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Abstract

This paper presents an accelerated quadrature scheme for the evaluation of layer potentials in three
dimensions. Our scheme combines a generic, high order quadrature method for singular kernels called
Quadrature by Expansion (QBX) with a modified version of the Fast Multipole Method (FMM). Our
scheme extends a recently developed formulation of the FMM for QBX in two dimensions, which, in
that setting, achieves mathematically rigorous error and running time bounds. In addition to general-
ization to three dimensions, we highlight some algorithmic and mathematical opportunities for improved
performance and stability. Lastly, we give numerical evidence supporting the accuracy, performance,
and scalability of the algorithm through a series of experiments involving the Laplace and Helmholtz
equations.

1 Introduction

Integral equation methods are an attractive approach for the solution of boundary value problems of elliptic
partial differential equations (PDEs). The mathematical features that make integral equation methods
attractive in two dimensions also hold in the three dimensional case, where their impact is felt even more
drastically: exterior problems pose no more complication than their interior counterparts, a dimensional
reduction in the number of degrees of freedom is achieved, and the conditioning of the numerical discretization
mirrors that of the physical problem. However, due to the difficulties of scale and engineering involved, the
practical realization in three dimensions is more difficult than in two.

The premise of integral equation methods is based on the reformulation of the underlying differential
equation in integral form. The solution to a homogeneous elliptic boundary value problem (BVP) may be
represented as a layer potential, such as the single-layer potential S, a surface convolution integral over the
boundary Γ:

Sµ(x) :=
∫︂
Γ

G(x, y)µ(y) dS(y) (1)

where the density function µ : Γ → R is unknown, and G is the free-space Green’s function for the (homo-
geneous) PDE. For instance, for the Laplace equation △u = 0 in three dimensions,

G(x, y) := (4π)
−1|x− y|−1

2 . (2)

A number of challenges when solving a BVP with integral equation methods are apparent, particularly
in three dimensions. First, solving the BVP requires the linear operator representing the restriction of S (or,
depending on the integral equation formulation, some other layer potential) to the boundary Γ. When the
restriction of S to the boundary is discretized, it becomes a finite dimensional linear operator L. Unlike the
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discretization of differential operators, the matrix representation of L is dense. Even considering the effects
of dimensional reduction (from volume to surface), the number of degrees of freedom for three dimensional
problems is sufficiently large that explicit formation of a matrix for L can be prohibitively expensive.

A second challenge remains the same as the two dimensional case: obtaining suitable, low complexity
quadrature for the singular integrals involving the Green’s function. While quadrature techniques have long
been studied for two dimensional kernels, they are often built to be special-purpose, and those having three
dimensional analogs are comparatively fewer. A related but more subtle issue is quadrature for the nearly
singular integrals of the potential that arise when the evaluation point is close to but not on the boundary.

A rough overview of the subject of singular quadrature is given in [37] to which we refer the reader.
Some notable schemes featuring singular quadrature rules for one, two, and three dimensional problems
include [29, 40, 21, 28, 42, 3, 12, 26, 22, 30, 51, 32, 9, 59, 6, 17, 54, 31, 52, 10, 1, 41, 11, 27, 7, 8, 60,
43]. Most schemes intended for use when the number of evaluation or source points is large, such as for the
application of layer potentials like (1), feature an acceleration component. A useful tool for this has been
the Fast Multipole Method [24], e.g. in [59]. A variety of other acceleration methods have been utilized,
such as fast direct solvers (e.g. [7]), recursive compressed inverse preconditioning [29], particle-mesh Ewald
summation (e.g. [60]), or methods based on the Fast Fourier Transform (e.g. [42]).

Quadrature by Expansion (QBX, [37]) is a quadrature method that has been recently developed that
promises to unify the treatment of the two- and three-dimensional, on-surface and off-surface cases for layer
potentials like (1), including those with hypersingular kernels. QBX is applicable in this generality since it
only relies on the analyticity of the underlying potential as a function inside or outside the domain, and,
under mild assumptions, the existence of a smooth extension of the potential onto the boundary of the
domain. Additionally, with some care, QBX is amenable to acceleration with the Fast Multipole Method,
as we demonstrate in this contribution.

Because the FMM forms local expansions of source potentials, it appears well suited to a scheme known
as ‘global’ QBX, in which a local expansion mediates the potential due to all sources in the geometry. The
first published practical realization of a QBX-FMM coupling, in [47, 48] is a global scheme that achieves
high accuracy and acceleration in two dimensions. However, in this algorithm, the error introduced by the
FMM does not obey an error bound of the form O((1/2)pfmm+1), where pfmm is the FMM order, which may
be expected of a ‘point’ FMM in two dimensions [46]. In order to achieve a given accuracy tolerance ε > 0,
one requires an often considerably greater FMM order than would be applicable for a ‘point’ FMM, and,
additionally, the amount by which to increase the order must be empirically determined. A more recent
version [57] of the QBX FMM redevelops the FMM algorithm with a guaranteed error bounds resembling
that of the ‘point’ FMM. Both of these algorithms are based on an ‘analytical’ FMM. In contrast, the
contribution in [49] develops Quadrature by Kernel-Independent Expansion, a ‘numerical’ version of QBX
meant for use with the kernel-independent FMM.

Other recent research on QBX [34] has focused on automating the selection of parameters for quadrature,
radius, and expansion order. Although thus far most of the work on QBX has been restricted to two
dimensions, theoretical work anticipates the extensibility of QBX to the three dimensional setting [16, 35].
An exception is [33] which uses QBX in three dimensions over spheroidal bodies.

An alternative to global QBX recently demonstrated to be viable in three dimensions is ‘local’ QBX. In
contrast to global QBX, in local QBX only the field in a neighborhood of each target point is mediated through
local expansions [2]. This enables more geometric flexibility when placing expansion centers. This scheme
is straightforward to integrate with the FMM, as only an approximation to the ‘point’ far field is required.
Despite these advantages over global QBX, local QBX appears to require a generically higher quadrature
order, and thus higher quadrature oversampling to control the additional error introduced by the transition
from the QBX near-field to the point-source-based computation of the far field. The contribution [53]
develops a three-dimensional local QBX algorithm with optimizations to decrease the cost of applying the
QBX expansions.

This paper describes an accelerated global QBX scheme in three dimensions which builds and extends
on GIGAQBX, our previous scheme for two dimensions featuring rigorous error bounds [57]. While much of
the theory and many algorithmic aspects are directly analogous to the two dimensional case, we introduce
a number of enhancements that help keep the scheme feasible and practical:

• We replace the geometry processing and refinement scheme of [48] with one that is applicable to surfaces
in three dimensions. Specifically, we introduce new measures of quadrature resolution, and we replace
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the 2-to-1 length requirement in that scheme (which does not straightforwardly generalize to three
dimensions) with a two-stage refinement scheme that separates the calculation of the QBX expansion
radii from the mesh resolution of the quadrature discretization. This is the subject of Sections 3 and 4.

• As part of this geometry processing, we report on an empirically effective criterion that aids in con-
trolling the truncation error based on mesh element geometry, presented in Section 3.3.

• Algorithm 3 presents a simplified version of the target-to-center association algorithm of [48].

• We provide an improved version of the ‘target confinement rule’ of [57]. This rule governs the re-
lationship between boxes as they occur in the GIGAQBX FMM and the QBX expansions used to
approximate the layer potential near the source geometry and thus plays a central role in determining
the cost of the algorithm. In [57], we used ‘square’ target confinement regions, i.e. ones whose geometry
is governed by the ℓ∞ norm. By more closely matching the true convergence behavior of the QBX
expansions through the definition of the target confinement region with the help of the ℓ2 norm, we
obtain a considerable cost reduction. Amidst error estimates generalized to the three-dimensional case,
this is the subject of Section 5.

• We derive complexity estimates and state conditions under which one may expect linear time complexity
of the algorithm in three dimensions. This is the subject of Section 5.5.

Before we turn to the subject of these contributions, the next section presents background material on
the subject of QBX in three dimensions and the considerations required for accuracy and acceleration.

2 Mathematical Preliminaries

As a model problem, consider the exterior Neumann problem for the Laplace equation in three dimensions,
for a smooth bounded domain Ω. Given continuous Neumann boundary data g, the problem is to find u
such that

△u = 0 in R3 \ Ω,
∂nu = g on ∂Ω,

lim
|x|→∞

u = 0.

Here, the notation ∂n indicates the derivative with respect to the outward unit normal.
The solution to this problem may be represented as u := Sµ, a single-layer potential over the boundary

Γ = ∂Ω, using an unknown density function µ. The properties of the operator S imply that the Laplace
PDE and the far field boundary conditions are immediately satisfied by this representation in the exterior
domain. The Neumann boundary condition, on Γ, together with the jump-relations for layer potentials [39]
entails that µ satisfies the integral equation of the second kind

−µ

2
+ S ′µ = g,

where the operator S ′ is defined as

S ′µ(x) := PV

∫︂
Γ

(︁
∂n(x)G(x, y)

)︁
µ(y) dS(y).

After discretization of the integral equation, its solution by iterative methods requires repeatedly applying
the operator S ′. Similarly, the evaluation of the BVP solution u requires applying the operator S. In this
section we will focus on the evaluation of S, although what is said in this section applies with little additional
work to S ′ or other layer potentials.

When the evaluation (or ‘target’) point x is sufficiently far from Γ, the approximate evaluation of the
integral Sµ(x) can be accomplished accurately using a high-order composite quadrature rule for smooth
functions, as the integrand itself is a smooth function. For x nearer to the boundary, it is well known that
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the singularity of the integrand presents resolution problems for smooth quadrature rules, which we address
through the use of QBX.

In what follows, we use the notation

Bp(r, c) := {y ∈ R3 : |c− y|p < r}

to denote the open ball with respect to the ℓp-norm around center c with radius r. Bp(r, c) denotes the closure
of that ball. In particular, we make use of B∞(r, c) and B2(r, c). B2(r, c) denotes the closed Euclidean ball
of radius r centered at c. B∞(r, c) denotes the closed cube of radius r centered at c.

2.1 QBX Discretization

The idea of QBX is to use the smoothness of the potential for purposes of close and on-surface evaluation
to recover a high-order accurate approximation everywhere in the domain. This is accomplished through
formation of a local expansion of the potential near the source geometry and analytic continuation of the
local expansion towards the boundary.

Throughout this paper we make use of spherical harmonic expansions. The expansion of the Laplace
potential in spherical harmonics is based on writing the Green’s function (2) using the following identity
valid for a, b ∈ R3 with |a|2 < |b|2:

G(a, b) =
∞∑︂

n=0

1

2n+ 1

|a|n2
|b|n+1

2

n∑︂
m=−n

Y m
n (θa, ϕa)Y

−m
n (θb, ϕb). (3)

Here, (θa, ϕa) and (θb, ϕb) refer to the polar and azimuthal spherical coordinates of, respectively, a and b,
i.e. θ = cos−1(z/r), ϕ = atan2(y, x). The spherical harmonic function Y m

n of order m and degree n, |m| ≤ n,
is defined as

Y m
n (θ, ϕ) :=

√︄
2n+ 1

4π

(n− |m|)!
(n+ |m|)!

· P |m|
n (cos θ)eimϕ (4)

where Pm
n is the associated Legendre function of order m and degree n.

The identity (3) may be used in the formation of a local expansion centered at a center c ∈ R3 as follows.
Given a source point s ∈ R3, define a doubly-indexed sequence ⟨Lm

n ⟩ of local coefficients by

Lm
n :=

1

2n+ 1

1

|s− c|n+1
2

Y −m
n (θs−c, ϕs−c), |m| ≤ n (5)

where the subscripted θ(·) and ϕ(·) from this section onward refer to the polar and azimuthal spherical
coordinates of the vector argument. Then the local expansion evaluated at a target t ∈ R3 may be written
as

G(s, t) =
∞∑︂

n=0

n∑︂
m=−n

Lm
n |t− c|n2Y m

n (θt−c, ϕt−c).

A p-th order local expansion is one in which the index of the outer summation goes from 0 to p. (Some
authors, e.g. [23, 53], follow the convention of defining the local coefficient (5) using the Y m

n , the complex
conjugate of Y −m

n . Both (5) and the latter definition yield equivalent expansions, since the outer partial
sums of (3) are real [53, eqn. (20)].)

Next, we describe the details of QBX. The QBX-based approximation of layer potentials may be thought
of as occurring in three distinct steps.

2.2 First Approximation Step: Truncation

In the first stage, a local expansion of the potential is formed and truncated. For a selection of points

{xi}NC/2
i=1 on the surface Γ, we define a collection of NC expansion centers c±i

c±i := xi ± r(xi)n̂(xi) (6)
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where n̂(x) is a unit-length normal vector to the surface Γ at x, and r(x) is a yet-to-be-determined expansion
radius.

The local coefficients ⟨(L±
i )

m
n ⟩ associated with the expansion at c±i may be defined through the integrals

(L±
i )

m
n =

1

2n+ 1

∫︂
Γ

µ(s)

|s− c±i |
n+1
2

Y −m
n (θs−c±i

, ϕs−c±i
) dS(s). (7)

Then the p-th order QBX local expansion at a target t ∈ B2(r(xi), c
±
i ) may be evaluated as

Sµ(t) ≈
p∑︂

n=0

n∑︂
m=−n

(L±
i )

m
n |t− c±i |

n
2Y

m
n (θt−c±i

, ϕt−c±i
). (8)

The error incurred through the truncation of (8) to order p may be as in Lemma 1. (While the reference [16,
Thm. 3.1] discusses the Helmholtz case, the Laplace case follows analogously.)

Lemma 1 (QBX truncation error in three dimensions, cf. [16, Thm 3.1]). Suppose that Γ is smooth, non-
self-intersecting and let r > 0. Let the local coefficients ⟨Lm

n ⟩ be defined as in (7) and the expansion centers

{c±i }
NC/2
i=1 as in (6). Let c ∈ {c+i , c

−
i } be a center for which B(r, c)∩Γ = {xi} for some 1 ≤ i ≤ NC/2. Then

for each p > 0 and δ > 0, there is a constant Mp,δ such that⃓⃓⃓⃓
⃓Sµ(xi)−

p∑︂
n=0

n∑︂
m=−n

Lm
n |xi − c|n2Y m

n (θxi−c, ϕxi−c)

⃓⃓⃓⃓
⃓ ≤Mp,δr

p+1∥µ∥W 3+p+δ,2(Γ). (9)

2.3 Second Approximation Step: Quadrature

In the second stage, we apply numerical quadrature to discretize the integrals for the computation of the
expansion coefficients in (7). We assume that the smooth, non-self-intersecting surface Γ is tessellated into
individual, disjoint surface elements Γk so that

Γ =

K⋃︂
k=1

Γk.

Each Γk is described by a smooth mapping function Ψk : E → R3, where E is a two-dimensional reference
element. We assume that the mapping Jacobian Ψ′

k has full rank everywhere. The integral (7) can then be
split into contributions from each element as

(L±
i )

m
n =

1

2n+ 1

∑︂
k

∫︂
Γk

µ(s)

|s− c±i |
n+1
2

Y −m
n (θs−c±i

, ϕs−c±i
) dS(s),

and, for each element Γk, written as an integral over the reference element E using∫︂
Γk

µ(s)

|s− c±i |
n+1
2

Y −m
n (θs−c±i

, ϕs−c±i
) dS(s)

=

∫︂∫︂
E

µ(Ψk(s1, s2))

|Ψk(s1, s2)− c±i |
n+1
2

Ỹ
−m

n (Ψk(s1, s2)− c±i )|∂s1Ψk(s1, s2)× ∂s2Ψk(s1, s2)|2 ds1 ds2 (10)

where we have introduced the notation Ỹ
−m

n (x) := Y −m
n (θx, ϕx) for brevity.

