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Abstract: We study the local dynamics near general unstable traveling waves of the 3D
Gross–Pitaevskii equation in the energy space by constructing smooth local invariant
center-stable, center-unstable and center manifolds. We also prove that (i) the center-
unstable manifold attracts nearby orbits exponentially before they go away from the
traveling waves along the center or unstable directions and (ii) if an initial data is not on
the center-stable manifolds, then the forward orbit leaves traveling waves exponentially
fast. Furthermore, under an additional non-degeneracy assumption, we show the orbital
stability of the travelingwaves on the centermanifolds,which also implies the uniqueness
of the local invariant manifolds. Our method based on a geometric bundle coordinate
system should work for a general class of Hamiltonian PDEs.

1. Introduction

Consider the Gross–Pitaevskii (GP) equation

iut + �u + (1− |u|2)u = 0, u = u1 + iu2 : R × R
3 → C, (GP)

where u satisfies the boundary condition |u| → 1 as |x | → ∞. The (GP) equation
arises in various physical problems, such as superconductivity, superfluidity in Helium
II, and Bose-Einstein condensate (for example [1,8]). Formally, the (GP) equation is a
Hamiltonian PDE associated to the energy

E(u) = 1

2

∫
R3

|∇u|2dx +
1

4

∫
R3

(1− |u|2)2dx, (1.1)

and the energy space is

X0 = {u ∈ H1
loc(R

3) : ∇u ∈ L2(R3), 1− |u|2 ∈ L2(R3)}. (1.2)
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The global well-posedness of (GP) in X0 was proved by Gérard [20]. From the definition
of X0, it is clear that the real part and imaginary part of a function in X0 mayhave different
spatial decay rates, which makes the analysis of this equation quite different from the
classical NLS.

Due to the translation invariance of (GP), the momentum P(u) = 1
2

∫
R3〈i∇u, u −

1〉dx is also formally conserved. We denote each component of P(u) as

Pj (u) = 1

2

∫
R3
〈i∂x j u, u − 1〉dx = −

∫
R3
〈u1 − 1, ∂x j u2〉dx (1.3)

for j = 1, 2, 3. The corresponding relative equilibria are traveling wave solutions to
(GP) in the form of Uc(x − ct) where c ∈ R

3 and Uc satisfies

−ic · ∇Uc + �Uc + (1− |Uc|2)Uc = 0. (1.4)

Due to the rotational invariance of (GP), we only need to consider those traveling waves
traveling in x1 direction, i.e., u(t, x) = Uae1(x − ae1t), where e1 = (1, 0, 0)T .

Traveling waves with finite energy play a very important role in the dynamics of
(GP). In a series of papers [2,3,23,30,31], the existence, some qualitative properties,
and the stability of traveling waves have been studied formally. A rigorous mathematical
study was initiated by Béthuel and Saut in [13], in which they proved the existence of
traveling waves for 2D (GP) with small |c| << 1, followed by [10–12,15,24,25,39,40].
In particular,Mariş [40] constructed a full branchof subsonic travelingwaves for 3D (GP)
by minimizing the energy-momentum functional subject to a Pohozaev type constraint.

Given any travelingwave solutionUc = (uc, vc) of (GP)with traveling speed c ∈ R
3,

|c| ∈ (0,
√
2), its spatial translations form a 3D manifold

M = {Uc(· + y) : y ∈ R
3}

of traveling waves. The main goal of this paper is to study the local dynamics of (GP)
near suchM of an unstable traveling wave Uc (see the remark on instability right after
Theorem 1.4).

We rewrite (GP) in the traveling frame u(t, x) = U (t, x − ct), where U satisfies

i∂tU − ic · ∇U + �U + (1− |U |2)U = 0. (1.5)

It is clear that Uc is a steady state of (1.5). Linearizing (1.5) at Uc, one has

∂tU = J LcU, J =
(

0 1
−1 0

)
, Lc = (E + c · P)′′(Uc), U ∈ X1 = H1 × Ḣ1.

(1.6)

A more explicit expression of Lc can be found in (2.11). Under a mild spatial decay
assumption (2.6) ofUc, it is straightforward to verify that the tangent space of the energy
space X0 at Uc is X1, where naturally the linearized equation (1.6) should be consid-
ered. The linearized energy-momentum quadratic form Lc : X1 → X∗

1 is bounded,
symmetric, and uniformly positive except in finitely many directions. Even though the
symplectic operator J−1 = J ∗ = −J : X∗

1 → X1 is not bounded and thus the classic
framework of Grillakis–Shatah–Strauss [26,27] does not apply to (1.6), the recent re-
sults in [37] are applicable to analyze J Lc. Consequently, (1.6) satisfies the following
exponential trichotomy property (even without the non-degeneracy assumed in [36]).
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Lemma 1.1. There exist C, λ, d̃ > 0 and closed subspaces Xc, Xu, Xs of X1 invariant
under eJ Lc such that X1 = Xu ⊕ Xc ⊕ Xs, d = dim Xu = dim Xs < ∞, and

‖eJ Lc |Xs‖ ≤ Ceλt , ∀t ≥ 0, ‖eJ Lc |Xu‖ ≤ Ceλt ; ∀t ≤ 0,

‖eJ Lc |Xc‖ ≤ C(1 + |t |d̃), ∀t ∈ R.

The exponential trichotomy both describes the linear dynamics near the traveling
waves and provides a framework to analyze the local nonlinear dynamics.

If Xu,s = {0}, Uc is spectrally stable and it actually implies the nonlinear orbital
stability of M under some additional assumptions (see, for example, [17,36]). If Uc
is spectrally unstable with d > 0, conceptually one expects the existence of locally
invariant submanifolds which can be viewed as the deformation from the invariant sub-
spaces under small nonlinear perturbations. Here the local invariance of a submanifold
N means that, for any initial value U (0) in the interior ofN , the solution U (t) ∈ N ,
t ∈ (−T, T ), for some T > 0, and thus it can exit N only through its boundary. The
locally invariant submanifolds related to the exponential trichotomy are the unstable and
stable manifolds of Uc and the center-unstable, center-stable, and center manifolds of
M . The former two containUc and are tangent to Xu and Xs atUc, while the latter three
ones should contain M , be translation invariant, and be tangent to Xcu = Xu ⊕ Xc,
Xcs = Xs ⊕ Xc, and Xc. Some comments on their dynamic significance:
1.) The nonlinear dynamics in these invariant manifolds are reflected by the correspond-
ing linear ones, or even exactly conjugate in the case of the unstable and stablemanifolds.
For example, the unstable manifold can be characterized as the set of initial data near
Uc whose solutions converge toUc as t → −∞ and go away fromUc at least at certain
exponential growth rate as t increases. This immediately provides a stronger result than
the mere nonlinear instability.
2.) These invariant manifolds provide a framework to organize the local dynamics. For
a typical initial value near M , its trajectory would first approach the center-unstable
manifold along the direction of Xs and then exit the neighborhood of M along the Xu

direction, constituting a saddle type dynamics.
3.) Numerics [9] indicate that after leaving a neighborhood of unstable traveling waves
(upper branch), the orbits of (GP) scatter to either stable traveling waves (lower branch)
or constant states. Under non-degeneracy conditions (H1-2) in Sect. 6, there is orbital
stability on the center-stablemanifoldswhich provides a third type of dynamics not easily
observed in numerics, where orbits stay close toM for all t > 0. In the case where the
center-stable manifold is co-dim 1, it very likely serves as the boundary between the first
two types of asymptotic behaviors. Combined with other tools like the virial identity,
such classification of dynamics near unstable solitons based on invariant manifolds has
been obtained for models including the Klein-Gordon and NLS [41,42].

Under some additional conditions, the 1-dim unstable and stable manifolds of an
unstable traveling wave Uc were constructed in X0 ∩ H3 in [36]. As they represent low
dimensional special structures in the phase space, it is indeed more desirable for them
to have extra properties such as higher Hk regularity, k > 1.

Themain results of this paper are the existence, smoothness, and some dynamic prop-
erties of the center-stable, center-unstable, and center manifolds of unstable traveling
waves of (GP). In contrast to the finite dimensional stable and unstable subspaces, as the
center subspace has a finite codimension, it is more preferable for these invariant man-
ifolds to be constructed and describe the dynamics in the energy space X0. Moreover,
on a center manifold where its topology is the same as the one of the energy space, the
energy conservation provides a crucial control on the nonlinear dynamics.
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Theorem 1.2. Let Uc be a traveling wave of (GP) satisfying the spatial decay condition
(2.6) and that ∃ λ ∈ σ(J Lc) with Reλ > 0, (i.e. d = dim Xu,s > 0), then

(1) There exist the locally invariant co-dim d center-unstable and center-stable mani-
folds W cu and W cs and the co-dim 2d center manifold W c, all containing M .

(2) W cu, W cs , W c are translation invariant, i.e. if U ∈ W cu,cs,c, then U (· + y) ∈
W cu,cs,c for any y ∈ R

3.
(3) Letψ be defined in (2.2), thenψ−1(W cu,cs,c) are smooth submanifolds of X1. More-

over, the tangent spaces of ψ−1(W cu,cs,c) at ψ−1(Uc) are equal to
(Dψ−1)(Uc)Xcu,cs,c.

(4) Orbits in a small neighborhood of M are exponentially attracted to W cu as t in-
creases (before they possibly exit the neighborhood in the center-unstable directions),
while repelled exponentially by W cs .

(5) W c = W cu ∩W cs ⊃ M is the transversal intersection of W cu and W cs .

Remark 1.3. In the above neither the non-degeneracy ker Lc = span{∂x jUc | j =
1, 2, 3} of Lc nor that Uc is a ground state obtained in [40] is assumed. Without such
non-degeneracy, traveling waves for the given wave speed c may not be locally unique.
However, all nearby traveling waves with close wave speeds must belong to W c. See
Proposition 4.19.

As X0 is not a flat space, we identify X0 with X1 through a coordinate map ψ :
X1 → X0 given in (2.2), borrowed from [21]. So these invariant manifolds are smooth
in the sense that their images under ψ−1 are smooth submanifolds in X1. The above
statement (4) also implies that W c exponentially attracts nearby orbits in W cs and
exponentially repels those inW cu (before they possibly exit a neighborhood ofM along
Xc). Consequently M is orbitally unstable. More detailed statements of the results are
given in Sects. 4 and 5.

It is well-known that center-unstable manifolds, et. al. are not unique even for ODEs
and the dynamics, including the stability, on the center manifold is rather subtle. How-
ever, under non-degeneracy conditions (H1-2) which ensure the uniform positivity of
Lc on Xc/ ker Lc, in Sect. 6 we prove

Theorem 1.4. Assume (H1-2) in addition, then there exist C, δ > 0 such that

(1) Given any initial value U (0) such that ψ−1
(
U (0)

)
is in a (C−2δ)-neighborhood of

ψ−1(M ), then U (0) ∈ W cu,cs if and only if ψ−1
(
U (t)

)
is in a δ-neighborhood

of ψ−1(M ) for all ∓t ≥ 0, and U (0) ∈ W c if and only if ψ−1
(
U (t)

)
is in a

δ-neighborhood of ψ−1(M ) for all t ∈ R.
(2) M is orbitally stable in W c and W cu,cs,c are locally unique.

Remarks on the Instability of Traveling Waves of (GP). Firstly, the existence of
unstable traveling waves of the 3D (GP) was first suggested in [30], where a Derrick-
type argument was used to show that the numerically derived traveling waves in the
upper branch in the energy-momentum plane are not energy minimizers under fixed
momentum. Such instability was further supported by numerical evidence in [30] that
initial perturbations near the upper branch can evolve toward the stable lower branch.
A Grillakis–Shatah–Strauss type stability criterion was formulated based on numerics
and heuristic arguments [9,30] and then later rigorously proved [36] for the traveling
waves constructed by Mariş [40]. Moreover, a variation of this criterion was used to
obtain rigorously the spectral instability of a slow traveling wave of the 2D NLS with
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non-vanishing condition at infinity in [36]. Secondly, in [9], numerical computations
with high resolutions were performed to find eigenvalues of the 105 × 105 matrices
obtained from the discretization of the linearized (GP) along the whole upper branch.
At each of such traveling waves, only one unstable eigenvalue was identified and it has
cylindrical symmetric eigenfunctions (consistent with [36]). The maximal exponential
growth rate is approximately 0.012. Thirdly, when c → √

2−, it was formally shown
in [31] and later rigorously proved in [16] that properly rescaled traveling waves of 3D
(GP) converge to solitarywaves of 3DKP-I equation.A formal leading order relationship
between the eigenvalues of (GP) and the 3D KP-I equation was also given in [9]. As
the ground state solitary waves of the 3D KP-I display certain instability [38], it also
indicates such for some traveling waves of (GP). On the one hand, we fully admit
that we are not aware of any existing traveling waves of the 3D (GP) having been
rigorously proved to be spectrally unstable. On the other hand, we feel that there have
been strong enough indications, particularly the numerics in [9], of the existence of
spectrally unstable traveling waves to warrant the study of the local dynamics of the 3D
(GP) near such waves.

Among previous results on local invariant manifolds of relative equilibria of disper-
sive PDEs, Bates and Jones [4] proved a general theorem on the existence of Lipschitz
locally invariant manifolds of equilibria for semilinear PDEs by the graph transform
method and then applied it to the radial Klein-Gordon equation combined with an en-
ergy argument. In [44], Schlag constructed a co-dimension 1 center-stable manifold of
the manifold of ground states for the 3D cubic NLS in W 1,1(R3)

⋂
W 1,2(R3) under an

assumption that the linearization of NLS at each ground state has no embedded eigen-
value in the essential spectrum and proved the scattering on the center-stable manifold.
Later this result was improved by Beceanu [6,7] who constructed center-stable mani-
folds in W 1,2(R3)

⋂ |x |−1L2(R3) and in critical space Ḣ1/2(R3). Similar results were
obtained in Krieger and Schlag [35] for the supercritical 1D NLS. Nakanishi and Schlag
[41] constructed a center-stable manifold of ground states for 3D cubic NLS in the en-
ergy space with a radial assumption by using the framework in Bates and Jones [4].
Nakanishi and Schlag [43] constructed center-stable manifolds of ground states for non-
linear Klein-Gordon equation without radial assumption, following a graph transform
approach. Also, see [22,32–34,42] for related results.

At a rough conceptual level, our proof follows the framework as in [14,19]. How-
ever, instead of being near a steady state, our construction is around the 3-dim invariant
manifold M , which is qualitatively comparable to [18], a more general result in finite
dimensions. A rather naive initial attempt may be to construct the local invariant man-
ifolds near Uc(· + y) for each y ∈ R

3 and then patch them together to obtain W cu,cs,c.
While the local construction for each y may follow from the standard procedure com-
bined with some space-time estimates, it is highly questionable whether such ‘patch-up’
is possible as these local invariant manifolds of eachUc(· + y) are not unique in the first
place. Therefore as in [43] we construct W cu,cs,c as the center-unstable, center-stable,
and center manifolds of the wholeM instead of the individual Uc(· + y). This requires
a coordinate system in a neighborhood ofM . A rather natural option would be

U = ψ
(
�(y, wu, ws, wc)

) = ψ
(
ψ−1(Uc)(· + y) + wu(· + y) + ws(· + y) + wc(· + y)

)

where Dψ(Uc)w
u,s ∈ Xu,s , Dψ(Uc)w

c ∈ X̃ c, and X̃ c is a fixed subspace of Xc

transversal to span{∂x jUc : j = 1, 2, 3}with codim-X̃ c = 2d +3. The possible polyno-

mial growth of eJ Lc in some directions in X̃ c are too weak compared to its exponential
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decay along Xu,s (as t → ∓∞) to cause any real trouble. However, a more serious issue
is that the above local coordinate mapping � is a homeomorphism but not a diffeomor-
phism from its domain to its image in X1. In fact,

Dy�(y, wu, ws, wc) =
(
∂y
(
ψ−1(Uc)

)
+ ∂yw

u + ∂yw
s + ∂yw

c
)
(· + y).

While the first three terms on the right side belong to X1 due to the high regularity of
Uc and functions in Xu,s , in general the last term ∂yw

c ∈ L2 only as wc ∈ X̃ c and X̃ c

is of finite co-dim in X1 = H1 × Ḣ1.
This issue of loss of regularity due to the translation parametrization also appeared in

previous works on other PDE models such as [5] and [43], in the latter of which it was
handled by a rather analytically oriented nonlinear ‘mobile distance’. Here instead we
adopt a more geometric bundle coordinate system used in [5], based on the observation
that, while the above parametrization by the spatial translation of y is not smooth with
respect to y, the vector bundles {w ∈ X1 : w(· − y) ∈ Xu,s,c} are smooth in y. In
such a framework based on vector bundle coordinates, some second fundamental form
type quantities are to be carefully treated in the rather technical but intuitive analysis.
See also Remark 2.6. Based on this coordinate system, we decompose equation (GP)
and, as in the standard procedure in constructing local invariant manifolds, we cut off
the nonlinear terms (except the ones corresponding to the second fundamental form of
the center bundle) outside a small neighborhood of M . Our subsequent estimates are
mainly based on the exponential trichotomy and the energy conservation and involve
minimal amount of dispersive estimates in Sect. 3. In particular, no spectral assumptions
such as the nonexistence of embedded eigenvalues or resonance are needed.

At this stage, with the estimates of non-homogeneous linear equations in Sect. 3, one
may apply the usual Lyapunov-Perron integral equationmethod or the graph transformof
Hadamard to obtain invariant manifolds for the modified system (with the cut-off) which
coincides with the original one near M . While we obtained the invariant manifolds
by conceptually following the procedure in [14,19] which is more in line with the
Lyapunov-Perron method, one could also choose to estimate the time-T map of the
modified equation and then apply the graph transform method as in [5,18].

While we focus on local invariant manifolds of traveling waves of the 3D (GP) in
this paper, we believe that this framework is rather general and it could be adapted with
minimal modifications to yield local invariant manifolds of unstable relative equilibria,
including ground states and excited states, of a class of Hamiltonian dispersive PDEs
such as the NLS, nonlinear Klein-Gordon equations, etc., involving finite dimensional
symmetry groups such as the phase rotations, spatial translation or rotations, etc. Gen-
erally, the main necessary assumptions would just be that the Hessian of the modified
energy functional at the relative equilibria (like Lc) has only finitely many negative
directions, so that the linear analysis in [37] is applicable. In fact, we also constructed
local invariant manifolds of traveling waves of supercritical gKdV equation and analyze
the nearby dynamics [29].

The paper is organized as follows. In Sect. 2 we set up the basic framework for the
construction of local invariant manifolds of M . Section 3 is on the estimates of non-
homogeneous linear equations. The existence of Lipschitz local invariant manifolds and
some of their properties related to the local dynamics are obtained in Sect. 4, while the
smoothness is obtained in Sect. 5. The non-degenerate case under assumption (H1-2) is
analyzed in Sect. 6. Finally, some tedious technical details are left in the Appendix.
Notations. Throughout the paper, we follow the following notations:
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• Ḣ s : the homogeneous Sobolev space {u | |D|su ∈ L2}.
• X0: the energy space defined in (1.2).
• X1 = H1 × Ḣ1 defined in (1.6).
• 〈·, ·〉: Euclidean or L2 duality pair unless specified otherwise.
• The generic upper bound C is always independent of y ∈ R

3.
• Differentiations are usually not with respect to c, unless specified.

