96 96 26 102 246 374
Tiny YOLO 24 96 – – 38 254 – –
LOCO-small 24 24 – – 38 110 – –
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3.3. Constrained modeling of bounding box regression

YOLO uses regression modeling to determine the location and sizes of objects (see
Appendix A for details). Here we aim to improve the robustness of YOLO’s regression
modeling for small building detection.

In the final output layer of YOLO (e.g., a coarse 13� 13 grid pooled from an
original 416� 416 image), the cell that contains the center of an object is respon-
sible for predicting four parameters related to its location and size: the center
coordinates cx and cy , width lw , and height lh. As discussed in Appendix A, the
final values of the four parameters are not directly given by the final layer outputs,
but rather are derived from them using Equation (A1). Here we focus on the size
parameters: width lw and height lh. According to Equation (A1), their values are
derived using an exponential function (e.g., for width it is lw ¼ anchorw � epw , where
pw is a final layer output). For objects in everyday images, the use of an exponential
function is helpful to cover a wide-range of box sizes. However, small buildings have
a much smaller range of sizes, so having that wide range of coverage may increase
model sensitivity. For example, with the exponential function, the range of sizes
considered in prediction is (0,þ1). By contrast, in our LOCO framework, the actual
range of sizes of small buildings is (0,32).2 Thus, we propose a constrained regression
modeling to limit the range of predicted object dimensions to improve the robust-
ness and ease of learning:

lw ¼ wmax � σðpwÞ
lh ¼ hmax � σðphÞ (2)

where σð�Þ is the sigmoid function, pw and ph are values from the output layer of the
neural network, and wmax and hmax are the maximum width and height used for small
buildings. In our design (Sec. 3.2), both values are set to 32.

Since the range of outputs of sigmoid function σðxÞ ¼ 1
1þe�x is (0,1) for any input x,

the ranges of lw and lh are limited to (0, wmax) and (0, hmax). Figure 5 shows a stability
comparison between Equation (A1) and Equation (2), in which changes in lw and lh are
evaluated after a small error is injected into the network predictions pw and ph. The
smaller the changes in lw and lh, the more robust the modeling. From Figure 5 we can
see that our constrained modeling is less sensitive to changes in pw and ph, making the
learning process easier for the deep neural network.

Total number of predictions: Intuitively, it may seem that YOLO is not suited for small
object detection due to the limited number of grid cells (i.e. 13� 13) in its output layer.
However, with the use of anchor boxes (Appendix A), we can see that YOLO can actually
detect multiple objects in a grid cell. For example, using YOLO’s default 5 anchor boxes,
we can get 5 objects per cell. This means that in each image, we can get as many as
13� 13� 5 ¼ 845 detections, which should be sufficient for small objects (e.g., building
footprints in remote sensing images). Thus, the number of grid cells is not a theoretical
limitation of YOLO in the case of small objects. In Sec. 3.1, we showed that over-
expansion of spatial information propagation may decrease YOLO’s performance on
small object detection.

Note that in our new regression modeling, Equation (2) no longer requires anchor
boxes. While each cell in this scheme can have at most one detection, the LOCO
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architecture for small buildings has an increased number of grid cells in the final layer
(i.e. 52� 52). Thus, it can detect as many as 2704 objects, which is more than the 845 in
YOLO and should be sufficient for small objects.

3.4. Invariant augmentation based voting scheme

So far we have completed our discussion related to the learning (or training) phase in
the proposed LOCO framework. In this section, we present a post-processing technique
that is only related to the prediction phase. The idea is based on test time augmentation,
which aims to generate multiple detections of the same object and then use all the
detections to determine the final parameters of the object.

There exists a variety of ways to augment an image. For building detection, we found that
some augmentations can significantly impact detection results. For example, rotation is
a common augmentation strategy. When an image is rotated at an angle that is not
a multiple of 90�, empty areas (e.g., black pixels with 0 values) will be introduced in the
result. This is because an image is always stored as a rectangular matrix (with depth), which is
also the required input format for convolutional neural networks. Thus, once an image is
rotated with an angle that is not a multiple of 90�, empty spaces are automatically created in
the four corners. In our tests, such empty areas had a huge impact on the detection results,
causing many missing detections. In addition, such rotations also require a re-sampling of
the pixel values. For example, with a 45� rotation, the pixel grid will become tilted (i.e. non-
orthogonal directions). Thus, to store it as an image we need to re-sample the values to an
orthogonal grid. To avoid such effects, we use an invariant augmentation scheme:

Definition 3.1. Invariant augmentation. An image augmentation is invariant if: (1) it
maintains the same spatial extent of the original image; (2) it maintains the same
values (e.g., R,G,B values) of the original image at every spatial location in the image;
and (3) it is not the same as the original image. Here ”spatial location” means a real-
world spatial location represented by a pixel in the image but not the row and
column ID of the pixel.

