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Avoidance Region Discovery: A Summary of Results
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Abstract

Given a set of GPS trajectories, avoidance region dis-
covery (ARD) finds regions that are avoided by drivers.
ARD is important for applications such as sociology,
city /transportation planning and crime mitigation, where
it can help domain users understand the driver behavior un-
der different concerns (e.g. rush hour, congestion, danger-
ous neighborhood, etc.). ARD is challenging because of the
large number of trajectories with thousands of GPS points,
large number of candidate avoidance regions, and the cost of
evaluating those. Related work is focused on finding evasive
trajectories for a given set of avoidance regions. Distinct
from the related work, we propose an Avoidance Region
Miner (ARM) approach that can detect both the avoidance
regions and evasive trajectories just by using the trajecto-
ries in hand without the need of an additional input. A case
study on real trajectory data confirms that ARM discovers
such regions for further investigation by domain users. Ex-
periments show that ARM yields substantial computational
savings compared to a baseline approach.

1 Introduction

Informally, given a collection of GPS trajectories and a
road network, avoidance region discovery (ARD) finds
the regions drivers tend to avoid. ARD has important
applications in transportation/city planning, sociology
and criminology. For example, city planners may focus
on detecting avoidance regions to identify the underly-
ing reasons causing drivers bypass them. Figure 1(a)
illustrates such problems (e.g. construction, flood, dan-
ger) that may cause avoidance instead of using a shorter
or faster path. Figure 1(b) shows a mobile applica-
tion, i.e. Waze [4], which uses crowd-sourcing to pro-
vide paths that do not intersect dangerous neighbor-
hoods. However, Waze relies on user-contributed infor-
mation whereas our work automates the discovery of
avoidance regions, based strictly on available trajectory
data. Thus, ARD has fewer data dependencies than
Waze. Also, ARD will discover regions that are avoided
by the general population and criminals, while Waze is
not designed to discover any such regions.

1.1 Application Domain: In sociology, domain
scientists work to identify neighborhoods with specific
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Figure 1: An example of possible conditions causing drivers’
avoidance behavior (left). Waze application allows users to
prevent driving in high crime rate regions (right).

demographic structures. Identifying regions that are
avoided by drivers may help investigate the underlying
reasons. In fact, most cities have some distressed
neighborhoods that are known to be riskier than other
neighborhoods [4]. For example, in the Chinese city
of Kunming, taxi drivers try to avoid getting customers
from the regions where marginalized people are thought
to be living [19]. Finding those regions may help city
planners have new investments as well as policy changes
to improve the public opinion. Note that some of such
distressed regions may already be known by the officials.
However, our approach aims to find both the ones
already known and emerging before they are noticed by
the majority. For instance, trajectories from taxis over
a year may help detect the emergence of such distressed
regions before they are well known by all drivers.
Using ARD to investigate traffic patterns, trans-
portation planners can identify reasons for congestion
during rush hours [5] or road segments victimized by
potholes/cracks that endanger the safety of motorists.
In criminology, to preserve anonymity, criminals
tend to avoid security checkpoints and security cam-
eras [15]. The trajectories of this behavior may gen-
erate avoidance regions. Finding these regions, which
also have security checkpoints/cameras may lead to the
detection of such individuals. Similarly, some criminals
may do a surveillance of a target site (e.g. banks) before
they start their criminal action (e.g. robbery). These
surveillance visits may lead to circling/triangulating the
region by driving around the block causing an avoidance
behavior. Identifying those locations may help public
security officials prevent such crimes before happening.
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1.2 Challenges: ARD is challenging due to large
number of candidate avoidance regions (CAR), spatial
networks (e.g. 10° edges in a road network) and trajec-
tories (T'R) (e.g. 10° trajectories in PlanetGPX [2]).