The integral (10) may be discretized using quadrature over the reference element E. As an example, we
will assume the reference element is the bi-unit tensor product element [−1, 1]2 and consider the discretization
of the integral with a tensor product quadrature rule for smooth functions. (In practice, our implementation
uses a triangular reference element with nodes and weights based on [58].) A tensor product rule is based
on iterated evaluation of a one-dimensional q-point quadrature rule

Qq

{︃∫︂ 1

−1

f(y) dy

}︃
=

q∑︂
j=1

wjf(yj). (11)
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After repeated application of (11), the integral (10) becomes

q∑︂
j1=1

q∑︂
j2=1

wj1wj2

µ(Ψk(yj1 , yj2))

|Ψk(yj1 , yj2)− c±i |
n+1
2

Ỹ
−m

n (Ψk(yj1 , yj2)− c±i )|∂s1Ψk(yj1 , yj2)× ∂s2Ψk(yj1 , yj2)|2. (12)

Neglecting geometry, it is straightforward if tedious to obtain estimates of the quadrature error incurred
in (12). Such estimates are roughly analogous to prior results for curves embedded in two dimensions [16].
Compared with the two-dimensional case, the main difference in the element-wise estimate is the loss of a
power of r, owing to the difference in free space Green’s functions:

Lemma 2 (QBX quadrature error for tensor product elements). Let Γk = [0, h]2 × {0} be a flat, square
element and Ψk : [−1, 1]2 → [0, h]2 × {0} be given by Ψk(x1, x2) = 1

2h(x1 + 1, x2 + 1, 0) ∈ R3. Let the
expansion center be at a distance r > 0 from Γk, and consider a q-point Gauss-Legendre rule with points
{yj}qj=1 and weights {wj}qj=1. Then there is a constant Cp,q > 0 such that for all h > 0 and r > 0⃓⃓⃓⃓
⃓⃓ q∑︂
j1=1

q∑︂
j2=1

wj1wj2

µ(Ψk(yj1 , yj2))

|Ψk(yj1 , yj2)− c±i |
n+1
2

Ỹ
−m

n (Ψk(yj1 , yj2)− c±i )|∂s1Ψk(yj1 , yj2)× ∂s2Ψk(yj1 , yj2)|2

−
∫︂
Γk

µ(s)

|s− c±i |
n+1
2

Y −m
n (θs−c±i

, ϕs−c±i
) dS(s)

⃓⃓⃓⃓
≤ Cp,q (1 + h)

(︃
h

4

)︃2q+1
1

rn+1

[︄
1 +

(︃
1

r

)︃2q
]︄
∥µ∥C2q . (13)

This estimate pertains to the error in the quadrature contribution of one element to the coefficient (L±
i )

m
n .

Similar estimates can be obtained for curved elements, although one must take into account the effects of
the occurring mapping derivatives, both from the use of the substitution rule, and within the argument of µ.
When the error contribution of the form (13) is summed over all the elements, this yields a quadrature error
estimate for the coefficient (L±

i )
m
n . A factor of r−n in (13) is dampened by the term |t−c±i |n2 when evaluating

the summation (8) for the local expansion of the single-layer potential, leaving a quadrature error that scales
essentially like O((h/(4r))2q+1∥µ∥C2q ) for small enough h and r. An analysis that yields significantly more
precise estimates for tensor product rules over elements can be found in [35].

2.4 Third Approximation Step: Acceleration

The third approximation applied in the rapid, QBX-based evaluation of layer potentials like (1) arises
due to acceleration. The formation of local expansions (8) at all centers covering a neighborhood of Γ
requires O(NM) operations, where N is the number of source points and M is the number of target points.
Interpreting (8) as the local expansion of a potential due to a finite set of source charges in space suggests
that such expansion could be amenable to acceleration with the Fast Multipole Method (FMM).

Recall that the original version of the FMM (e.g. [24]) is designed to evaluate point potentials, which are
potentials of the form

Φ(xi) :=

N∑︂
j=1

wjG(xi, yj) (i = 1, . . . ,M). (14)

Here, {xi}Mi=1 ⊆ R3 is the set of target points, and {yj}Nj=1 ⊆ R3 is the set of source points with the weights

{wj}Nj=1 ⊆ R. We shall call FMMs which evaluate these types of summations ‘point FMMs’ in the remainder
of this paper. In contrast, FMMs directed toward evaluation of QBX expansions for global QBX ([48, 49,
57]) can be described as a modification of the FMM where QBX centers are treated as a special kind of
target, at which the FMM forms a local expansion rather than evaluating a point potential.

The capability of forming a local expansion of a point potential is an algorithmic component of the point
FMM used in the far field approximation. Because the algorithmic machinery is already present in the point
FMM, it would be appear to be a fairly natural step to modify the point FMM to form local expansions at
the QBX centers. The first published version of the QBX FMM [48] operationally follows the point FMM
algorithm, but replaces the point evaluations at the QBX centers with the formation of a local expansion.
In particular, this allows it to reuse the intermediate local expansions formed by the FMM for purposes of
QBX evaluation.
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Unfortunately, for a given FMM expansion order, the accuracy attained by the algorithm in [48] is
generically lower than what would be expected of a point FMM. Specifically, one does not observe a purely
additive error of magnitude proportional to cpfmm+1, where c is a convergence factor (e.g. c = 1/2 for the
Laplace FMM in two dimensions [46] or c = 3/4 for the Laplace FMM in three dimensions [45]) and pfmm is
the approximation order used. The reason for this loss of accuracy is discussed in detail in [57]. In short, for
accurate evaluation of expansions of the form (8), all local coefficients need to be adequately approximated.
This entails the ability not only to approximate a point potential but also its derivatives to a certain order of
accuracy. The point FMM was not designed with the goal of providing accuracy estimates for this evaluation
pattern. The procedure suggested in [48] is to set the FMM order to pfmm

′ = pfmm + padd, where pfmm is
the FMM order required for the point FMM to achieve a specified tolerance, and padd > 0 is an empirically
determined quantity that depends on pfmm and the accuracy tolerance. This strategy works in practice,
although it comes with some disadvantages. First, higher order multipole and local expansions are expensive
and more difficult to implement stably [19]. Second, error estimates covering this use are, to the best of our
knowledge, not available.

In [57], an extension to the QBX FMM of [48] was developed to provide accuracy guarantees similar
to the point FMM. This was done starting with the analytical result that QBX disks act like ‘targets with
extent.’ What this suggests in practice is that the ‘near field’ of a QBX disk should be redefined to be
proportional to the size of the disk, so that the field in a region nearby each disk is evaluated directly. The
tree that is built over the computational domain needs to be aware of this change.

Perhaps the conceptually simplest scheme that matches the accuracy of the point FMM is to enforce that
a QBX disk (in the two dimensional context, or ball in three dimensions) must be contained entirely inside
the box that owns the disk, so that any QBX disk that cannot fit in a child box remains in the parent box.
However, enforcing that a QBX disk must fit entirely inside a box is computationally expensive, since disks
may be suspended at ‘high’ levels of the tree (near the root) leading to direct interactions with large parts of
the geometry. To reduce the cost associated with suspending QBX disks at high levels, the algorithm in [57]
allows QBX disks to protrude beyond their boxes by a fixed multiple of the box size. This allows them to
settle lower down the tree (away from the root) at a level where the box size is commensurate with their
diameter. This modification, which was termed a target confinement rule, retains the linear scaling of the
FMM under mild assumptions on the geometry, while also permitting for control over the error introduced
by acceleration.

The scheme described in this paper is a generalization and enhancement of the scheme described in [57],
which we term the ‘GIGAQBX FMM’, for ‘Geometric Global Accelerated QBX’. In Section 3, we describe
a framework for ensuring accuracy in the application of QBX with no acceleration over arbitrary smooth
geometries. Error estimates for FMM translations are derived in Section 4. The algorithm is described in
Section 5. We close with numerical experiments in Section 6.

3 Accuracy Control for QBX on Surfaces

Since the cost of computational methods dealing with three-dimensional geometries is typically far greater
than that of methods applied to two-dimensional geometries, and since that cost is directly related to the
resolution supplied, it is not surprising that careful control of resolution and accuracy plays an important role
in maintaining efficiency. For QBX, two related conditions must be satisfied to ensure accurate evaluation
of the layer potential at any point in R3. First, the truncation and quadrature errors at the QBX centers
must be adequately controlled, even given a geometry that does not necessarily satisfy the preconditions of
Lemma 1 and Lemma 2. Second, every target needing QBX evaluation must be associated to a QBX center.

In this section, we describe a computational framework for establishing these conditions. While our
presentation focuses on the setting of source surfaces embedded in three-dimensional space, the described
approach has an immediate analog for curves embedded in two-dimensional space, permitting the computa-
tionally unified treatment of both cases.

The prior geometry processing scheme introduced in [48] had the potential to cause what one might call a
‘chain reaction’ of refinements, where a refinement based on insufficient quadrature resolution might trigger
an element bisection, in turn moving expansion centers associated with the bisected elements, which might
trigger further resolution-based refinements, and so on, in particular on surfaces. The main contribution of
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Γ Γstage-1

(source point)
(QBX center)

interfering geometry

flagged for bisection

no interference

Figure 1: An illustration of stage-1 refinement for a two dimensional geometry. Element (panel) boundaries
are show with black dots. The element associated with the QBX disk shown is bisected due to the presence
of interfering geometry.

Γstage-1 Γstage-2

insufficient resolution

flagged for bisection

resolved

Figure 2: An illustration of stage-2 refinement for a two dimensional geometry, continuing from the previous
figure. The element adjacent to the QBX disk shown is bisected because of insufficient quadrature resolution.

this section is amulti-stage approach that not only separates concerns between different causes for refinement,
but also entirely avoids unnecessary ‘chain reactions’ between them.

3.1 Overview

We commence our discussion with an outline of a procedure for efficiently detecting and remedying potential
sources of truncation and quadrature inaccuracy in arbitrary smooth geometries. From an initial, user-
supplied, unstructured mesh, the process creates a set of three related, unstructured discretizations satisfying
different invariants. We term these the ‘stage-1 discretization’, the ‘stage-2 discretization’, and the ‘stage-2
quadrature discretization’.

For concreteness, we describe these discretization in terms of triangles, with the understanding that
generalizations to other types of reference element (e.g. squares) are expected to be straightforward. The
stage-1 and stage-2 discretizations are interpolatory/unisolvent, i.e. a unique polynomial in the mapped
polynomial space PNt ◦ Ψ−1

k may be reconstructed from the nodal degrees of freedom, where Nt is the
polynomial degree of the ‘target function space’ in which layer potentials are evaluated. We choose reference
unit nodes following [55] and use nodal values at their mapped counterparts as degrees of freedom for the
representation of the density and the geometry. Interpolation operators transport information, particularly
on-surface density values, through the discretizations in the following order:

stage-1 → stage-2 → stage-2 quadrature.

Shortly, we will summarize the primary features of these discretizations and the algorithms used to obtain
them. Afterwards, the remainder of this section supplies detailed analysis and algorithms, particularly for
stage-1 refinement and stage-2 refinement (and additionally target association).

A key mechanism for maintaining scalability for algorithms in this section which require examination of
non-local portions of the geometry is the area query, introduced in [48]. Briefly, given a spatial partitioning
of the geometry into an octree and, for each box in the octree, a stored list of adjacent, equal-or-larger peer
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boxes, an area query can efficiently find the set of leaf boxes intersecting a cubic region {x ∈ R3 : |x−c|∞ ≤ r},
for given c and r. For details, we refer to Section A in the appendix.

Stage-1 Discretization. Algorithm 1 of Section 3.3 produces the stage-1 discretization from the user-
supplied mesh. The stage-1 discretization is a locally refined mesh fitting the geometry description which
ensures that (a) sufficient resolution to represent the density and the geometry is available, and that (b) the
assumptions of Lemma 1 are satisfied, i.e. specifically that the expansion balls of (6) are undisturbed by
quadrature sources (cf. Section 3.3). Expansion radii r(x) are chosen proportional to a resolution measure
of the stage-1 discretization (cf. Section 3.2). Thus, locally bisecting triangular elements associated with
expansion balls disturbed by other geometry will shrink the associated expansion ball, helping to ensure that,
potentially after a number of refinement cycles, the expansion ball clears the interfering geometry. Figure 1
gives an illustration of this bisection process on a portion of a two-dimensional geometry.

The stage-1 discretization also incorporates a novel ‘scaled-curvature criterion’ to control for truncation
error based on an empirically effective heuristic involving the local curvature of the mesh elements. See
Section 3.3.1.

Stage-2 Discretization. The stage-2 discretization is generated using Algorithm 2 of Section 3.4, starting
with the stage-1 discretization. The role of the stage-2 discretization is to ensure that enough quadrature
resolution is available to satisfy the resolution requirement implied by the estimate (13) when applied be-
tween close elements, i.e. that the quadrature contribution to the approximation of the layer potential is
asymptotically as accurate from nearby elements as it is from the element that spawns the QBX center.
As with the stage-1 discretization, this discretization is obtained through iterative bisection of offending
source elements. As an illustration of the potential issues that this discretization controls for, consider the
two-dimensional geometric situation depicted in Figure 2. In this figure, the situation illustrated on the left
leads to inaccuracies as the contribution from the large source element is not adequately resolved relative to
the size of the target QBX disk, and bisection suffices to ensure adequate resolution.

Stage-2 Quadrature Discretization. The stage-2 quadrature discretization results from oversampling
(i.e., increasing the order) of the source quadrature nodes of the stage-2 discretization. (Thus, the stage-2
quadrature discretization shares the same mesh as the stage-2 discretization.) The stage-2 quadrature dis-
cretization is optimized for the highest possible quadrature order achievable at a given node count, to control
the quadrature error in Lemma 2, at the expense of unisolvence. In three dimensions, our implementation
uses quadrature nodes and weights for the triangle based on [58].

Target Association. Lastly, we require a tool to compute a mapping from targets needing QBX evaluation
to QBX centers. Algorithm 3 of Section 3.5 provides this capability. Compared with the similar target
association algorithm in [48], this algorithm presents a simplified procedure for locating sources or QBX
centers close to a given target, at the expense of performing two area queries instead of one.

3.2 Quantifying Quadrature Resolution on Surfaces

At the core of our accuracy control mechanism lies a measurement of quadrature resolution in the underlying
high-order quadrature used to drive QBX. In our case, these are quadrature rules based on [58]. To
accomplish this measurement, we define a modified element mapping Ψ̃k : Ẽ → R3, where Ẽ is the ‘bi-unit’
equilateral triangle with vertices

v1 =

[︄
−1
−1/
√
3

]︄
, v2 =

[︄
1

−1/
√
3

]︄
, v3 =

[︄
0

2/
√
3

]︄
serving as the modified reference element. We define a function

ηk(x) := 2σ1(Ψ̃
′
k(Ψ̃

−1

k (x))) for x ∈ Γk, (15)

where σ1(A) denotes the largest singular value of a matrix A. The factor of two normalizes out the edge
length of Ẽ. ηk(x) computes an approximate local ‘stretch factor’ of the mapping Ψ̃k at the point x. Since
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ηk may be discontinuous between adjacent elements, it is only unambiguously defined when the point x does
not lie on the boundary of Γk, necessitating the subscript k to avoid ambiguity. ηk can serve as an analog of
the ‘speed’ of the one-dimensional parametrization of a curve segment. It is crucial that Ẽ be equilateral to
ensure that ηk measures resolution independently of vertex ordering. We further define

ηk := max
x∈Γk

ηk(x)

as a per-element maximum of the corresponding per-source-point function.
This resolution measure provides the basis for our choice of the expansion radii

rk :=
1

2
ηstage-1k . (16)

The quantity ηstage-1k is simply ηk of (15) computed in reference to the stage-1 discretization, defined below.
Allowing a rough analogy between the ‘panel length’ hk of [48] and ηk makes the choices of expansion radii
of [48] coincide with ours.

3.3 Stage-1 Refinement: Managing Truncation Error

Lemma 1 requires that the expansion ball be clear of source geometry except for the target point. For
smooth, non-self-intersecting geometries, our method ensures that this condition is satisfied without explicit
user involvement, through an approach analogous to that in [48]. Algorithm 1 describes the procedure.