Figure 5. Robustness comparison: sensitivity to errors. The X axis is the true size and Y axis is the
predicted size. We introduce a small error � into the true network predictions p�w and p�h , and
evaluate the changes in lw and lh computed by non-constrained modelings (Equation (3) with
anchor size 16� 16) vs. constrained modeling (Equation (A1)). We set � ¼ �0:2; � 0:4; � 0:8 in
(a), (b) and (c), respectively. To better visualize the differences in sizes, we draw the true and
predicted boxes for size 14. We can see that the boxes constructed by the constrained regression
modeling are less sensitive to the introduced errors.
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According to Def. 3.1, invariant augmentation does not miss, add or update any
values to the spatial locations in the original image, so information-wise it is equivalent
to the original image. Lemma 3.2 shows that there exist seven and only seven invariant
augmentations.

Lemma 3.2. There are seven invariant augmentations. Denote X as the original image,
Fhð�Þ as a horizontal flipping operation, Fvð�Þ as vertical flipping, and R90ð�Þ as a 90�

rotation operation. The seven invariant augmentations are: (1) FhðXÞ, FvðXÞ, FvðFhðXÞÞ,
R90ðXÞ, FhðR90ðXÞÞ, FvðR90ðXÞÞ, FvðFhðR90ðXÞÞÞ.

Proof. First, we prove the seven operations are invariant. A flipping operation does not
change the spatial extent or values of an image since it just reverses the order of rows or
columns. Similarly, a 90� rotation only switches rows and columns. Since each of these
transposition operations is invariant, their combinations are also invariant. Then, we
show that only these seven transpositions are invariant. There are five categories of
transposition: ”crop”, ”translate”, ”resize”, ”rotate” and ”flip”. ”Crop” and ”translate”
operations inevitably change the spatial extent of the original image. For ”resize” and
”rotate” (with a degree that is not a multiple of 90�), the values may change due to the
need for resampling. Finally, the seven invariant augmentations cover all possible
combinations of ”flip” and ”rotate” (by multiples of 90�) operations.

Using the seven invariant augmentations as well as the the original image itself, we
can obtain a set of eight equivalent images to use in the voting process. Then, we apply
the trained model to get all detections from the eight images and project the detections
back to map coordinates (i.e. overlaying detections of the same object). Existence
voting: Existence is a qualitative decision, so we use majority-voting to determine if
a detected object is likely to exist. Specifically, if we have more than four detections at
the same location, then we accept the object’s existence; otherwise we reject it.
Location and size voting: Location and size are quantitative decisions, so we choose
the median cx , cy , lw , and lh values among all detections.

Note that the training images should be augmented the same way to improve the
robustness. For example, the directions of shadows may be an important feature used
by deep learning models. Augmenting the training data in the same way allows the
model to see the shadows in different directions (e.g., north vs. south) which can help
improve the detection accuracy on augmented test images.

Our goal is to use this invariant augmentation based voting scheme to improve the
precision of the proposed framework. The intuition is that a ”non-object” (e.g., ”non-
building”) may be mistakenly detected in one of the augmentations, but the probability
of it being mistakenly detected in a majority of images is comparatively lower, assuming
that the precision of the model is greater than 50%.

4. Validation

The major goal of our experiments was to show that the proposed LOCO framework can
address the limitations of the YOLO framework (i.e. not well-suited for detecting small
objects appearing in groups (Redmon et al. 2016, Redmon and Farhadi 2017)) and thus
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improve its performance on building detection. We additionally included semantic
segmentation in the experiments to provide a general comparison between object-
level and pixel-level deep learning methods for the task of building detection, although
it is not the main focus of the paper.

4.1. Candidate methods

Since our aim is to explore deep learning frameworks for building footprint detection,
we compared eight deep learning methods in the evaluation:

YOLO-13: The original full YOLO framework with 13 rows and columns in its final
output layer.