In ARD, CAR are the interior faces of the road
network because these correspond to the city block
polygons where buildings and neighborhoods (e.g. sets
of city blocks) are located. Assuming the road network
is planar, Euler’s theorem [21] states that the total
number of faces is | faces|+ |N|—|E| = 2. Since | faces|
includes an exterior-infinite face, |CAR| = | faces|—1 =
|E| — [N| + 1, where |E| is the number of edges (e.g.
street segments) and |N| is the number of nodes (e.g.
road intersections). Computing those faces has a time
complexity of O(|Ellog|E|).

For each car € CAR, we need to evaluate at
what extent they are avoided. This is a challenging
task because we need a comparison with trajectories to
understand the avoidance behavior. Since we lack the
information about the driver preferences for different
routes (due to many factors affecting those choices), we
used shortest paths for such comparison. Thus, shortest
paths for each trajectory are generated increasing the
cost by O(|TR| x (|N|+ |E|) x log|N|).

Next, the avoidance polygons (AP), i.e. the regions
between the trajectory and shortest path pairs, are
generated. This requires a comparison between each
edge of every shortest path and trajectory pair. Since,
there are thousands of trajectories with tens of edges,
this phase is also challenging.

Finally, each ap € AP is needed to be compared
with each car € CAR as well as each shortest path to
determine the avoidance and non-avoidance behaviors
causing an exorbitant computational cost.

1.3 Related Work: Patterns of evasion in trajec-
tory data is an important task in trajectory mining.
Recent work in this area includes finding anomalous
behavior of taxi trajectories [27, 6] by discretizing the
study area into grids and representing each trajectory
using grid cells and comparing them with a normally-
behaving trajectory grid representation; finding top-k
trajectory outliers [10] using their grid representations;
clustering trajectories to find similar movement behav-
iors [30]; inferring transportation modes (e.g. walking,
driving, etc.) as a classification problem [31, 29, 22, 28];
finding “more preferred” routes using drivers’ behav-
ior [23, 32, 24]; and investigating human mobility pat-
terns [7, 11, 26, 20, 25, 9]. These works are interesting
for identifying interesting movement patterns and pro-
vide insights for future trips. They are not concerned,
however, with the identification of regions that exhibit
particular movement patterns, i.e. avoidance.

Figure 2 classifies avoidance region discovery in two

Trajectory Evasion
Detect Avoidance Regions?
Yes No

Proposed Approach
Avoidance Region Discovery

Avoidance Behavior in Moving
Object Trajectories [3, 16]

Figure 2: Related Work.

groups namely candidate avoidance regions are given
and candidate avoidance regions are inferred from tra-
jectories themselves. In the first category, the avoid-
ance regions are given by the users [3, 16] and thus
known beforehand. Our work studies avoidance regions
that may be unknown. In fact, it can be hard to pre-
determine such regions due to different reasons causing
avoidance behavior (concerns about safety, reluctance
to go through security checkpoints, discomfort in dis-
tressed neighborhoods, etc.). In addition, the related
work [3] consider trajectories as segments consisting of
GPS point pairs, which may lead to biased results when
GPS points are collected from a noisy environment. Fi-
nally, it does not account for underlying road structure.

In contrast, the proposed approach aims to iden-
tify regions of avoidance by comparing trajectories with
their shortest paths rather than with user input (Fig-
ure 2 left branch). Moreover, trajectories are consid-
ered as a whole starting from the first GPS point to
the last. Finally, the underlying road network is consid-
ered, which provides better approximation of real world
phenomena. To the best of our knowledge, the proposed
approach is the first of its kind for identifying avoidance
regions from GPS trajectories.

1.4 Contributions: (i) We define avoidance region
discovery (ARD) problem and (ii) propose a baseline
algorithm to solve the ARD. In order to improve the
scalability of the baseline algorithm, (iii) we propose an
Avoidance Region Miner (ARM) algorithm that lever-
age the algorithmic structure of the baseline algorithm.
(iv) Results are qualitatively (i.e. via case study) and
quantitatively (i.e. via experiments) evaluated to show
the superiority of ARM over the baseline approach.