Algorithm 1 operates by using area queries to find all source geometry that protrudes into the QBX
expansion balls (cf. Section 2.2) and marking the elements that spawned the obstructed expansion balls for
bisection. Bisection will lead the expansion radius (16) to shrink by way of a reduction of ηk, both of which
will drop by a factor of 2 as a result of bisection. This is repeated until no more interfering geometry is
found. To prevent the source point that spawned the center from being found and causing refinement, we
reduce the size of the queried area by a factor of εexp-disturb. In practice, we choose εexp-disturb = 0.025.
The discretization appears to be fairly insensitive to the choice of this parameter, which is plausible given
our chosen quadrature margins (cf. Section 3.4). Values as large as 0.2 empirically cause little or no loss in
accuracy.

Algorithm 1: Bisect source elements whose expansion balls encounter interfering source geometry

Require: The geometry discretized as a set of targets, sources, and expansion centers.
Ensure: By repeated bisection that the expansion radii rk are sufficiently small that B2(rk, c

±
i ) ∩ Γ = {xi}

for xi ∈ Γk (as εexp-disturb → 0+).

repeat
Create an octree on the computational domain containing all sources, expansion balls, and targets.
for all expansion balls B2((1− εexp-disturb)rk, c

±
i ) do

Perform an area query of radius rk centered at c±i .
if the query returned a source point s such that |c±i − s|2 < (1− εexp-disturb)rk then
Mark the element containing xi for bisection.

end if
end for
if elements were marked for bisection then
Bisect the marked elements.

end if
until no elements were marked for bisection

3.3.1 Truncation Error and ‘Scaled-Curvature’

The realization that interference from nearby geometry, through derivatives of the surface parametrization,
contributes to the degradation in the truncation error motivates a ‘localized’ criterion that controls the
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Figure 3: The ‘urchin’ test geometry γ8 that we use
for many computational experiments in this paper.
See (31) for the warping function used to obtain
γ8. The geometry is represented by an unstruc-
tured triangular mesh. Starting with an icosahe-
dron, the high-order triangular elements are repeat-
edly warped and adaptively bisected to resolve the
element mapping functions Ψk. This resolved geom-
etry is then processed according to Section 3.

Figure 4: Five levels of scaled-curvature-guided re-
finement of the stage-1 mesh, shown on a small
‘trough’ part of γ8. See Section 3.3 for details of
the refinement method. The coloring shows the
base-10 logarithm of the residual in Green’s formula
S(∂nu)−D(u) = u/2 (i.e., roughly, the number of ac-
curate digits). ‘Red’ indicates largest residual, cor-
responding to around six accurate digits.

‘amount of curvature’ on each element of Γ.
The motivation for this may be most clearly explained by considering QBX in the two-dimensional case.

Consider a smooth closed non self-intersecting curve Γ ⊆ C with arc length parametrization w : [0, L] → Γ
such that B2(0, r) ∩ Γ = {z} (Figure 5). The single-layer potential evaluated at z for a density function
σ : Γ→ R takes the form

Sσ(z) = − 1

2π

∫︂ L

0

σ(w(t)) log |w(t)− z| dt.

We use the complex-valued logarithm, which satisfies Re log y = log |y| for all |y| > 0, to rewrite the above
as

Sσ(z) = − 1

2π
Re

∫︂ L

0

σ(w(t)) log

(︃
1− z

w(t)

)︃
dt+ Sσ(0).

By expanding the kernel log(1− z/w(t)) in a Taylor series, we obtain the expression for the truncation error
in an n-th order QBX expansion centered at the origin, which is:

en(z) = −
1

2π
Re

∫︂ L

0

σ(w(t))

∞∑︂
k=n+1

1

k

(︃
z

w(t)

)︃k

dt.

We integrate this expression by parts 1 ≤ p ≤ n times, assuming σ ∈ C∞(Γ). At each step we replace the
term w−k with −1/((k − 1)w′)∂tw

−k+1, obtaining [16]

en(z) = −
1

2π
Re

(︄
(−z)p

∫︂ L

0

Dp
t [σ(w(t))]

∞∑︂
k=n+1

(k − p− 1)!

k!

(︃
z

w(t)

)︃k−p

dt

)︄

where the differential operator Dt is defined through Dtg = ∂t[g(t)/w
′(t)]. For example, the values of
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Γ = w([0, L])

r 0

z

Figure 5: 2D QBX geometric evaluation scenario for the single-layer potential Sσ in Section 3.3.1, for a
segment of the closed curve Γ.

Dp
t [σ(w(t))] for p = 1 and p = 2 are

Dt[σ(w(t))] = σ′(w(t))− σ(w(t))w′′(t)

w′(t)2
,

D2
t [σ(w(t))] = σ′′(w(t))− 2w′′(t)σ′(w(t))

w′(t)2
− w(3)(t)σ(w(t))

w′(t)3
+

3σ(w(t))w′′(t)2

w′(t)4
.

Via these expressions, it is clear that the higher derivatives of the curve parametrization w have some
influence on the truncation error. In the expression for the truncation error, we assume without loss of
generality that |w′(t)| = 1. The next higher derivative w′′(t), whose magnitude represents the curvature
at parameter t, is the first derivative whose magnitude is not controlled. However, the contribution of the
term w′′(t) to the truncation error may be dampened by ensuring that r is chosen to locally enforce that
|rw′′(t)| ≤ κmax, for some constant κmax > 0, in a neighborhood of the target. Many other factors that
enter into the truncation error, so this is at best a heuristic motivation. Nevertheless, we have been able to
develop this insight into a practically useful criterion.

We realize this criterion in three dimensions as follows. Let k1(x) and k2(x) be the principal curvatures
of Γ at x ∈ Γ. We require that

κk(x) := max(|k1(x)|, |k2(x)|) · ηk(x) ≤ κmax (x ∈ Γk), (17)

noting that κk(x) is unit-less and invariant to scaling. A rough geometric interpretation is that the condition
stipulates that a single source element may at most cover a certain angle of a tangent circle within the
planes of principal curvature. Since ηk(x) is reduced by bisecting elements and since k1(x) and k2(x) are
independent of parametrization, κk(x) can be effectively managed through refinement by bisection.

In our computational experiments, we use κmax = 0.8 with good success. As an example, consider the
mesh of Figure 4, which shows a small section of the test geometry γ8 (shown in Figure 3, see Section 6 for a
more thorough description). The mesh shown in the figure exhibits five levels of bisection-based refinement
that were triggered by the criterion (17). The surface coloring in the figure shows a logarithmic measure of
the accuracy with which QBX evaluates layer potentials on Γ, where the color red indicates the highest levels
of error encountered, corresponding to roughly six accurate digits. We observe that each successive level
of refinement exhibits growth of the error up to roughly the ‘red’ level of accuracy, at which point further
refinement is triggered. At least in the scenario shown, (17) exhibits remarkable sharpness and reliability.

We refer to (17) as the ‘scaled-curvature criterion’. Its application requires the reasonably accurate
evaluation of two derivatives of the geometry, which may not be practical in all settings—notably when Γ
is discretized using purely affine element mappings. Nonetheless, the availability of such a criterion yields
substantial efficiency gains in the application of the QBX in high-accuracy settings, leading us to report on
its discovery in this context. Despite strong heuristic motivation and encouraging computational results,
the evidence supporting the criterion is empirical at this point. Furthermore, since this criterion leads to
improvements of the resolution of the integrand, the application of this criterion also leads to reduction of
the quadrature error, but at present it is not clear which of these error reduction effects (quadrature or
truncation) dominates. We leave a detailed discussion and potential proofs of its properties for future work.

The steps in this section work together to manage truncation error under the assumption that all coeffi-
cient integrals are computed exactly. The resulting discretization is called the stage-1 discretization.
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3.4 Stage-2 Refinement: Ensuring Accurate Coefficient Quadrature

To ensure the accurate computation of the coefficient integrals associated with the expansion centers spawned
by the stage-1 discretization, we introduce a separate stage-2 discretization that may, depending on some
criteria, be bisected into smaller elements than are present in the stage-1 discretization, to provide additional
resolution for the high-order quadrature underlying QBX. An analogous refinement step was present in the
geometry processing in [48], however an important difference between that scheme and ours is that it used
only a single discretization, creating an artificial interdependence between quadrature-based refinement and
the choice of the expansion radii, impacting the robustness of the refinement procedure. Our approach
leaves the expansion radii fixed once the stage-1 discretization is determined, removing this unnecessary
entanglement of the two stages.

In this section, it will be necessary to distinguish between different refinement iterations of the stage-2
mesh. We refer to different refinement iterations numbered using a superscript, e.g. the notation for the k-th
element of the n-th iteration is Γstage-2,n

k . Each iteration consists of Kn elements, so that Γ =
⋃︁Kn

k=1 Γ
stage-2,n
k .

The initial iteration Γstage-2,1 is the same as the stage-1 mesh which is the output of Algorithm 1.
Let a center c be spawned by some target element Γstage-2,1

k . We seek to control the quadrature error at c

due to a source panel Γstage-2,1
j , with j ̸= k in general. Our primary concern in this section is the quadrature

error contribution when Γstage-2,1
j is ‘close’ to c, i.e., the minimal Euclidean distance d2(Γ

stage-2,1
j , c) between

the center c and Γstage-2,1
j is sufficiently small to threaten accuracy. We can reexamine and further annotate

the quadrature estimate of Lemma 2 to obtain a quadrature estimate for this regime. We assume that the
quadrature error essentially takes the form

|quadrature error| ≤ C

(︄
hstage-2,1
j

4d2(Γ
stage-2,1
j , c)

)︄Q

∥µ∥, 1 ≤ j ≤ K1 (18)

where Q is the order of accuracy of the quadrature (Q = 2q + 1 in Lemma 2). That is, the main factors
governing the error are the ratio of the source panel size hstage-2,1

j to the center distance, the density norm
∥µ∥ (with the choice of norm depending on the quadrature rule), and the order of quadrature accuracy Q.
For simplicity, we may consider hstage-2,1

j asymptotically equivalent to ηstage-2,1j , our quadrature resolution
measure.

For concreteness, let a tolerance on the quadrature error relative to ∥µ∥ be given by ε. We seek to
ensure that, for all centers c, refinement produces an iteration n of the discretization such that for all centers

c ∈ {c±i }
NC/2
i=1 , we have a quadrature order Q such that

C

(︄
hstage-2,n
j

4d2(Γ
stage-2,n
j , c)

)︄Q

≤ C ′

(︄
ηstage-2,nj

4d2(Γ
stage-2,n
j , c)

)︄Q

≤ ε, 1 ≤ j ≤ Kn. (19)

The change of leading constant from C to C ′ absorbs the asymptotic factors involved when switching from
hstage-2,1
j to ηstage-2,1j .

In the case of the ‘self-interaction’, i.e. when the center c was spawned by a point on the element Γstage-2,1
k ,

for some 1 ≤ k ≤ K1, we may combine the fact that d2(Γ
stage-2,1
k , c) = rk with our choice (16) of rk, to

obtain that (19) implies we must assure

C ′

(︄
ηstage-2,1k

2ηstage-1k

)︄Q

≤ ε. (20)

For efficiency, we seek to avoid having to refine any element to evaluate its self-interaction absent other
constraints. This implies, temporarily assuming in this situation that ηstage-2,1k = ηstage-1k , that there is
precisely one free parameter to attain (20), the order of accuracy of quadrature Q.

For only the self-interaction (20), it would suffice to simply choose Q to provide the required accuracy.
However, the global nature of our algorithm compels us to use the same quadrature resolution for all targets,
and so this simple strategy is not necessarily sufficient on its own. Instead, for the benefit of the treatment
of the ‘non-self interaction’ from other elements whose resolution may differ, we choose a higher value of Q
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so that the coefficient integrals for a hypothetical source element larger by a factor of (4/3) would still attain
the required level of accuracy in its coefficient integrals. In other words, we actually choose Q to assure the
stronger bound

C ′

(︄
(4/3)ηstage-2,1k

2ηstage-1k

)︄Q

≤ ε. (21)

To ensure accuracy of the non-self-interactions, say for all 1 ≤ j ≤ K1, we detect expansion centers
within a distance of 0.5 · (3/4)ηstage-2,1j from Γstage-2,1

j using area queries originating from source points on

each Γstage-2,1
j . If any such centers are found, Γstage-2,1

j is bisected. The bisection reduces ηstage-2,1j by a

factor of two, producing ηstage-2,2j′ = 1
2η

stage-2,1
j for all refined elements 1 ≤ j′ ≤ K2 whose parent element

is j. Bisection does not affect the placement of any expansion centers, so that only the numerator of the
bound (18) is affected.

After a sufficient number (say n) of iterations, the refinement process ensures that we always have
d(Γstage-2,n

j , c) ≥ 0.5 · (3/4)ηstage-2,nj , so that

C

(︄
hstage-2,n
j

4d2(Γ
stage-2,n
j , c)

)︄Q

≤ C ′

(︄
ηstage-2,nj

4 · 0.5 · (3/4)ηstage-2,nj

)︄Q

= C ′

(︄
(4/3)ηstage-2,nj

2ηstage-2,nj

)︄Q

≤ ε, 1 ≤ j ≤ Kn

where Q was chosen above so as to ensure accurate quadrature in this case, cf. (21) and the text before
it. One particular consequence of these parameter choices is that, at a resolution change in the stage-1
discretization (perhaps as the result of bisection), the stage-2 refinement scheme just described produces a
‘buffer zone’ of stage-2-refined elements around the stage-1 refinement fringe.

The halving of ηstage-2 through bisection implies that the set of ‘endangered’ centers found in the current
iteration will be equal to or a superset of that found in the following iteration. For smooth, non-self-
intersecting geometries, the associated procedure, detailed in Algorithm 2, is guaranteed to terminate. As
a last step, the stage-2 discretization resulting from Algorithm 2 is upsampled to use a sufficient number
of quadrature nodes pquad to achieve order of accuracy Q, obtaining the stage-2 quadrature discretization
whose nodes are used as source particles for our fast algorithm, detailed in Section 5.

The objective of this contribution is to clarify the asymptotic relationships between the geometric vari-
ables, not to provide concrete estimates of the constants involved. As such, we give any specific factors (such
as in (16)) merely for concreteness. We claim that the choices described here are adequate to illustrate the
behavior of the scheme, and to obtain a practically viable method for layer potential evaluation. However, we
make no claim of optimality for the chosen parameters. The contribution [35] contains more precise bounds
suggesting that a fully quantitative understanding may be attainable. We leave this for future work.

Algorithm 2: Bisect stage-2 source elements until sufficient quadrature resolution is available

Require: The stage-1 discretization has been determined in accordance with Section 3.3.
Ensure: The quadrature accuracy condition (19) holds for all centers and all source elements Γstage-2

k .

Initialize the stage-2 discretization Γstage-2 to be identical to the stage-1 discretization.
repeat
Create an octree on the computational domain containing all source points in the stage-2 discretization
and expansion centers.
for all stage-2 elements Γstage-2

k do

for all source points xstage-2
i ∈ Γstage-2

k do

Perform an area query of radius 0.5 · (3/4)ηstage-2k centered at xstage-2
i .

if the query returned an expansion center c such that |c− xstage-2
i |2 ≤ 0.5 · (3/4)ηstage-2k then

Mark the element Γstage-2
k for bisection.

end if
end for

end for
if elements were marked for bisection then
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Bisect the marked elements.
end if

until no elements were marked for bisection

3.5 Associating Targets with QBX Centers

The computed set of quadrature discretizations ensures that the QBX expansions at the chosen set of centers
can be computed accurately (ignoring error from acceleration). A final issue to be solved by geometry
processing is to determine, for each target point, whether evaluation of the potential with QBX is needed or
whether unmodified smooth high-order quadrature suffices. Algorithm 3 describes a procedure for associating
targets to QBX centers. The algorithm proceeds in two stages, which consist of identifying endangered targets
and associating targets to an expansion center using area queries. The algorithm produces a mapping from
targets to associated centers, and it also flags endangered targets that could not be associated to any centers.