YOLO-52: A partial LOCO framework. In the complete LOCO framework, the archi-
tecture is separated into two branches to consider the different characteristics of small
and large buildings. Here YOLO-52 does not apply the branching. Instead, it uses the
small building framework for all buildings. The final layer has 52 rows and 52 columns.
Note that in this case we do not apply the constrained regression modeling (Sec. 3.3)
since it is only for small building footprints.

LOCO-single: The LOCO framework without the voting scheme presented in Sec. 3.4.
It constructs output directly from the input itself.

LOCO-vote: The complete LOCO framework with the voting scheme based on invar-
iant augmentation.

PSPNet (binary): The Pyramid Scene Parsing Network (PSPNet) (Zhao et al. 2017),
a semantic segmentation model for pixel-level classification. Pixels in its training data are
labeled in binary values, i.e. 1 for building pixels and 0 for non-building pixels.

PSPNet (distance): PSPNet with training data labeled with the signed distance func-
tion (Yuan 2018). The distance at each pixel is calculated as its distance to the nearest
building boundary. The signs of distances are negative inside building footprints and
positive outside. The signed distances are grouped into 39 classes (i.e. 19 positive, 19
negative and 1 zero) to label the pixels.

DeepLabV3+ (binary): Google’s latest and best-performing open semantic segmen-
tation framework. The binary version is trained with binary labeling.

DeepLabV3+ (distance): DeepLabV3+ trained with signed distance labeling
(Yuan 2018).

4.2. Training and testing

The training datasets consist of two parts: (1) the satellite images; and (2) the ground
truth building footprints. Both datasets were from free and publicly available sources.
Since Minnesota, US is an important region for our potential application, we collected
our datasets from multiple sites within five different cities in the state of Minnesota
using US NAIP imagery. The building footprint datasets were obtained from the state
government’s public resources. We used data from all sites in four of the cities as the
training data, and data from the fifth city as the test data. The test city is more than 150
kilometers away from the nearest training city. This ensured that the model did not pre-
observe the landscape in the test city during the training phase. We used this setup to
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approximate a general real-world scenario where some cities maintain regulated rou-
tines of spatial data collection and digitization but others may not.

As we discussed in Sec. 3, the LOCO framework takes input images of size 416� 416,
corresponding to a 416 m by 416 m region at one-meter resolution. Thus, the imagery
was split into 416� 416 chunks to feed into the network. The building footprints were
preprocessed into minimum orthogonal bounding boxes (MOBR, Sec. 2) to use in the
training phase. Since our dataset did not have good coverage of building footprints that
are smaller than 50 m2 (e.g., small storage sheds in back yards), we did not consider
those footprints in the experiments and removed them from both training and testing.

Overall, our training dataset contained 5185 images of size 416 m � 416 m, leading
to a total area of about 900 square km. There were 172,096 ground truth building
footprints (above 50 m2) in the 5185 zones.

Since semantic segmentation frameworks perform pixel-based classification instead
of object-level detection such as YOLO, they require exact boundaries of building
footprints to generate the training data. However, in our targeted application area
(Minnesota), the number of exact building boundaries we had was not large enough.
In other words, many of the training samples in our target application area are well-
suited for object based methods (e.g., LOLO and YOLO) but not appropriate for pixel
level segmentation. Thus, to increase the amount of training data with exact bound-
aries for semantic segmentation frameworks, we included an extra public
Massachusetts building dataset (Massachusetts Buildings Dataset 2013). The number
of building footprints added was 125,220. The satellite images we used with these
building footprints were also collected from NAIP imagery to keep better consistency
with our test dataset.

Finally, to facilitate the training process, we adopted the transfer learning scheme and
used pre-trained parameters on everyday objects in the shallow layers for all the
methods.

4.3. Solution quality evaluation

The standard metrics used for evaluation were: (1) precision ( jfDetectionsg\fGroundTruthgjjfDetectionsgj ); (2)

recall ( jfDetectionsg\fGroundTruthgjjfGroundTruthgj ); and (3) F1 score ( 2
precision�1þrecall�1 ). Precision is the percen-

tage of detections that are true. Recall is the percentage of true buildings successfully
detected. The F1 score is the harmonic mean of precision and recall, which unites the
two measures for direct comparisons. The numbers of building footprints in Area 1 to
Area 5 in our test city were: 1831, 1699, 2741, 1917 and 2746. Tables 2, 3 and 4 show the
precision, recall and F1 scores of the eight candidate frameworks in the five test areas.
To better visualize the trends, the tables’ corresponding charts are shown in Figure 6.