2. A Coordinate System Near Traveling Waves

In this section, we rewrite equation (GP) in an appropriate local coordinate system near
traveling waves.

2.1. Structure of X0 and a generalization of the momentum. Any u ∈ X0 can be written
as u = α(1 + v) where α ∈ S1 and v ∈ Ḣ1(R3) satisfying

|1 + v|2 − 1 = 2Re(v) + |v|2 ∈ L2(R3).

The distance on the energy space is introduced as following. Given u = α(1 + v) and
ũ = α̃(1 + ṽ) in X0, we define the distance d by

d(u, ũ) = |α − α̃| + ‖∇v − ∇ṽ‖L2(R3) +
∥∥|1 + v|2 − |1 + ṽ|2∥∥L2(R3)

. (2.1)

Select χ(ξ) ∈ C∞
0 (R) such that χ(ξ) = 1 near ξ = 0 and define the Fourier

multiplier χ(D) as

χ̂ (D)u(ξ) = χ(|ξ |)û(ξ).

Lemma 2.1. ([21]), The mapping

ψχ : S1 × (H1(R3) + i Ḣ1(R3)) → X0

(α,w) �→ α

(
1 + w − χ(D)

(
(Im(w))2

2

)) (2.2)

is a homeomorphism.

Remark 2.2. Note that X0 is not a linear space, but this homeomorphism between H1×
Ḣ1 and X0 allows us to work in the linear space H1 × Ḣ1. Since Ḣ1(R3) ⊂ L6(R3),
the above α ∈ S1 is invariant for any solution of (GP), which can be fixed to be 1 due to
the phase invariance of (GP). Also, this structure of X0 does not depend on the choice
of the cut-off function χ . To simplify the notation, we will fix α = 1 and wrote ψ(w)

for ψχ(1, w). Apparently, ψ−1 is given by

ψ−1(u + iv) = (u − 1 +
1

2
χ(D)(v2), v

)
. (2.3)
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The coordinatemappingψ commuteswith the translation and SO(3) action. Namely,
let y ∈ R

3 and Q3×3 be an orthogonal matrix with det Q = 1, then

ψ
(
α,w(Q·)) = ψ(α,w)(Q·), ψ

(
α,w(· − y)

) = ψ(α,w)(· − y). (2.4)

This is useful as (GP) is invariant under the translation and SO(3) action.
Let X1 = H1 × Ḣ1. By Lemma 2.1, for any u ∈ X0, there exits a unique w =

w1 + iw2 ∈ X1 such that u = ψ(w). As in [36], extend the domain of the momentum
to X1 as

P̃(w) = −
∫
R3

[
w1 + (1− χ(D))

w2
2

2

]
∇w2dx, P̃ ∈ C∞(X1, R). (2.5)

One can see that P̃(w) = P(u) when u = ψ(w) ∈ 1 + H1(R3).

2.2. A local form of theGP equation near a traveling wavemanifold. Consider a smooth
and bounded traveling wave solution Uc = uc + ivc of (GP) with the traveling velocity
c ∈ R

3 satisfying |c| ∈ (0,
√
2), we first rewrite the equation in the traveling frame in a

neighborhood of Uc. Assume

lim|x |→∞

(
|x |2(|ReUc(x) − 1| + |∇ReUc|

)
+ |x ||ImUc(x)|

)
= 0. (2.6)

Such traveling waves exist as proved [25,40]. In terms of the coordinate mapping ψ

given in (2.2), let

wc := ψ−1(Uc) = (w1c, w2c) ∈ X1.

The traveling wave manifold {Uc(· + y) | y ∈ R
3} with wave velocity c generated by

Uc is invariant under (GP). To study the nearby dynamics, we rewrite solutions in the
traveling frame u(t, x) = U (t, x − ct) and then U (t, x) satisfies

i∂tU − ic · ∇U + �U + (1− |U |2)U = 0 (2.7)

or in the abstract form

∂tU = J (E + c · P)′(U ), J =
[
0 1
−1 0

]
(2.8)

where we recall E and P are the energy and momentum defined in (1.1) and (1.3),
respectively, and J is the matrix representation of −i . The traveling wave Uc generates
a manifold of equilibria of (2.8):

M = {Uc(· + y) : y ∈ R
3}. (2.9)

Our main goal is to construct local invariant manifolds ofM . For any y ∈ R
3, let

Kc,y

(
w1
w2

)
= Dψ

(
wc(· + y)

) (w1
w2

)
=
(

w1 − χ(D) (vc(· + y)w2)

w2

)
. (2.10)
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and

Lc,y = (E + c · P)′′(Uc(· + y)
)

=
[−� − 1 + (3u2c + v2c )(· + y) −c · ∇ + 2(ucvc)(· + y)

c · ∇ + (2ucvc)(· + y) −� − 1 + (u2c + 3v2c )(· + y)

]
.

(2.11)

Both Kc,y and Lc,y are conjugate to Kc,0 and Lc,0 through translation

Kc,yw = (Kc,0w(· − y)
)
(· + y), Lc,yU = (Lc,0U (· − y)

)
(· + y). (2.12)

To simply the notation, we denote

Ky = K0,y, Lc = Lc,0.

From (2.6) and Hardy’s inequality, we have that Kc,y is an isomorphism on X1 with

K−1
c,yw =

(
w1 + χ(D) (vc(· + y)w2)

w2

)
, (2.13)

and Lc,y induces a real valued symmetric bounded bilinear form on X1, namely,

Kc,y, K−1
c,y ∈ L(X1), Lc,y ∈ L(X1, X

∗
1), L∗

c,y = Lc,y .

Moreover, using the translation invariance (2.12) and Hardy’s inequality, there exists
C > 0 such that

‖Kc,y‖L(X1) + ‖K−1
c,y‖L(X1) ≤ C, ∀y ∈ R

3. (2.14)

Consequently, J is viewed as a closed operator

J : X∗
1 ⊃ D(J ) → X1 satisfying J ∗ = −J

where

D(J ) = {w = (w1, w2) | w1 ∈ H−1 ∩ Ḣ1 and w2 ∈ Ḣ−1 ∩ H1}
= {w = (w1, w2) | w1 ∈ H1 and |ξ |ŵ2, |ξ |−1ŵ2 ∈ L2}.

Suppose for some y(t) ∈ R
3 and w(t) = (w1(t), w2(t)

) ∈ X1 smooth in t ,

U (t) = ψ (wc (· + y(t)) + w(t))

= Uc (· + y) + Kc,yw −
(
1

2
χ(D)(w2

2), 0

)T (2.15)

is a solution to (2.7).
Here (2.4) and the definition of Kc,y are used. Substituting (2.15) into (2.8) and using

the definition of Lc,y and that Uc is an equilibrium of (2.8), we obtain

∂t y · ∇Uc(· + y) + ∂t (Kc,yw) − (χ(D)(w2∂tw2), 0)
T

= J Lc,y Kc,yw + J
(
(E + c · P)′(U ) − Lc,yKc,yw

)
.
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The above equation ofw = (w1, w2)
T can be written as a system of 2 equations of ∂tw1

and ∂tw2, which can be solved easily due to the upper triangular structure of Kc,y . In
particular we have the equation for w2,

∂tw2 = −(Lc,yKc,yw
)
1 − ∂t y · ∇vc(· + y) + G2(c, y, w) (2.16)

where G2 is given in the below. The above system of evolution equations for w can be
written in a compact form

∂t y · ∇Uc(· + y) + ∂t (Kc,yw) = J Lc,y Kc,yw + G(c, y, ∂t y, w), (2.17)

where G = (G1(c, y, ∂t y, w),G2(c, y, w)
)T are

G =
(
|U |2 − |Uc(· + y)|2 − 2Uc(· + y) · (Kc,yw)

)
JUc(· + y)

+
(
|U |2 − |Uc(· + y)|2

)
J Kc,yw +

1

2

(
2χ(D)(w2∂tw2 − w2∇w2 · c)

−(1− |U |2)χ(D)(w2
2) − �χ(D)(w2

2)

)

and ∂tw2 in G1 should be substituted by (2.16). This results in the dependence of G1
on ∂t y. The nonlinearity G is affine in ∂t y and contains terms of w of algebraic degrees
between 2 and 6. Like Kc,y and Lc,y , G(c, y, ỹ, w) is translation invariant in the sense
of (2.12), namely,

G(c, y + x, ỹ, w) = G
(
c, y, ỹ, w(· − x)

)
(· + x). (2.18)

A more detailed form of and some basic estimates on G are straightforward but tedious
and we leave them in the “Appendix”.

2.3. Decomposition of X1 and local coordinates near traveling waves. The free choices
of y ∈ R

3 and w ∈ X1 are clearly redundant in the representation of the above U . We
shall impose appropriate restrictions on w by analyzing the linearization of (GP) near
Uc. We will focus on unstable traveling waves. Namely, we assume

(H) The spectrum σ(J Lc) � iR.

Since |c| ∈ (0,
√
2), (2.6) and the explicit form (2.11) of Lc imply that Lc : X1 → X∗

1
is a compact perturbation to

Lc,∞ =
[−� + 2 −c · ∇

c · ∇ −�

]
: X1 → X∗

1

which is an isomorphism as it induces a uniformly positive quadratic form on X1.
This follows from a proof similar to the one in [36] and we skip the details. Therefore
dim ker Lc < ∞ and it is uniformly positive on some finite co-dimensional subspace of
X1. Let n−(Lc) be the Morse index of Lc, namely,

n−(Lc) = max{dim Y | Lc is negative on the subspace Y ⊂ X1}. (2.19)

According to the index formula of linearHamiltonian systems [37], it holds thatn−(Lc) >

0 for any unstable traveling wave. We first cite Theorem 2.1 in [37] whose hypotheses
are easily satisfied due to dim ker Lc < ∞ and Remark 2.2 in [37].
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Theorem 2.1 in [37]. There exist closed subspaces Y j , j = 1, . . . , 6, and Y0 = ker Lc
such that

(1) X1 = ⊕6
j=0Y j , Y j ⊂ ∩∞

k=1D
(
(J Lc)

k
)
, j �= 3, and

dim Y1 = dim Y4, dim Y5 = dim Y6, dim Y1 + dim Y2 + dim Y5 = n−(Lc);
(2) J Lc and Lc take the following forms in this decomposition

J Lc ←→

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 A01 A02 A03 A04 0 0
0 A1 A12 A13 A14 0 0
0 0 A2 0 A24 0 0
0 0 0 A3 A34 0 0
0 0 0 0 A4 0 0
0 0 0 0 0 A5 0
0 0 0 0 0 0 A6

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (2.20)

Lc ←→

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0
0 0 0 0 B14 0 0
0 0 LY2 0 0 0 0
0 0 0 LY3 0 0 0
0 B∗

14 0 0 0 0 0
0 0 0 0 0 0 B56
0 0 0 0 0 B∗

56 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (2.21)

(3) B14 : Y4 → Y ∗
1 and B56 : Y6 → Y ∗

5 are isomorphisms and there exists ε > 0
satisfying ∓〈LY2,3u, u〉 ≥ ε‖u‖2, for all u ∈ Y2,3;

(4) all blocks of J Lc are bounded operators except A3, where A03 and A13 are under-
stood as their natural extensions defined on Y3;

(5) A2,3 are anti-self-adjoint with respect to the equivalent inner product∓〈LY2,3 ·, ·〉 on
Y2,3;

(6) the spectra σ(A j ) ⊂ iR, j = 1, 2, 3, 4, ±Re λ > 0 for all λ ∈ σ(A5,6), and
σ(A5) = −σ(A6); and

(7) n−(L|Y5⊕Y6) = dim Y5 and n−(L|Y1⊕Y4) = dim Y1.
(8) (u, v)X1 = 0 for all u ∈ Y1 ⊕ Y2 ⊕ Y3 ⊕ Y4 and v ∈ ker Lc.

We modify this decomposition of X1 slightly for this paper. Let

XT
c = span{∂x jUc | j = 1, 2, 3}, Ỹ0 = {w ∈ ker Lc | (w, w̃) = 0, ∀w̃ ∈ XT

c }
and

Xd1
c = Ỹ0 ⊕ Y1 ⊕ Y2, Xe,d2,+,−

c = Y3,4,5,6.

For any y ∈ R
3 and α ∈ {T, d1, e, d2,+,−}, define

Xα
c,y = {w ∈ X1 | w(· − y) ∈ Xα

c }.
Recall the traveling wave manifold M defined in (2.9). Clearly

X1 = XT
c,y ⊕ Xd1

c,y ⊕ Xe
c,y ⊕ Xd2

c,y ⊕ X+
c,y ⊕ X−

c,y, XT
c,y = TUc(·+y)M , (2.22)

with associated projection 

T,d1,e,d2,+,−
c,y . Let

0 < λ < min{Reμ | μ ∈ σ(A5)}.
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Lemma 2.3. Assume (2.6) and (H), then there exists C > 0, such that, for any y ∈ R
3,

(1) X+,−,T,d1,d2
c,y ⊂ Ḣ k ∩ X1 for any k ≥ 1;

(2) 0 < dim X±
c,y = d ≤ n−(Lc), d1 = dim Xd1

c,y = n−(Lc) + dim ker Lc − 3− d, and

d2 = dim Xd2
c,y ≤ n−(Lc) − d ≤ d1;

(3) there exist bases V±
c, j , j = 1, . . . , d of X±

c,0, V
d1
c, j , j = 1, . . . , d1, of Xd1

c,0, V
d2
c, j ,

j = 1, . . . , d2 of Xd2
c,0, and V T

c, j = ∂x jUc, j = 1, 2, 3, of XT
c,0, along with ζ±

c, j ,

j = 1, . . . , d, ζ d1
c, j , j = 1, . . . , d1, ζ d2

c, j , j = 1, . . . , d2, and ζ T
c, j , j = 1, 2, 3,

belonging to D
(
(J Lc,y)

∗) ∩ Hk = Hk × (Ḣ−1 ∩ Hk) for any k ≥ 1, such that


α
c,yw =

dim Xα
c,0∑

j=1

〈ζ α
c, j (· + y), w〉V α

c, j (· + y), α ∈ {T, d1, d2,+,−},

consequently, projections 

T,d1,e,d2,+,−
c,y are smooth in y with derivatives bounded

uniformly in y ∈ R
3;

(4) In the decomposition X1 = ⊕α∈{T,d1,e,d2,+,−}Xα
c,y , J Lc,y and the quadratic form

Lc,y take the form

Lc,y ←→

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 L11(y) 0 L12(y) 0 0
0 0 Le(y) 0 0 0
0 L12(y)∗ 0 0 0 0
0 0 0 0 0 L+−(y)
0 0 0 0 L+−(y)∗ 0

⎤
⎥⎥⎥⎥⎥⎦

,

J Lc,y ←→

⎡
⎢⎢⎢⎢⎢⎣

0 AT 1(y) ATe(y) AT 2(y) 0 0
0 A1(y) A1e(y) A12(y) 0 0
0 0 Ae(y) Ae2(y) 0 0
0 0 0 A2(y) 0 0
0 0 0 0 A+(y) 0
0 0 0 0 0 A−(y)

⎤
⎥⎥⎥⎥⎥⎦

where
(a) all above blocks are translation invariant in the sense of (2.12);
(b) all above blocks are bounded except Ae(y);
(c) ‖et A1(y)‖ + ‖et A2(y)‖ ≤ C(1 + |t |)d1;
(d) the quadratic form 〈Le(y)V e, V e〉 ≥ 1

C ‖V e‖2X1
for any V e ∈ Xe

c,y and Ae(y) is
anti-self-adjoint with respect to Le(y) = Lc,y |Xe

c,y
.

(e) σ
(
A+(y)

) = −σ
(
(A−(y)

)
, ‖et A±(y)|X±

c,y
‖ ≤ Ceλt , for all ∓t ≥ 0;

Proof. All the conclusions directly follow from Theorem 2.1 in [37] except those on the
dual basis ζ α

c, j and the smoothness of 
α
c,y in y. In particular X+,−,T,d1,d2

c,y ⊂ Ḣ k ∩ X1

is due to D
(
(J Lc)

k
) = Ḣ1+2k ∩ X1. To complete the proof, we only need to show the

smoothness of 
α
c,y in y. Due to the translation invariance, we have


α
c,y+y′w =

(

α

c,y′ (w(· − y))
)

(· + y), α ∈ {T, d1, e, d2,+,−} (2.23)
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for any y ∈ R
3, which also implies

Dn
y
c,yw =

(
Dn

y
c,0 (w(· − y))
)

(· + y).

Let

w1, . . . , wd0 , wd0+1, . . . , wd ′ be a basis of XT
c ⊕ Xd1

c ⊕ Xd2
c ⊕ X+

c ⊕ X−
c

formed by bases of XT,d1,d2,+,−
c such that w j = ∂x jUc, j = 1, 2, 3 and w1, . . . , wd0 is

a basis of ker Lc where d0 = dim ker Lc.
Let

w̃ j =

⎧⎪⎨
⎪⎩

[
1− � 0

0 −�

]
w j , j = 1, . . . , d0;

Lcw
j , j = d0 + 1, . . . , d ′.

Clearly w̃ j ∈ X∗
1 ∩ Hk = Hk × (Ḣ−1 ∩ Hk) for any k and j = 1, . . . , d ′ and

{w̃1, . . . , w̃d0} and {w̃d0+1, . . . , w̃d ′ } are both linearly independent. Moreover
{w̃1, . . . , w̃d ′ } are also linearly independent. In fact, assume

w̃ = a1w̃
1 + . . . , ad0w̃

d0 = ad0+1w̃
d0+1 + . . . , ad ′w̃

d ′

for some a1, . . . , ad ′ . Since w j ∈ ker Lc for j = 1, . . . , d0, we have

0 = 〈Lc

d0∑
j=1

a jw
j ,

d ′∑
j=d0+1

a jw
j 〉 = 〈w̃,

d0∑
j=1

a jw
j 〉 = (w̃, w̃)X∗

1
.

Therefore w̃ = 0 and we obtain the linear independence of {w̃1, . . . , w̃d ′ }.
For any w ∈ Xe

c , on the one hand, from the above Lc-orthogonality between Xe
c and

XT
c ⊕Xd1

c ⊕Xd2
c ⊕X+

c ⊕X−
c , we have 〈w̃ j , w〉 = 〈Lcw j , w〉 = 0, for j = d0+1, . . . , d ′.

On the other hand, due to the orthogonality between Xe
c and ker Lc with respect to the

(·, ·)X1 , for any j = 1, . . . , d0, we have 〈w̃ j , w〉 = (w j , w)X1 = 0. Counting the
dimensions, we obtain that

w̃1, . . . , w̃d ′ form a basis of ker i∗Xe
c
= { f ∈ X∗

1 | 〈 f, w〉 = 0, ∀w ∈ Xe
c}.