In the first stage, targets that require QBX evaluation are determined based on their proximity to
endangering source particles. Section 3.4 implies that a ‘danger zone’ of radius rdangers = ηk/2 exists around
each source particle s ∈ Γk. Using area queries around each source point of size rdangers , every target that
some source endangers can be identified efficiently.

In the second stage, an area query around each expansion center having the same radius as the expansion
ball is used to associate endangered targets to centers. In practice, because the expansion balls leave gaps in
the coverage of the source danger zone, we have found it useful to allow a target to be matched to a center
c if it is within a ball of radius rc(1 + εtgt), where εtgt is some tolerance value and rc is the expansion ball
radius. Although such usage is not necessarily governed by theoretical guarantees, experience suggests that
a small value of εtgt decreases the chance of having unassociated endangered targets without appearing to
have an adverse impact on accuracy. If increasing εtgt still leads to unassociated targets, another available
strategy is to refine near the targets which could not be associated, or to introduce additional QBX centers.

A natural extension of this algorithm is to include a side preference for each target. This amounts to
associating a target only if the side of the center matches the desired side (interior/exterior) for the target.
The need for this arises when performing on-surface evaluation for layer potentials where the limiting value
depends on the direction of approach. See [37] for further discussion.

The algorithm we use in our implementation to obtain the results Section 6 is mildly more complicated
than Algorithm 3, owing to being designed to run in parallel. The main difference is that in our implemen-
tation the area query takes the ‘point of view’ of the targets, rather than the sources or the centers. This
potentially can result in better load distribution when large numbers of targets are clustered in one part of
the geometry. Nevertheless, the output of our implemented algorithm is functionally identical to output of
the algorithm in this section.
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Algorithm 3: Associate near-source/‘endangered’ target points with QBX centers

Require: The geometry discretized as a set of targets, sources, and expansion centers.
Require: A target association tolerance εtgt ≥ 0.
Ensure: Computes a partial function from targets to expansion centers and flags the set of targets that
could not be associated.

Create an octree on the computational domain containing all sources, targets, and expansion centers.

Find endangered targets
for all source points s ∈ Γ do

Perform an area query of radius rdangers centered at s.
for all targets t in boxes returned by the query do
if |t− s|2 ≤ rdangers then

Mark t as endangered.
end if

end for
end for

Find centers for endangered targets
for all expansion centers c do
Perform an area query of radius rc(1 + εtgt) centered at c.
for all endangered targets t in boxes returned by the query do
if |t− c|2 ≤ rc(1 + εtgt) and c is the closest center to t encountered so far then
Associate t to c.

end if
end for

end for

Flag targets that could not be associated
for all endangered targets t do

if t is not associated to a center then
Flag t.

end if
end for

4 Error Estimates for FMM Translations

In [57], error estimates were presented for the GIGAQBX FMM that applied to the 2D Laplace kernel with
complex Taylor expansions. In this section, we present their analogs in three dimensions. We restrict our
attention to the spherical harmonic approximation of the three-dimensional Laplace potential (2). This
section lays the groundwork for showing the conditions under which a 3D GIGAQBX-style FMM for this
potential can be expected to have the same convergence factor as a 3D point FMM.

4.1 Overview

The main difference between ‘point’ estimates for an FMM and the estimates in this section is that the
object being approximated is a local expansion rather than a ‘point’ value (see Section 4.3). Nevertheless,
readers familiar with the error estimates for the point FMM will recognize a number of similarities in this
section with the error estimates from the point case.

Types of Translations. First, there is a direct correspondence in these error estimates with the evaluation
scenarios for the point FMM. For instance, see [23, Lem. 3.2] for the local case (cf. Hypothesis 2), [23,
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Thm. 3.5.4] for the multipole case (cf. Hypothesis 1), and [23, Thm. 3.5.5] for the multipole-to-local case
(cf. Hypothesis 3).

‘Sized’ Targets. Second, the results in this section empirically confirm that, for purposes of FMM accu-
racy, the local expansion that is to be approximated behaves much like a ‘sized target’. What this means is
that, for a given evaluation scenario, the accuracy that is expected is similar to the accuracy expected if the
local expansion were a set of targets for point evaluation.

Accuracy Dependence on Intermediate Expansion Order. Last, the results suggest that the accu-
racy chiefly depends on the order of the intermediate multipole/local expansions used and not the ‘final’
order of the local expansion (i.e. the QBX order). The results also suggest it might be possible to find an
estimate independent of the final expansion order. With regards to the dependence on the order of the
intermediate expansion, the error behavior mirrors the original FMM.

4.2 Analytical Preliminaries

Local expansions have already been introduced in Section 2.1. Recall that the p-th order local expansion
Lp due to a source s ∈ R3 centered at c ∈ R3, with coefficients ⟨Lm

n ⟩ given by (5) and evaluated at a target
t ∈ R3 takes the form

Lp(t) =

p∑︂
n=0

n∑︂
m=−n

Lm
n |t− c|n2Y m

n (θt−c, ϕt−c).

This expansion converges as long as |t− c|2 < |s− c|2.
A multipole expansion due to a source s ∈ R3 with center c ∈ R3 is defined via the coefficients ⟨Mm

n ⟩
given by

Mm
n :=

1

2n+ 1
|s− c|n2Y m

n (θs−c, ϕs−c). (22)

The expression Mp(t) for a p-th order multipole expansion evaluated at t ∈ R3 takes the form

Mp(t) =

p∑︂
n=0

n∑︂
m=−n

Mm
n

|t− c|n+1
2

Y −m
n (θt−c, ϕt−c).

The multipole expansion converges for |t− c|2 > |s− c|2.
Translation operators allow for the shifting of centers of expansions, or the conversion of multipole expan-

sions to local expansions. If the coefficients of the original expansion are notated as ⟨Bm
n ⟩, the translation

operator amounts to a linear transformation ⟨Bm
n ⟩ ↦→ ⟨(B′)mn ⟩ to new coefficients ⟨(B′)mn ⟩. We will say

that the expansion with coefficients ⟨Bm
n ⟩ has order p if the coefficients ⟨Bm

n ⟩ satisfy Bm
n = 0 for n > p.

Equivalently, in that case the ⟨Bm
n ⟩ may be thought of as a vector of (p+1)2 coefficients B0

0 , B
−1
1 , B0

1 , B
1
1 , . . ..

We denote the translation of a local expansion with order p from a center c ∈ R3, to a local expansion

with order q at a center c′ ∈ R3, by ⟨(B′)mn ⟩ = L2Lc→c′

p→q ⟨Bm
n ⟩. See [23, Lem. 3.2] for the explicit formula for

this operator.

We similarly define the operators M2Mc→c′

p→q for multipole-to-multipole translation and M2Lc→c′

p→q for
multipole-to-local translation. An explicit formula for both of these operators may be found respectively
in [23, Thm. 3.5.4] and [23, Thm. 3.5.5].

The following error estimate pertains to the truncation error of multipole and local expansions.

Proposition 3 (Accuracy of multipole and local expansions, based on [23, Lem. 3.2.4]). Let s, c, t ∈ R3.

(a) Consider the local expansion of G(s, ·) centered at c and evaluated at t, with the coefficients ⟨Lm
n ⟩ defined

as in (5). Let r = |t− c|2 and ρ = |s− c|2. If r < ρ, then⃓⃓⃓⃓
⃓G(s, t)−

p∑︂
n=0

n∑︂
m=−n

Lm
n |t− c|n2Y m

n (θt−c, ϕt−c)

⃓⃓⃓⃓
⃓ ≤ 1

4π

1

ρ− r

(︃
r

ρ

)︃p+1

.
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B2(0, R)

B2(c, r)
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c′

ρ
r
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local

multipole

Figure 6: Geometric depiction of the use of a multi-
pole expansion to approximate the local expansion
of a potential. The multipole expansion is formed at
the center c and translated to c′. This provides the
geometric setting for the situations described in Sec-
tions 4.3.1 and 4.3.3.

B2(0, r)

0s: source

c

ρ

r

translated local

local

Figure 7: Geometric depiction of the use of an in-
termediate local expansion to approximate the lo-
cal expansion of a potential. The local expansion
is formed at the origin and translated to c. This
provides the geometric setting for the situation de-
scribed in Section 4.3.2.

(b) Next, consider the multipole expansion of G(s, ·) centered at c and evaluated at t, with the coefficients
⟨Mm

n ⟩ defined as in (22). Let r = |s− c|2 and ρ = |t− c|2. If r < ρ, then⃓⃓⃓⃓
⃓G(s, t)−

p∑︂
n=0

n∑︂
m=−n

Mm
n

|t− c|n+1
2

Y −m
n (θt−c, ϕt−c)

⃓⃓⃓⃓
⃓ ≤ 1

4π

1

ρ− r

(︃
r

ρ

)︃p+1

.

4.3 Accuracy of GIGAQBX FMM Translations

Recall the difference between the notion of accuracy in a point FMM and the notion of accuracy used in the
GIGAQBX FMM. A point FMM computes the value of a potential at a point x. The accuracy is measured
by

Point FMM Accuracy =
⃓⃓⃓
Φ(x)− Φ̃p(x)

⃓⃓⃓
, (23)

where Φ̃p is the point FMM’s p-th order approximation to the point potential Φ (14).
In contrast, the correct error metric to use in the GIGAQBX FMM measures the FMM’s ability to

approximate the q-th order local expansion of the potential at a generic target x from a generic center c. Let
⟨Lm

n ⟩ denote the coefficients of the local expansion of Φ centered at c, and let ⟨(L̃p)
m
n ⟩ denote the coefficients

of the local expansion of the p-th order approximation Φ̃p centered at c. Then the accuracy may be measured
by

GIGAQBX FMM Accuracy =

⃓⃓⃓⃓
⃓

q∑︂
n=0

n∑︂
m=−n

(L̃p)
m
n |x− c|n2Y m

n (θx−c, ϕx−c)−
q∑︂

n=0

n∑︂
m=−n

Lm
n |x− c|n2Y m

n (θx−c, ϕx−c)

⃓⃓⃓⃓
⃓ .

(24)
The formulas (24) and (23) are related in that the point FMM error (23) is a special case of (24) with an
expansion radius of zero. The error estimates in this section will be of the form (24).

Given the intended usage pattern in the FMM, and using an intermediate expansion order p ∈ N0 and
target (QBX) expansion order q ∈ N0, we present a study of the error for the following translation chains:

• Source → Multipole(p) → Local(q) (Section 4.3.1)

• Source → Local(p) → Local(q) (Section 4.3.2)

• Source → Multipole(p) → Local(p) → Local(q) (Section 4.3.3).

In this analysis, it suffices to consider at most one intermediate local or multipole expansion of order p. This
is because the potential that results via a sequence of p-th order local-to-local translations only depends on
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the source and the initial expansion center. Similarly, the potential that results via a sequence of p-th order
multipole-to-multipole translations only depends on the source and the final expansion center.

We refer the reader to Appendix B for the details of the numerical experiments used to obtain the results
in this section.

Remark 4 (Error estimates for multiple sources). The following sections work with a single unit-strength
source charge, but can be straightforwardly extended to the case of an ensemble of m charges s1, s2, . . . , sm
with strengths q1, qs, . . . , qm. The corresponding error bound is scaled by

∑︁m
i=1 |qi|.

4.3.1 Multipole Accuracy

Recall that a multipole expansion is an ‘outgoing’ approximation to the field due to a set of sources at
any point sufficiently far away from the expansion center. In this section, we consider the ability of a local
expansion obtained through translation from a multipole expansion to approximate the local expansion of a
potential. We make use of the following geometric situation, illustrated in Figure 6. Let R > 0 and ρ > r > 0.
Consider a closed ball of radius r centered at c, with |c|2 = R+ ρ, containing a unit-strength source s. Also
let a ball of radius R centered at the origin contain points t, c′ satisfying |c′|2 ≤ R and |c′ − t|2 ≤ R− |c′|2.

Suppose a p-th order multipole expansion Mp with coefficients ⟨(T c
p )

m
n ⟩ is formed at c due to the

source s. Next suppose that this is translated to a q-th order local expansion with coefficients ⟨(T c′

q )mn ⟩ =
M2Lc→c′

p→q ⟨(T c
p )

m
n ⟩. The local expansion of the potential G(s, ·) due to s centered at c′ may be written using the

local coefficients ⟨(Lc′

q )
m
n ⟩. If one were to use the coefficients ⟨(T c′

q )mn ⟩ as approximations to the coefficients

⟨(Lc′

q )
m
n ⟩ for evaluation of the local expansion at the target t, the approximation error would be the quantity

EM (q) defined as

EM (q) =

⃓⃓⃓⃓
⃓

q∑︂
n=0

n∑︂
m=−n

(T c′

q )mn |t− c′|n2Y m
n (θt−c′ , ϕt−c′)−

q∑︂
n=0

n∑︂
m=−n

(Lc′

q )
m
n |t− c′|n2Y m

n (θt−c′ , ϕt−c′)

⃓⃓⃓⃓
⃓ . (25)

The following observation suggests a bound on EM . Define the error function

E(x) = G(s, x)−Mp(x).

Observe that the quantity (25) is the magnitude of the q-th order local expansion of E centered at c′ and
evaluated at t. It can be shown that this expansion must converge, in the sense that limq→∞ EM (q) = E(t).
Therefore, by Proposition 3, we may expect that for every ε > 0, it is the case that for all sufficiently large
q that

EM (q) ≤ (1 + ε)
(︁
(4π)−1/(ρ− r)

)︁
(r/ρ)

p+1
.

It is also easy to see that EM (0) ≤ ((4π)−1/(ρ− r))(r/ρ)p+1, as the 0-th order expansion is just the quantity
E(0), which satisfies this bound by Proposition 3. Given this asymptotic behavior and the fact that it holds
for q = 0, it is at least plausible that the bound EM (q) ≤ C((4π)−1/(ρ−r))(r/ρ)p+1, for some C > 0, should
hold for all q. We formulate this statement as the following hypothesis.

Hypothesis 1 (Source → Multipole(p) → Local(q)). For the situation described above, there exists a con-
stant C > 0 independent of R, p, q, ρ, r, s, c′, and t such that the error in the multipole-mediated approxi-
mation to the local expansion of the potential satisfies the bound⃓⃓⃓⃓
⃓

q∑︂
n=0

n∑︂
m=−n

(T c′

q )mn |t− c′|n2Y m
n (θt−c′ , ϕt−c′)−

q∑︂
n=0

n∑︂
m=−n

(Lc′

q )
m
n |t− c′|n2Y m

n (θt−c′ , ϕt−c′)

⃓⃓⃓⃓
⃓ ≤ 1

4π

C

ρ− r

(︃
r

ρ

)︃p+1

.

This hypothesis would imply that multipole translation in the GIGAQBX FMM obeys essentially the
same bound as the corresponding point FMM error. This bound is true if and only if the approximations
to E never significantly ‘overshoot’ the true value of E(t). The mathematical details of the proof of this
hypothesis turn out to be fairly involved and its complete mathematical resolution is pending. However
the numerical evidence is strongly in favor of this bound. We found, as described in Appendix B, that the
inequality in Hypothesis 1 holds numerically with C = 1.002. Although the tests we performed cannot be
exhaustive, the small value of C obtained by numerical testing is consistent with the truth of the hypothesis.
We use Hypothesis 1 as an error estimate in the remainder of this paper and we expect to present a proof
of this hypothesis at a later date.
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4.3.2 Local Accuracy

Recall that the role of the local expansion is complementary to the multipole expansion, since the local
expansion represents the potential in a neighborhood of an expansion center. This section considers the
case where a local expansion is formed due to a potential at one center, subsequently translated to a second
center, and used to approximate the local expansion of the potential at the second center. We make use of
the following geometric situation, illustrated in Figure 7. Let ρ > r > 0 and suppose that a source particle
is placed at s, with |s|2 = ρ. Let t, c ∈ B2(0, r) with |t− c|2 ≤ r − |c|2.