4.3.1. Comparison between LOCO and YOLO
As we can see, YOLO-13 did not perform very well on detecting building footprints that
are small and densely distributed in the remote sensing datasets. Based on our analysis
in Sec. 3.1, one major cause of this could be the excessive size of the receptive field
created by the full YOLO framework.
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According to Table 2, YOLO-52 has an improved precision rate (10%-20%) over YOLO-
13. As an intermediate architecture between original YOLO-13 and LOCO, YOLO-52 has
a reduced receptive field, which avoids most of the noise and makes it easier to
construct useful features. However, since YOLO-52 does not have the bifurcation struc-
ture in LOCO, its single-sized receptive field is not large enough for large building
footprints. Also, trying to learn small and large buildings together may potentially

Table 2. Precision for building detection.
Framework Area 1 Area 2 Area 3 Area 4 Area 5

PSPNet (binary) 71.06% 66.55% 68.22% 62.57% 62.90%
DeepLabV3+ (binary) 73.95% 73.06% 66.25% 68.52% 64.41%
PSPNet (distance) 63.77% 61.87% 62.58% 56.89% 55.66%
DeepLabV3+ (distance) 67.18% 66.97% 66.73% 62.69% 59.51%
YOLO-13 46.99% 46.76% 45.87% 49.43% 42.31%
YOLO-52 63.69% 63.64% 66.05% 61.76% 58.51%
LOCO-single 80.39% 75.78% 76.93% 74.73% 72.86%
LOCO-vote 91.40% 89.54% 90.00% 91.30% 89.63%

Table 3. Recall for building detection.
Framework Area 1 Area 2 Area 3 Area 4 Area 5

PSPNet (binary) 66.96% 67.75% 69.21% 68.44% 60.52%
DeepLabV3+ (binary) 64.39% 69.51% 68.52% 69.69% 62.20%
PSPNet (distance) 67.12% 77.40% 72.31% 73.08% 62.05%
DeepLabV3+ (distance) 54.72% 60.80% 65.27% 66.56% 57.54%
YOLO-13 43.97% 39.61% 44.62% 52.43% 39.44%
YOLO-52 76.24% 71.39% 73.66% 79.55% 76.69%
LOCO-single 73.84% 68.33% 72.05% 77.36% 72.40%
LOCO-vote 71.27% 62.57% 71.69% 76.11% 70.79%

Table 4. F1 scores for building detection.
Framework Area 1 Area 2 Area 3 Area 4 Area 5

PSPNet (binary) 68.95% 67.14% 68.71% 65.37% 61.69%
DeepLabV3+ (binary) 68.84% 71.24% 67.36% 69.10% 63.29%
PSPNet (distance) 65.40% 68.77% 67.09% 63.98% 58.69%
DeepLabV3+ (distance) 60.32% 63.74% 65.99% 64.57% 58.51%
YOLO-13 45.43% 42.89% 45.23% 50.89% 40.82%
YOLO-52 69.40% 67.30% 69.65% 69.54% 66.38%
LOCO-single 76.97% 71.86% 74.41% 76.02% 72.63%
LOCO-vote 80.09% 73.66% 79.81% 83.02% 79.11%

Figure 6. Comparison of precision, recall and F1 score. LOCO-vote is able to significantly improve the
precision of detections while maintaining a similar level of recall. As a result, LOCO-vote achieves the
highest F1 scores among the 8 methods. The accuracy of semantic segmentation is similar to YOLO-52.
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introduce confusion into feature construction during training. Thus, compared to LOCO-
single and LOCO-vote, these characteristics of YOLO-52 lead to a 10%-20% reduction in
precision. On the other hand, there is also a potential disadvantage of the bifurcation
structure in LOCO. For example, the upper branch (Figure 4) does not include large
building footprints in its training data, so it needs to penalize detections of the large
building footprints. As a result, if some small buildings share similar features with some
large buildings, they may also get penalized during training. Thus, compared to YOLO-
52, LOCO-single has a tendency to detect fewer building footprints (i.e. 1%-4% lower
recall) in the input images (Table 3). Overall, comparing LOCO-single and YOLO-52, the
former is able to achieve a significantly higher precision (i.e. 10%-20%) without giving
much up in recall (i.e. 1%-4%).