As ker i∗Xe
c
is isomorphic to (XT

c ⊕Xd1
c ⊕Xd2

c ⊕X+
c ⊕X−

c )∗, let γ1, . . . , γd ′ ∈ ker i∗Xe
c

be the dual basis of w1, . . . , wd ′ . Since γ j can be written as a linear combination of
w̃1, . . . , w̃d ′ , we have γ j ∈ Hk × (Ḣ−1∩Hk) for any k and j = 1, . . . , d ′. From (2.23)
and the definition of γ j , it is easy to verify that, for any α ∈ {T, d1, d2,+,−}, w ∈ X1,
and y ∈ R

3,


α
c,yw =

∑
w j∈Xα

c

〈γ j (· + y), w〉w j (· + y).

The smoothness of 
α
c,y in y follows from the regularity γ j ∈ Hk × (Ḣ−1 ∩ Hk) and

w j ∈ Ḣ k ∩ X1 for any k and j = 1, . . . , d ′, which also implies the smoothness of

e

c,y = I −∑α=T,d1,d2,+,− 
α
c,y . Divide {w j , j = 1, . . . , d ′} and {γ j , j = 1, . . . , d ′}

according to α ∈ {T, d1, d2,+,−}, we obtain V α
c, j and ζ α

c, j and complete the proof of
the lemma. ��
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Remark 2.4. Under the following additional non-degeneracy assumptions

ker(Lc) = span{∇Uc}, n−(Lc) = d = dim X+, (2.24)

we have Xd1,d2
c,y = {0} and the decomposition may be simplified. We shall discuss this

case carefully in Sect. 6.

With respect to the bases {V α
c, j }, α ∈ {d1, d2,+,−}, operators

AT 1(y), A1(y), AT 2(y), A12(y), A2(y), A+(y), A−(y)

representing 

β
c,y J Lc,y |Xα

c,y
: Xα

c,y → Xβ
c,y in the above block decomposition of J Lc,y

can be represented by matrices

MT 1, M1, MT 2, M12, M2, M+, M−

which are independent of y due to the translation invariance (2.12) of Kc,y and Lc,y .
Namely,

AT 1(y)
(
(V α

c,1, . . . , V
α
c,d1)a

) = (V β
c,1, . . . , V

β
c,3)(MT 1a), ∀a ∈ R

d1 , . . . (2.25)

From Lemma 2.3,

‖etM1‖ + ‖etM2‖ ≤ C(1 + |t |)d1, ∀t ∈ R; ‖etM±‖ ≤ Ce±λt ,∀ ∓ t ≥ 0. (2.26)

A similar representation through translation in x → x + y of Ae(y) would cause
loss of regularity when ∂y is carried out. Instead we will keep working with Ae(y) =

e

c,y J Lc,y

e
c,y . When viewed as an (unbounded) operator from X1 to X1, it is a uni-

formly (in y) bounded perturbation to a constant coefficient operator and its derivatives
of all orders are bounded operators. In fact, separating the terms in (2.11) with constant
coefficients from those with spatially decaying variable coefficients implies

J Lc,y = J Lc,∞ + Q̃(y), Lc,∞ =
[
2− � −c · ∇
c · ∇ −�

]
, (2.27)

and

Q̃(y) =
[

2ucvc u2c − 1 + 3v2c
3(1− u2c) − v2c −2ucvc

]
(· + y). (2.28)

Lemma 2.5. Fix c ∈ (0,
√
2). For any integer k ≥ 0, there exists Ck > 0 such that for

any y ∈ R
3, it holds

‖Dk
y

(
Ae(y) − J Lc,∞

)‖
L
(
(⊗k (R3))⊗X1,X1)

≤ Ck .

Proof. Clearly Q̃(0) ∈ L∞ and ∇k Q̃(0) ∈ L∞ ∩ L2 for any k ≥ 1, along with (2.6)
and Hardy’s inequality, it is straightforward to prove, for all y ∈ R

3 and V ∈ X1,

‖Q̃V ‖X1 + ‖Dk
y Q̃V ‖X1 + ‖J Q̃V ‖X∗

1
+ ‖J Dk

y Q̃V ‖X∗
1
≤ Ck‖V ‖X1 , (2.29)

for some Ck > 0 independent of y. Write

Ae(y) − J Lc,∞ = Ae(y) − J Lc,y + Q̃(y).
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Therefore, to complete the proof of the lemma, we only need to show the boundedness
of Dk

y

(
J Lc,y− Ae(y)

)
, which, according to Lemma 2.3, has the same blockwise decom-

position except the Ae(y) component replaced by 0. The uniform boundedness (in y) of
Ae(y) − J Lc,y follows from the boundedness of those blocks, where the uniformity in
y is due to their translation invariance in the sense of (2.12). The uniform upper bounds
of Dk

y

(
J Lc,y − Ae(y)

)
also follow from the translation invariance of these blocks and

the extra regularity of ζ α
c, j and V α

c, j , α ∈ {T, d1, d2,+,−}. ��

Following from that XT
c,y is the tangent space TUc(·+y)M and Kc,y = Dψ

(
wc(·+ y)

)
is an isomorphism, K−1

c,y X
T
c,y is the tangent space of

ψ−1(M ) = {wc(· + y) | y ∈ R
3}.

Based on the Implicit Function Theorem, it is straightforward to prove that, for small δ,
{
wc(· + y) + wd1 + we + wd2 + w+ + w− |
wα ∈ K−1

c,y X
α
c,y, ‖wα‖ < δ, α ∈ {d1, e, d2,+,−}}

is a neighborhood of ψ−1(M ) ⊂ X1, where each point has a unique representation
in the above form. Locally the total ‖wd1‖ + ‖we‖X1 + ‖wd2‖ + ‖w+‖ + ‖w−‖ of the
transversal components is equivalent to the X1 distance toM .

2.4. A local bundle coordinate system. Accordingly, we shall set up the bundle coordi-
nates near ψ−1(M ) precisely. Denote

X e = {(y, V e) | y ∈ R
3, V e ∈ Xe

c,y}, (2.30)

and balls on this bundle

X e(δ) = {(y, V ) ∈ X e | ‖V ‖X1 < δ}. (2.31)

Let y# ∈ R
3 and B3(δ) be the open ball on R

3 centered at y# with radius δ. For δ � 1,
a smooth (due to the smoothness of 
e

c,y with respect to y) local trivialization from
B3(δ) × Xe

c,y# to X e, thus a local coordinate system, of X e is given by (y,
e
c,yV ),

V ∈ Xe
c,y# . There is a natural translation on X e

(z, y, V e) −→ (
y + z, V e(·,+z)).

Along with other subspaces XT,d1,d2,+,−
c,y , we will often consider bundles R

k ⊕X e over
R
3 with fibers R

k ⊕ Xe
c,y , as well as their balls

Bk(δ1) ⊕X e(δ2) = {(y, a, V e) | a ∈ R
k, |a| < δ1, (y, V e) ∈ X e(δ2)}. (2.32)

For any fixed y#, the smoothness of 
e
c,y with respect to y allows it to serve to as a local

trivialization of the fibers Xe
c,y for y near y#.

Define an embedding

Em : R
3+d1+d2+2d ⊕X e → X1
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as

Em(y, aT , ad1, ad2, a+, a−, V e)

=
3∑
j=1

aTj ∂x jwc(· + y) + K−1
c,y

( d1∑
j=1

ad1j V d1
c, j (· + y)

+
d2∑
j=1

ad2j V d2
c, j (· + y) +

d∑
j=1

a+j V
+
c, j (· + y) +

d∑
j=1

a−j V
−
c, j (· + y) + V e

)

:= K−1
c,y

((
aT V T

c + ad1V d1
c + ad2V d2

c + a+V +
c + a−V−

c

)
(· + y) + V e

)
.

(2.33)

The embedding Em⊥ : R
d1+d2+2d ⊕X e defined on the transversal bundle will be used

for the bundle coordinates near ψ−1(M )

Em⊥(y, ad1, ad2, a+, a−, V e) = Em(y, 0, ad1, ad2, a+, a−, V e). (2.34)

Clearly Em⊥ is translation invariant in the sense

Em⊥(y + ỹ, ad1, ad2, a+, a−, V e(· + ỹ)
)

= Em⊥(y, ad1, ad2, a+, a−, V e)(· + ỹ), ∀ỹ ∈ R
3.

(2.35)

On the one hand, according to the above trivialization, given any Banach space
Z , a mapping f : Z → X e is said to be smooth near some z0 ∈ Z if y(z) and
V e(z) ∈ Xe

c,y(z0)
are smooth in z near z0, where f (z) = (

y(z),
e
c,y(z)V

e(z)
)
. Due

to the smoothness of 
e
c,y , in fact this is equivalent to the smoothness of y(z) and

V (z) ∈ X1 where f (z) = (y(z), V (z)
)
.

On the other hand, for any Banach space Y , a mapping g : X e → Y is said to be
smooth near some (y#, V#) if

g̃(y, V ) = g(y,
e
c,yV ), y ∈ R

3, V ∈ Xe
c,y#

is smooth in (y, V ) ∈ R
3 × Xc,y# near (y#, V#). It is straightforward to verify

• g is smooth if and only if locally g(y,
e
c,yV ), y ∈ R

3, V ∈ X1, is smooth onR
3×X1.

• g is smooth if and only if locally it is the restriction to X e of a smooth mapping
defined on R

3 × X1;
• g is smooth if and only if g ◦ f is smooth for any smooth f : Z → X e defined on

any Banach space Z ;
• Em is smooth with respect to (y, V e), due to the smoothness of K−1

c,y and the basis
V α
c, j , α ∈ {T, d1, d2,+,−}.

We shall often work with g
(
y, Em(y, a, V e)

)
with g smooth on R

3 × X1.
Near the 3-dim manifold M of traveling waves, we will work through the mapping

� defined on R
d1+d2+2d ⊕X e which is diffeomorphic on R

d1+d2+2d(δ) ⊕X e(δ)

U = �(y, a, V e) = ψ
(
wc(· + y) + Em⊥(y, a, V e)

)
. (2.36)

This is a smooth vector bundle coordinate system in a neighborhood of M ⊂ X0
for sufficiently small δ > 0. From (2.33) and (2.34), � can be naturally extended into a
smooth mapping on R

3+d1+d2+2d ⊕ X1.
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Remark 2.6. As the subspaces XT,d1,e,d2,+,−
c,y are obtained as the translations of

XT,d1,e,d2,+,−
c , it is tempting to use the coordinate system

U = ψ
(
(wc + wd1 + wd2 + w+ + w− + we)(· + y)

)

wherewα ∈ Xα
c and y ∈ R

3. However, such translation parametrization is not smooth in
X1 because the differentiation in y causes a loss of one order regularity in Dyw

e(· + y).
This is one of themain issues inNakanishi andSchlag [43],where the authors constructed
the center-stable manifolds of the manifold of ground states for the Klein-Gordon equa-
tion. They introduced a nonlinear “mobile distance” to overcome that difficulty. Instead,
the above bundle coordinate system (2.36), where V e ∈ Xe

c,y is not directly parametrized
by a translation in y, represents a different framework based on the observation that,
while the parametrization by the spatial translation of y is not smooth in X1 with respect
to y, the vector bundles XT,d1,e,d2,+,−

c,y over M are smooth in y as given in Lemma
2.3. This approach was used also in [5]. While it avoids the loss of regularity when
differentiating in y, it will involve more geometric calculation.

2.5. An equivalent form of the GP equation near traveling waves. Let U (t, x) be any
solution to (2.7). IfU (t, x) stays in a small neighborhood ofM , then we can expressU
in the coordinate system (2.36)

U (t) = �
(
y(t), a(t), V e(t)

)
, (y, a, V e)(t) ∈ Bd1+d2+2d(δ) ⊕X e(δ) (2.37)

for some δ > 0. Substituting (2.37) into (2.17) and using (2.15), we obtain

∂t y · ∇Uc(· + y) + ∂t V
e +
(
(∂t a

d1)V d1
c + (∂t a

d2)V d2
c + (∂t a

+)V +
c

+ (∂t a
−)V−

c

)
(· + y) +

(
ad1∂t y · (∇V d1

c ) + ad2∂t y · (∇V d2
c )

+ a+∂t y · (∇V +
c ) + a−∂t y · (∇V−

c )
)
(· + y)

= J Lc,y Kc,y Em
⊥(y, a, V e) + G

(
c, y, ∂t y, Em

⊥(y, a, V e)
)
.

(2.38)

Starting with ∂t y, we identify the evolution equation of each coordinate component.
Applying 
T

c,y and using Lemma 2.3 and (2.25), we have

∂t y + 〈ζ T
c (· + y), ∂t V

e〉 + 〈ζ T
c , ∂t y · ∇

(
ad1V d1

c + ad2V d2
c + a+V +

c + a−V−
c

)〉
= MT 1a

d1 + MT 2a
d2 − 〈Lc,y Jζ T

c (· + y), V e〉
+ 〈ζ T

c (· + y),G
(
c, y, ∂t y, Em

⊥(y, a, V e)
)〉.

Since V e ∈ Xe
c,y implies 〈ζ α

c (· + y), V e〉 = 0 for all t , we have

〈ζ α
c (· + y), ∂t V

e〉 = −〈(∂t y · ∇ζ α
c )(· + y), V e〉, α ∈ {T, d1, d2,+,−}. (2.39)

Therefore ỹ = ∂t y satisfies the following equation

ỹ − 〈(ỹ · ∇ζ T
c )(· + y),
e

c,y Kc,yw〉 + 〈ζ T
c , ỹ · ∇((I − 
T

c,y − 
e
c,y)Kc,yw

)
= MT 1a

d1 + MT 2a
d2 − 〈Lc,y Jζ T

c (· + y), V e〉 + 〈ζ T
c (· + y),G

(
c, y, ỹ, w

)〉,
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where w = Em⊥(y, a, V e). We actually note that the above equation is well-defined
for any small w ∈ X1. From Lemma A.1 and the regularity of V α

c and ζ α
c , when ‖w‖X1

is sufficiently small, one may solve for ỹ = ∂t y and obtain

∂t y = MT 1a
d1 + MT 2a

d2 − 〈Lc,y Jζ T
c (· + y), V e〉 + GT (c, y, w), (2.40)

where

w = Em⊥(y, a, V e).

According to Lemma A.1 and the regularity of ζ
T,d1,d2,+,−
c , GT (c, y, w) is smooth in

y and w ∈ X1 when ‖w‖X1 � 1. As we did not prove G ∈ X1 in Lemma A.1, we used
the extra regularity of ζ α

c ∈ Hk × (Ḣ−1 ∩ Hk). Furthermore, there exists C > 0 such
that, for any y ∈ R

3 and small w ∈ X1,

|Dk
wDl

yG
T (c, y, w)| ≤ Cl,k‖w‖max{2−k,0}

X1
. (2.41)

Applying 
α
c,y , α ∈ {d1, d2,+,−, e}, to (2.38) and using the basis V α

c , Lemma 2.3,
(2.25), (2.39) and (2.40), we obtain

∂t a
± = M±a± + G±(c, y, w), (2.42)

∂t a
d1 = M1a

d1 + M12a
d2 − 〈Lc,y Jζ d1

c (· + y), V e〉 + Gd1(c, y, w), (2.43)

∂t a
d2 = M2a

d2 + Gd2(c, y, w), (2.44)


e
c,y∂t V

e = Ae(y)V
e + ad2Ae2(y)V

d2
c (· + y) + Ge(c, y, w), V e ∈ Xe

c,y, (2.45)

where Ae2(y) = 
e
c,y J Lc,y


d2
c,y is smooth in y and

w = Em⊥(y, a, V e). (2.46)

Much as in the derivation of GT , Gα is also well-defined for any small w ∈ X1,
α ∈ {d1, d2,+,−, e}. Like Kc,y and Lc,y , Gα is translation invariant,

Gα(c, y + z, w(· + z)
) = Gα(c, y, w), α ∈ {T, d1, d2,+,−}

Ge(c, y + z, w(· + z)
) = Ge(c, y, w)(· + z)

(2.47)

for all z ∈ R
3. For ‖w‖X1 � 1, Gα , α ∈ {T, d1, d2, e,+,−}, are quadratic in w. From

Lemma A.1 and the regularity of ζ
T,d1,d2,+,−
c , they are smooth in y and w and satisfy

|Dk
wDl

yG
α(c, y, w)| ≤ Cl,k‖w‖max{2−k,0}

X1
, α ∈ {T, d1, d2,+,−}. (2.48)

Themulti-linear terms inGeprevent it from belonging to X1 (see LemmaA.1). However,
due to the extra regularity of ζ α

c , projections 
α
c,y , α ∈ {d1, d2,+,−}, act on a larger

class of functions than X1. From Lemma A.1, we have

(I − 
e
c,y)G

e(c, y, w) = 0, Ge(c, y, w) ∈ X1 +W 1, 32 + (L
3
2 ∩ Ẇ 1, 65 ) (2.49)

and

|Dk
wDl

yG
e|
X1+W

1, 32 +L
3
2 ∩Ẇ 1, 65

≤ Cl,k‖w‖max{2−k,0}
X1

. (2.50)
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Transforming the V e equation. Before we end this section, we transform (2.45) to an
equivalent form. In fact, since (I − 
e

c,y)V
e ≡ 0, we have

(I − 
e
c,y)∂t V

e = Dy

e
c,y(∂t y)V

e. (2.51)

Therefore, (2.45) implies

∂t V
e = Ae(y)V

e +F (c, y)(∂t y, V
e) + ad2Ae2(y)V

d2
c (· + y) + Ge(c, y, w) (2.52)

where

Ae(y) = 
e
c,y J Lc,y


e
c,y

is given in Lemma 2.3 and the bounded bilinear operator F (c, y) : R
3 ⊗ X1 → X1 is

given by

F (c, y)(z, V ) = Dy

e
c,y(z)

(

e

c,yV − (I − 
e
c,y)V

)
. (2.53)

Here we can take the last part ofF in the form of V − b(I − 
e
c,y)V for any b, which

would not change the validity of (2.53) for V ∈ Xe
c,y . The above choice of F would

bring certain convenience in some calculation later. Using the smoothness of 
α
c,y in y

given in Lemma 2.3, we obtain

‖F (c, y)(z, V )‖X1 ≤ C |z|‖V ‖X1 (2.54)

for some C > 0 independent of y. The bilinear operator F is a modification of the
second fundamental form of the bundle Xe

c,y over R
3 as a sub-bundle of X1 = Xe

c,y ⊕(
(I − 
e

c,y)X1
)
over R

3.
While (2.52) is deduced from (2.45), actually the opposite also holds ifV (s) ∈ Xe

c,y(s)
for some s. To see this, applying I − 
e

c,y to (2.52) we obtain

∂t
(
(I − 
e

c,y)V
)=(I − 
e

c,y)Dy

e
c,y(∂t y)

(

e

c,yV − (I − 
e
c,y)V

)−Dy

e
c,y(∂t y)V .