The potential due to the source s can be described in a q-th order local expansion centered at c with
coefficients ⟨(Lc

q)
m
n ⟩. Consider a p-th order local expansion of the potential centered at the origin with

coefficients ⟨(T 0
p )

m
n ⟩. Suppose this expansion is translated to a q-th order expansion at c with coefficients

⟨(T c
q )

m
n ⟩ given by ⟨(T c

q )
m
n ⟩ = L2L0→c

p→q⟨(T 0
p )

m
n ⟩. If the coefficients ⟨(T c

q )
m
n ⟩ are used in place of ⟨(Lc

q)
m
n ⟩ as

an approximation to the q-th order expansion for evaluation at a target t, the approximation error is the
quantity EL(q) given by

EL(q) =

⃓⃓⃓⃓
⃓

q∑︂
n=0

n∑︂
m=−n

(T c
q )

m
n |t− c|n2Y m

n (θt−c, ϕt−c)−
q∑︂

n=0

n∑︂
m=−n

(Lc
q)

m
n |t− c|n2Y m

n (θt−c, ϕt−c)

⃓⃓⃓⃓
⃓ . (26)

The asymptotic behavior of EL(q) is similar to that of EM (q) in the previous section. In other words, for
fixed p, we have EL(0) ≤ ((4π)−1/(ρ − r))(r/ρ)p+1 and, for all ε > 0 it is the case for sufficiently large q
that EL(q) ≤ (1 + ε)((4π)−1/(ρ− r))(r/ρ)p+1. This motivates the following hypothesis about the behavior
of EL(q) for all q.

Hypothesis 2 (Source → Local(p) → Local(q)). For the situation described above, there exists a con-
stant C > 0 independent of p, q, ρ, r, s, c, and t such that the error in the local-mediated approximation to
the local expansion of the potential satisfies the bound⃓⃓⃓⃓
⃓

q∑︂
n=0

n∑︂
m=−n

(T c
q )

m
n |t− c|n2Y m

n (θt−c, ϕt−c)−
q∑︂

n=0

n∑︂
m=−n

(Lc
q)

m
n |t− c|n2Y m

n (θt−c, ϕt−c)

⃓⃓⃓⃓
⃓ ≤ 1

4π

C

ρ− r

(︃
r

ρ

)︃p+1

.

Similar to the previous section, we evaluated the truth of this hypothesis numerically. We observed that
the estimate for EL(q) empirically satisfies Hypothesis 2 with C = 1.001. As a result, we make use of
Hypothesis 2 as an error estimate in this paper.

4.3.3 Multipole-to-Local Accuracy

In this section, we work with the same geometrical situation as given in Section 4.3.1 and illustrated in
Figure 6. We consider the accuracy achieved when a multipole expansion is converted into a local expansion
which is then translated to a third center, and used to approximate the local expansion of the potential at
that center. Similar to Section 4.3.1, consider a p-th order multipole expansion due to the source s formed at
the center c with coefficients ⟨(T c

p )
m
n ⟩. Suppose this expansion is translated to a p-th order local expansion

T 0
p centered at the origin, with coefficients ⟨(T 0

p )
m
n ⟩ = M2Lc→0

p→p⟨(T c
p )

m
n ⟩. Then suppose that this expansion is

translated to a q-th order local expansion centered at another center c′, with the coefficients ⟨(T c′

q )mn ⟩ given
by ⟨(T c′

q )mn ⟩ = L2L0→c′

p→q ⟨(T 0
p )

m
n ⟩.

The coefficients ⟨(T c′

q )mn ⟩ are those of a local expansion that approximates the q-th order local expansion

of the potential G(s, ·), centered at c′. Let ⟨(Lc′

q )
m
n ⟩ be the local coefficients of the approximated expansion.

The error is given by

EM2L(q) =

⃓⃓⃓⃓
⃓

q∑︂
n=0

n∑︂
m=−n

(T c′

q )mn |t− c′|n2Y m
n (θt−c′ , ϕt−c′)−

q∑︂
n=0

n∑︂
m=−n

(Lc′

q )
m
n |t− c′|n2Y m

n (θt−c′ , ϕt−c′)

⃓⃓⃓⃓
⃓ . (27)

In the limit as q →∞ we have
lim
q→∞

EM2L(q) = |G(s, t)− T 0
p (t)|.
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To simplify the analysis of this quantity, we introduce the p-th order local expansion of G(s, ·) at the origin,
denoted by L0

p. By the triangle inequality,

|G(s, t)− T 0
p (t)| ≤ |G(s, t)− L0

p(t)|+ |L0
p(t)− T 0

p (t)|.

The quantity |G(s, t) − L0
p(t)| may be bounded by Proposition 3. Since the quantity |L0

p(t) − T 0
p (t)| is the

difference between the local expansion of a multipole and the local expansion of the point potential at the
origin, we may bound it with Hypothesis 1. This yields the bound

|G(s, t)− T 0
p (t)| ≤

1

4π

[︄
1

ρ− r

(︃
R

R+ (ρ− r)

)︃p+1

+
C

ρ− r

(︃
r

ρ

)︃p+1
]︄
.

Similar to Sections 4.3.1 and 4.3.2, this quantity is an asymptotic bound on EM2L in q. This leads to the
following hypothesis.

Hypothesis 3 (Source → Multipole(p) → Local(p) → Local(q)). For the situation described above, there
exists a constant C > 0 independent of R, p, q, ρ, r, s, c, c′, and t such that the error in the multipole and
local mediated approximation to the local expansion of the potential satisfies the bound⃓⃓⃓⃓
⃓

q∑︂
n=0

n∑︂
m=−n

(T c′

q )mn |t− c′|n2Y m
n (θt−c′ , ϕt−c′)−

q∑︂
n=0

n∑︂
m=−n

(Lc′

q )
m
n |t− c′|n2Y m

n (θt−c′ , ϕt−c′)

⃓⃓⃓⃓
⃓

≤ C

4π

[︄
1

ρ− r

(︃
R

R+ (ρ− r)

)︃p+1

+
1

ρ− r

(︃
r

ρ

)︃p+1
]︄
.

Numerically, we observed that Hypothesis 3 appears to hold with C = 1.001. Similar to Sections 4.3.1
and 4.3.2, the low value of C that was observed is consistent with the truth of the hypothesis. We therefore
make use of Hypothesis 3 as an error estimate in the remainder of this paper.

5 The GIGAQBX Algorithm in Three Dimensions

This section is concerned with the precise statement of the GIGAQBX algorithm and its complexity and
accuracy analysis. The algorithm is presented in Sections 5.2 and 5.3. The accuracy and complexity analyses
follow in Sections 5.4 and 5.5.

5.1 Overview

For the benefit of readers familiar with the point FMM, the original QBX FMM [48], or the two-dimensional
version of GIGAQBX presented in [57], we point out the main differences in this section.

Target Confinement Rule. To prevent inaccurate contributions from entering the QBX local expansion,
while still maintaining the efficiency enabled by the use of a tree, the design of the GIGAQBX algorithm
adopts the point of view of QBX centers as ‘targets with extent’ that each have their own near-field. The
realization of this idea is that GIGAQBX only permits QBX expansion balls to exist in a box if they do not
extend beyond an (ℓ2) radius surrounding the box, where the length of the radius is proportional to the box
size, so that the near-field of the box ends up being an over-approximation of the near-field of the target
with extent.

We call this modification the target confinement rule. During box subdivision in tree construction, if a
ball cannot be placed in the child box due to this restriction, it remains in the parent box.

Particles Owned by Non-Leaf Boxes. It follows from the previous paragraph that the GIGAQBX al-
gorithm, unlike the point FMM, allows for particles (specifically, QBX centers) to be ‘owned’ by non-leaf
‘ancestor’ boxes. The most important implication of this design is that interaction lists involving direct eval-
uations at particles (List 1 and List 3), as well as the FMM step of evaluation of far-field local expansions,
must be redefined to incorporate the possibility of evaluation at non-leaf boxes.
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Two-Away Near Neighborhood. To obtain a good convergence factor in two or three dimensions, it is
convenient to consider the ‘near-field’ to consist of both a box’s nearest neighbors and also its second nearest
neighbors. This is not a new modification, having been present in the original three-dimensional FMM [23].

‘Close’ and ‘Far’ Lists. In order to actually obtain the accuracy guarantees provided by the target
confinement rule, we disallow certain box near-field interactions that are too close to the target confinement
region from using expansion mediation that would otherwise be mediated by expansions in the point FMM.
Specifically, the fields associated with List 3 and List 4 are subdivided into ‘close’ and ‘far’ lists, where the
close lists are evaluated directly via point-to-QBX-local interactions, and the far lists maintain sufficient
separation to allow for normal expansion mediation.

Changes from the 2D Version of GIGAQBX. Perhaps the most significant difference with the two-
dimensional version [57] is the use of an ℓ2 target confinement region to confine the QBX expansion centers,
whereas the previous version used an ℓ∞ (square) region. The use of the ℓ2 region improves the efficiency of
the scheme, especially in three dimensions. Other than this, the definitions of the interaction lists and the
statement of the algorithm itself are largely unchanged from the two-dimensional case.

5.2 Definitions and Interaction Lists

5.2.1 Computational Domain

The computational domain for the algorithm is an octree whose axis-aligned root box contains all sources,
targets, and expansion centers (‘particles’) as well as the entirety of each expansion disk. Starting with the
root box, the octree is refined by repeated subdivision of boxes that contain more than nmax particles until
no more non-empty boxes can be produced, pruning any empty childless boxes. A childless box is also called
a leaf box. Each box, including non-leaves, conceptually ‘owns’ a subset of particles. Upon subdivision, non-
expansion center particles are placed from the parent into the spatially appropriate child box. Expansion
centers are only placed in the child box if the expansion ball can fit within the target confinement region of
the child. Otherwise, they remain owned by the parent.

5.2.2 Notation

For a box b in the octree, we will use |b| to denote the (ℓ∞) radius of b. The target confinement region
(‘TCR’, also TCR(b)) of a box b with center c is B2(

√
3|b|(1 + tf ), c), where tf is the target confinement

factor (‘TCF’), where
√
3|b| is half the box diagonal.

The k-near neighborhood of a box b with center c is the region B∞(|b|(1 + 2k), c).
The k-colleagues of a box b are boxes of the same level as b that are contained inside the k-near neigh-

borhood of b. Tb denotes the set of 2-colleagues of a box b.
We say that two boxes are k-well-separated if they are on the same level and are not k-colleagues.
The parent of b is denoted Parent(b). The set of ancestors is Ancestors(b). The set of descendants is

Descendants(b). Ancestors and Descendants are also defined in the natural way for sets of boxes.
A box owning a point or QBX center target is called a target box. A box owning a source quadrature

node is called a source box. Ancestors of target boxes are called target-ancestor boxes.

Definition 1 (Adequate separation relation, ≺). We define a relation ≺ over the set of boxes and target
confinement regions within the tree, with a ≺ b to be understood as ‘a is adequately separated from b, relative
to the size of a’.

We write a ≺ TCR(b) for boxes a and b if the ℓ2 distance from the center of a to the boundary of TCR(b)
is at least 3|a|.

We write TCR(a) ≺ b for boxes a and b if the ℓ∞ distance from the center of a to the boundary of b is at
least 3|a|(1 + tf ). (This implies that the ℓ2 distance is at least 3|a|(1 + tf ).)

We write a ̸≺ b to denote the negation of a ≺ b.

Because the size of the TCR is proportional to the box size, Parent(a) ≺ b implies a ≺ b. We call this
property the ‘monotonicity’ of ‘≺’.
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5.2.3 Conventional Interaction Lists

The four conventional interaction lists in the FMM are defined in this section, with two modifications to the
standard definition. First, non-leaf boxes are allowed as target boxes. Thus, lists normally associated with
only leaf boxes (Lists 1 and 3) may be associated with arbitrary boxes in the tree. Second, our definition
makes use of a near neighborhood of a box that is two boxes wide.

List 1 consists of interactions with adjacent boxes. These interactions are carried out directly, without
acceleration through any expansions.

Definition 2 (List 1, Ub). For a target box b, Ub consists of all leaf boxes from among Descendants(b)∪ {b}
and the set of boxes adjacent to b.

List 2 consists of interactions with same-level boxes. These interactions have sufficient separation for an
accurate multipole-to-local mediation. List 2 is downward-propagating, which means that the interactions
received by the box are translated downward to the box’s descendants via local-to-local translation.

Definition 3 (List 2, Vb). For a target or target-ancestor box b, Vb consists of the children of the 2-colleagues
of b’s parent that are 2-well-separated from b.

List 3 consists of interactions where the source box is in the near field (Tb) of the target box, but not adja-
cent to the target box. Unlike List 2, the separation is insufficient for accurate multipole-to-local mediation.
List 3 is not downward-propagating, and it is usually mediated with a multipole-to-target interaction.

Definition 4 (List 3, Wb). For a target box b, a box d ∈ Descendants(Tb) is in Wb if d is not adjacent to b
and, for all w ∈ Ancestors(d) ∩ Descendants(Tb), w is adjacent to b.

The following are immediate consequences of this definition:

• Any box in Wb is strictly smaller than b.

• Any box d ∈Wb is separated from b by at least the width of d.

• List 3 of b contains the immediate children of non-adjacent 2-colleagues of b.

List 4 consists of interactions where the target box is in the near field of the source box, but not adjacent
to it. Like List 3, the separation is insufficient for accurate multipole-to-local interaction. Unlike List 3, List
4 is downward-propagating, and one may form a local expansion of the field from the source box that can
be propagated to the descendants.

Definition 5 (List 4, Xb). For a target or target-ancestor box b, a source box d is in List 4 of b if d is a
2-colleague of some ancestor of b and d is adjacent to Parent(b) but not b itself. Additionally, a source box d
is in Xb if d is a 2-colleague of b and d is not adjacent to b.

The following are immediate consequences of this definition:

• Any box in Xb is at least as large as b.

• Any box in Xb is separated from b by at least the width of b.

• For any d ∈ Xb, either b ∈Wd or d is a 2-colleague of b.

Our FMM does not make use of List 3 and List 4 directly. Instead, the field from these lists is sub-
partitioned into ‘close’ and ‘far’ lists. This is explained in the next section.

5.2.4 Close and Far Lists

Because of inadequate separation from the target confinement region, our algorithm cannot make use of
the interaction lists Wb and Xb as they would be used normally: via, respectively, a multipole-to-target or
source-to-local interaction. To manage this issue while still maintaining the benefits of FMM acceleration,
we partition the contribution of the sources contained in these lists into ‘close’ and ‘far’ lists. The field
due to a ‘close’ list cannot be mediated through intermediate expansions for accuracy reasons, and so it is
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evaluated directly (i.e., using point-to-QBX-local expansion) at the QBX expansion centers. In contrast, the
field due to a ‘far’ list is sufficiently far from the target confinement region that mediation via an intermediate
expansion is permissible from the standpoint of accuracy.

For case of List 3, the ‘close’ list consists of source boxes in the near field of the target box which are
not adequately separated from the TCR of the target box. Interactions from these source boxes must be
accumulated directly. The ‘far’ list is the smallest possible ‘complement’ of this list in the sense that the
close and far lists must cover the entire near field mediated by List 3, and the ‘far’ lists contains boxes that
are as large as permissible given the target confinement restrictions. The ‘far’ list may be mediated via
multipole-to-target interaction.

Definition 6 (List 3 close, W close
b ). For a target box b, a leaf box d is said to be in W close

b if d ∈
Descendants(Wb) ∪Wb such that d ̸≺ TCR(b).

Definition 7 (List 3 far, W far
b ). For a target box b, a box d is in W far

b if d ∈ Descendants(Wb) ∪Wb such
that d ≺ TCR(b) and, for all w ∈ Ancestors(d) ∩ (Descendants(Wb) ∪Wb), w ̸≺ TCR(b).