For LOCO-single and LOCO-vote, we can see in Table 2 that the voting scheme does
make a great difference in reducing the number of false detections and brings another
10% to 20% improvement in precision. Similarly, it is interesting to see that the voting
scheme is able to maintain the same level of recall (Table 3) while gaining significant
improvement on precision. In general, the recall of LOCO-vote is about 1% to 2% lower
than that of LOCO-single, but it has a further 10% to 20% boost in precision. This
asymmetry in the precision-recall trade-off shows the potential value of the voting
scheme. It is worth mentioning that in Area 2, LOCO-vote exhibits a 5% decrease in
recall. While this is still smaller than the 15% increase of precision, it calls for future work
to further analyze and improve the robustness of the voting scheme.

Finally, in regards to both precision and recall, Table 4 shows the F1 scores of the
candidate methods. Since there is often a trade-off between precision and recall, the F1
score is a standard statistical measure that combines them into a single statistic for
direct comparisons. The trend is that LOCO-single and LOCO-vote consistently achieve
higher F1-scores in the test areas compared to YOLO-13 and YOLO-52. Within the two
groups, YOLO-52 outperforms YOLO-13 and LOCO-vote outperforms LOCO-single.

4.3.2. Comparison between LOCO and semantic segmentation
Semantic segmentation focuses on pixel-level classification. For the task of building
detection, it aims to find the exact boundary of building footprints using segments
created by predicted labels on pixels (e.g., (Yuan 2018)). However, as shown in Figure 9,
currently it is still difficult for semantic segmentation to well-approximate actual build-
ing boundaries at meter high resolution, especially for small building footprints.

Accuracy of semantic segmentation is often evaluated at the pixel-level. For detection of
objects such as buildings, however, good accuracy at the pixel-level does not necessarily
reflect good accuracy at the object-level (e.g., two adjacent buildings being connected by
a small amount of misclassified pixels). In order to evaluate the ability of semantic segmenta-
tion for building detection, we converted the individual segments into individual objects
(bounding boxes). This also allowed us to use a consistent evaluation metric for the compar-
isons among LOCO, YOLO and semantic segmentation. Theoretically, if the results of semantic
segmentation can accurately delineate building boundaries at the pixel level (i.e. finer scale),
their corresponding bounding boxes (i.e. at coarser scale) should also remain accurate.

According to the evaluation statistics in Tables 2, 3 and 4, our proposed LOCO
framework had about 5%-20% improvement in F1-scores compared to semantic seg-
mentation. Within the group of semantic segmentation methods, overall the best
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performance was achieved by DeepLabV3+ with binary labels.3 It achieved similar
statistics as YOLO-52, which were largely better than the original YOLO-13 baseline
(about 20% improvements in F1-Score).

For both PSPNet and DeepLabV3+, the results were slightly better with binary labels
than signed distance labels in terms of F1-scores (except PSPNet in Area 2). It is
interesting that for PSPNet the precision decreased but the recall improved with signed
distance labeling whereas for DeepLabV3+ both precision and recall dropped. Note that
there could be a variety of ways to implement the signed distance function, such as
different numbers of classes used to represent the distance intervals or different ways to
divide the distances (e.g., equally). In our implementation, we tried to apply the same
strategy used in (Yuan 2018), which had 128 classes on imagery with 0.3-meter resolu-
tion (we used 39 classes with 1-meter resolution). The effects of such modeling are
beyond the scope of this paper but may be worth further exploring.

4.3.3. Comparison across small and large building footprints
Since the goal of the paper is to improve detection accuracy for smaller buildings, here
we show separate precision, recall and F1-scores for small and large buildings. Since we
used 32-meter as the threshold for the side length of bounding boxes when separating
training data for small and large building footprints, the same 32-meter is used here to
split small and large buildings for evaluation.

Figures 7,8 show the precision, recall and F1-scores for small and large buildings,
respectively. Since some test areas did not have a sufficient number of large buildings,
we merged the detected large buildings across the five areas to better calculate the
statistics. There were in total 181 large buildings. Note that in the US the number of
small buildings is in general far greater than the number of large buildings.