Differentiating 
e
c,y


e
c,y = 
e

c,y with respect to y we have

Dy

e
c,y(·)
e

c,y + 
e
c,y Dy


e
c,y(·) = Dy


e
c,y(·). (2.55)

It follows that

∂t
(
(I − 
e

c,y)V
) = −Dy


e
c,y(∂t y)(I − 
e

c,y)V . (2.56)

Since this is a well-posed homogeneous linear equation of (I −
e
c,y)V , which is finite

dimensional, the solution has to vanish if we assume V (s) ∈ Xe
c,y(s). Therefore

V (t) ∈ Xe
c,y(t), ∀t, if V (s) ∈ Xe

c,y(s) and V (t) solves (2.52). (2.57)

Finally (2.45) follows from applying 
e
c,y to (2.52).

Compared to (2.45), equation (2.52) is more convenient as the latter may be posed
on the whole space X1. Along with the boundedness of F , it makes it easier to prove
the local well-posedness and obtain estimates of (2.52) and thus we will mainly work
with (2.52).

In summary, in a neighborhood ofM ⊂ X0, equation (GP) written in the bundle co-
ordinates (y, ad1, ad2, a+, a−, V e) ∈ Bd1+d2+2d(δ)⊕X e(δ) is equivalent to the system
consisting of (2.40), (2.42), (2.43), (2.44), and (2.52), along with (2.46).
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3. Linear Analysis

We first analyze the linear part of (2.52) whose unknown is valued in a vector bundle
Xe
c,y over R

3. However it is observed that (2.52) is well-posed with V e ∈ X1, we will
consider this general situation as well as the case V ∈ Xe

c,y . Relaxing the restriction
V ∈ Xe

c,y would provide a little convenience in some estimates later. Moreover since
Ge does not necessarily belong to X1, we give a space-time estimate which will be used
to close the nonlinear estimates in later sections. Consider the following more general
form of (2.52)

∂t V = 
e
c,y J Lc,y


e
c,yV +F (c, y)(∂t y, V ) + f (t). (3.1)

Here we assume y(t), −∞ ≤ t0 ≤ t ≤ t1 ≤ ∞ satisfy

σ := |∂t y|L∞
(
(t0,t1),R3

) ≤ 1, ∀t ∈ (t0, t1). (3.2)

For the non-homogeneous term f = ( f1(t, x), f2(t, x)
)
, we need the norm

‖ f ‖X̂ p,q
(t0,t1)

� ‖ f1‖L p
(t0,t1)

B1
q,2

+ ‖ f2‖L p
(t0,t1)

Ḃ1
q,2

(3.3)

along with the associated spaces X̂ p,q
(t0,t1)

and X̂ p,q
(t0,t1),loc

, where Bs
p,r and Ḃq

p,rdenote the
standard Besov space as well as the homogeneous Besov space, respectively, and the
“loc” denotes “local in t”. In the standard terminology, an admissible Stritchartz pair
(p, q) and conjugate exponent p′ of p ∈ [1,∞] are those satisfying

p, q ∈ [2,∞], 2/p + 3/q = 3/2; 1/p′ + 1/p = 1. (3.4)

Our main goal in this section is to prove the following proposition.

Proposition 3.1. Suppose (3.2) holds, (p, q) is a Stritchartz pair, and f ∈ X̂ p̃′,q ′
(t0,t1),loc

where p̃ ∈ [1, p]. Then for any s ∈ (t0, t1) and initial value V (s) ∈ X1, (3.1) has a
unique solution V (t) ∈ X1. Moreover, there exists C > 0 independent of t0, t1, s, σ, y(·),
and f (·), such that for any t ∈ (t0, t1), and η > Cσ , we have

〈Lc,y(t)V
e(t), V e(t)〉 12 ≤ eCσ |t−s|〈Lc,y(s)V

e(s), V e(s)〉 12 + Cη
− 1

p̃ ‖eη|t−·| f e‖
X̂ p̃′,q′

(s,t)

|V⊥(t)| ≤ eCσ |t−s||V⊥(s)| + Cη
− 1

p̃ ‖eη|t−·| f ⊥‖
L p̃′

(s,t)
,

where

V e(t) = 
e
c,y(t)V (t), V⊥(t) = (I − 
e

c,y(t))V (t),

f e(t) = 
e
c,y(t) f (t), f ⊥(t) = (I − 
e

c,y(t)) f (t),
(3.5)

satisfying

∂t V
e = 
e

c,y J Lc,y

e
c,yV

e +F (c, y)(∂t y, V
e) + f e(t),

∂t V
⊥ = −Dy


e
c,y(∂t y)V

⊥ + f ⊥.
(3.6)
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Here one keeps in mind that I − 
e
c,y may be applied to a larger class of functions

than X1 and its range is finite dimensional. The above decoupling of V⊥ and V e is due
to the choice (2.53) ofF . From the positivity of of Lc,y on Xe

c,y (Lemma 2.3), we have

Corollary 3.2. There exists C > 0 independent of t0, t1, s, y(·), and f (·), such that for
any t ∈ (t0, t1) and η > Cσ , we have

‖V (t)‖X1 ≤ C
(
eCσ |t−s|‖V (s)‖X1 + η

− 1
p̃ ‖eη|t−·| f (·)‖

X̂ p̃′,q′
(s,t)

)
.

Moreover, V (t) ∈ Xe
c,y(t), for almost all t ∈ (t0, t1), if V (s) ∈ Xe

c,y(s) and

(I − 
e
c,y(t)) f (t, ·) = 0, a.e. t ∈ (t0, t1). (3.7)

The above estimates indicate that the linear equation (3.1) exhibits at most weak
exponential growth due to |∂t y|.

Based on the regularity of the nonlinearity given in Lemma A.1, we also consider the
space

X̃(t0,t1) � L2((t0, t1), X1
)
+ L2((t0, t1),W 1, 32

)
+ L2((t0, t1), L 3

2 ∩ Ẇ 1, 65
)

and X̃(t0,t1),loc. The next proposition will be a simple consequence of Proposition 3.1.

Proposition 3.3. Suppose (3.2) holds and f ∈ X̃(t0,t1),loc. Then for any s ∈ (t0, t1) and
initial value V (s) ∈ X1, (3.1) has a unique solution V (t) ∈ X1. Moreover, there exists
C > 0 independent of t0, t1, s, σ, y(·), and f (·), such that for any t ∈ (t0, t1), and
η ∈ (Cσ, 1), we have

‖V e(t)‖X1 ≤ C
(
eCσ |t−s|‖V e(s)‖X1 + η−

1
2 ‖eη|t−·| f e(·)‖X̃(s,t)

)
,

|V⊥(t)| ≤ C
(
eCσ |t−s||V⊥(s)| + η−

1
2 |eη|t−·| f ⊥(·)|L2

(s,t)

)
,

where V e,⊥ and f e,⊥ are defined in defined in (3.5) which satisfy (3.6).

These two propositions and Corollary 3.2 will be proved in the rest of the section.
Energy estimates of homogeneous linear equation. We start with the basic well-
posedness and energy estimates of the homogeneous equation of (3.1) based on the
uniform positivity of Le(y) = Lc,y |Xe

c,y
.

Lemma 3.4. Assume f ≡ 0, then (3.1) defines a bounded solution map

S(t, s) ∈ L(X1, X1), ∀t, s ∈ [t0, t1],
with initial value given at t = s, which satisfies

S(s, s) = I, S(t, t ′)S(t ′, s) = S(t, s), S(t, s) ∈ L(Xe
c,y(s), X

e
c,y(t)). (3.8)

Moreover there exists C > 0 independent of t1, t2, t , s, and y(·) such that

〈Lc,y(t)S(t, s)V, S(t, s)V 〉 ≤ eCσ |t−s|〈Lc,y(s)V, V 〉, ∀V ∈ Xe
c,y(s). (3.9)
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As a consequence, the lemma implies that, under the assumption f ≡ 0, (3.1) pre-
serves the constraint V ∈ Xe

c,y if it holds initially. Later we will show that this holds for
non-homogeneous equation as well. Furthermore the homogeneous equation induces
possible exponential growth only due to ‖∂t y‖L∞ . The coefficient 1 in front of the above
exponential is important for future estimates.

Proof. From Lemma 2.5, Ae(y) = 
e
c,y J Lc,y


e
c,y is a bounded perturbation to J Lc,∞

on X1. This, along with the boundedness of F , implies that (3.1) is well-posedness on
X1 and thus the solution flow S(t, s) of bounded linear operators is well-defined.

Since (I − 
e
c,y)X1 ⊂ D(J Lc,∞), for any V ∈ X1, by direct computation using

(3.1), one finds that (I − 
e
c,y)V satisfies

∂t
(
(I − 
e

c,y)V
) = (I − 
e

c,y)Dy

e
c,y(∂t y)

(

e

c,yV − (I − 
e
c,y)V

)− Dy

e
c,y(∂t y)V .

Following the same procedure as in Sect. 2.5, we obtain exactly the same equation as
(2.56) which yields

(I − 
e
c,y(t))V (t) = 0, ∀t, if (I − 
e

c,y(s))V (s) = 0. (3.10)

Finallyweprove inequality (3.9). LetV (t)be a solution of (3.1)withV (s) ∈ Xe
c,y(s)∩

D(J Lc,∞), which yields V (t) ∈ Xe
c,y(t)∩D(J Lc,∞) for all t . By direct calculation using

J ∗ = −J = J−1, one has

∂t 〈Lc,yV, V 〉 = 〈J−1Dy Q̃(y)(∂t y)V, V 〉 + 2〈∂t V, Lc,yV 〉
= −〈J Dy Q̃(y)(∂t y)V, V 〉 + 2〈F (c, y)(∂t y, V ), Lc,yV 〉,

where Q̃ is defined in (2.28). It follows from the bounds (2.54) and (2.29) that

|∂t 〈Lc,yV, V 〉| ≤ C |∂t y|‖V ‖2X1
. (3.11)

Recall from Lemma 2.3 that the bounded symmetric quadratic form 〈Lc,y ·, ·〉 satisfies
〈Lc,yV, V 〉 ≥ ε‖V ‖2X1

for any V ∈ Xe
c,y . This uniform lower bound of Lc,y on Xe

c,y ,
the above estimate, and the Gronwall inequality immediately imply (3.9) when V (s) ∈
Xe
c,y(s) ∩ D(J Lc,∞). Since Xe

c,y(s) ∩ D(J Lc,∞) is dense in Xe
c,y(s), a standard density

argument yields (3.9) for general solution V (t) ∈ Xe
c,y(t). The proof of the lemma is

complete. ��
Space-time estimates of (3.1).Given initial data at t = s ∈ [t0, t1], the solution of (3.1)
can be written as

V (t) = S(t, s)V (s) +
∫ t

s
S(t, τ ) f (τ )dτ. (3.12)

Since f (t) is not assumed to be in X1, we first prove the following lemma.

Lemma 3.5. Suppose (3.2) and (3.7) hold, ( p̃, q̃) is an admissible pair, and f ∈
X̂ p̃′,q̃ ′

(t0,t1),loc
. Then for any given s ∈ (t0, t1) and initial value V (s) ∈ Xe

c,y(s), (3.12)
has a unique solution V (t) satisfying V (t) ∈ Xe

c,y(t), for almost all t ∈ (t0, t1). More-
over, for any admissible pair (p, q), there exists T,C > 0 independent of f, t0, t1, and
y(·) such that, if t0 < t ′0 ≤ s ≤ t ′1 < t1 satisfy t ′1 − t ′0 ≤ T , then

‖V (t)‖X̂ p,q
(t ′0,t ′1)

≤ C
(‖V (s)‖X1 + ‖ f ‖

X̂ p̃′,q̃′
(t ′0,t ′1)

)
. (3.13)
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In particular, if (p, q) = (∞, 2), then it holds, for t ∈ (t ′0, t ′1)

〈Lc,y(t)V (t), V (t)〉 12 ≤eCσ |t−s|〈Lc,y(s)V (s), V (s)〉 12 + C‖ f ‖
X̂ p̃′,q̃′

(t ′0,t ′1)

. (3.14)

Proof. We prove the lemma in several steps.
• Step 1. Change of variables and dispersive estimates of the constant coefficient ho-
mogeneous linear equation. To make it more convenient to carry out the dispersive
estimates, we first apply a similar transformation to diagonalize J Lc=0,∞. Let

P =
√
−�(2− �)−1, R = √−�(2− �), P =

[
P 0
0 1

]
, V = PZ .

Apparently,

P is an isomorphism from Ḣ1 to X1. (3.15)

From (3.1), (2.27), and (2.28), it is straight to compute that Z satisfies

Zt = J H Z + Q
(
y(t), ∂t y(t)

)
Z + f̃ (t), (3.16)

where

H =
[

R −c · ∇
c · ∇ R

]
, f̃ (t) = P−1 f (t),

Q(y, z) = P−1(
e
c,y J Lc,y


e
c,y − J Lc,∞ +F (c, y)(z, ·))P.

Let R =
(
R 0
0 R

)
. From (2.54), (2.29), (3.15), and our assumptions, we have

‖Q(y, z)Z‖Ḣ1 ≤ C(1 + |z|)‖Z‖Ḣ1 , f̃ ∈ L p̃′
(t0,t1)

Ḃ1
q̃ ′,2 (3.17)

for some C > 0 independent of y.
It was proved in [28] that for any q ∈ [2,∞], one has

‖et JRφ‖Ḃr
q,2

� t−3( 12− 1
q )‖φ‖Ḃr

q′,2
.

Furthermore, for any admissible pairs (p j , q j ), j = 1, 2, it holds

‖et JRφ‖L p1 Ḃr
q1,2

� ‖φ‖Ḣr , ‖
∫ t

0
e(t−τ)JR f (τ )dτ‖L p1 Ḃr

q1,2
� ‖ f ‖

L p′2 Ḃr
q′2,2

.

These estimates lead to

‖et J Hφ‖Ḃr
q,2

� t−3( 12− 1
q )‖φ‖Ḃr

q′,2
, ‖et J Hφ‖L p1 Ḃr

q1,2
� ‖φ‖Ḣr ,

‖
∫ t

0
e(t−τ)J H g(τ )dτ‖L p1 Ḃr

q1,2
� ‖g‖

L p′2 Ḃr
q′2,2

.
(3.18)

In fact, since J H − JR = c · ∇ which commutes with JR, we have

et J H Z = (et JR Z)(· + ct) = et JR
(
Z(· + ct)

)
.
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The first two of the inequalities in (3.18) follow immediately due to the translation
invariance of the Besov norms. To see the last one in (3.18),

‖
∫ t

0
e(t−τ)J H g(τ )dτ‖L p1 Ḃr

q1,2
= ‖

∫ t

0
e(t−τ)JR(g(τ )(· + c(t − τ))

)
dτ‖L p1 Ḃr

q1,2

= ‖
∫ t

0
e(t−τ)JR(g(τ )(· − cτ)

)
dτ‖L p1 Ḃr

q1,2
� ‖g(t)(· − ct)‖

L p′2 Ḃr
q′2,2

= ‖g‖
L p′2 Ḃr

q′2,2

.

• Step 2. Space-time estimate. In the next step, instead of (3.12), we will obtain the
space-time estimate of solutions of (3.16) based on (3.18) with

Z(t) − e(t−s)J H Z(s) =
∫ t

s
e(t−τ)J H [Q(y(τ ), ∂t y(τ )

)
Z(τ ) + f̃ (τ )

]
dτ

=
∫ t−s

0
e(t−s−τ)J H [Q(y(s + τ), ∂t y(s + τ)

)
Z(s + τ) + f̃ (s + τ)

]
dτ.

(3.19)

By (3.18), (2.29), (3.17), (3.15), and σ = |∂t y|L∞ ≤ 1, for admissible pairs (p, q),
( p̃, q̃) and (∞, 2), and t0 < t ′0 ≤ s ≤ t ′1 < t1, we have

‖Z(t) − e(t−s)J H Z(s)‖L p
(t ′0,t ′1)

Ḃ1
q,2

≤ C
(‖Z‖L1

(t ′0,t ′1)
Ḣ1 + ‖ f̃ ‖

L p̃′
(t ′0,t ′1)

Ḃ1
q̃′,2

)

≤ C
(
(t ′1 − t ′0)‖Z‖L∞

(t ′0,t ′1)
Ḣ1 + ‖ f̃ ‖

L p̃′
(t ′0,t ′1)

Ḃ1
q̃′,2

)
.

(3.20)

Consider the standard splitting of Z(t) into

Z(t) = Zh(t) + Zin(t), V (t) = PZh(t) +PZin(t),

where Zh(t) satisfies the corresponding homogeneous equation of (3.16) (i.e. without
f̃ ) and Zh(s) = Z(s), and Zin(t) solves (3.16) and Zin(s) = 0.
• Step 3. Non-homogeneous part Zin. On the one hand, applying (3.20) to Zin(t) with
the admissible pair (p = ∞, q = 2), we obtain that there exists T > 0 independent of
t0, t1, t ′0, t ′1, and y(t) such that, if t ′1 − t ′0 ≤ T , it holds

‖Zin‖L∞
(t ′0,t ′1)

Ḣ1 ≤ C‖ f̃ ‖
L p̃′

(t ′0,t ′1)
Ḃ1
q̃′,2

.

Substituting this back into (3.20), we have that for any t ′1 − t ′0 ≤ T and admissible pairs
(p, q),

‖Zin‖L p
(t ′0,t ′1)

Ḃ1
q,2

≤ C‖ f̃ ‖
L p̃′

(t ′0,t ′1)
Ḃ1
q̃′,2

. (3.21)

We claim that (I − 
e
c,y(t)) f (t) = 0 implies

PZin(t) =
∫ t

s
S(t, τ ) f (τ )dτ ∈ Xe

c,y(t), a.e. t ∈ (t ′0, t ′1). (3.22)

In fact, let

Y = {g̃ ∈ L p̃′
(t ′0,t ′1)

Ḃ1
q̃ ′,2 | (I − 
e

c,y(t))Pg(t) = 0, ∀t ∈ (t ′0, t ′1)
} ⊂ L p̃′

(t ′0,t ′1)
Ḃ1
q̃ ′,2.
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Since ζ α
c ∈ Hk × (Hk ∩ H−1), for any k ≥ 1 and α ∈ {T, d1, d2,+,−}, I − 
e

c,y

actually applies toPg(t) ∈ B1
q̃ ′,2 × Ḃ1

q̃ ′,2. Consider the mapping �

W (t) = (�g)(t) �
∫ t

s
S(t, τ )P g̃(τ )dτ.

Inequality (3.21) and the definition of P imply that � : L p̃′
(t ′0,t ′1)

Ḃ1
q̃ ′,2 → L∞

(t ′0,t ′1)
X1 is a

bounded operator, and thus also bounded when restricted to Y . Since Lemma 3.4 implies

(I − 
e
c,y(t))(�g)(t) = 0, ∀t ∈ (t ′0, t ′1) if g ∈ Y ∩ L∞

(t ′0,t ′1)
X1

and Y ∩ L∞
(t ′0,t ′1)

X1 is dense in Y , we obtain that (I −
e
c,y(t))� vanishes on Y . Therefore

PZin(t) ∈ Xe
c,y(t) for almost all t ∈ (t ′0, t ′1).