1.5 Scope and Outline of the Paper: This paper
focuses on finding evasive patterns modeled as avoid-
ance regions where each face in a road network graph
is considered as a candidate. Trajectories are map-
matched to provide their edge representation on a spa-
tial network and then compared with their correspond-
ing shortest paths (i.e. same source and destination).
(i) When there are multiple shortest paths with the
same cost, the shortest path with the highest number
of edges in common with the trajectory (i.e. shares the
most edges with a trajectory) is used. We assume that
such a shortest path is unique (see the discussion in
Section 6). (ii) Proposed approach aims to infer avoid-
ance regions. Since a fair comparison cannot be done
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Figure 3: Spatial network with 18 nodes and 24 edges.

with approaches (e.g.[3]) where users input avoidance
regions, case studies and experiments were conducted
only with the algorithms proposed in this paper. (iii)
Parameter selection is out of the scope and this paper
does not provide guidance for parameters. However, one
may set the input threshold (i.e. A) to its lowest value
(i.e. A =0) and investigate all output patterns.

The paper is organized as follows: Section 2 pro-
vides the key definitions and the problem statement.
The proposed approach is covered in Section 3. Sec-
tion 4 presents a case study showing the output of ARD
with a real world trajectory dataset. The experimental
evaluation is covered in Section 5. Discussions about
ARD are in Section 6. Section 7 concludes the paper
and gives an overview of future work.

2 Definitions and Problem statement
2.1 Definitions:

DEFINITION 1. A spatial network (e.g. road net-
work) G = (N, E) is a set of nodes (N ) and edges (E)
where each node n, € N is associated with coordinates
(z,y) in an Euclidean space. E is a subset of the cross
product N x N and an edge e; € E, which joins nodes
Ny and n,, s associated with a length and speed limit
representing its travel time w, , > 0.

For example, Figure 3 shows a spatial network with
|N| =18 and |E| = 24.

DEFINITION 2. A trajectory is a set of chronologically
ordered GPS points (p1...m ), where each point consists of
a spatial coordinate set and a time stamp represented as
p; = (x,y,t). Trajectories are map-matched [18, 14] to
provide their edge representation in the spatial network.
Thus, tr; = es — ea — ... = eq

For example, the trajectory in Figure 4(a) con-
sists of 21 points. The map-matched trajectory in Fig-
ure 4(b) illustrates its edge representation in G.

DEFINITION 3. A shortest path sp, , is a sequence of
nodes [ni,na,....n;] € N such that [e1,eq, ...,e;] € FE
and n; € N are distinct and the sum of the travel time
w is minimized. Thus, the cost of a shortest path is
Wep =D Weesp. For multiple “sp” s with the same cost,
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Figure 4: An example trajectory (4(a)), its map-matched
edge representation(4(b)), corresponding shortest path(4(c))
and this pair’s avoidance polygon(4(d)).

the sp assumed to be the one with the highest number of
common edges with the trajectory (see Section 6).

In Figure 4(c), the shortest path is shown in blue.

DEFINITION 4. An Avoidance Polygon (ap € AP)
18 a polygon bounded by the nodes in the map-matched
trajectory (tr;) and its shortest path (sp;). The ap
1s a bounded region, and reflects the additional cost
of travel to avoid the part of the sp mot common to
the tr. By providing a measure of the frequency with
which an avoidance polygon’s constituent “car’s are
being avoided, we will focus on regions where drivers are
willing to travel with higher costs to avoid the shortest
path and the corresponding ap. Note that for a single tr
and sp pair, there may be multiple ap.

In Figure 4(d), the ap (red) is created by the differ-
ing edges of the ¢r (Figure 4(b)) and sp (Figure 4(c)).