The results for small building detection are almost the same as for small and large
buildings combined, which shows that the overall improvements achieved by LOCO can
be represented by the improvements on detecting small buildings. For large buildings,
the precision, recall and F1-scores for all the methods decreased. Specifically, the F1-
scores dropped about 15–25% for LOCO-single and LOCO-vote, 30% for YOLO-52,
5–10% for YOLO-13 and 40–50% for semantic segmentation. Comparing the methods,
LOCO still maintained the highest F1-scores among the methods, where LOCO-single
was more balanced between precision and recall and LOCO-vote was higher on preci-
sion and lower on recall. Semantic segmentation methods suffered from very low
precision due to many false positives which formed large segments in their classification

Figure 7. Comparison of precision, recall and F1-scores for small buildings. The results are very
similar to the statistics for all buildings.
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results. The lower precision, recall and F1-scores for large buildings might be due to their
smaller quantity in the US (e.g., fewer samples for both training and testing) and the
greater variety between their styles. In contrast, small buildings (e.g., residential houses)
normally follow certain standard designs and are much greater in quantity. From
a different perspective, the smaller quantity of large buildings (at least in the US) may

Figure 8. Comparison of precision, recall and F1-scores for large buildings. Compared to small
buildings, the accuracy on large buildings decreased for all methods.

Figure 9. (a) shows a comparison of results in a local region: Ground truth in blue, LOCO and YOLO-
13 in yellow, and DeepLabV3+ and PSPNet in red. The dashed boxes in orange and purple are two
zoom-in windows, whose results are shown in (b). Visually we can see that the results of LOCO are in
general closer to the ground truth compared to YOLO, and that it is still challenging for semantic
segmentation to approximate the exact building boundaries.

18 Y. XIE ET AL.



potentially mitigate the lower accuracy of detection methods because a smaller number
makes large buildings relatively faster to digitize when manual corrections and refine-
ments are needed.

4.3.4. Qualititive comparison with visualization
Figure 9 provides a visualization of the detection results overlaid on top of the remote
sensing images. In the figures we use LOCO-vote’s results to represent the final outputs
of our proposed work. For PSPNet and DeepLabV3+, we used their binary-label versions,
which had better F1 scores over the versions with distance labels. Figure 9(a) shows the
detailed results in local areas. To better visualize the differences, Figure 9(b) highlights
the results in two zoomed-in windows, which correspond to the orange and purple
dashed boxes in Figure 9(a). We can see that YOLO-13 results contain many missed and
false detections, and LOCO results have a better visual match with the building foot-
prints in the ground truth. For semantic segmentation, we can see that currently it is still
difficult for these methods to satisfiably detect the exact boundaries of building foot-
prints at meter-high resolution. These errors also affected the accuracy of building
detection at coarser scales (i.e. when the segments were converted to bounding
boxes of buildings).

5. Discussion

While this work shows the potential value of deep learning in geospatial object detec-
tion, there are still many challenges to be addressed and opportunities to be explored.
Our discussion focuses on the following eight aspects.

Remote sensing images vs. everyday images: For remote sensing datasets, we found that
the results of deep learning frameworks, while very encouraging, are still not as satisfying as
they are for objects in everyday images. The difficulty may come from various aspects: (1)
Building objects are often very small and have significantly fewer number of pixels com-
pared to objects in everyday images. This coarse-resolution introduces more uncertainty
when deciding the boundary of a building footprint; and (2) The training data of building
footprints are mostly directly converted from existing feature or vector layers (e.g.,
GeoJSON, Shapefile), which are not really modified based on the exact imagery. This
commonly leads to many types of noise, such as tree coverage, shadows, alignment (e.g.,
registration, camera angles), re-construction, etc. Such noise may havemore impacts on the
performance of pixel-level (i.e. finer scales) methods.