• Step 4. Homogeneous part and the completion of the proof of the lemma. On the other
hand, it is clear

Zh(t) = P−1S(t, s)V (s), PZh(t) ∈ Xe
c,y(t),

which also implies V (t) = PZh(t) + PZin(t) ∈ Xe
c,y(t) for almost all t ∈ (t ′0, t ′1).

Applying Lemma 3.4 to the ‖ · ‖L∞ Ḣ1 on the right side of (3.20) for Zh , we have

‖Zh − e(t−s)J H Z(s)‖L p
(t ′0,t ′1)

Ḃ1
q,2

≤ C(t ′1 − t ′0)‖V (s)‖X1

for t ′0 < s < t ′1 < t ′0 + T . From (3.18), we obtain

‖Zh‖L p
(t ′0,t ′1)

Ḃ1
q,2

≤ C‖V (s)‖X1

and inequality (3.13) follows immediately from the above estimates.
To derive (3.14) in the case of (p = ∞, q = 2), we apply (3.9) instead, along with

(3.21), (3.22), and (3.15) and the uniform positivity of Lc,y on Xe
c,y , to compute, for

t ∈ (t ′0, t ′1),
〈Lc,y(t)V (t), V (t)〉 = 〈Lc,y(t)S(t, s)V (s), S(t, s)V (s)〉

+ 2〈Lc,y(t)S(t, s)V (s),PZin(t)〉 + 〈Lc,y(t)PZin(t),PZin(t)〉
≤ (〈Lc,y(t)S(t, s)V (s), S(t, s)V (s)〉 12 + 〈Lc,y(t)PZin(t),PZin(t)〉 12

)2
≤ (eCσ |t−s|〈Lc,y(s)V (s), V (s)〉 12 + C‖ f̃ ‖

L p̃′
(t ′0,t ′1)

Ḃ1
q̃′,2

)2
.

This implies (3.14). Finally as T is independent of f and y(t), a standard continuation
argument extends the domain of solutions to (t0, t1) and thus completes the proof of the
lemma. ��

In the next step, we iterate the above small time estimates.

Lemma 3.6. Suppose (3.2) and (3.7) hold, (p, q) is an admissible pair, and f ∈ X̂ p̃′,q ′
(t0,t1)

,
where p̃ ∈ [1, p]. Then there exists C > 0 independent of f, t0, t1, s, t , such that for
any η > Cσ , every solution V (t) to (3.1) satisfies

〈Lc,y(t)V (t), V (t)〉 12 ≤ eCσ |t−s|〈Lc,y(s)V (s), V (s)〉 12 + Cη
− 1

p̃ ‖eη|t−·| f ‖
X̂ p̃′,q′

(s,t)

for any t0 < t, s < t1.
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Proof. We only prove the estimates for t > s, the estimates for negative time can be
obtained similarly. Suppose t = s + kT + t ′ where t ′ ∈ [0, T ), we use (3.14) repeatedly
to compute

〈Lc,y(t)V (t), V (t)〉 12 ≤ eCσ t ′(〈Lc,y(τ )V (τ ), V (τ )〉|τ=s+kT
) 1
2 + C‖ f ‖

X̂ p′,q′
(s+kT,t)

≤ eCσ(t−s)〈Lc,y(s)V (s), V (s)〉 12 + C
(‖ f ‖

X̂ p̃′,q′
(s+kT,t)

+
k∑
j=1

eCσ(t−s− jT )‖ f ‖
X̂ p̃′,q′

(s+( j−1)T,s+ jT )

)

≤ eCσ(t−s)〈Lc,y(s)V (s), V (s)〉 12 + C(

k∑
j=0

e p̃(Cσ−η)(t−s− jT ))
1
p̃ ‖eη(t−·) f ‖

X̂ p̃′,q′
(s,t)

.

Summing up the exponentials completes the proof of the lemma. ��
Finally we drop the assumption (3.7).

Proof of Proposition 3.1. We split (3.1) into the Xe
c,y component and its complementary

component as in (3.5). Much as the calculation in the derivation of (2.56), we have that
V⊥ satisfies (3.6).

The remaining estimate of V⊥(t) is similar to the above. In fact, for t > s,

|V⊥(t)| ≤ eCσ(t−s)|V⊥(s)| +
∫ t

s
eCσ(t−τ)| f ⊥(τ )|dτ

≤ eCσ(t−s)|V⊥(s)| +
∫ t

s
e(Cσ−η)(t−τ)eη(t−τ)| f ⊥(τ )|dτ

)

which implies the desired estimate on V⊥(t).
Due to the choice ofF , it is straightforward to compute that V e(t) = V (t)− V⊥(t)

satisfies (3.1) with the non-homogeneous term f (t) replaced by f e(t). Lemma 3.6
implies the estimate on V e(t) which completes the proof of the proposition. ��

Finally, we apply Lemma 3.6 to prove Proposition 3.3.

Proof of Proposition 3.3. We first decompose f ∈ X̃(t0,t1),loc into the sum of several
terms satisfying the assumptions in Lemma 3.6. In fact, by the definition of X̃ , we can
write

f = φ + ψ + γ

where

φ ∈ L2
locW

1, 32 ⊂ L2
loc B

1
3
2 ,2

⊂ X̂
2, 32
(t0,t1),loc

, γ ∈ L2
loc(H

1 × Ḣ1) ⊂ X̂2,2
(t0,t1),loc

,

and

ψ ∈ L2
loc(L

2 ∩ L
3
2 ), ∇ψ ∈ L2

locL
6
5 .

Let χ be the same smooth cut-off function used in Sect. 2.1. Clearly

χ(D)ψ ∈ L2
locW

1, 32 ⊂ L2
loc B

1
3
2 ,2

⊂ X̂
2, 32
(t0,t1),loc

, and ∇(1− χ(D)
)
ψ ∈ L2

locL
6
5 .
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Moreover, since the inverse Fourier transform of 1−χ(|ξ |)
|ξ | is in L1, we have

(
1− χ(D)

)
ψ = 1− χ(D)

|D| |D|ψ ∈ L2
locL

6
5

and thus
(
1− χ(D)

)
ψ ∈ X̂

2, 65
(t0,t1),loc

.
The desired estimate follows immediately from applying Proposition 3.6 to each of

these terms. ��

4. Construction of Lipschitz Local Invariant Manifolds ofM

Based on the space-time estimates developed in Sect. 3, we construct the center-unstable
manifoldW cu(M ) ofM , while the center-stable manifoldW cs(M ) can be constructed
similarly. The intersection of the center-unstable and the center-stable manifolds yields
the center manifold of M .

4.1. Outline of the construction of the center-unstable manifold ofM . Our construction
roughly follows the procedure in [14]. The codim-d local center-unstable manifold are
over the directions of Xd1

c,y ⊕ Xe
c,y ⊕ Xd2

c,y ⊕ X+
c,y alongM . In coordinate system (2.36)

W cu(M ) is represented as the graph of some mapping hcu

W cu(M ) = �
({
a− = hcu(y, ad1, ad2, a+, V e) |

(y, ad1, ad2, a+, V e) ∈ Bd1+d2+d(δ) ⊕X e(δ)
}) (4.1)

where the above sets are defined in (2.32). Even though Wcu(M ) is local, by using a
standard cut-off technique, we will carry out the construction on R

d1+d2+d ⊕ X e(δ).
Moreover, for technical convenience, we shall work with h(y, ad1, ad2, a+, V ) defined
on R

3+d1+d2+d × X1(δ) to avoid the non-flat bundle. However, only the value of h on
R
d1+d2+d ⊕X e(δ) matters.
Let

Xcu = R
3+d1+d2+d × X1, Xcu(δ) = {(y, ad1, ad2, a+, V ) ∈ Xcu : ‖V ‖X1 < δ}.

The following projection 
̃e, linear except in y, will be used often


̃e(y, ad1, ad2, a+, V ) = (y, ad1, ad2, a+,
e
c,yV ) ∈ R

d1+d2+d ⊕X e. (4.2)

We shall modify equations (2.40), (2.42), (2.43), (2.44), and (2.52), along with (2.46),
into a system defined on Xcu×R

d . As a standard technique in local analysis, we first cut-
off the nonlinearities as well as the off-diagonal linear terms in the direction transversal
toM . Take a cut-off function

γ ∈ C∞
0 (R), s. t. γ (x) = 1, ∀|x | ≤ 1, γ (x) = 0, ∀|x | ≥ 3, |γ ′|C0(R) ≤ 1 (4.3)

and for δ > 0, a− ∈ R
d , and W = (y, ad1, ad2, a+, V ) ∈ Xcu , let

γδ(W, a−) = γ
(
3δ−1(|ad1| + |ad2| + |a+| + |a−| + ‖V ‖X1)

)
.



J. Jin, Z. Lin, C. Zeng

For a− ∈ R
d and W ∈ Xcu , let

Ĝα(W, a−) = γδ(W, a−)Gα(c, y, w), α ∈ {+,−, d2}
Ĝd1(W, a−) = γδ(W, a−)

(〈ζ d1
c (· + y), A1e(y)Kc,yw〉 + M12a

d2 + Gd1(c, y, w)
)

ĜT (W, a−) = γδ(W, a−)
(〈ζ T

c (· + y), ATe(y)Kc,yw〉 + MT 1a
d1 + MT 2a

d2

+ GT (c, y, w)
)

Ĝe(W, a−) = γδ(W, a−)
(
Ae2(y)Kc,yw + Ge(c, y, w)

)

where functions ζ T
c = (ζ T

c,1, ζ
T
c,2, ζ

T
c,3), ζ

d1
c = (ζ d1

c,1, . . . , ζ
d1
c,d1

), and operators A1e, Ae2,
and ATe are given in Lemma 2.3, matrices M12, MT 1, MT 2 in (2.25), and

w = �(W, a−) � Em⊥(y, ad1, ad2, a+, a−,
e
c,yV

)
= K−1

c,y

(
(ad1V d1

c + ad2V d2
c + a+V +

c + a−V−
c )(· + y) + 
e

c,yV
)
.

(4.4)

From the definitions of Ĝα , it clearly holds that they are independent of the extra
component (I − 
̃e)W added to avoid the non-flat bundle R

d1+d2+d ⊕X e. In particular,
Ĝe satisfies

(I − 
e
c,y)Ĝ

e = 0, Ĝe ∈ X̃ = X1 +W 1, 32 + (L
3
2 ∩ Ẇ 1, 65 ). (4.5)

Denote

X̃ cu = R
3+d1+d2+d × X̃ , X̃ cu(δ) = {(y, ad1, ad2, a+, V ) ∈ X̃ cu : ‖V ‖X̃ < δ},

Ĝcu(W, a−) = (ĜT , Ĝd1, Ĝd2, Ĝ+, Ĝe)(W, a−),

Acu(y, ỹ) = diag
(
0, M1, M2, M+,


e
c,y J Lc,y


e
c,y +F (c, y)(ỹ, ·)).

We shall consider, for W = (y, ad1, ad2, a+, V ) ∈ Xcu and a− ∈ R
d ,

∂tW = Acu(y, ĜT (W, a−)
)
W + Ĝcu(W, a−) (4.6a)

∂t a
− = M−a− + Ĝ−(W, a−) (4.6b)

which, for ‖w‖X1 ≤ δ, coincides with the system consisting of equations (2.40), (2.42),
(2.43), (2.44), and (2.52), along with (2.46), the representation of (GP) in the local
coordinate system near M .

As the off-diagonal linear blocks in J Lc,y are incorporated into Ĝcu , the latter does not
have small Lipschitz constants, which is often a necessity in constructing local invariant
manifolds. Accordingly, we introduce metrics involving a scale constant Q > 1

‖(y, ad1, ad2, a+, V )‖X1,Q � |y| + Q|ad1| + Q3|ad2| + |a+| + Q2‖V ‖X1 ,

‖(y, ad1, ad2, a+, V )‖X̃ ,Q � |y| + Q|ad1| + Q3|ad2| + |a+| + Q2‖V ‖X̃
(4.7)

to make Lipschitz constants of Ĝcu,− small (Lemma 4.3).
We shall construct the local center-unstable manifold W cu(M ) as the graph {a− =

hcu(W )} of some h : Xcu(δ) → R
d . SinceW cu(M ) is expect to be translation invariant,

we will only consider translation invariant mappings h : Xcu(δ) → R
d , which satisfy,

for any z ∈ R
3,

h
(
y + z, ad1, ad2, a+, V (· + z)

) = h(y, ad1, ad2, a+, V ). (4.8)
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Fix constants Q, δ, μ such that

δ < 1, Q > 1, μ <
1

5
, (4.9)

whose additional assumptions will be given later. Let

�μ,δ = {h : Xcu(δ) → R
d | h(y, 0, 0, 0, 0) = 0, ‖h‖C0 ≤ δ/15,

h satisfies (4.8), and Lip‖·‖X1,Q ≤ μ}. (4.10)

Here h(y, 0, 0, 0, 0) = 0 is required as W cu(M ) should contain M . Clearly �μ,δ

equipped with ‖ · ‖C0 is a complete metric space.
Wewill define a transform on�μ,δ based on (GP). For any h ∈ �μ,δ and W̄ ∈ Xcu(δ),

consider the solution W (t) = (y, ad1, ad2, a+, V )(t) ∈ Xcu of

∂tW = Acu(y, ĜT (W, h(W )
))
W + Ĝcu(W, h(W )

)
, W (0) = W̄ . (4.11)

Remark 4.1. Even though h is defined only on Xcu(δ), due to the cut-off function γδ ,
for any h ∈ �μ,δ , α ∈ {T, d1, d2,±, e}, it holds Ĝα

(
W, h(W )

) = 0 whenever W ∈
Xcu\Xcu(δ). Consequently, the right side of (4.11) is well-defined for all W ∈ Xcu .

We define h̃(W̄ ) as

h̃(W̄ ) = ā− =
∫ 0

−∞
e−tM− Ĝ−(W (t), h(W (t))

)
dt. (4.12)

We denote this transformation h → h̃ as

T (h) = h̃.

In order to construct the center-unstablemanifold, in the following subsections, under
suitable assumptions on Q, δ, and μ we will show h̃ ∈ �μ,δ is well-defined and that T
is a contraction on �μ,δ . The graph of the unique fixed point, restricted to the set

Bd1+d2+d(δ)⊕X e(δ)={(y, ad1, ad2, a+, V ) ∈ Xcu(δ) | |(ad1, ad2, a+)|<δ, V ∈ Xe
c,y}

would be the desired center-unstablemanifoldW cu(M ). To end this subsection, we give
the following lemma to show that working on systems (4.6) or (4.11) on the expanded
domain Xcu , only to avoid the non-flat bundleR

d1+d2+d⊕X e, does not change the local
invariant manifolds.

Lemma 4.2. The following statements hold.

(1) Suppose W (t) satisfies (4.6a) on [t1, t2] for some a− ∈ C0([t1, t2], R
d) and 
̃eW (t0)

= W (t0) for some t0 ∈ [t1, t2], then 
̃eW (t) = W (t) for all t ∈ [t1, t2].
(2) Assume h j ∈ �μ,δ , j = 1, 2, satisfy h1(W ) = h2(W ) for all W ∈ Xcu(δ) with


̃eW = W. Then h̃ j , j = 1, 2, defined in (4.12) satisfy the same property.

Proof. For the first statement, we observe that a direct consequence of (4.5), (3.6), and
our assumption is (I−
̃e)W (t) = 0, for all t ≤ [t1, t2], which impliesW (t) = 
̃eW (t).
The second statement of the lemma is just a simple corollary of part (1) and the definition
of h̃. ��
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4.2. Apriori estimates. Following the construction outlined in Sect. 4.1, in order to
prove that h̃ ∈ �μ is well-defined for any given h ∈ �μ,δ , we start with the following
preliminary estimates.

Lemma 4.3. Ĝcu,− : Xcu × R
d → X̃ cu × R

d are smooth, Ĝcu,−(y, 0, 0, 0, 0, 0) = 0.
Moreover, there exists C > 0 independent of Q and δ such that

‖DĜcu‖LQ(Xcu×Rd ,X̃ cu) ≤ C(Q−1 + δQ3), ‖DĜ−‖L(Xcu×Rd ,Rd ) ≤ Cδ

where ‖ · ‖LQ(Xcu×Rd ,X̃ cu) denote the operator norm when evaluated in ‖ · ‖X1,Q and
‖ · ‖X̃ ,Q.

Proof. From the definitions of Ĝcu,− and (2.48) and (2.50) which in turn are derived
from Lemma A.1, the smoothness of Ĝcu,− and Ĝcu,−(y, 0, 0, 0, 0, 0) = 0 follows
immediately. Moreover, it is straightforward to obtain the following estimates. Firstly,
for l, k ≥ 0,

‖Dk
(ad1,ad2,a+,a−,V )

Dl
y(Ĝ

cu, Ĝ−)(W, a−)‖ ≤ Ck,lδ
1−k (4.13)

for some Ck,l > 0. When we exclude the off-diagonal terms in Ĝcu , the estimates may
be improved to

|Dk
(ad1,ad2,a+,a−,V )

Dl
yĜ

d2,+,−| + |Dk
(a+,a−)

Dl
yĜ

T |
+ ‖Dk

(ad1,a+,a−,V )
Dl

yĜ
e‖ + |Dk

(ad1,a+,a−)
Dl

yĜ
d1| ≤ Ck,lδ

2−k,
(4.14)

for some Ck,l > 0. In the above Ĝe is always evaluated in the ‖ · ‖X̃ norm. The de-
sired estimates on DĜcu,− follow from straightforward calculations based on the above
inequalities. ��

The following lemma is a simple corollary of Proposition 3.1.

Lemma 4.4. There exists C > 0 such that, for any y ∈ C1
(
(−∞, 0], R

)
satisfying

|∂t y|L∞ ≤ σ , f ∈ L2
(
(−∞, 0], X̃ cu), Q > 1, η ∈ (Cσ, 1), and W (t), t ∈ (−∞, 0],

solving

∂tW = Acu(y, ∂t y)W + f,

we have

‖W (t)‖2X1,Q ≤ Cη−2d1e−ηt‖W (0)‖2X1,Q + Cη−2d1−1
∫ 0

t
eη(τ−t)‖ f (τ )‖2

X̃ ,Q
dτ.