DEFINITION 5. Candidate Avoidance Regions
(car € CAR) are the polygons that are interior faces of
the spatial network. Using FEuler’s theorem for planar
graphs [21], the number of candidate avoidance regions
(ICAR|) in a spatial network is |CAR| = |E| — |N| + 1.

car € CAR are \"" (i (2)
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Figure 5: Example candidate avoidance regions.

For example, in Figure 5 the total number of
candidate avoidance regions (|CAR)|) is 7 since |E| = 24
and |[N| =18. Thus, |CAR|=24-18+1=T.
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Figure 6: Avoidance (black) and Non-avoidance (red)
counts of “car”s. Yellow polygons have ¢ > 0.

DEFINITION 6. Avoidance Count (c) of a car; €
CAR is the number of times the car; is covered by (91
model in topology [8]) an ap; € AP. Suppose T' denotes
the subset of avoidance polygons that cover a car, thus
T = {apj;lap; € AP and car; C ap;} and ceqr, = |T.

DEFINITION 7. Non-Awvoidance Count (nc) of a car;
aims to determine how many trajectories (except the
one that created it) are exzpected to intersect an ap;.
Thus, it is the count of spr € SP that intersect the
ap; € T (T denotes the “ap”s that cover the car; as
defined above) which cover the car;. Let S = {spg|spr €
SP and 3 ap; € T such that ap; N spr, # 0}. Now,
NCear; = |5/

Given the 3 trajectories in Figure 7(b), the avoid-
ance (black) and non-avoidance counts (red) of each
candidate avoidance region are shown in Figure 6. The
yellow polygons have ¢ > 0.

DEFINITION 8. Interestingness Ratio (I): Interest-
ingness ratio is the expression of the drivers’ willingness
to avoid a region compared to others who do not avoid.
Consider each car € CAR is assigned with the number
of being avoided (c) and not avoided (nc). Using ¢ and

c
c+nc

nc, their interestingness ratio is I = X C.

For the trajectories in Figure 7(b), the I for the
red polygons in Figure 7(e) can be computed as follows:
c=2 c+nc=2+1. Thus, I = (%) x 2 = 4/3.
Similarly, the yellow region has I = (%) x1=1/2.

DEFINITION 9. Interesting Avoidance Region (iar)
is a car with I > X\, where X is a user defined threshold.

2.2 Problem Statement: The avoidance region
discovery (ARD) problem is formulated as follows:
Given: (1) a spatial network G = (N, E), (2) a set
of GPS trajectories (TR), and (3) an Interestingness
Ratio Threshold (\);

Find: Interesting avoidance regions with I > A.
Objective: Scalability, correctness, completeness.
Constraint: When there are multiple shortest paths,
trajectories are compared with the shortest paths that
have the highest number of common edges and such
shortest path is assumed to be unique.

For example, given the spatial network in Fig-
ure 7(a), the trajectories in Figure 7(b), and A = 1/2,
the output is depicted in Figure 7(e).

Algorithm 1 Baseline algorithm for ARD

Input:
1) A spatial network with G = (N, E),
2) A set of trajectories tr € TR and
3) Interestingness Ratio threshold (\)
Output:
Interesting avoidance regions with I > A.
Algorithm:
Step 1: Candidate avoidance region enumeration
for each Unvisited Edge e; € G do
Put e; in Ecqr
while e; = GetNextClockwiseGraphWalkEdge(e;) # e; do
e; —» Ecar
car = CreatePolygon(E¢qr) and car — CAR
Mark e; as Visited and E.q, =0
Step 2: Map-match Trajectories (using [18, 141)
for each Trajectory tr; € TR do
tr; = MapMatch(tr;) and tr; — T Rpym
Step 3: Compute Shortest Paths
9: for each Trajectory tr; € TR,,m do
10: Set start and end nodes ms, Ne
11: Compute sp; using A% Algorithm [13] and sp; — SP