Two detection paradigms: Object-level and pixel-level deep learning frameworks are
two paradigms that are related to object detection. The objects in pixel-level frameworks
are created by grouping same-class pixels into connected segments. While pixel-level
frameworks have been shown to produce near-approximations of exact boundaries of
objects in everyday images, their results on building footprints are still not very satisfy-
ing. Thus, rather than considering the two paradigms as competing and mutually-
exclusive, we envision an integrated method to potentially make the building detection
problem easier. Our conjecture is that, once we have a good bounding box of a building
footprint, it becomes easier to find the exact boundary of the footprint. Figure 10 shows
some very preliminary results that demonstrate the idea. Each pair of images in Figure
10 shows a clipped building image patch using the detected bounding box and an
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unsupervised segmentation of the pixels (only the largest segments were kept). The
example results show that the problem becomes easier once we have good bounding
boxes on the buildings, and we can potentially train a simpler pixel-level classification
model to improve the boundary delineation. In addition, since semantic segmentation
performs classification at pixel-level, it requires high-quality data of exact building
boundaries in training. However, such data may not always exist in different applica-
tions, so in such scenarios it could also be helpful to start with the bounding box
paradigm (e.g., require less manual efforts) and then move to fine-scale boundary
delineation. We should also note that exact boundaries of buildings are not always
needed in all types of applications (e.g., building counting and distribution analysis), so
this information needs to be considered when selecting a suitable method.

Angle-aware bounding box: Like most bounding-box based methods, the proposed
LOCO framework detects the orthogonal bounding boxes of objects. Since building
footprints are not necessarily aligned with the orthogonal directions, it is meaningful to
further tighten the bounding boxes by making the framework angle-aware. There are
multiple strategies to achieve this goal and we discuss two of them. The first is to
integrate with deep learning schemes that can predict rotation angle (e.g., (Liu et al.
2017a), (Liu et al. 2017b)). This will require new designs of network architecture and re-
training. The second is to unsupervised augmentation Xie et al. (2018) (e.g., rotation-
vector based or context-based) to estimate the angles of building footprints. For
example, roads can be used as the context for building angle estimation.
Unsupervised augmentation does not require training data to have angle information.

Interpretability: A critical issue and challenge in deep learning is its interpretability.
This ”black-box” nature of deep learning still needs to be addressed or reduced
(Castelvecchi 2016). A first step might be to create good visualizations of the convolu-
tional kernels for geospatial objects.

Flexibility: Currently, the LOCO framework is designed to work with well-integrated,
standardized, one-meter resolution and large-scale (e.g., national) remote sensing ima-
gery. This potentially reduces its flexibility when imagery with different standards are
used. For example, NAIP imagery, which is one of the highest-quality open data at large
scale, is collected by different contractors in different states in different years (NAIP
Contractor Map 2009, 2011), leading to different imaging platforms and practices.
Different states may also have different standards on location accuracy (NAIP
Information Sheet 2015), which may further introduce inconsistency. More research
are needed to understand the effects of different imaging practices on the performance

Figure 10. Preliminary results of pixel-level segmentation on image patches of individual buildings
extracted using detected bounding boxes. The examples show that it might be easier to approx-
imate exact boundaries of building footprints once their bounding boxes are available.
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and flexibility of deep learning models. In addition, currently we use a hard threshold
(e.g., 32 meter) to separate small and large building footprints. Soft-thresholding (e.g.,
fuzzy) or other branching techniques can be explored to improve the flexibility of LOCO.
Finally, we may also explore a more flexible architecture that uses different resolutions
and sizes of input images to detect buildings of different sizes.

Geographies: The main focus of this study was to show that the proposed analysis,
designs and techniques can improve the ability of deep learning frameworks to detect
small and densely distributed building footprints. We are not yet at the stage of
providing a universally trained model that is general enough to use in all types of
regions and landscapes. In fact, the effects of different geographies on the model’s
performance are not yet clear, and will likely require a significant amount of future
research to study in detail.

Scale: Urban landscapes can differ significantly from one geographic area to another.
For example, residential houses in the US are generally more sparse than those in
Southeast Asia due to a lower population density. While the buildings may share
many similar visual features, training a model with all landscapes together could
potentially introduce more confusion than consensus. A similar situation in global
agriculture monitoring (GEOGLAM 2018) led to the common use of locally-calibrated
models to improve solution quality. Thus, future research is needed to determine the
appropriate and applicable scales for deep learning models (e.g., state, country, con-
tinent or global level).

Integration: Due to the limitations of CPU and GPUmemory, input images of convolution
deep neural networks are mostly hundreds of pixels in size. This requires that every remote
sensing image be clipped into 416� 416 chunks. After detection, the results are then
merged together. The main issue here is uncertainty. Unlike a normal merge operation on
”true” data, the outputs from a model contain both missing and false detections, especially
on the boundary of an image where objects are split into parts. For this reason, in our
network design, we used a relatively large extent (e.g., 416 m by 416 m) to reduce the
portion of buildings on the boundary while also allowing large buildings to be contained
within the frame. In future work, it is necessary to study an integration scheme under the
uncertainty of detection errors in deep learning frameworks.