Proof. Since Acu takes a diagonal form, we may consider each component individually.
For the ad1,d2 and y components, in addition to applying (2.26) we also use

|etM1 | + |etM2 | ≤ C(1 + |t |)d1 ≤ Cη−d1e
η
3 |t |

and the following estimate based on the Cauchy-Schwartz inequality

|
∫ 0

t
e

η
3 (τ−t)g(τ )dτ |2 ≤ Cη−1

∫ 0

t
eη(τ−t)|g(τ )|2dτ

to obtain the desired inequality. The estimate on the V component is a direct consequence
of Proposition 3.1 and the estimate of the a+ and y component trivially follows from
(2.26). ��
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Proposition 4.5. Let η ∈ (0, 1), T ∈ [−∞, 0), h ∈ �μ,δ , and ã−2 (·) ∈ C0
([T, 0], R

d).
Suppose W1(t) = (y1, ad11 , ad21 , a+1 , V1)(t) ∈ Xcu is a solution to (4.11) and W2 =
(y2, ad12 , ad22 , a+2 , V2)(t) ∈ Xcu solves

∂tW = Acu(y, ĜT (W, ã−2 )
)
W + Ĝcu(W, ã−2 ), (4.15)

with initial values W̄ j = (ȳ j , ād1j , ād2j , ā+j , V̄ j ) ∈ Xcu(δ), j = 1, 2. Then these solutions
exist for all t ∈ [T, 0] and there exists C > 0 independent of μ, T, η, Q, and δ, such
that if (4.9) is satisfied and

Cη−(1+d1)(Q−1 + Q3δ) < 1 (4.16)

then Wj (t) ∈ Xcu(Cδ) for all t ∈ [T, 0] and

‖(W2 −W1)(t)‖2X1,Q ≤ Cη−2d1
(
e−2ηt‖(W2 −W1)(0)‖2X1,Q

+ η−1Q6δ2
∫ 0

t
e2η(τ−t)|(ã−2 − h(W2)

)
(τ )|2dτ

)
.

Proof. To analyze solutions to (4.11) and (4.15), we first note

ĜT (W, a−) = 0, Ĝe(W, a−) = 0, if ‖V ‖X1 ≥ δ.

Therefore if ‖Vj‖X1 ≥ δ, (3.11), (4.11), and decomposition (3.6) yield

∂t y j = 0, ∂t 〈Lc,y j

e
c,y j Vj ,


e
c,y j Vj 〉 = 0, ∂t (I − 
e

c,y j )Vj = 0,

which along with the initial condition and Lemma 2.3 yield

‖Vj (t)‖X1 ≤ Cδ, ∀t ∈ [T, 0]. (4.17)

To estimate the difference, let

B(t) = F (c, y2)
(
ĜT (W2, ã

−
2 ), ·)−F (c, y1)

(
ĜT (W1, h(W1)), ·

)
+ Ae(y2) − Ae(y1)

Bcu(t) � Acu(y2, ĜT (W1, ã
−
2 )
)− Acu(y1, ĜT (W1, h(W1))

)
= diag

(
0, 0, 0, 0, B(t)

)
.

The cut-off in the definition of ĜT , (4.11), and (4.13) imply

|∂t y j | = |ĜT | ≤ Cδ.

From Lemma 2.3, Lemma 2.5, (4.13), (4.17), and (4.17), we can estimate

‖Bcu(t)W2(t)‖X1,Q = Q2‖B(t)V2(t)‖X1

≤ CδQ2(|y2 − y1|
(
1 + |ĜT (W1, h(W1))|

)
+ |ĜT (W2, ã

−
2 ) − ĜT (W1, h(W1))|

)
≤ CδQ2(‖W2 −W1‖Xcu + |ã−2 − h(W1)|).

From the definitions of Wj , j = 1, 2, and decomposition (3.6), we have

∂t (W2 −W1) = Acu(y1, ĜT (W1, h(W1))
)
(W2 −W1) + BcuW2

+ Ĝcu(W2, ã
−
2 ) − Ĝcu(W1, h(W1)

)
.
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Applying Lemma 4.4 we obtain

‖(W2 −W1)(t)‖2X1,Q ≤ Cη−2d1e−ηt‖(W2 −W1)(0)‖2X1,Q

+ η−2d1−1
∫ 0

t
eη(τ−t)(‖(BcuW2)(τ )‖2

X̃ ,Q

+ ‖(Ĝcu(W2, ã
−
2 ) − Ĝcu(W1, h(W1)

))
(τ )‖2

X̃ ,Q

)
dτ.

The above estimate on Bcu and Lemma 4.3 including (4.14) imply

‖(W2 −W1)(t)‖2X1,Q ≤ Cη−2d1e−ηt‖(W2 −W1)(0)‖2X1,Q + η−2d1−1
∫ 0

t
eη(τ−t)

× ((Q−1 + δQ3)2‖(We
2 −We

1 )(τ )‖2X1,Q + δ2Q6|(ã−2 − h(W1)
)
(τ )|2)dτ.

Since h is Lipschitz with Lipschitz constant μ < 1, we obtain

eηt‖(W2 −W1)(t)‖2X1,Q ≤ Cη−2d1‖(W2 −W1)(0)‖2X1,Q + η−2d1−1
∫ 0

t
eητ

× ((Q−1 + δQ3)2‖(W2 −W1)(τ )‖2X1,Q + δ2Q6|(ã−2 − h(W2)
)
(τ )|2)dτ.

The estimate on W2 −W1 follows from the Gronwall inequality. ��
Remark 4.6. It is worth pointing out that the F term in the equation of ∂t V can not be
cut off as it ensures V ∈ Xe

c,y if this holds initially. In the proof of the above proposition,
this term was under control since it vanishes when ‖V ‖X1 = Cδ which implies ∂t y = 0.
Seemingly this argument heavily depends on the lack of growth of et Ae(y) for any fixed
y. If et Ae(y) indeed induces some weak exponential growth backward in t , instead of
the cut-off applied to the V equation, a standard trick is to add a bump function to
modify the V equation so that it is actually slightly inflowing/decaying backward in t
for ‖V ‖X1 ≥ Cδ. The same estimates could be obtained subsequently.

4.3. Lipschitz center-unstable manifold. In this subsection, we will show that the trans-
formation outlined in Sect. 4.1 iswell-defined and is a contraction on�μ,δ for appropriate
μ, Q, and δ, which would imply the existence of a fixed point and thus a center-unstable
manifold. For any h ∈ �μ,δ , recall we attempted to define a new mapping h̃ = T (h)

whose value h̃(W ) = ā− at W = (ȳ, ād1, ād2, ā+, V̄ ) is given by (4.12).

Lemma 4.7. Fix η ∈ (0, 1) ∩ (0, λ). There exists C > 0 independent of Q, μ, δ and η,
such that if (4.9), (4.16), and

C(λ − η)−1η−(d1+1)Q3δ2 < 1, C(λ − η)−1η−d1δ < μ, (4.18)

are satisfied, then T is a contraction on �μ,δ .

Proof. We first prove that h̃ ∈ �μ,δ . Since h(y, 0) = 0 and Ĝcu,−(y, 0) = 0, if
its initial data W̄ = (ȳ, 0), then the solution to (4.11) apparently is W (t) = (ȳ, 0).
Therefore h̃(ȳ, 0) = 0. From (4.14) and (2.26), it is easy to estimate

‖h̃‖C0 ≤ Cλ−1δ2 ≤ δ/15,
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where (4.18) is used.
From (2.47), (4.8), and that ‖ · ‖X1 is translation invariant, the cut-off is not affected

by any spatial translation. Therefore
(
y(t) + z, ad1(t), ad2(t), a+(t), V (t, · + z)

)

is a solution to (4.11) for any z ∈ R
3 and any solution (y, ad1, ad2, a+, V )(t) to (4.11).

Therefore the definition of h̃ implies that it also satisfies (4.8).
Finally, we show the Lipschitz property for h̃. For any W̄ j ∈ Xcu(δ), letWj (t), t ≤ 0,

be the corresponding solutions to (4.11) and ā−j be given as in (4.12), for j = 1, 2.
Applying Proposition 4.5 to these two solutions, we have, for any t ≤ 0,

‖(W2 −W1)(t)‖X1,Q ≤ Cη−d1e−ηt‖W̄2 − W̄1‖X1,Q .

Therefore, we obtain from (4.12), (2.26), and (4.14) that

|ā−2 − ā−1 | ≤Cδ

∫ 0

−∞
eλτ‖(W2 −W1)(τ )‖X1,Qdτ ≤ Cη−d1δ

λ − η
‖W̄2 − W̄1‖X1,Q .

The desired Lipschitz property of h̃ follows immediately from (4.18) and thus h̃ ∈ �μ,δ .
To see the transformation h → h̃ is a contraction, given any h1, h2 ∈ �μ,δ and initial

value W ∈ Xcu(δ), let Wj (t), t ≤ 0, j = 1, 2, be the solutions to (4.11) associated to
h j , with the initial value W . In applying Proposition 4.5, we notice the corresponding

|(a2 − h1(W ))(t)| ≤ ‖h2 − h1‖C0 , (W1 −W2)(0) = 0,

and thus, for any t ≤ 0,

‖(W2 −W1)(t)‖X1,Q ≤Cη−d1−1Q3δe−ηt‖h2 − h1‖C0 .

Therefore (4.12), (2.26), and (4.14) again imply

|ā−2 − ā−1 | ≤ Cη−(1+d1)Q3δ2
∫ 0

−∞
e(λ−η)τdτ‖h2 − h1‖C0 .

Therefore (4.18) implies the contraction property. ��
Under conditions (4.9), (4.16), and (4.18), which can apparently be satisfied by

choosing μ, δ, Q, and η carefully, Lemma 4.7 implies

∃! hcu ∈ �μ,δ, s. t. T (hcu) = hcu .

We are only concerned with hcu restricted to R
d1+d2+d ⊕X e(δ). Let

Wcu = graph(hcu) = {(y, ad1, ad2, a+, a−, V e) |
a− = hcu(y, ad1, ad2, a+, V e), (y, ad1, ad2, a+, V e) ∈ R

d1+d2+d ×X e(δ)
}

and an even smaller submanifold for (2.7) and (GP)

W cu(M ) = �
({

(y, ad1, ad2, a+, a−, V e) ∈ Wcu |
|ad1|, |ad2|, |a+|, ‖V e‖X1 < δ/15

})
.

(4.19)
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Clearly Wcu is a Lipschitz manifold due to the Lipschitz property of hcu ∈ �μ,δ .
For any ā− = hcu(W̄ ), W̄ = (ȳ, ād1, ād2, ā+, V̄ e) ∈ R

d1+d2+d ⊕ X e(δ) corre-
sponding to a point on Wcu , let W (t) = (y, ad1, ad2, a+, V e)(t) be the corresponding
solution of (4.11) where V e(t) ∈ Xe

c,y(t)(Cδ) due to Lemma 4.2 and Proposition 4.5.

Let a−(t) = hcu
(
W (t)

)
whenever t satisfies V e(t) ∈ Xe

c,y(t)(δ). We can extend a−(t) to

be a bounded function for t ∈ R. For any |t0| � 1 such that W̃ = W (t0) ∈ Xcu(δ), since
(4.11) is autonomous,W (t + t0) is its solution with initial value W̃ . SinceT (hcu) = hcu ,
we can compute ã− = a−(t0) = hcu

(
W̃
)
satisfies

ã− =
∫ 0

−∞
e−τM− Ĝ−((W, a−)(t0 + τ)

)
dτ =

∫ t0

−∞
e−(τ−t0)M− Ĝ−((W, a−)(τ )

)
dτ

= et0M− ā− +
∫ t0

0
e(t0−τ)M− Ĝ−((W, a−)(τ )

)
dτ.

As in Remark 4.1, the above equality does not depend on the extension of a−(t)
as Ĝ−(W, a−) = 0 whenever W ∈ Xcu\Xcu(δ). Therefore (W, a−)(t) = (

W (t),
hcu(W (t))

)
is a solution to (4.6). Along with the translation invariance (4.8) of hcu , we

have proved the local invariance of Wcu under (4.6). Since hcu is translation invariant,
we obtain

Lemma 4.8. Wcu is locally invariant under (4.6), i.e. if w(t) is a solution to (4.6) and
w(0) ∈ Wcu, then exists ε > 0 such that w(t) ∈ Wcu for all t ∈ (−ε, ε). Moreover
Wcu satisfies, for any z ∈ R

3,

w(· + z) ∈ Wcu if w ∈ Wcu .

Solutions starting on Wcu might leave Wcu through its boundary hcu
(
Xcu(δ)

)\
hcu
(
Xcu(δ)

)
.

Since (4.6) coincides with the original system (2.40), (2.42), (2.43), (2.44), and (2.52)
when

|ad1| + |ad2| + |a+| + |a−| + ‖V e‖X1 ≤ δ/3,

W cu is a locally invariant manifold of (2.7) and (GP). Namely

Proposition 4.9. If U (t) = �
(
w(t)

)
solves (2.7), satisfies U (0) ∈ W cu, and w(t) ∈

Bd1+d2+2d( δ
15 ) ⊕X e( δ

15 ) for all t ∈ [−T, T ], T > 0, then U (t) ∈ W cu, t ∈ [−T, T ].

4.4. Local dynamics related to the center-unstable manifold. We start with the local
stability of the center-unstable manifold, which means that if a solution to (2.7) stays in
a δ0-neighborhood ofM over a time interval, then its distance toW cu shrinks exponen-
tially. Since (2.7) is equivalent to (4.6) for U nearM , we only need to work with (4.6).
More precisely,

Lemma 4.10. There exists C > 0 independent of Q, μ, δ and η, such that if (4.9),
(4.16), (4.18), and

C
(
η−(2d1+1)Q6δ2 + δ2η−1 + η−2(d1+1)Q6δ4(λ − 2η)−1) < η (4.20)
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are satisfied, then for any T > 0 and solution

(W, a−)(t) = (y, ad1, ad2, a+, a−, V e)(t) ∈ R
d1+d2+2d ⊕X e(δ),

t ∈ [0, T ], to (4.6), we have
|a−(t) − hcu

(
W (t)

)| ≤ Ce−(λ−2η)t |a−(0) − hcu
(
W (0)

)|
for any t ∈ [0, T ].
Proof. Let

W1(t) = W (t), ã−1 (t) = a−(t), �−(t) = a−(t) − hcu
(
W (t)

)
.

Fix t ∈ (0, T ] and let
(
(W2, ã

−
2 )(τ )

)
be the solution to (4.6) with initial value(

W (t), hcu(W (t))
)
at τ = t . The invariance of Wcu under (4.6) implies that, for all

τ ≤ t ,

ã−2 (τ ) = hcu
(
W2(τ )

)
, �−(t) = ã−1 (t) − ã−2 (t),

where we note the latter holds at τ = t only. Denote

l(τ ) = ‖(W2 −W1)(τ )‖X1,Q .

Lemma 4.2 implies 
̃eW j (τ ) = Wj (τ ) for τ ≤ t , j = 1, 2, since it holds at τ = t .
From Proposition 4.5, we have, for any τ ≤ t ,

l(τ )2 ≤ Cη−(2d1+1)Q6δ2
∫ t

τ

e2η(τ ′−τ)|�−(τ ′)|2dτ ′. (4.21)

Using the variation of parameter formula, we have

�−(t) = (ã−1 − ã−2 )(t)

= etM−(ã−1 − ã−2 )(0) +
∫ t

0
e(t−τ)M−

(
Ĝ−((W1, ã

−
1 )(τ ),

)− Ĝ−((W2, ã
−
2 )(τ )

))
dτ.

It follows from (2.26) and (4.14) that

|�−(t)| ≤ Ce−λt |(ã−1 − ã−2 )(0)| + Cδ

∫ t

0
e−λ(t−τ)

(
l(τ ) + |(ã−1 − ã−2 )(τ )|)dτ.

Since

|(ã−1 − ã−2 )(τ )| ≤ |�−(τ )| + μl(τ ),

we obtain

|�−(t)| ≤ Ce−λt(l(0) + |�−(0)|) + Cδ

∫ t

0
e−λ(t−τ)

(
l(τ ) + |�−(τ )|)dτ.
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We use (4.21) to proceed

|�−(t)|2 ≤ Ce−2(λ−η)t |�−(0)|2 + Cη−(2d1+1)Q6δ2e−2λt
∫ t

0
e2ητ |�−(τ )|2dτ

+ Cδ2
( ∫ t

0
e−λ(t−τ)|�−(τ )|dτ

)2 + Cη−(2d1+1)Q6δ4

×
( ∫ t

0
e−λ(t−τ)

( ∫ t

τ

e2η(τ ′−τ)|�−(τ ′)|2dτ ′
) 1
2 dτ

)2

� Ce−2(λ−η)t |�−(0)|2 + I1 + I2 + I3.

The above integrals are estimated by Cauchy-Schwartz inequality. Firstly,

I2 ≤ Cδ2
∫ t

0
e−2η(t−τ)dτ

∫ t

0
e−2(λ−η)(t−τ)|�−(τ )|2dτ

≤ Cδ2η−1
∫ t

0
e−2(λ−η)(t−τ)|�−(τ )|2dτ.

Secondly,

I3 ≤ Cη−(2d1+1)Q6δ4e−2λt
∫ t

0
e2ητdτ

∫ t

0

∫ t

τ

e2(λ−η)τ+2η(τ ′−τ)|�−(τ ′)|2dτ ′dτ

≤ Cη−2(d1+1)Q6δ4e−2(λ−η)t
∫ t

0
|�−(τ ′)|2

∫ τ ′

0
e2ητ ′+2(λ−2η)τdτdτ ′

≤ Cη−2(d1+1)Q6δ4(λ − 2η)−1
∫ t

0
e−2(λ−η)(t−τ)|�−(τ )|2dτ.

Finally, it is also easy to see

I1 ≤Cη−(2d1+1)Q6δ2
∫ t

0
e−2(λ−η)(t−τ)|�−(τ )|2dτ.

Therefore we obtain

|�−(t)|2 ≤ Ce−2(λ−η)t |�−(0)|2 + η

∫ t

0
e−2(λ−η)(t−τ)|�−(τ )|2dτ

where assumption (4.20) is used. The desired estimates follow immediately from the
Gronwall inequality and the proof is complete. ��
Remark 4.11. The proof of the local asymptotic stability of the center-unstable manifold
could have been much simpler if hcu had been smooth, which will be proved in the
next section. In that case, one could obtain the decay estimate using certain property
derived by differentiating the invariance equation of hcu . In this subsection, even though
we went a greater length to obtain the result, it has the benefit to show that the local
asymptotic stability still holds even if hcu is only Lipschitz, which is the case when G
is only Lipschitz.

A direct corollary of Lemma 4.10 is the following condition for a point to belong to
Wcu .
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Lemma 4.12. There exists C > 0 such that if η ∈ (Cδ, 1) and Q, μ, δ satisfy (4.9),
(4.16), (4.18), and (4.20), then a solution of (4.6)

(W, a−)(t) = (y, ad1, ad2, a+, a−, V e)(t) ∈ Wcu

if (W, a−)(t) ∈ R
d1+d2+2d ⊕X e(δ) for all t ≤ 0 and satisfies supt≤0 |a−(t)| < ∞.

Since (GP), or equivalently (2.7), is equivalent to (4.6) in a neighborhood ofM , we
have

Corollary 4.13. If U (t) = �
(
w(t)

)
is a solution of (2.7) satisfying

w(t) ∈ Bd1+d2+2d(
δ

15
) ⊕X e(

δ

15
)

for all t ≤ 0, then U (t) ∈ W cu, t ≤ 0.