While W close
b ∪ W far

b ⊆ Wb does not hold in general, it is generally the case that W close
b ∪ W far

b ⊆
Descendants(Wb) ∪Wb.

For the case of List 4, the ‘close’ list consists of source boxes from which the TCR of the target box
is not adequately separated. List 4 close is evaluated directly only at the targets in the box, and is not
downward-propagating. List 4 far is downward-propagating. It consists of boxes form which the TCR of the
target box is adequately separated. By monotonicity of ‘≺’, this means that the TCR of the descendants is
also adequately separated from the sources, ensuring accurate downward propagation. To ensure that the
field of List 4 close is propagated to the descendants, a box in List 4 close of the parent is placed in List 4 far
of a descendant as soon as the TCR of the descendant is adequately separated from it.

Definition 8 (List 4 close, Xclose
b ). Let b be a target or target-ancestor box. A box d is in Xclose

b if for some
w ∈ Ancestors(b) ∪ {b} we have d ∈ Xw and furthermore TCR(b) ̸≺ d.

Definition 9 (List 4 far, X far
b ). Let b be a target or target-ancestor box. A box d ∈ Xb is in List 4 far if

TCR(b) ≺ d. Furthermore, if b has a parent, a box d ∈ Xclose
Parent(b) is in List 4 far if TCR(b) ≺ d.

As with List 3, it is generally not the case that Xclose
b ∪X far

b ⊆ Xb. However, Xclose
b ∪X far

b only contains
boxes from a List 4 of b or an ancestor of b.

Remark 5 (Performance optimization for List 3 far). One can always remove a box from W far
b and place its

leaf descendants in W close
b , without adverse impact on accuracy since a multipole-to-QBX-local interaction

is replaced with a direct one. When the number of sources in the descendants is small, doing this decreases
the computational cost associated with evaluation of the potential due to the sources. We make use of this
possibility in the complexity analysis.

5.3 Formal Statement of Algorithm

5.3.1 Notation

We make use of the following notation, which is a slightly modified version of the notation used in [57]. The
following notation refers to ‘point’ potentials evaluated at a target not requiring QBX owned by a box b:
(a) Pnear

b (t) denotes the potential at a target point t due to all sources in Ub ∪W close
b ∪Xclose

b ; and (b) PW
b (t)

denotes the potential at a target t due to all sources in W far
b . Let c be a QBX center owned by box b. The

following notation refers to potentials evaluated with QBX mediation: (a) Lqbx,nearc (t) denotes the (QBX)
local expansion of the potential at the center c, evaluated at target t, due to all sources in Ub∪W close

b ∪Xclose
b ;

(b) Lqbx,Wc (t) denotes the (QBX) local expansion at the center c, evaluated at t, due to all sources in W far
b ;

and (c) Lqbx,farc (t) denotes the (QBX) local expansion at the center c, evaluated at t, due to all sources not in
Ub ∪Wb ∪Xclose

b . Lastly, given a box b, Mb and Lfarb refer respectively to the multipole and local expansions
associated with the box.
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5.3.2 Algorithmic Parameters

The parameters to the algorithm are pfmm, the FMM order; pqbx, the QBX order; pquad, the upsampled
quadrature node count; and the target confinement factor tf . The choice of these parameters is based on the
splitting of the overall error in the scheme into truncation error (Lemma 1), quadrature error (Lemma 2),
and acceleration error (Theorem 6).

Of these sources of error, perhaps the one that is most straightforward to control with algorithmic
parameters is the acceleration error. Given a tolerance ε > 0, choosing tf ≤ 0.85 allows setting pfmm ≈
|log4/3 ε| to guarantee that the relative error for this component is on the order of ε. (See Theorem 6 below.)

In contrast, the topic of parameter selection for QBX and quadrature order remains an area of active
research. On the subject of quadrature order, we have found the advice in [57], which suggests the choice of
a generically high order to ensure the smallness of the quadrature error term, to be a useful guide. Assuming
the quadrature error is suitably controlled, we have observed that pfmm is a practical upper bound on pqbx,
as the error due to acceleration empirically appears to decrease most slowly of the various sources of error
(see Section 6).

The complete statement of the algorithm is given in Algorithm 4.

Algorithm 4: GIGAQBX FMM in Three Dimensions

Require: The maximum number of FMM targets/sources nmax per box for octree refinement and a target
confinement factor tf are chosen.
Require: The input geometry and targets are preprocessed according to Section 3.
Require: Based on the precision ε to be achieved, a QBX order pqbx, an FMM order pfmm, and an over-
sampled quadrature node count pquad are chosen (see Sections 2 and 3).
Ensure: An accurate approximation to the potential at all target points is computed.

Stage 1: Build tree
Create a octree on the computational domain containing all sources, targets, and QBX centers.
repeat
Subdivide each box containing more than nmax particles into eight children, pruning any empty child
boxes. If an expansion center cannot be placed in a child box with target confinement factor tf due to
its radius, it remains in the parent box.

until each box can no longer be subdivided or an iteration produced only empty child boxes

Stage 2: Form multipoles
for all boxes b do
Form a pfmm-th order multipole expansion Mb centered at b due to sources owned by b.

end for
for all boxes b in postorder do
For each child of b, shift the center of the multipole expansion at the child to b. Add the resulting
expansions to Mb.

end for

Stage 3: Evaluate direct interactions
for all boxes b do
For each conventional target t owned by b, add to Pnear

b (t) the contribution due to the interactions from
sources owned by boxes in Ub to t.

end for
for all boxes b do
For each QBX center c owned by b, add to the expansion Lqbx,nearc the contribution due to the interac-
tions from Ub to c.

end for
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Stage 4: Translate multipoles to local expansions
for all boxes b do
For each box d ∈ Vb, translate the multipole expansion Md to a local expansion centered at b. Add the
resulting expansions to obtain Lfarb .

end for

Stage 5(a): Evaluate direct interactions due to W close
b

Repeat Stage 3 with W close
b instead of Ub.

Stage 5(b): Evaluate multipoles due to W far
b

for all boxes b do
For each conventional target t owned by b, evaluate the multipole expansion Md of each box d ∈W far

b

to obtain PW
b (t).

end for
for all boxes b do
For each QBX center c owned by b, add to the expansion Lqbx,Wc the contributions due to the multipole
expansion Md of each box d ∈W far

b .
end for

Stage 6(a): Evaluate direct interactions due to Xclose
b

Repeat Stage 3 with Xclose
b instead of Ub.

Stage 6(b): Form locals due to X far
b

for all boxes b do
Convert the field of every particle owned by boxes in X far

b to a local expansion about b. Add to Lfarb .
end for

Stage 7: Propagate local expansions downward
for all boxes b in preorder do
For each child d of b, shift the center of the local expansions Lfarb to the child. Add the resulting
expansions to Lfard respectively.

end for

Stage 8: Form local expansions at QBX centers
for all boxes b do
For each QBX center c owned by b, translate Lfarb to c, obtaining Lqbx,farc .

end for

Stage 9: Evaluate final potential at targets
for all boxes b do
For each conventional target t owned by b, evaluate Lfarb (t).

Add Pnear
b (t),PW

b (t), Lfarb (t) to obtain the potential at t.
end for
for all boxes b do
For each target t associated to a QBX center c owned by b, add Lqbx,nearc (t), Lqbx,Wc (t), Lqbx,farc (t) to
obtain the QBX local expansion due to c evaluated at t.

end for

5.4 Accuracy

We carry out accuracy estimates of algorithm assuming the truth of the hypotheses in Section 4. These
hypotheses imply that the accuracy of the FMM in approximating the unaccelerated version of the potential
is mainly determined by the choice of tf , with a smaller value of tf leading to more accurate results. Choosing
a value of tf ⪅ 0.85 recovers a convergence factor approximately the same as the 1-away point FMM, which
is 3/4 [45].
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Figure 8: Convergence factor calculation for List 2. On the left is the source box and on the right are the
target box and target confinement region.
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Figure 9: Convergence factor calculation for List 3
far. The source box is on the left and the target box
and target confinement region are on the right.
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Figure 10: Convergence factor calculation for List 4
far. The source box is on the left and the target box
and target confinement region are on the right.

Theorem 6 (Accuracy estimate for GIGAQBX algorithm). Fix a target confinement factor 0 ≤ tf < 2
√
3−

2 ≈ 1.47. Let R denote the radius of the smallest box in the tree and let ω = min
(︁
3−
√
3, 6− 2

√
3−
√
3tf
)︁
.

Assuming the truth of Hypotheses 1, 2, and 3, there exists a constant M > 0 such that for every target point
x ∈ R3, we have

⃓⃓
SQBX(pqbx,N)µ(x)− Gpfmm

[SQBX(pqbx,N)]µ(x)
⃓⃓
≤ MA

ωR
max

(︄√
3(1 + tf )

6−
√
3

,

√
3

3

)︄pfmm+1

.

Here SQBX(pqbx,N)µ(x) denotes the pqbx-th order approximation to the single-layer potential given by QBX,

Gpfmm
[·] denotes the approximation formed by the GIGAQBX FMM of order pfmm, and A = ∥µ∥∞

∑︁N
i=1 |wi|,

where the {wi}Ni=1 are the quadrature weights. The constant M is independent of tf , ω, µ, the particle
distribution, and the QBX and FMM orders.

In particular, for tf ≤ (6
√
3− 7)/4 ≈ 0.85, we have

⃓⃓
SQBX(pqbx,N)µ(x)− Gpfmm

[SQBX(pqbx,N)]µ(x)
⃓⃓
≤ MA

ωR

(︃
3

4

)︃pfmm+1

.

Proof. Without loss of generality, we will assume that x is associated to a QBX center c. The proof of this
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Table 1: Complexity of each stage of the GIGAQBX algorithm.

Stage Modeled Operation Count Note

Stage 1 NL There are N total particles with at most L levels of
refinement.

Stage 2 NSpfmm
2 +NBpfmm

3 NSpfmm
2 for forming multipoles and the rest for shift-

ing multipoles upward, with each shift costing pfmm
3.

Stage 3 (27(NC +NS)nmax +NCMC)pqbx
2 Lemma 11

Stage 4 875NBpfmm
3 Lemma 12

Stage 5 NCMCpqbx
2 + 124LNSnmaxpqbx

2 Lemma 13

Stage 6 375NBnmaxpfmm
2 + 250NCnmaxpqbx

2 Lemma 15

Stage 7 8NBpfmm
3 The cost of shifting a local expansion downward is

pfmm
3. There are at most 8 children per box.

Stage 8 NCpfmm
3 Cost of translating the box local expansions to NC

centers.

Stage 9 NT pqbx
2 Cost of evaluating QBX expansions at NT targets.

statement follows from applying the results of Section 4 to the definitions of the interaction lists in Section 5.
The potential at c is the sum of the contributions Lqbx,nearc (t), Lqbx,Wc (t), and Lqbx,farc (t).

The potential due to Lqbx,nearc (t) must arrive via a direct interaction. This contribution incurs no (accel-
eration) error.

The potential due to Lqbx,Wc (t), which arrives via a multipole-to-QBX-local interaction, incurs an error
of at most

CA

(3−
√
3)R

(︄√
3

3

)︄pfmm+1

(28)

where C > 0 is some constant. See Hypothesis 1 and Figure 9.
The potential due to Lqbx,farc (t) arrives via an interaction of X far

b′ or Vb′ , where b′ is the box that owns
c or an ancestor box. The contribution that comes from X far

b′ arrives via a local-to-QBX-center interaction,
and incurs an error of at most

CA

(3−
√
3)R

(︄√
3

3

)︄pfmm+1

(29)

where C > 0 is some constant. See Hypothesis 2 and Figure 10.
Lastly, the contribution due to all Vb′ interactions arrives via a multipole-to-local-to-QBX-center inter-

action and incurs an error of at most

CA

(6− 2
√
3−
√
3tf )R

⎛⎝(︄√3(1 + tf )

6−
√
3

)︄pfmm+1

+

(︄ √
3

6−
√
3(1 + tf )

)︄pfmm+1
⎞⎠

≤ 2CA

(6− 2
√
3−
√
3tf )R

(︄√
3(1 + tf )

6−
√
3

)︄pfmm+1

(30)

where C > 0 is some constant. To obtain this bound, we have used the stated assumption that tf < 2
√
3−2.

See Hypothesis 3 and Figure 8 for the convergence factor calculation.
The result follows from combining (30), (28), and (29).

5.5 Complexity

In this section we discuss the (time) complexity of the GIGAQBX algorithm in three dimensions. The costs
presented in this section report the asymptotic number of ‘modeled floating point operations’ (or ‘modeled

28



Table 2: Parameters to the complexity analysis.

Parameter Note

pfmm FMM order.

pqbx QBX order.

nmax Desired bound on the number of particles per
box (in some cases there may be more, see Sec-
tion C.2).

tf Target confinement factor.

NB Number of boxes in the tree.

L Number of levels in the tree.

NS Number of sources in the tree.

NC Number of QBX centers in the tree.

NT Number of targets in the tree.

N N := NS +NC +NT ; the number of ‘particles’.

MC The average number of source particles inside
B∞(4

√
3rctf , c), taken over all QBX centers c (see

also Section C.2).

flops’) performed by the algorithm. The parameters we introduce in the complexity analysis are summarized
in Table 2. Table 1 and Theorem 7 in this section provide a summary of the complexity analysis. For
extended details, see Appendix C.

5.5.1 Assumptions

We make a number of simplifying assumptions in our complexity analysis.
We assume that all targets have been assigned to a QBX center, so that all evaluation at targets is done

in Stage 9. This is the primary usage pattern for on-surface evaluation of a layer potential.
We assume, consistent with the hypotheses of Theorem 6, that tf < 2. An assumption of this nature is

useful for the analysis of List 4 (Lemma 15).
We assume the use of spherical harmonic expansions throughout the algorithm. The cost of translation

is modeled using ‘point-and-shoot’ translation operators (see Section C.1 for details). We also assume that
pqbx ≤ pfmm.

5.5.2 Summary

Theorem 7 summarizes the complexity of Algorithm 4. The cost of the tree build phase (Stage 1) and the
evaluation phase of the algorithm (Stages 2–9) are treated separately. Under broadly applicable assumptions,
the evaluation phase can be shown to run in time that is proportional to the number of particles. Nevertheless,
the proportionality constant is affected by the details of the particle distribution in two ways. First, the
average size of the ‘near neighborhoods’ of QBX centers affects the number of direct interactions in the
algorithm. This is measured by the parameter MC . Second, the number of boxes in the tree, NB , affects the
number of intermediate expansions that are formed by the algorithm. This parameter is also determined by
the details of the particle distribution.

In the final statement of the complexity analysis, we make the simplifying assumption that MC = O(1)
and NB = O(N).

Theorem 7 (Complexity estimate for GIGAQBX algorithm). (a) The cost in modeled flops of the tree build
phase of the GIGAQBX FMM is O(NL).

(b) Assume that pfmm = O(|log ε|). For a fixed value of nmax, the cost in modeled flops of the evaluation
stage of the GIGAQBX FMM is O((NC +NS+NB)|log ε|3+(NCMC +NL)|log ε|2+NT |log ε|2). With a
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Table 3: ℓ∞ error in Green’s formula S(∂nu) − D(u) = u/2, scaled by 1/∥u∥∞, for the ‘urchin’ γ8, using
the GIGAQBX algorithm. pfmm denotes the FMM order and pqbx the QBX order. The geometry was
discretized with 4.85× 104 triangles for the stage-1 discretization, and 2.78× 105 triangles for the stage-2
discretization, with 2.95× 102 nodes per element. An idealized a-priori estimate for the 1-away point FMM
error [45] is included in the first column for comparison. Entries in bold indicate that the FMM error is
negligible compared to the other error contributions.