6. Conclusions and future work

We investigated the use of deep learning in geospatial object detection using remote
sensing datasets, and proposed a LOcally-COnstrained (LOCO) You-Only-Look-Once frame-
work to detect small and densely distributed building footprints in satellite images. The
design of LOCO is based on the analysis of spatial information propagation in convolutional
deep neural networks. The LOCO framework avoids the excessive receptive fields in YOLO
frameworks to reduce noise and facilitate learning for small building footprints. We further
presented an invariant augmentation based voting scheme to improve the precision of
detections. The voting scheme is part of the prediction phase, so it does not require any
change in the training process and can be directly applied with minimal effort. Through
experiments, we showed that LOCO can greatly improve F1 scores compared to related
work. The results were also visualized to qualitatively validate the detections of LOCO.
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In future work, we will continue exploring the new research opportunities discussed
in Sec. 5. We are especially interested in further investigating the use of pixel-level
learning models in image clips of individual buildings (Figure 10) to try to improve the
accuracy on boundary delineation.

Notes

1. ”small” is relative to the spatial range covered by the image, e.g., 500 meter by 500 meter.
2. 32 can be replaced by another value in other problems.
3. Note that at pixel-level, this model achieved high F1-scores (about 85% to 95%) on our

validation dataset, which is a very good performance (e.g., (Yuan 2018)) based on the
criteria of segmentation.
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Appendix A. Regression modeling in YOLO

In the YOLO framework, the original input size of each image is convoluted and pooled to a spatially-
coarser grid. Thus, a typical input size of 416� 416� 3 (row � column � channel) finally becomes
13� 13� R (row � column � number of predicted parameters). In this output layer, the cell that
contains the center of an object is responsible for predicting its location and size.

To understand the regression modeling, first we need to understand the four parameters
representing the locations and sizes of predicted bounding boxes, that is, the center coordinates
cx and cy , width lw and height lh. These parameter values are not directly given in the output layer.
Instead, they are further derived afterwards.

Center coordinates: Since the cell that contains the object’s center is responsible for detecting it,
the center coordinates of an object are modeled as offsets to the cell’s top-left corner (minimum x
and y). Because the center is contained by the cell, the predicted offsets are values in the range ½0; 1	.

Width and height: YOLO models width and height using an anchor box. An anchor box
represents a common size (width and height) of objects in the images. For example, one can
use the average width and height of all objects to build a common size. Then, the actual width
and height of any object is modeled as a scaling of the common width and height.

Equation (A1) shows the detailed derivation of the four parameters:

cx ¼ cellx þ σðpxÞ
cy ¼ celly þ σðpyÞ
lw ¼ anchorw � epw
lh ¼ anchorh � eph

(A1)

where cellx and celly are the top-left coordinates of a cell; σðxÞ ¼ 1
1þe�x is the sigmoid function

(always outputs value in ð0; 1Þ); anchorw and anchorh are the width and height of the anchor box;
and px , py , pw and ph are the predicted values in the output layer of the neural network.

The overall structure of the parameters is: {obj, cx , cy , lw , lh, class1, class2, . . ., classC}. The number
of predicted parameters R depends on two settings: (1) the number of object classes in the
problem; and (2) the number of anchor boxes. We can already see the effect of class number on
the number of parameters. In terms of the anchor boxes, YOLO uses multiple anchor boxes (i.e.
multiple common sizes) rather than just one, and it predicts a set of parameters for each anchor
box. Thus, its parameter structure becomes: {anchor1:{obj, cx , cy , lw, lh, class1, class2, . . ., classz};
anchor2:{obj, cx , cy , lw, lh, class1, class2, . . ., classz}; . . .; anchorA:{obj, cx , cy , lw, lh, class1, class2, . . .,
classz}}. The reason for having multiple anchor boxes is to address the scenario where a grid cell in
the output layer contains multiple centers of overlapping objects. In YOLO, the number of anchor
boxes is set to 5. With this multi-anchor-box modeling, each grid cell can predict as many as 5
boxes instead of only one. The total number of parameters predicted by each grid cell is then:
R ¼ (5þ number class) � number anchor.
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