Remark 4.14. Note that the assumption in the above lemma is satisfied if a solution stays
in a neighborhood ofM for all t ≤ 0, which is the case of neighboring traveling waves.

More precisely, consider another travel wave Uc̃ = (uc̃, vc̃) = ψ(wc̃) with traveling
velocity c̃ ∈ R

3. Here we recall ψ and ψ−1 are given in (2.2) and (2.3), respectively.

Lemma 4.15. There exists δ0 > 0 such that

(1) if c̃ ∧ c = 0, ‖wc̃ − wc‖X1 < δ0, then Uc̃ ∈ W cu;
(2) or without c̃ ∧ c = 0, but instead with the additional ‖x∇(wc̃ − wc

)‖X1 < δ0 and
that the angel between c and c̃ is bounded by δ0, then uc̃ ∈ W cu.

Proof. The solution to (2.17) corresponding to Uc̃ is given by wc̃(x − c̃t). If c̃ and c
are parallel, then wc(· − c̃t) ∈ ψ−1(M ) and ‖wc̃(· − c̃t) − wc(· − c̃t)‖X1 < δ0 for all
t ≤ 0, then Uc̃ ∈ W cu by Corollary 4.13.

In the general case, there exists a near identity orthogonal matrix O3×3 such that
Oc̃ = |̃c||c|−1c. It is easy to verify that wc

(
O(x − c̃t)

)
is a traveling wave of (2.17)

with traveling velocity |̃c||c|−1c. As |O − I | � 1 yields that wc(Ox) is close to wc
satisfying the assumption of case (1), thereforeUc(Ox) ∈ W cu . Our assumptions imply
‖wc̃ − w(O·)‖X1 � 1 and thus Corollary 4.13 implies Uc̃ ∈ W cu . ��

4.5. Construction of local center-stable manifolds. Basically by reversing the time in
the previous procedure, we can construct a local Lipschitz center-stable manifold Wcs

of M . It is given by the graph of a function hcs : Bd1+d2+d(δ) ⊕X e(δ) → R
d ,

W cs(M ) = �
({
a+ = hcs(y, ad1, ad2, a−, V e) |
(y, ad1, ad2, a−, V e) ∈ Bd1+d2+d(δ) ⊕X e(δ)

})
.

We briefly outline the steps here. Let Xcs = R
3+d1+d2+d × X1 be same as Xcu

and equipped with the same ‖ · ‖X1,Q metric as in (4.7). The set �cs
μ,δ of mappings

h : Xcs(δ) → R
d also takes the same form as �cu

μ,δ .

On Xcs × R
d , we rewrite (4.6) as

∂tW = Acs(y, ĜT (W, a+)
)
W + Ĝcs(W, a+) (4.22a)

∂t a
+ = M+a

+ + Ĝ+(W, a+) (4.22b)
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where Ĝcs = (ĜT , Ĝd1, Ĝd2, Ĝ−, Ĝe) are as defined in Sect. 4.1 and

Acs(y, ỹ) = diag
(
0, M1, M2, M−,
e

c,y J Lc,y

e
c,y +F (c, y)(ỹ, ·)).

For any h and W̄ ∈ Xcs(δ), let W (t), t ≥ 0, be the solution to

∂tW = Acs(y, ĜT (W, h(W )
)
W + Ĝcs(W, h(W )

)
, W (0) = W̄

and define h̃(W̄ ) as

h̃(W̄ ) = ā+ = −
∫ ∞

0
e−τM+ Ĝ+(W (t), h(W (t))

)
dt

and T cs(h) = h̃. Following exactly the same procedure, one proves that this defines a
contractionmapping on�cs

μ,δ , the graph ofwhose fixed point, restricted toR
d1+d2+d( δ

15 )⊕
X e( δ

15 ), leads to the locally invariant Lipschitz center stable manifold ofM .

Proposition 4.16. There exist δ > 0 such that there exists hcs ∈ �cs
μ,δ and

(1) the center-stable manifold

W cs = �
({(W, a+) ∈ Wcs | W ∈ Bd1+d2+d(δ/15) ⊕X e(δ/15)})

is locally invariant under (2.7), where

Wcs = graph(hcs) = {a+ = hcs(W ) | W ∈ R
d1+d2+d ⊕X e(δ)

}
,

is locally invariant under (4.22).
(2) There exists C > 0 independent of Q, μ, δ and η ∈ (0, 1), such that if (4.9),

(4.16), (4.18), and (4.20) are satisfied, then for any T > 0 and any solution U (t) =
�
(
(W, a+)(t)

)
to (4.22) with (W, a+)(t) ∈ R

d1+d2+2d ⊕X e(δ/15), t ∈ [0, T ], we
have

|a+(t) − hcs
(
W (t)

)| ≥ Ce(λ−2η)t |a+(0) − hcs
(
W (0)

)|
for any t ∈ [0, T ].

(3) A solution of (2.7) �
(
(W, a+)(t)

) ∈ W cs for all t ≥ 0 if

(W, a+)(t) ∈ Bd1+d2+2d(δ/15) ⊕X e(δ/15)

for all t ≥ 0.

The estimate in part (2) on the growth of a+(t), t > 0, for any solution follows
directly from the decay estimate of a+(t), t < 0, which is parallel to Lemma 4.10 for
Wcu in the opposite time evolution direction.

Remark 4.17. The local invariance of W cs is in the same sense as in Proposition 4.9.
Like W cu , W cs is translation invariant in the sense as in Lemma 4.8, and W cs is

Lipschitz. As in Lemma 4.15, all neighboring traveling waves belong to Wcs under the
same assumptions.

Remark 4.18. The above statement (2) implies that, if the initial value is not on the
center-stable manifold, then the solution would eventually leave the δ

15 -neighborhood
ofM , and thus M is orbitally unstable.
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4.6. Local center manifolds. A center manifoldW c = �(Wc) is given by the intersec-
tion of a center-unstable and a center-stable manifold, and thus it is also locally invariant
and extends in the directions of the center subspace XT

c,y ⊕ Xd1
c,y ⊕ Xd2

c,y ⊕ Xe
c,y at any y.

For 0 < δ � 1, (y, ad1, ad2, a+, a−, V e) ∈ R
d1+d2+2d ⊕X e(δ) belongs to Wc if and

only if

a− = hcu(y, ad1, ad2, a+, V e), a+ = hcs(y, ad1, ad2, a+, V e). (4.23)

The Lipschitz property implies that (4.23) is equivalent to that (a+, a−) is the fixed point
of a contraction (hcu, hcs) with Lipschitz constant μ. Therefore we obtain

Proposition 4.19. There exists C > 0 independent of Q, μ, δ and η ∈ (0, 1), such that
if (4.9), (4.16), (4.18), and (4.20) are satisfied, then there exists hc : R

d1+d2 ⊕X e(δ) →
R
2d such that

(1) the center manifold

W c = �
({(y, ad1, ad2, a+, a−, V e) ∈ Wc |

(y, ad1, ad2, V e) ∈ Bd1+d2(δ/15) ⊕X e(δ/15)})

is locally invariant under (2.7), where

Wc = graph(hc) = graph(hcu) ∩ graph(hcs) = {(y, ad1, ad2, a+, a−, V e)

∈ R
d1+d2+2d ⊕X e(δ) | (a+, a−) = hc(y, ad1, ad2, V e)},

is locally invariant under (4.22).
(2) hc satisfies (4.8), hc(y, 0, 0, 0) = 0, and

|hc(y2, ad12 , ad22 , V e
2 ) − hc(y1, a

d1
1 , ad21 , V e

1 )|
≤ μ

1− μ

(|y2 − y1| + Q|ad12 − ad11 | + Q3|ad22 − ad21 | + Q2‖V e
2 − V e

1 ‖X1

)
.

(3) a solution �
(
(y, ad1, ad2, V, a+, a−)(t)

) ∈ W c if (y, ad1, ad2, a+, a−, V )(t) ∈
Bd1+d2+2d(δ/15) ⊕X e(δ/15) forall t ∈ R.

(4) There exists δ > 0 such that any traveling wave solution satisfying assumptions in
Lemma 4.15 belongs to W c.

The following lemma states that, as a submanifold, the center manifold attracts orbits
on the center-unstable and center-stable manifolds.

Lemma 4.20. There exists C > 0 independent of Q, μ, δ and η ∈ (0, 1), such that if
(4.9), (4.16), (4.18), and (4.20) are satisfied, then for any T > 0 the following hold.

(1) Let U (t) = �
(
(W, a+, a−)(t)

) ∈ W cs be a solution to (2.7), where W = (y, ad1,
ad2, V e), satisfying (W, a+, a−)(t) ∈ Bd1+d2+2d(δ/15) ⊕ X e(δ/15), t ∈ [0, T ],
then we have

|(a+, a−)(t) − hc
(
W (t)

)| ≤ Ce−(λ−2η)t |(a+, a−)(0) − hc
(
W (0)

)|
for any t ∈ [0, T ].
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(2) Let U (t) = �
(
(W, a+, a−)(t)

) ∈ W cu be a solution to (2.7), where W = (y, ad1,
ad2, V e), satisfying (W, a+, a−)(t) ∈ Bd1+d2+2d(δ/15) ⊕ X e(δ/15), t ∈ [−T, 0],
then we have

|(a+, a−)(t) − hc
(
W (t)

)| ≤ Ce(λ−2η)t |(a+, a−)(0) − hc
(
W (0)

)|
for any t ∈ [−T, 0].

Proof. Let us denote the components of hc by hc = (hc+, h
c−). From (4.23), we have

hc−(W ) = hcu
(
W, hc+(W )

)
, hc+(W ) = hcu

(
W, hc−(W )

)
. (4.24)

We shall only prove part (1) of the lemma, where a+ = hcs(W, a−), as part (2) is
verbatim. One may compute

|a− − hc−(W )| =|a− − hcu
(
W, hc+(W )

)| ≤ |a− − hcu(W, a+)| + μ|a+ − hc+(W )|
and

|a+ − hc+(W )| = |hcs(W, a−) − hcs
(
W, hc−(W )

)| ≤ μ|a− − hc−(W )|.
Therefore

|(a+, a−)(t) − hc
(
W (t)

)| ≤ (1− μ)−1|a− − hcu(W, a+)|
which along with Lemma 4.10 implies the desired estimates. ��

5. Smoothness of the Center-Unstable Manifold

Wewill prove the smoothness of the local center-unstable/center-stable/center manifolds
roughly following the approach in [19].

Proposition 5.1. For any k > 0, there exists C > 0 such that if η ∈ (Cδ, 1) and
Q, μ, δ satisfy (4.9), (4.16), (4.18), (4.20), (5.18), and (5.25), then hcu, hcs, hc ∈ Ck

and Dhcu(y, 0, 0, 0, 0), Dhcs(y, 0, 0, 0, 0), and Dhc(y, 0, 0, 0, 0) are equal to 0.

Unlike in [19], however, Acu in (4.6) depends on the unknowns and extra care has to
be taken. Without loss of generality, we will work on hcu ∈ �μ,δ , which is defined on
Xcu(δ), and the proof of hcs is verbatim. The smoothness of the center manifold, as the
intersection of the center-unstable and center-stable manifolds, follows subsequently.

5.1. Outline of the framework of the smoothness proof. Wefirst introduce somenotations
to simplify the presentations. Consider (4.11) with h = hcu . For t ≤ 0, let

�(t,W ) = (y, ad1, ad2, a+, V )(t), W = (y, ad1, ad2, a+, V ) ∈ Xcu(δ),

be the solution with initial value W . We have from Lemma 4.2 that


̃e�(t,W ) = �(t,W ), ∀t ≤ 0 if 
̃eW = W. (5.1)

Moreover, assuming (4.9) and (4.16), Proposition 4.5 implies, for all t ≤ 0,

Lip‖·‖X1,Q�(t, ·) ≤ Cη−d1e−ηt , �(t,W ) ∈ Xcu(Cδ), ∀W ∈ Xcu(δ). (5.2)
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As the fixed point of the transformation T , hcu satisfies

hcu(W ) =
∫ 0

−∞
e−tM− Ĝ−(�(t,W ), hcu

(
�(t,W )

))
dt. (5.3)

Since (4.11) is autonomous, a time translation of (5.3) implies, for t ≤ 0,

hcu
(
�(t,W )

) =
∫ t

−∞
e(t−τ)M− Ĝ−(�(τ,W ), hcu

(
�(τ,W )

))
dτ. (5.4)

By differentiating (5.3) formally, we obtain, for any W̃ ∈ Xcu ,

Dhcu(W )W̃ =
∫ 0

−∞
e−tM−

(
Da− Ĝ

−(�(t,W ), hcu
(
�(t,W )

))
Dhcu

(
�(t,W )

)

+ DW Ĝ−(�(t,W ), hcu
(
�(t,W )

)))
D�(t,W )W̃dt.

Here D� also depends on Dhcu as it solves the following system of equation derived
by differentiating (4.11)

∂t D� = Acu(y(t), ĜT )D� + G1(�)D� + G̃1(�)DhcuD�, (5.5)

where � and D� are evaluated at (t,W ), Ĝcu at (�, hcu), hcu and Dcuh at �. In the
above G1 ∈ Ck

(
Xcu, L(Xcu)

)
and G̃1 ∈ Ck

(
Xcu, L(Rd , Xcu)

)
are given by

G̃1(W )̃a− = Da−
(
Acu(y,GT (W, a−)

))|a−=hcu(W )(̃a
−)W + Da− Ĝ

cu (̃a−)

=
(
0, 0, 0, 0,F

(
c, y
)(
Da− Ĝ

T (̃a−), V
))

+ Da− Ĝ
cu (̃a−), (5.6)

G1(W )W̃ = DW
(
Acu(y,GT (W, a−)

))|a−=hcu(W )(W̃ )W + DW Ĝcu(W̃ )

=
(
0, 0, 0, 0,

(
Dy A

e(y)ỹ
)
V +F

(
c, y
)(
DW ĜT (W̃ ), V

)

+
(
DyF (c, y)(ỹ)

)
(ĜT , V )

)
+ DW Ĝcu(W̃ ) (5.7)

where W = (y, ad1, ad2, a−, V ), W̃ = (ỹ, ãd1, ãd2, ã−, Ṽ ) ∈ Xcu and Ĝcu are evalu-
ated at

(
W, hcu(W )

)
.

Motivated by the above formally derived equations, we define a linear transformation
T1 on

Y1 = C0(Xcu(δ), L(Xcu, R
d)
)

as, for any H ∈ Y1, W ∈ Xcu(δ), and W̃ ∈ Xcu ,

(T1H )(W )W̃ =
∫ 0

−∞
e−tM−

(
DW Ĝ−(�, hcu(�)

)

+ Da− Ĝ
−(�, hcu(�)

)
H
(
�
))

�1(t)W̃dt

(5.8)

where � is evaluated at (t,W ). Operator �1(t) ∈ L(Xcu) satisfies �1(0) = I and

∂t�1 = Acu(y(t), ĜT )�1 + G1(�)�1 + G̃1(�)H (�)�1, (5.9)
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where G̃1 and G1 are given in (5.6) and (5.7), Ĝcu is evaluated at
(
�, hcu(�)

)
, and H

at �(t,W ). Just as in Remark 4.1, the right side of (5.9) and the integrand in (5.8) are
well-defined. Since (4.11) is autonomous, when W is shifted to �(t0,W ), the principle
fundamental solution to the associated (5.9) becomes �1(t + t0)�1(t0)−1. Therefore we
obtain

(T1H )
(
�(t0,W )

)
�1(t0)W̃ =

∫ t0

−∞
e(t0−t)M−

(
DW Ĝ−(�, hcu(�)

)

+ Da− Ĝ
−(�, hcu(�)

)
H
(
�
))

�1(t)W̃dt,

(5.10)

where � is still evaluated at (t,W ) and �1 defined for W .
If hcu ∈ C1, then Dhcu must be the fixed point of T1. Therefore, our strategy to

prove hcu ∈ C1 is to show 1.) T1 is a well-defined contraction and 2.) the fixed point of
T1 is indeed Dhcu (Sect. 5.2). In the proof of the Ck and higher order Ck smoothness of
hcu we shall need the following spaces Yk , k ≥ 1, of symmetric k-linear transformations
depending smoothly on the base points,

Yk =
(
C0(Xcu(δ), L(⊗k

sym(Xcu), R
d)
))

, k ≥ 0.

We equip Yk with the norm

‖H ‖Yk = sup{‖H (W )‖Lk
Q
: W ∈ Xcu(δ)},

‖H (W )‖Lk
Q
= sup{ |H (W )(W̃1, . . . , W̃k)|

‖W̃1‖Q . . . ‖W̃k‖Q
: W̃1, . . . , W̃k ∈ Xcu\{0}}.

(5.11)

We also use the ‖ · ‖Lk
Q
norm of multilinear transformations in L(⊗k

sym(Xcu), Xcu)

where ‖ · ‖X1,Q is used in both the domain and the range.
Formally differentiate (5.3) twice,we see D2hcu is a fixed point of the following affine

transformation T2 on the space Y2 of symmetric k-linear (with k = 2) transformations
depending continuously on the base points, where

Yk =
(
C0(Xcu(δ), L(⊗k

sym(Xcu), R
d)
))

.

Here for any H ∈ Y2, W ∈ Xcu(δ), and W̃1, W̃2 ∈ Xcu ,

(T2H )(W )(W̃1, W̃2) =
∫ 0

−∞
e−tM−

((
Da− Ĝ

−H (�) + DWW Ĝ−)
(
D�W̃1, D�W̃2

)
+ Da−a− Ĝ

−(DhcuD�W̃1, DhcuD�W̃2)

+ 2DWa− Ĝ
−(D�W̃1, DhcuD�W̃2)

+ (Da− Ĝ
−Dhcu + DW Ĝ−)�2(t)(W̃1, W̃2)

)
dt,

(5.12)

where� and D� are evaluated at (t,W ), hcu and Dhcu at�, Ĝ− and DĜ− at (�, hcu),
and the symmetric bilinear transformation�2(t) ∈ L(⊗2

sym X
cu, Xcu) satisfies�2(0) =

0 and

∂t�2 =
(
Acu(y(t), ĜT ) + G1(�) + G̃1(�)Dhcu

)
�2

+ G̃1(�)H (�)(D�, D�) + G2(�, D�, Dhcu).
(5.13)
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Here G2(�, D�, Dhcu) ∈ L(⊗2
sym X

cu, Xcu) is given by

G2(�, D�, Dhcu)(W̃1, W̃2) = DW
(
Acu(y,GT ) + G1(�)

)
(W̃1)

(
D�(W̃2)

)
+ DW

(
G̃1(�)

)
(W̃1)DhcuD�(W̃2).

In order to prove hcu ∈ C2, we shall 1.) show that T2 is a well-defined affine
contraction and 2.) its fixed point is D2hcu .