O U B WN -

© ~

Step 4: Create Avoidance Polygons
12: for each tr; € TRym and sp; € SP do

13: for each Edge e; € tr; and Edge ey € sp; do
14: if e; € sp; then e; — Egp,

15: if ey ¢ tr; then e, — Eqp,

16: ap; = CreatePolygon(Eqp,)

17: ap; — AP
Step 5-6: Compare Avoidance Polygons with CAR and SP
18: for each car; € CAR do

19: for each ap; € AP do

20: if ap; C car; then c¢; =c¢; +1
21: for each sp, € SP do

22: if spr C ap; then nc; =mn; + 1

Step 7: Compute I and Return iars
23: for each car; € CAR do Compute I;
24: if I; > X\ then Return car; as iar

3 Proposed Approach

3.1 Baseline Algorithm: The baseline algorithm
to solve the ARD problem has seven steps (Alg. 1):
Step 1: Candidate avoidance region enumera-
tion: The road network graph is traversed and using
the edges of each empty cycle (no node or edge inside),
a car polygon is generated and added to CAR.

Step 2: Map-match Trajectories: Next, trajecto-
ries are map-matched [18, 14] to get their edge repre-
sentation on the road network.

Step 3: Compute Shortest Paths: Shortest path for
each trajectory is computed using A* algorithm [13].
Step 4: Create Avoidance Polygons: Comparing
sp and tr pairs, avoidance polygons (AP) are created
using the edges that are not common for the pair.
Step 5-6: Compare Avoidance Polygons with
CAR and SP: For each ap € AP, all “car’s are
compared to determine those that are completely inside
the ap and their avoidance counts are increased by 1.
Similarly, all sp € SP are compared with the ap and for
each sp that intersects it, the non-avoidance counts of
those “car”s inside ap are increased.
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Step 7: Compute I and Return Interesting
Avoidance Regions: For the candidate avoidance
regions which have ¢ > 0, Interestingness Ratios are
computed and the ones which exceed the A threshold
are returned as the interesting avoidance regions.

Note that due to the large number of trajectories,
avoidance polygons, and candidate avoidance regions;
even the baseline algorithm uses spatial indexing, e.g.
R-Tree with STR [17], to speed-up the execution time.
Execution Trace: Figure 7 shows an illustrative exe-
cution trace of the baseline approach. In Step 1, candi-
date avoidance regions are created (Figure 7(a)). Using
Euler’s theorem [21], |CAR| =24 — 18 + 1 = 7 (shown
in blue). In step 2, trajectories are map-matched to
provide their edge representation (Figure 7(b)). Next,
shortest paths (step 3) are computed (in blue). In step
4, avoidance polygons are generated (Figure 7(c)). In
this example, out of the 3 trajectories, one is follow-
ing the shortest path and does not have any avoidance
polygons. However, 2 trajectories are using non-shortest
paths causing them create avoidance polygons. For this
step, the trajectory and the shortest path are compared
node by node and if any node/edge of shortest path
and the trajectory are not the same, they are kept in an
array of nodes/edges. Once they re-start following the
same route again, the ap is generated (e.g. using simple
cycles from graph theory). For example, the trys5 n11
and spys,n11 (on top of Figure 7(b)) pair differs start-
ing from the node N7 and merge at node N17, thus the
edges between N7 and N17 of both shortest path and
trajectory will be used to create the ap on the left of
Figure 7(c).

In step 5-6, the avoidance polygons (Figure 7(c))
and the candidate avoidance regions (Figure 7(a)) are
compared to determine the avoidance counts (c¢). Yellow
polygons on the left of Figure 7(d) have ¢ > 0 since
they are covered by the avoidance polygons of the
trajectories. Similarly, the non-avoidance counts (nc)
are computed using the shortest paths. Since only one
trajectory is following the shortest path and intersects
those avoidance polygons, the nc of yellow candidate
avoidance patterns are 1. In step 7, the interestingness
ratios are computed using the ¢ and nc. For example,
the red “car”s have ¢ = 2, ¢4+ nc = 2+ 1. Thus,
I=(3)x2=4/3.If X was selected as 1/2 the red and
yellow regions would be in the output (Figure 7(e)).