(3/4)pfmm+1 pfmm pqbx = 3 pqbx = 5 pqbx = 7 pqbx = 9

3.16× 10=1 3 8.29× 10=3 9.68× 10=3 9.15× 10=3 9.18× 10=3

1.78× 10=1 5 1.43× 10=3 2.67× 10=3 2.85× 10=3 2.78× 10=3

4.22× 10=2 10 6.08 × 10=5 6.44× 10=5 1.27× 10=4 1.47× 10=4

1.00× 10=2 15 6.08 × 10=5 6.38 × 10=6 3.24× 10=6 7.07× 10=6

2.38× 10=3 20 6.08 × 10=5 6.38 × 10=6 1.41× 10=6 2.51× 10=7

level-restricted octree and tf <
√
3− 1, the modeled cost is O((NC +NS +NB)|log ε|3 +NCMC |log ε|2 +

NT |log ε|2). Assuming that the particle distribution satisfies NB = O(N) and MC = O(1), the worst-case
modeled cost using a level-restricted octree and tf <

√
3 − 1 is linear in N (with a constant dependent

on the particle distribution and the desired accuracy ε).

Proof. The estimate for (a) follows from the cost of Stage 1 as listed in Table 1. This estimate for (b)
follows from adding up the costs of Stages 2–9 as found in Table 1. The linear running time in the case of a
level-restricted octree and tf <

√
3− 1 follows from Remark 14.

6 Numerical Experiments

We use a family of smooth ‘urchin’ test geometries γk given analytically in spherical coordinates (rk, θ, ϕ)
by prescribing rk as a function of (θ, ϕ), where

rk(θ, ϕ) = 0.2 +
ReY

⌊k/2⌋
k (θ, ϕ)−mk

Mk −mk
, (31)

Mk
mk

= max
minθ∈[0,π],ϕ∈[0,2π] ReY

⌊k/2⌋
k (θ, ϕ),

using the definition of spherical harmonics from (4). Figure 3 gives a visual impression of γ8.
To obtain an accurate unstructured triangular mesh of γk, we use an icosahedron as a starting point. Each

of the icosahedron’s faces is equipped with a mapping Ψk ∈ (P 8)3 and the expansion of Ψk in orthogonal
polynomials on the triangle [15, 38] is computed. While the ℓ2-norm of the coefficients of the mapping
corresponding to the polynomials of the two highest total degrees exceeds 10−10 times the ℓ2-norm of all
coefficients of the mapping, the element is bisected, and the warping function (31) is (nodally) reevaluated.

6.1 Accuracy

We use an analogous procedure to the one from [57] to test the accuracy of the algorithm of this paper
through a sequence of experiments. With u a harmonic function defined inside γ8 and extending smoothly
to the boundary, we make use of Green’s formula. Because of smoothness, u has a well-defined normal
derivative ∂nu at the boundary. Then Green’s formula (e.g. [39, Theorem 6.5]) states that for x ∈ Γ,

S(∂nu)(x)−D(u)(x) =
u(x)

2
.

We use the residual in this identity as a measure for the accuracy that our scheme achieves in the evaluation
of layer potential evaluations. The achieved accuracy in Green’s formula is predictive of the accuracy one
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might achieve in the solution of boundary value problems. Data to support this assertion (in two dimensions)
is presented in [57].

Letting u be the potential due to a charge located outside Γ at (3, 1, 2)T , we evaluate S(∂nu) − D(u)
using our scheme and report the error in the discrete ℓ∞-norm. The error reported is the absolute error
scaled by 1/∥u∥∞. We use the urchin geometry γ8 and test with various combinations of QBX order pqbx
and FMM order pfmm. γ8 was discretized with 48 500 triangles for the stage-1 discretization, and 277 712
triangles for the stage-2 discretization, with 295 nodes per element, to eliminate the influence of quadrature
error as a confounding factor in this experiment.

To ‘balance’ the algorithm, we compute a modeled flop count (cf. Sections 5.5 and 6.3) and chose the
value of nmax that minimizes this modeled cost. In our experiments, nmax = 512 was the approximate
minimizer. We choose the target confinement factor as tf = 0.9.

Table 3 shows the results of these experiments for the GIGAQBX FMM, scaled by the norm of the test
function u and varying pqbx across columns and pfmm across rows. We show table entries in bold if no
decrease in error is observed for at least one subsequent value of pfmm.

The error in each entry of the table may be interpreted as the additive contribution of truncation error
(Lemma 1), quadrature error (Lemma 2), and FMM acceleration error (Theorem 6). The latter two sources
of error are present even without FMM acceleration. Thus, reading down a given column (with pqbx held
fixed and pfmm varying), we do not expect the error to decrease below a fixed amount, which we term the
‘unaccelerated QBX error.’ This quantity empirically corresponds to the error shown in bold.

The large decrease in the error as pfmm increases suggests that as long as the error still decreases with
pfmm, we can assume that the acceleration error is the dominant error component. Reading across a row of
the table (with pfmm held fixed and pqbx varying), we observe that if an entry appears to be dominated by
acceleration error (i.e. is not in bold), the errors in the row are very roughly of the same order of magnitude.
This is consistent with Theorem 6, which implies an FMM acceleration error bound that is independent of
the QBX order.

For our chosen value of tf , Theorem 6 roughly establishes ∥u∥∞(3/4)
pfmm+1

as a bound on the absolute
error incurred by acceleration, neglecting a number of other factors given in the precise statement of the
theorem. We show (3/4)

pfmm+1
in the left column of the table. Importantly, this value is an upper bound

for the values in its row, and thus also a bound on the acceleration error. The strict obedience to this bound
also confirms that the algorithm does not require an FMM order increase to maintain accuracy (cf. [48] and
the discussion in Section 2.4).

The actual acceleration component of the error in Table 3 in fact appears to decrease more rapidly
than the first column. A similar phenomenon was observed for the two-dimensional case in [57]. This is
not entirely unexpected, as the error in the potential is a weighted average of the individual errors due to
the source particles, which are likely to be separated more generously from the target than the worst-case
estimates in Section 4 assume.

In summary, the results in this table empirically confirm the validity of Theorem 6 as well as of an
additive error model:

|total error| ≤ |unaccelerated QBX error|+ ∥u∥∞(3/4)
pfmm+1

. (32)

6.2 A BVP with Complex Geometry for the Helmholtz Equation

To support the assertion that our algorithm is broadly applicable and robust, we demonstrate its use on
a challenging, moderate-frequency boundary value problem for the Helmholtz equation. While we have
discussed a version of the algorithm for the Laplace equation, a direct analog of our algorithm is applicable
for the Helmholtz and many other related elliptic PDEs, assuming the availability of translation operators
with suitable complexity. We expect our complexity and accuracy analysis to carry over to the case of the
Helmholtz equation with only minor changes. Empirical evidence suggests that this is the case.
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Figure 11: An exterior Dirichlet boundary value problem for the Helmholtz equation solved on a ‘toy plane’
geometry. The shading on the geometry itself reflects the obtained density µ using a Brakhage-Werner
representation [4] −Dµ + iSµ. The volume visualization illustrates the logarithm of error in the computed
exterior potential. The top of the volume visualization represents a cut roughly at ‘wing’ level of the source
geometry. The maximal relative ℓ∞ error observed anywhere in the exterior computational domain (which
extends to cover the entire geometry, including at points on or near the surface) was 1.38×10−2. Section 6.2
describes the computational setup in more detail. The potential is evaluated at 104 947 200 targets in the
volume, with 11 482 688 source points, 1 230 288 QBX centers, and 615 144 on-surface targets.

We solve an exterior Dirichlet boundary value problem(︁
△+ k2

)︁
u = 0 in R3 \ Ω,
u = f on ∂Ω,

lim
r→∞

r

(︃
∂

∂r
− ik

)︃
u = 0

where Ω ⊂ R3 is a closed, bounded region with smooth boundary Γ = ∂Ω. Ω is given by the geometry
surface-3d/betterplane.brep from [36]. We obtain a surface mesh consisting of triangles with second-
order polynomial mapping functions for the geometry using Gmsh [18]. The geometry (‘nose’ to ‘tail’) is
approximately 19 units long and 20 units wide (‘wingtip’ to ‘wingtip’). The original geometry has 37 244
triangles, the stage-1 mesh has 45 755 order 2 triangles (with 6 nodes per element), and the stage-2 mesh has
102 524 order-2 triangles; the triangles of the stage-2 quadrature discretization each have 112 nodes. The
Helmholtz parameter was set to k = 20.

We use a Brakhage-Werner representation [4] to solve for boundary values obtained from a point potential
emanating from a number of sources in the ‘tail’ of the geometry. Using L2-weighted degrees of freedom [5],
GMRES [50] attained a decrease in the residual norm by a factor of 10−5 in 79 iterations. The calculation
took around two days on a dual-socket Intel Xeon E5-2650 v4 machine. The Helmholtz translation operators
used in the algorithm were those from FMMLIB3D [20, 19].

We verify that the potential obtained from the boundary value solve matches the point potential through
point evaluations in the volume, obtaining roughly two digits of accuracy. Details of the relative error in the
potential evaluation in the volume can be found in Figure 11.
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Figure 12: Modeled operation counts for the GIGAQBX FMM for evaluating the single-layer potential on
a sequence of ‘urchin’ geometries of increasing particle count. The operations are counted according to the
model presented in Table 4. Here, nmax = 512 and tf = 0.9. The scaling test used the ‘urchin’ geometries
γ2, γ4, . . . , γ10.

6.3 Cost and Scaling

It remains to examine both the computational cost and the scaling thereof that the algorithm achieves on
geometries of varying size. Rather than relying on wall time (which is sensitive to machine details as well
as varying levels of optimization and code quality), we present an abstract operation count intended to
asymptotically match the number of floating point operations, similarly to the approach of Section C.1. We
account for each entry in the interaction lists of Section C.3 with the counts shown in Table 4. We use the
‘urchin’ test geometries γ2, γ4, . . . , γ10 for this computational experiment.

We show cost data for two pairs of (pqbx, pfmm), corresponding to different accuracies. The first,
(pqbx, pfmm) = (5, 15), corresponds to roughly five digits of accuracy following Table 3, whereas the sec-
ond, (pqbx, pfmm) = (9, 20), corresponds to around seven digits of accuracy.

As in point FMMs, the main tuning parameter that may be used to balance various cost contributions
and minimize computational cost is nmax, the maximal number of particles per box. We chose nmax to
minimize the modeled computational cost, obtaining a value of nmax = 512. The TCF tf mainly trades
off cost and accuracy, we choose tf = 0.9. We show graphs of computational cost across geometry sizes in
Figure 12.

Unlike in two dimensions, we observe that W close and, to a lesser extent, W far dominate the run time of
the algorithm. This is not entirely unexpected, as the size of the TCR, naturally larger by particle count in
three dimensions, makes its influence felt. A further factor in the large contribution of W far is the high cost
of translations even when the target (QBX) expansion is of comparatively low order, cf. Section C.1.

In accordance with the results of Section 5.5, the experiments support the conclusion that the algorithm
exhibits linear scaling in the number of source and target particles, with one decade of geometry growth
(indicated by the vertical grid lines) leading to one decade of cost growth (indicated by horizontal grid lines).

6.4 Cost Implications of the ℓ2-Based Target Confinement Region

Next, we seek to understand the impact of the change in the shape of the TCR, which was box-shaped and
defined by the ℓ∞-norm in the earlier version of our algorithm [57], but which now is spherical and measured
by an ℓ2-norm to better match the actual region of convergence of the obtained local expansions. Table 5
summarizes the results of an experiment determining the comparative cost of both approaches. Both versions
of the algorithm were balanced individually before conducting the experiments, in both cases nmax = 512
turned out to be near-optimal. First, we observe that the algorithmic change has led to a reduction of
(modeled) computational cost by around 25 per cent. We note a marked increase in the cost contribution of
the V list, as well as marked decreases in the cost of the U and W far lists, all of which are indicative of the
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Table 4: Cost per interaction list
entry modeled in Figure 12, i.e.
for a single (source box, target
box) interaction list pair. pfmm

= FMM order and pqbx = QBX
order. ns = number of sources
in the source box and nt = num-
ber of QBX centers in the target
box.

List Cost

Ub pqbx
2nsnt

Vb pfmm
3

W close
b pqbx

2nsnt

W far
b pfmm

3nt

Xclose
b pqbx

2nsnt

X far
b pfmm

2ns

Table 5: A comparison of (modeled, cf. Table 4) cost for the GIGAQBX
FMM between the use of the conventional ℓ∞ box extent norms (anal-
ogous to [57]) and the ℓ2 box extent norms introduced in this article.
Entries in the table show modeled floating point operations in the
sense of Section 5.5. The experiment used the ‘urchin’ geometry γ8
discretized with 48,500 stage-1 elements and 277,712 stage-2 elements,
where each of the latter had 295 nodes. The evaluated columns use
pfmm = 15 and pqbx = 5, corresponding to around five digits of ac-
curacy following Table 3. For brevity, we let p = pfmm and q = pqbx.
Note that the rows shown do not add up to the shown total. The latter
includes minor contributions to the overall cost (such as the upward
and downward passes) that we have omitted.

ℓ∞ (sym.) ℓ∞ ℓ2 (sym.) ℓ2

Ub 2.77× 1010q2 6.92× 1011 9.29× 109q2 2.32× 1011

Vb 6.14× 107p3 2.07× 1011 9.00× 107p3 3.04× 1011

W close
b 8.88× 1010q2 2.22× 1012 7.94× 1010q2 1.99× 1012

W far
b 4.56× 108p3 1.54× 1012 2.59× 108p3 8.76× 1011

Xclose
b 2.62× 109q2 6.55× 1010 5.20× 109q2 1.30× 1011

X far
b 9.51× 108p2 2.14× 1011 9.92× 108p2 2.23× 1011

Total 4.97× 1012 3.78× 1012

higher efficiency of the method with the ℓ2 TCR.

7 Conclusion

This paper introduces a fast algorithm for the accurate evaluation of layer potentials in three dimensions
using Quadrature by Expansion (QBX).

Our work builds on and extends the GIGAQBX algorithm in two dimensions [57]. Many features of
the algorithm carry over broadly unchanged from the two dimensional setting. However, some parts have
required careful redevelopment. A practical QBX implementation must provide a mechanism to control for
truncation error, quadrature error, and error introduced by FMM acceleration. To address these challenges
in three dimensions, our work combines new error estimates for FMM translations in three dimensions, a
new local refinement criterion for truncation error control based on scaled-curvature, and a novel adaptive
refinement scheme for achieving source quadrature resolution. In a series of numerical experiments, we
demonstrate that this combination can achieve high accuracy for layer potential evaluation on complicated
geometries. In particular, we show how the FMM acceleration recovers similar levels of acceleration error
as the point FMM. The numerical evidence for the usefulness of our error control strategies is robust. A
rigorous mathematical treatment of these error control strategies appears eminently feasible in some cases,
such as for translation operators. We leave this as a subject of future investigation.

Additionally, we describe a benign set of sufficient conditions on the geometry under which the running
time of the algorithm has linear complexity. By counting modeled flops on large scale geometries, the scaling
of the algorithm is shown to be linear in practice. The most expensive part of the algorithm is the QBX near
field evaluations. Fortunately, strategies such as changing the shape of the target confinement region are
available to reduce this expense. Further optimizations to the scheme are the subject of ongoing investigation.
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A Area Queries

Area queries were introduced in [48] in two dimensions. We describe their (largely straightforward) three-
dimensional generalization in this section. They form the core mechanism on which the many of the geometric
operations in this article are performed. Given a center c and a radius r, the area query computes the set of
leaf boxes that intersect B∞(r, c). It is assumed that c falls inside the computational domain and that r is
at most the radius of the tree.

Since the area query as a primitive is used to retrieve sets of sources and targets by way of their containing
boxes, it may appear flawed that the area query only considers leaf boxes, when the fast algorithm of Section 5
permits targets (specifically, those with extent, i.e. QBX expansion balls) to occur in non-leaf boxes. This
is not an issue since all application scenarios of the area query (Sections 3.3, 3.4, and 3.5) use it to find
point-shape objects (i.e. objects without extent) which are necessarily found in leaf boxes of the tree.