3.2 Avoidance Region Miner: The Avoidance
Region Miner (ARM), shown in Alg. 2, uses two re-
finements to improve computational scalability without
comprising the completeness of the baseline algorithm.

Elimination of Redundant Candidate Avoid-
ance Region Enumeration: Our observation from
the Baseline algorithm is that car € CAR are generated
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Figure 7: Execution trace of ARD. 7(a) shows the spatial
network and candidate avoidance regions (car). 7(b) shows
input trajectories, their map-matched representations (red)
and shortest paths (blue). Avoidance polygons are depicted
in 7(c). 7(d) shows avoidance and non-avoidance counts
for each car. Finally, 7(e) shows the interestingness ratio
calculation and the output.
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Algorithm 2 Avoidance Region Miner (ARM) algorithm

Input: Inputs are the same as the Baseline Algorithm
Output:
Interesting avoidance regions with I > A.

Algorithm:
Step 1 -3
1: Same as the baseline algorithm
Step 4: Create a APS Polygon
2: for each ap; € AP do
3: APS = APS U ap;
Create sub-graph G,
4: for each Edge e; € G and n, € G do
5: if e; C APS||n; C APS then
6: Put e; and n; to G,
Step 5 - 6
7: Same as the the baseline algorithm but with G,
Step 7: Compute I and Return iars
8: for each car; € CAR do
9: if ¢; > A then compute I;
10: if I; > X\ then return car;

even if there is no avoidance polygon. For large spa-
tial networks, where the trajectories and shortest paths
are concentrated only in a smaller region in the study
area, this causes a high number of candidate avoidance
regions to be generated. To overcome this issue, we
propose avoiding unnecessary candidate avoidance re-
gion enumeration by (1) initially creating the avoidance
polygons from each trajectory and shortest path pair,
(2) merging these to create a larger avoidance polygon
(APS), and (3) finally getting an avoidance sub-graph
(G,) of the spatial network that is covered by (in a topo-
logical sense) APS. Thus, instead of creating “car”s for
the whole spatial network (G), we create them for an
avoidance sub-graph (G,) of the spatial network.

DEFINITION 10. Awvoidance Polygon Set (APS), is

the union of all avoidance polygons in the study area.
|AP]|
APS = | ap;
i=1
DEFINITION 11. An Avoidance Sub-Graph (G,), is
a sub-graph of spatial network (G), where G, C G and
E, and N, are covered by APS, so G, C APS.

For example, given the trajectories and shortest
paths in Figure 7(b), the APS is the union of the
red polygons in Figure 7(e). The G, nodes are N, =
{NO,N1,N2,N3, N4, N7,N8 N12, N13} and edges
are F, = {€N07N1,6N17N2, 6N17N4}- Using this
subgraph, instead of creating the 7 candidate avoidance
regions in Figure 7(a), we will create only the ones
tagged as 1,2, and 3 reducing the cost of enumeration.

Elimination of Unnecessary Interestingness
Ratio Computation: For each car, the interesting-
ness measure (I) is computed and compared against a
A threshold. The max. value of I is ¢ when there are no
trajectories not avoiding the car. In other words, when

nc = 0 the I = (ciO

computation of I for the car if ¢ < X since these will
never exceed A threshold.

) x ¢ = c¢. Thus, we eliminate

For example, given the avoidance counts in the
bottom row of Figure 7, if A = 2 , we don’t need to
compute nc as well as I of the “car”s with count ¢ < 2.

4 Case Study

We conducted a case study on a real dataset consist-
ing of 1312 vehicle GPS trajectories collected between
February 2008 and February 2011 in Rome, Italy [2]
as shown in Figure 8(a). For long trajectories span-
ning to many hours and days, we split them if there
were stops lasting more than 5 minutes. The road net-
work graph, extracted from Open Street Map [12], in-
cludes approximately 75000 edges and 56000 nodes as
visualized in Figure 8(b). The road network graph in-
cludes 20967 candidate avoidance regions (Figure 8(c))
but with the algorithmic refinement in ARM, we created
10093 “car”s (Figure 8(d)) and evaluated each against
A = 2. The output interesting avoidance regions are
shown in blue in Figure 8(f). Figure 8 shows that ARM
identified regions that are avoided by many trajectories.
In Figure 8(g), the interesting avoidance regions on the
north are around the British Ambassador’s residence as
well as two hospitals. Drivers may be avoiding this area
due to closed streets or congestion caused by increased
security measures around the residence or higher than
normal traffic around the hospitals. However, the inter-
pretation of the output is left to domain users.

5 Experimental Evaluation

The goal of the experiments was twofold: to evaluate the
performance of ARM under different parameters and to
compare its performance with the baseline approach. To
achieve these goals, the following questions were asked:
(1) What is the effect of the number of trajectories? (2)
What is the effect of the number of avoidance polygons?
(3) What is the effect of the road network size? (4)
What is the effect of A threshold?

The closest work to our problem is [3], which does
not detect avoidance regions but detects trajectories
that avoid a given region. Thus, due to the lack of
comparable work on this problem, experiments were
conducted with the two proposed algorithms.

Experimental Design: Experiments were per-
formed on the same real trajectory and road network
datasets that are used for the case study. The default
values for these datasets are 1000 trajectories, 56000
nodes and 75000 edges, A = 2. For the experiments
on road network size, we varied these values while pre-
serving the connectedness of the spatial network. Thus,
the number of edges and nodes were varied together. In
order to observe the effect of varying number of avoid-
ance polygons, we did not change the trajectories but
randomly removed/added avoidance polygons. Both al-
gorithms were implemented on Java platform and exe-
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Figure 8: The road network of Rome, Italy, the input trajectories, the candidate avoidance regions and the output of
ARM for X = 2. Visualizations created using QGIS Software [1] and OSM Maps [12] with 1/160000 scale.

cuted 10 times for each experiment on a MacBook Pro
with an Intel Core i7 2.5 GHz CPU and 16GB memory.

5.1 Experimental Results :

Effect of the Number of Trajectories: We
varied the number of trajectories ranging from 250
to 1250. Figure 9(a) shows that the proposed ARM
algorithm performs faster than the baseline approach.
Although both algorithms’ execution times are affected,
the savings from the refinements in ARM increase when
the number of trajectories increase.

Effect of the Number of Avoidance Polygons:
We varied the number of avoidance polygons ranging
from 0 to 5000. Figure 9(b) shows that ARM is less
affected by the number of avoidance polygons than
the baseline approach thanks to its refinement that
eliminates unnecessary interest measure computation.

Effect of the Road Network Size: We varied
the number of edges in the road network graph from
75000 to 175000 edges. To keep the graph connected,
once edges are removed, non-connected nodes are also
removed. To prevent incorrect map-matching of trajec-
tories, instead of removing edges and nodes from the
original road network graph, we added more nodes and
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edges by zooming out from the current study area to
include more nodes and edges. Figure 9(c) shows that
the proposed ARM algorithm performs faster than the
baseline approach. The ARM algorithm is not affected
by the number of edges in the spatial network graph
thanks to the elimination of redundant candidate avoid-
ance region enumeration refinement.

Effect of the interestingness ratio threshold:
We varied the A from 0 to 5 and observe its effect on
the execution times. Figure 9(d) shows that baseline
algorithm’s execution time is not affected A\ since it
does not have an algorithmic refinement that leverage
the properties of the interestingness measure. However,
ARM benefits from the A threshold and the savings
increase with higher interestingness ratio thresholds.