An area query proceeds by descending the tree towards the query center c until the descent has reached
a box whose size is commensurate with the size of the query box B∞(r, c). This box is referred to as the
guiding box. Specifically, the guiding box is the smallest box whose 1-near neighborhood contains B∞(r, c).
Once this box has been found, only the leaf descendants of the 1-near neighborhood of b need to be checked
for intersection with the query box. The full procedure to carry out an area query is given in Algorithm 5.

Recall that a colleague of a box (what we also refer to as a 1-colleague) is a box on the same level as b
that is adjacent to b. In a non-adaptive tree, the 1-near neighborhood is specified by a box b and its set of
colleagues. In an adaptive tree, this is no longer the case as some colleagues may be missing. The notion of a
peer box is a generalization of a colleague which allows for larger boxes to stand in as colleagues if necessary.
This makes it useful for the area query.

Definition 10 (Peer box [48]). Let b be a box in an octree. A box c is a peer box of b if (a) c is b or adjacent
to b, (b) the size of c is at least the size of b, and (c) no child of c satisfies the previous criteria.

Algorithm 5: Area Query

Require: A center c and a query radius r.
Ensure: Computes the set of leaf boxes which intersect B∞(r, c).

Find the guiding box b
b ← the root box.
loop
if |b| < r ≤ 2|b| or b has no child containing c then
break

end if
b ← the child of b containing c.

end loop
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Parameter Choice

R {0.1, 1, 10}
ρ {0.1, 1, 10}
r {0.25ρ, 0.5ρ, 0.75ρ}
q {3, 5, 10, 15, 20}
p {3, 5, 10, 15, 20}

Table 6: Summary of parameters chosen for the numerical experiments used to obtain the results in Sec-
tions 4.3.1, 4.3.2, and 4.3.3.

Check leaf descendants of b’s peers
for all peers p of b do
for all leaf descendants l of p do
if B∞(r, c) ∩ l is nonempty then

Add l to the output set.
end if

end for
end for

B Numerical Experiments in Support of FMM Translation Error
Estimates

The code used for the numerical experiments performed to obtain the results of Section 4 is available at [56].
In this appendix, we describe the procedure the code uses.

B.1 Multipole and Multipole-to-Local Accuracy

We use the notation of Section 4.3.1. Hypothesis 1 pertains to the accuracy of approximating a local
expansion using an intermediate multipole expansion.

As a numerical experiment, we test the truth of this hypothesis at selected values of the parameters
(R, r, ρ, p, q). For a given value of these parameters, estimate of the value EM (q) (25) is produced by
sampling this value at 422 · 57 tuples of the form (s, c, c′, t). The values of the parameters (R, r, ρ, p, q) are
chosen according to Table 6. In total, 675 parameter tuples are tested.

The details of the sampling procedure are as follows. A multipole expansion center is placed at c =
(0, 0, R+ ρ). First, 42 sources s are selected from the sphere of radius r centered at c. Second, 57 centers c′

are selected in the ball of radius R centered at the origin. Third, for each center c′, 42 targets t are selected
from the sphere of radius R− |c′| centered at c′.

The points selected on the sphere are selected to be approximately equispaced [13] and included the poles
of the sphere. The points in the ball are selected from concentric spheres inside the ball.

For each sampled value (s, c, c′, t), the multipole expansion due to s is formed at c and translated to
a local expansion centered at c′. The quantity EM (q) is evaluated at the target t. We save the largest
observed value of EM (q) and take this as an upper bound on that quantity for the given set of parameters
(R, r, ρ, p, q).

Hypothesis 3 in Section 4.3.3 pertains to the accuracy of a local expansion approximated by an inter-
mediate multipole and local expansion. This hypothesis is the same geometric setting as Hypothesis 1. We
follow an identical sampling procedure to obtain a numerical estimate of the quantity EM2L(q) (27).
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B.2 Local Accuracy

Section 4.3.2 uses a different geometrical scenario from the multipole case. Hypothesis 2 in this section
pertains to the accuracy of approximating a local expansion using an intermediate local expansion.

This hypothesis is tested at selected values of the parameters (r, ρ, p, q). For a given value of these
parameters, we obtain an estimate of the quantity EL(q) (26) by sampling a set of 42 · 57 tuples of the form
(s, c, t) using a sampling procedure. The parameters are taken according to Table 6, with a total of 225
parameter tuples tested.

The details of the sampling procedure are as follows. First, the source s is placed at (0, 0, ρ). Second,
57 centers c are chosen from inside the ball of radius r centered at the origin. Third, each center c, 42 targets t
is chosen from the sphere of radius r − |c| centered at c.

For each value of the tuple (s, c, t), a p-th order local expansion due to s is formed at the origin. The local
expansion is subsequently translated to a q-th order local expansion at c. The quantity EL(q) is evaluated
at t. The largest observed value of EL(q) is taken as an estimate of the upper bound on the quantity.

C Detailed Complexity Analysis

This section provides the details of the complexity analysis from Section 5.5, under the assumptions high-
lighted in Section 5.5.1. In Section C.1 and C.2 we review the complexity of translations and the effect of
the particle distribution. Section C.3 provides the details supporting the analysis in Table 1.

We use the parameters from Table 2 throughout this section. In addition to the parameters from this
table, we make use of the following notation. First, we let S and C denote, respectively the sets of sources
and QBX centers in the tree. Second, given a particle p in the tree, we let bp denote the box owning p.

C.1 Complexity of Translation Operators

A p-th order multipole/local expansion requires (p+ 1)2 expansion coefficients. The (p+ 1)2 corresponding
basis functions for the coefficients may be evaluated in O(p2) time using well-known recurrences [14, Ch. 14].
As a result, we model the cost of forming or evaluating a p-th order multipole/local expansion in spherical
harmonics as p2 operations, which is correct to leading order.

The cost of translations of spherical harmonic expansions (multipole/local → local) may be modeled as
follows. With a simple extension to the commonly used ‘point and shoot’ translation scheme [25], a p-th
order expansion can be translated into a q-th order expansion in the following three steps:

1. Rotate the coordinate system so that the translation direction is along the z-axis at a cost of O(p3)
operations.

2. Translate the expansion at a cost of O(pq2) operations.

3. Rotate the coordinate system back into the original at a cost of O(q3) operations.

It follows that the complexity of a translation operator is O(max(p, q)3). If we assume that pqbx ≤ pfmm,
the cost of translating a pfmm-th order expansion into a pqbx-th order expansion can be modeled as pfmm

3

operations.

C.2 Effect of Particle Distribution

The running time of the GIGAQBX FMM cannot be entirely independent of the particle distribution. Unlike
the point FMM, the algorithm may place more than nmax particles in a box. This occurs due to clustering
of QBX centers in boxes because of the target confinement rule. This phenomenon cannot be disregarded
as it occurs in practice even with smooth geometries.

To handle this in the complexity analysis, we find it useful to distinguish between QBX centers that have
‘settled’ in a leaf box and those that are ‘suspended’, i.e. that cannot be placed in a lower box due to target
confinement restrictions. By definition, only the latter kind of centers can cluster in the tree beyond nmax

particles per box.
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Definition 11 (Leaf-settled / suspended centers). Suppose the tree has been constructed following Algo-
rithm 4. Call a center c owned by a box b a suspended center if c cannot be placed in any hypothetical
child box of b due to target confinement restrictions. A center that is not suspended in any box is called
leaf-settled.

To bound the number of algorithmic operations involving suspended QBX centers, we introduce a pa-
rameter into the complexity analysis that corresponds to the average size of a ‘neighborhood’ of a suspended
QBX center—in other words, the average number of sources with which a QBX center must interact directly.
While this quantity may at first seem to be tied to the tree structure imposed on the geometry, it is possible
to bound this quantity independently of the tree. A tree-independent bound on this quantity follows from
the following lemma.

Lemma 8 (Size of a suspended QBX expansion ball relative to box neighborhood). Let c be a suspended
QBX center of radius rc owned by the box bc. Then the closed cube B∞(4

√
3rc/tf , c) is, geometrically, a

superset of the 2-near neighborhood of bc.

Proof. For any box b, the Euclidean distance from a point x inside b to a point on the boundary of TCR(b)
is at least

√
3|b|tf . This distance is minimized when x is a box corner.

Since c is suspended, c cannot fit in any hypothetical child box of bc, which has radius |bc|/2. It follows
from the previous observation that

rc >
√
3|bc|tf/2.

Regardless of where c is located in bc, B∞(c, 6|bc|) is a superset of the 2-near neighborhood of b. The claim
follows by observing 4

√
3rc/tf > 6|bc|.

The quantity MC is then defined as follows:

MC :=
1

NC

∑︂
c∈C

⃓⃓⃓
S ∩B∞(4

√
3rc/tf , c)

⃓⃓⃓
where rc is the radius of the center c. The following proposition is an immediate consequence of the definition
of MC and the previous lemma.

Proposition 9 (Bound on 2-near-neighborhood interactions for QBX expansions). The number of source-
center pairs (s, c), such that c is a suspended QBX center and s is a source particle in the 2-neighborhood of
the box owning c, is at most NCMC .

C.3 Complexity of Algorithmic Stages Associated with Interaction Lists

Proposition 10 (Number of larger leaf boxes in the 1-neighborhood of a box). Let b be a box. There are
at most 27 leaf boxes at least at large as b intersecting the 1-near neighborhood of b.

Proof. Let l be such a leaf box. If l ̸= b, choose a box cl which is a colleague of b that is geometrically
contained inside l. The mapping l ↦→ cl is injective, and b has at most 33 − 1 = 26 colleagues.

Lemma 11 (List 1 complexity). The amount of work done in Stage 3 (direct evaluation of the potential
from adjacent source boxes) is at most

(27(NC +NS)nmax +NCMC)pqbx
2.

Proof. Define the set U as U = {(s, c) | bs ∈ Ubc}. Each source-center interaction costs pqbx
2 operations.

The number of Stage 3 interactions is |U |, so the cost of Stage 3 is at most pqbx
2|U |. U may be written as a

disjoint union U = Ubig ∪ Usmall, where Ubig contains all pairs (s, c) such that |bs| ≥ |bc|.
For any center c, Proposition 10 implies that there may be at most 27nmax sources in leaf boxes at least

as large as bc contributing to the potential via Ubc . Thus |Ubig| ≤ 27NCnmax.
In a similar way, one can show that there are at most 27NSnmax pairs (s, c) ∈ Usmall such that c is a

leaf-settled center. By Proposition 9, there are at most NCMC pairs (s, c) ∈ Usmall such that c is a suspended
center. It follows that |Usmall| ≤ NCMC + 27NSnmax.
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Lemma 12 (List 2 complexity). The amount of work done in Stage 4 (translation of multipole to local
expansions) is at most 875NBpfmm

3.

Proof. There are at most NB boxes. The size of List 2 for a box b is at most 103 − 53 = 875, since there
are at most 103 descendants of 2-colleagues of the parent of b, of which 53 are 2-colleagues of b itself so they
cannot be in List 2 of b. Each multipole-to-local translation costs pfmm

3 operations.

Lemma 13 (List 3 complexity). The amount of work done in Stage 5 (evaluation of List 3 close and far)
is at most

NCMCpqbx
2 + 124LNSnmaxpqbx

2.

Proof. We make the simplifying assumption that all Stage 5 interactions are mediated by List 3 close.
This assumption will not lead to an undercount of the cost of the Stage 5 interactions, if the optimization in
Remark 5 has been applied. Recall that a List 3 far interaction is a multipole-to-target interaction, and a List
3 close interaction is a source-to-target interaction. The only way the above assumption could undercount
the cost of Stage 5 is if a List 3 far interaction were more expensive than the equivalent interactions that
occur with the leaf descendants using List 3 close. But if a List 3 far interaction is more expensive than List
3 close interaction, the interaction of the former type may be converted to the latter type with no loss in
accuracy.

Under this assumption, Proposition 9 implies that the cost of all Stage 5 interactions aimed at suspended
centers is at most NCMCpqbx

2.
Now, consider the Stage 5 interactions aimed at leaf-settled centers. Let s be a source owned by a box bs.

If s interacts via List 3 close with a leaf-settled center c, then c must be owned by a box that is a 2-colleague
of either bs or an ancestor of bs. A box has at most 53 − 1 = 124 boxes that are 2-colleagues. Since each
source-center interaction costs pqbx

2 and there are at most nmax leaf-settled centers per box, the cost of all
interactions aimed at leaf-settled centers is at most 124LNSnmaxpqbx

2.

Remark 14 (Effect of level-restriction on List 3 complexity). The factor of L in Lemma 13 suggests that
Stage 5 has a worst-case superlinear scaling. A number of modifications to the algorithm are available that
can provably remove the asymptotic factor of L. For instance, a cost estimate for Stage 5 that is independent
of L may be derived assuming that the tree is level-restricted, meaning that adjacent leaves differ by at most
one level, and that tf <

√
3− 1 ≈ 0.73.

For tf <
√
3−1, TCR(b) is contained strictly inside the 1-neighborhood of b. If the tree is level-restricted,

this implies that if b is a leaf box, any box in W close
b ∪W far

b cannot be more than a constant factor smaller
than b. This further implies that for a leaf box b, the quantity |W close

b ∪W far
b | is at most a constant that

depends on tf and on the dimension. This can be used to construct a cost estimate independent of L. We
leave the details of the derivation to the reader.

Using a level-restricted tree does not impact the asymptotic scaling of any other stage of the algorithm.
Any octree tree may be converted to be level-restricted by repeatedly subdividing the larger of the leaf boxes
that violate the level-restriction criterion. The level-restricted tree that results has a constant factor as many
boxes. See [44] for details.

Lemma 15 (List 4 complexity). The cost of all Stage 6 interactions (evaluation of the potential due to List
4 close and far) is at most

375NBnmaxpfmm
2 + 250NCnmaxpqbx

2.

Proof. First, we show |Xb| ≤ 125. Every box in Xb is a leaf that is either a 2-colleague of b not adjacent to b,
or adjacent to the parent of b and at least as large as the parent of b. There are at most 53 − 33 = 98 boxes
that fall into the first category and, by Proposition 10, at most 27 boxes that fall into the second category.

Next, we show that Xclose
b ⊆ Xb ∪XParent(b), which implies that |Xclose

b | ≤ 250. Recall that Xclose
b must

be a subset of the List 4’s of the ancestors of b. If b′ is an ancestor of b, then b must be separated by an ℓ∞

distance of 2k+1|b| from any box in Xb′ . In particular, consider a box e ∈ Xg, where g is k ≥ 2 levels above
b. Then e will be separated by an ℓ∞ distance of at least 8|b| from b. It follows that the ℓ∞ distance from
the center of b to the boundary of e is at least 9|b|, which is at least 3(1+ tf )|b| (since tf < 2 by assumption).
Thus TCR(b) ≺ e from the definition of ‘≺’. It follows that Xclose

b is disjoint from the List 4 of a grandparent
of b or above.

39



Finally, |X far
b | ≤ 375 follows since, by definition, X far

b ⊆ Xb ∪Xclose
Parent(b).

The cost estimate follows since, for List 4 close, each center will interact directly with at most 250nmax

source particles, with each interaction costing pqbx
2. For List 4 far, each box will interact with at most

375nmax source particles, at a cost of pfmm
2 per interaction.

References

[1] K. E. Atkinson and D. Chien, Piecewise polynomial collocation for boundary integral equations, SIAM
Journal on Scientific Computing 16.3 (1995), pp. 651–681, doi: 10.1137/0916040.

[2] A. H. Barnett, Evaluation of Layer Potentials Close to the Boundary for Laplace and Helmholtz
Problems on Analytic Planar Domains, SIAM Journal on Scientific Computing 36.2 (2014), A427–
A451, doi: 10.1137/120900253.

[3] J. T. Beale and M.-C. Lai, A method for computing nearly singular integrals, SIAM Journal on
Scientific Computing 38.6 (2001), pp. 1902–1925, doi: 10.1137/S0036142999362845.
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