Comparison of Algorithm Steps: To under-
stand the bottlenecks of both algorithms, we created
a bar plot with the execution times of each step. In
Figure 9(e), the bottleneck of both algorithms is the
last step where the counts are updated for candidate
avoidance regions and the interestingness measures are
computed. It can be seen that the refinements of ARM
reduced the cost of this step substantially.
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Figure 9: Experimental results for Baseline and ARM.
6 Discussion

Deviation from Shortest Path: To identify the
avoidance behavior, we compared trajectories with their
corresponding shortest paths. Figure 10 shows an his-
togram of their pairwise length differences. For exam-
ple, ~1000 out of 1312 trajectories have a length be-
tween 1 and 1.5x shortest path. Using this histogram,
we eliminated trajectories with magjor deviation (> 5x
longer than the shortest path) since they may not repre-
sent avoidance behavior. For example, when an individ-
ual goes to sightseeing, i.e. the trip starts and ends at
the same location or very close locations, the trajectory
can be hundreds times longer than the shortest path.

Minor differences between a shortest path and tra-
jectory may also be interesting. For example, criminals
may be avoiding only one city block (if there are secu-
rity checkpoints), compared to drivers who may avoid a
large neighborhood (with tens of city blocks). Depend-
ing on the application domain and the domain specific
criteria, users should eliminate the use of trajectories
that are not interesting for that specific domain. In our
work, we did not eliminate such trajectories.
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Length Comparison of Trajectory vs. Shortest Path
(numbers represent how many times the trajectory is
greater than shortest path)

Figure 10: Histogram of the length of the trajectories
compared to their shortest paths.

Shortest Path Assumption: ARM uses shortest
paths for comparison with trajectories. However, people
may prefer non-shortest paths due to rush hour, road
congestion or routes with multiple stops (e.g. gas
station, grocery shopping, etc.). However, ARM is not
dependent on the shortest paths and different paths can
be used to compare trajectories. In the future, behavior
of drivers derived from historical trajectory data will be
used to identify such avoidance behaviors.

Non-Unique Shortest Paths: For grid-like road
networks (e.g. Chicago downtown with equally divided
city blocks), there may be multiple shortest paths. For
such conditions, we used the shortest paths with the
highest number of common edges with the trajectories
and assumed that such shortest paths are unique.

Global and Individual Behavior: Our datasets
did not have identifiers for individuals due to privacy.
For some applications (e.g. criminology), individual
behaviors may be interesting (e.g. suspicious activi-
ties). With slight changes, our approach can distinguish
global and individual behaviors.

Statistical Significance: We explore avoidance
regions in terms of avoidance and non-avoidance counts.
Yet, this may lead to the detection of chance regions. A
statistical significance test along with the distribution of
trajectories in the study area is required to quantify the
significance of avoidance patterns. However, distribu-
tion of trajectories is hard to determine as it is affected
by multiple concerns (i.e. time, trajectory length and
duration). If we can overcome this challenge, we plan to
incorporate a statistical significance test in the future.

7 Conclusion

We explored the avoidance region discovery (ARD)
problem which has important societal applications, e.g.
sociology, transportation and city planning, etc. ARD
is challenging due to the large number of trajectories
with thousands of GPS points, large number of candi-
dates and the cost of evaluating those. We proposed the
Avoidance Region Miner (ARM), which is the first al-
gorithm that discovers avoidance regions and quantifies
the avoidance level of each. ARM improves the scalabil-
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ity of a baseline approach substantially by eliminating
redundant computations. The case study provides ev-
idence that the algorithm works, as it detected areas
that drivers avoided due to closed streets or congestion
caused by the security measures around the embassies
or higher than normal traffic around the hospitals.

In future, we envision adding a statistical signifi-
cance test to eliminate chance regions. In addition, we
plan to compare the trajectories with the most used
routes instead of shortest paths. Finally, we plan to use
larger datasets both for experiments and case studies
to identify the bottlenecks of the proposed approaches
under different conditions.
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