The general Ck smoothness of hcu (Sect. 5.3) follows much as hcu ∈ C2 by 1.)
differentiating (5.3) repeatedly to obtain an affine operator on the space Yk of multilinear
transformations, and 2.) proving its fixed point is indeed Dkhcu .

Remark 5.2. Apossible alternative adopted approach to prove theCk , k ≥ 1, smoothness
of hcu is to prove that iteration sequences of the transformationT defined in (4.11) and
(4.12) actually converge in Ck topology. That proof usually required the Ck,1 bound
on nonlinearity. Even though Ĝ is indeed smooth in our problem, this proof in Sect. 5
shows that the Ck smoothness holds as long as Ĝ ∈ Ck .

5.2. C1 smoothness of hcu. We first prove the following estimate on equation (5.9)
where � = �(t,W ), W ∈ Xcu(δ).

Lemma 5.3. There exists C > 0 such that, if η ∈ (Cδ, 1) and μ, δ, Q satisfy (4.9)
and (4.16), then for any B ∈ C0

([T, 0], L(Xcu, R
d)
)
with ‖B‖C0

t L
1
Q
≤ 1, any solution

W̃ (t) ∈ Xcu of

∂t W̃ = (Acu(y(t), ĜT ) + G1(�) + G̃1(�)B
)
W̃ + f (t),

satsfies

‖W̃ (t)‖2X1,Q ≤ Cη−2d1e−2ηt‖W (0)‖2X1,Q + Cη−2d1−1
∫ 0

t
e2η(τ−t)‖ f (τ )‖2

X̃ ,Q
dτ.

Proof. From Lemma 2.5, (2.53), (4.13), and (4.14), we have, for any

W = (y, ad1, ad2, a+, V ), W̃ = (y, ad1, ad2, a+, V ) ∈ Xcu,

it holds that

‖G̃1(W )̃a−‖X̃ ,Q ≤ Cδ(1 + ‖V ‖X1)|̃a−|, (5.14)

‖G1(W )W̃‖X̃ ,Q ≤ C(‖V ‖X1 + Q−1 + Q3δ)‖W̃‖X1,Q . (5.15)

Lemma 4.4, (5.2), and the above inequalities imply that, for any t ∈ [T, 0],
‖W̃ (t)‖2X1,Q ≤ Cη−2d1e−ηt

(
‖W̃ (0)‖2X1,Q

+ η−1
∫ 0

t
eητ
(
(Q−1 + Q3δ)2‖W̃ (τ )‖2X1,Q + ‖ f (τ )‖2

X̃ ,Q

)
dτ
)
.

The lemma follows from the Gronwall inequality. ��
Recall the Lipschitz constant μ in the definition of �μ,δ , which naturally should be

an upper bound of ‖Dhcu‖L1
Q
.
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Lemma 5.4. There exists C > 0 such that, if η ∈ (Cδ, 1) and μ, δ, Q satisfy (4.9),
(4.16), (4.18), and (4.20), then T1 defines a mapping on the closed μ-ball Y1(μ) =
{H ∈ Y1 : ‖H ‖Y1 ≤ μ} with Lipschitz constant Cδη−d1(λ − 2η)−1.

Proof. Let H ∈ Y1(μ). Lemma 5.3 implies that, for any W ∈ Xcu(δ), t ≤ 0, the
operator �1(t) defined in (5.9) satisfies

‖�1(t)‖LQ(Xcu) ≤ Cη−d1e−ηt . (5.16)

Therefore (2.26), definition (5.8) of H1, and (4.13) imply

‖T1(H )‖Y1 ≤ Cδη−d1

∫ 0

−∞
e(λ−η)t dt = Cδη−d1(λ − η)−1 ≤ μ (5.17)

due to (4.18). To prove T1(H ) ∈ Y1, it remains to showH (W ) is continuous in W . In
fact, the above estimate implies that T (n)

1 (H ) → T1(H ) uniformly, where

(
T (n)
1 (H )

)
(W )W̃ =

∫ 0

−n
e−tM−

(
DW Ĝ−(�, hcu(�)

)

+ Da− Ĝ
−(�, hcu(�)

)
H
(
�
))

�1(t)W̃dt.

From the continuity of DĜcu,−, it is easy to verify that
(
T (n)
1 (H )

)
(W ) is C0 in W .

Therefore T1(H ) is also continuous and thus T1(H ) ∈ Y1(μ).
In the following we estimate the Lipschitz constant of T1. Let H j ∈ Y1(μ) and

�1, j (t) be defined in (5.9) forH j , j = 1, 2, which satisfy

∂t (�1,2 − �1,1) =
(
Acu(y,GT ) − G1(�) − G̃1(�)H1

)
(�1,2 − �1,1)

+ G̃1(�)(H2 −H1)(�)�1,2

and (�1,2 − �1,1)(0) = 0. Using Lemma 5.3 and (5.6), we obtain

‖(�1,2 − �1,1)(t)‖LQ(Xcu) ≤ Cη−2d1− 1
2 δ|t | 12 e−ηt‖H2 −H1‖Y1 .

From the definition of T1, we have, for any W ∈ Xcu(δ),

(
T1(H1) −T1(H2)

)
(W ) =

∫ 0

−∞
e−tM−(Da− Ĝ

−(H2 −H1)�1,2(t)

+ (DW Ĝ− + Da−G
−H1)(�1,2 − �1,1)(t)

)
dt,

where DĜ is evaluated at
(
�, hcu(�)

)
,H j at �, and � at (t,W ). Using (2.26), (4.14),

and the above estimates on �1, j and �1,2 − �1,1, it follows that

‖T1(H1) −T1(H2)‖Y1 ≤ Cδ

∫ 0

−∞
e(λ−η)tη−d1(1 + η−d1− 1

2 δ|t | 12 )dt‖H2 −H1‖Y1
≤ Cδη−d1(λ − 2η)−1‖H2 −H1‖Y1 .

The proof of the lemma is complete. ��
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Assume

Cδη−d1(λ − 2η)−1 < 1, (5.18)

thenT1 is a contraction mapping on Y1(μ). LetH cu ∈ Y1(μ) be the unique fixed point
of T1. In the rest of this subsection, we will prove

Lemma 5.5. There exists C > 0 such that if η ∈ (Cδ, 1) and Q, μ, δ satisfy (4.9),
(4.16), (4.18), (4.20), and (5.18), then hcu ∈ C1(Xcu, R

d) and Dhcu(W ) = H cu(W )

for any W ∈ Xcu.

Proof. SinceH (W ) is continuous inW , it suffices to showDhcu(W0)W̃ = DH (W0)W̃
at any fixedW0 ∈ Xcu(δ) and W̃ ∈ Xcu\{0}. Let �1(t) be defined as in (5.9) associated
toH cu and W0 and

R�(t) = �(t,W0 + W̃ ) − �(t,W0) − �1(t)W̃ ,

Rh(t) = hcu
(
�(t,W0 + W̃ )

)− hcu
(
�(t,W0)

)−H cu(�(t,W0)
)
�1(t)W̃ .

According to (5.2), (5.16), ‖H cu‖Y1 ≤ μ, and the Lipschitz property of hcu , Rψ and
Rh satisfy the rough estimates

‖R�(t)‖X1,Q + |Rh(t)| ≤ Cη−d1e−ηt‖W̃‖X1,Q, (5.19)

for t ≤ 0. Our goal is to show ‖R�(0)‖X1,Q/‖W̃‖X1,Q → 0 as ‖W̃‖X1,Q → 0.
To analyze Rh and R� , denote

W (s, t) = (1− s)�(t,W0) + s�(t,W0 + W̃ ),

a−(s, t) = (1− s)hcu
(
�(t,W0)

)
+ shcu

(
�(t,W0 + W̃ )

)
and for α ∈ {T, d1, d2,±, V, cu}, let

Rα(t) = Ĝα
(
W (1, t), a−(1, t)

)− [Ĝα + DW Ĝα
(
W (1, t) −W (0, t)

)
+ Da− Ĝ

α
(
a−(1, t) − a−(0, t)

)]

where Ĝα and DĜα in the brackets [. . .] are evaluated at
(
W (0, t), a−(0, t)

) = (�(t,W0), h
cu(�(t,W0)

))
.

From (5.16), we have

‖Rcu(t)‖X̃ ,Q + |R−(t)| ≤ r(t)‖W̃‖X1,Q (5.20)

where r(t) > 0 satisfies

r(t) ≤ Cη−d1e−ηt , ‖r‖C0([t1,t2],R) → 0 as ‖W̃‖X1,Q → 0 (5.21)

for any t1 ≤ t2 ≤ 0.1

From (5.3) and T1(H cu) = H cu , we have

Rh(0) =
∫ 0

−∞
e−tM−(R−(t) + DW Ĝ−R�(t) + Da− Ĝ

−Rh(t)
)
dt.

1 Here we only need some uniform continuity of DĜ, instead of Ĝ ∈ C2 or C1,1.
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Moreover, using (5.3) and (5.10) instead, we obtain

Rh(t) =
∫ 0

−∞
e−τM−(R− + DW Ĝ−R� + Da− Ĝ

−Rh)|τ+t dτ, t ≤ 0, (5.22)

where again the above DĜ− are evaluated at
(
�(t + τ,W0), hcu

(
�(t + τ,W0)

))
.

From (4.11), R�(t) satisfies R�(0) = 0 and

∂t R� = A cu
0 (t)R� +A −

0 (t)Rh + Rcu + DW Ĝcu R� + Da− Ĝ
cu Rh +

∫ 1

0
(A cu

s

−A cu
0 )(t)

(
W (1, t) −W (0, t)

)
+ (A −

s −A −
0 )(t)

(
a−(1, t) − a−(0, t)

)
ds

where DĜcu is evaluated at
(
W (0, t), a−(0, t)

)
, operators A cu

s (t) ∈ L(Xcu) and
A −

s (t) ∈ L(Rd , Xcu) are given by

D(W,a−)

(
Acu(y,GT (W, a−)

)
W
)|(

W (s,t),a−(s,t)
)(W̃ , ã−) = A cu

s (t)W̃ +A −
s (t )̃a−,

or more explicitly,

A cu
s (t)W̃ = Acu

(
y(s, t),GT (W (s, t), a−(s, t)

))
W̃

+ DW

(
Acu(y,GT (W, a−)

))|(
W (s,t),a−(s,t)

)(W̃ )W (s, t)

A −
s (t )̃a− = Da−

(
Acu(y,GT (W, a−)

))|(
W (s,t),a−(s,t)

)(̃a−)W (s, t)

with W (s, t) and a−(s, t) defined in the above and y(s, t) being the y component of
W (s, t) (so the DW also acts on the y component in Acu). Note DAcu acts only on the
V component of W̃ . From Lemma 2.5, (5.2), (5.6), (5.7), (5.14), (5.15), and (5.20), it is
straightforward to obtain

‖∂t R� − (Acu + G1)Rψ‖X̃ ,Q = ‖∂t R� −A cu
0 Rψ − DW Ĝcu R�‖X̃ ,Q

≤ Cδ|Rh | + ‖Rcu‖X̃ ,Q + r(t)‖W̃‖X1,Q ≤ Cδ|Rh | + r(t)‖W̃‖X1,Q

where Acu and G1 are evaluated based on �(t,W0) and r(t) satisfies (5.21). Lemma 5.3
implies

‖R�(t)‖2X1,Q ≤ Cδ2η−2d1−1
∫ 0

t
e2η(τ−t)|Rh(τ )|2dτ + r1(t)‖W̃‖2X1,Q (5.23)

where Acu and G1 are evaluated based on �(t,W0) and r1(t) satisfies

r1(t) ≤ Cη−4d1−2(1 + |t |)e−2ηt , ‖r1‖C0([t1,t2],R) → 0 as ‖W̃‖X1,Q → 0 (5.24)

for any t1 ≤ t2 ≤ 0.
Finally, let

R̃h = sup
t≤0

e2ηt
|Rh(t)|
‖W̃‖X1,Q

, R̃� = sup
t≤0

e2ηt
‖R�(t)‖X1,Q

‖W̃‖X1,Q
.
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Inequality (5.19) implies R̃h, R̃� < ∞. We will prove R̃h, R̃� → 0 as ‖W̃‖X1,Q → 0.
In fact, (5.23) and (5.22) along with (5.20) and Lemma 4.3 imply

R̃� ≤ Cδη−d1−1 R̃h + sup
t≤0

r1(t)
1
2 e2ηt

and

R̃h ≤ C
∫ 0

−∞
δe(λ−2η)τ (R̃� + R̃h) + eλτ+2ηt r(t + τ)dτ

≤ C(λ − 2η)−1(δ(R̃� + R̃h) + sup
τ≤0

r(τ )e2ητ
)
.

Therefore

R̃� + R̃h ≤ C
(
sup
t≤0

r1(t)
1
2 e2ηt + sup

τ≤0
r(τ )e2ητ

)
.

From (5.21) and (5.24), we obtain that R̃h, R̃� → 0 as ‖W̃‖X1,Q → 0. Consequently
Dhcu(W0) = H (W0) and D�(t,W0) = �1(t,W0). ��

Finally we prove that, at any traveling wave, the center-unstable manifold is tangent
to the center-unstable subspace.

Lemma 5.6. There exists C > 0 such that if η ∈ (Cδ, 1) and Q, μ, δ satisfy (4.9),
(4.16), (4.18), (4.20), and (5.18), then Dhcu(y, 0, 0, 0, 0) = 0 at any y ∈ R

3.

Proof. In the proof of this lemma, we adopt the notation (y, 0) = (y, 0, 0, 0, 0) ∈ Xcu .
Observe that (4.11) and the definition of Ĝcu implies�

(
t, (y, 0)

) = (y, 0) for all t ≤ 0.

For any H ∈ Y1, (4.12), the fact DĜ−(y, 0) = 0 and the above observation imply
T1(H )(y, 0) = 0. The conclusion of the lemma follows immediately. ��

5.3. Higher order smoothness of hcu. In this subsection, we shall prove

Proposition 5.7. For any k ≥ 1, there exists C > 0 such that if η ∈ (Cδ, 1) and Q, μ, δ

satisfy (4.9), (4.16), (4.18), (4.20), (5.18), and

Cδη−kd1
(
λ − kη

)−1 ≤ 1 (5.25)

then hcu ∈ Ck and

‖Dkhcu‖Yk + sup
t≤0

ekηt‖Dk�(t, ·)‖C0Lk
Q

< ∞.

HereDk� denotes thedifferentiationwith respect toW only. In particular‖Dhcu‖Y1 ≤
μ and ‖Dkhcu‖Yk may depend on δ for k > 1. In the rest of this subsection, C as usual
denotes a generic upper bound independent of t , W ∈ Xcu(δ), and δ, Q, μ, while C̃ is
independent of t and W ∈ Xcu(δ), but may depend on δ, Q, μ.
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Formally differentiating (4.11) and (4.12) k times implies that Dkhcu should be a
fixed point of the following affine transformation Tk on the space Yk . Here for k ≥ 2,
any H ∈ Yk , W ∈ Xcu(δ), and W̃1, . . . , W̃k ∈ Xcu ,

(TkH )(W )(W̃1, . . . , W̃k)

=
∫ 0

−∞
e−tM−

((
(Da− Ĝ

−Dhcu + DW Ĝ−)�k(t) +Lk(t)
)
(W̃1, . . . , W̃k)

+ Da− Ĝ
−H (�)(D�W̃1, . . . , D�W̃k)

)
dt,

(5.26)

where Dl� is evaluated at (t,W ), Dlhcu at�, DlĜl at (�, hcu), the symmetricmultilin-
ear mappingLk(t) ∈ Yk is an algebraic combination involving Dl� and Dlhcu , DkĜ−,
and DlĜ−, 0 ≤ l ≤ k − 1, and the symmetric multilinear �k(t) ∈ L(⊗k

sym X
cu, Xcu)

satisfies �k(0) = 0 and

∂t�k =
(
Acu(y(t), ĜT ) + G1(�) + G̃1(�)Dhcu(�)

)
�k

+ G̃1(�)H (�)(D�, . . . , D�) + Gk(t).
(5.27)

Here Gk(t) ∈ C0
(
Xcu(δ), L(⊗k

sym Xcu, Xcu)
)
is again an algebraic combination involv-

ing Dl� and Dlhcu , DkĜcu , and DlĜcu , 0 ≤ l ≤ k−1. These terms Gk andLk are the
lower order term in the higher order differentiation of compositions of mappings. The
explicit forms of T2, G2, and L2 can be found in (5.8) and (5.27).

The proof of Proposition 5.7 is inductive in k. The case of k = 1 has been proved in
Sect. 5.2. Assume it holds for 1 ≤ l < k, we will prove it for k. As outlined in Sect. 5.1,
we shall prove by showing that Dkhcu is given by the fixed point of the contraction Tk .
Based on the usual formula of higher order derivatives of compositions of mappings,
the induction assumptions imply

sup
t≤0

ekηt‖Lk(t)‖Yk + sup
t≤0

ekηt‖Gk(t)‖C0Lk
Q

< ∞. (5.28)

In the following proof we will skip some details which are similar to those in Sect. 5.2.
For k ≥ 2, asTk is an affine transformation on Yk , we first consider its homogeneous

part Tk ∈ L(Yk)

(T̃kH )(W )(W̃1, . . . , W̃k)

=
∫ 0

−∞
e−tM−((Da− Ĝ

−Dhcu + DW Ĝ−)�̃k(t)(W̃1, . . . , W̃k)

+ Da− Ĝ
−H (�)(D�W̃1, . . . , D�W̃k)

)
dt,

(5.29)

with the same convention of the notations and

∂t �̃k =
(
Acu(y(t), ĜT ) + G1(�) + G̃1(�)Dhcu(�)

)
�̃k

+ G̃1(�)H (�)(D�, . . . , D�).

(5.30)

Lemma 5.8. Let k ≥ 2. There exists C > 0 such that if η ∈ (Cδ, 1) and Q, μ, δ satisfy
(4.9), (4.16), (4.18), (4.20), and (5.18), then

‖T̃k‖L(Yk ) ≤ Cδη−kd1(λ − kη)−1.
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Proof. Lemma 5.3 and (5.6) imply, for t ≤ 0,

‖�̃k(t)‖Lk
Q
≤ Cδη−(k+1)d1−1e−kηt‖H ‖Yk . (5.31)

Substituting it into (5.29) yields the lemma. ��
Lemma 5.9. Let k ≥ 2 and assume Proposition 5.7 holds for each l, 0 ≤ l ≤ k. There
exists C > 0 such that if η ∈ (Cδ, 1) and Q, μ, δ satisfy (4.9), (4.16), (4.18), (4.20),
(5.18), and (5.25), then Tk is a contraction on Yk. Moreover, for any H ∈ Yk and
W ∈ Xcu(δ), the �k(t) defined in (5.27) satisfies

sup
t≤0,W∈Xcu(δ)

ekηt‖�k(t)‖Lk
Q

< ∞.

Proof. Firstly, the ‖ · ‖Yk bound of Tk(0) can be easily obtained using (5.28), which
along with Lemma 5.8 implies the ‖ · ‖Yk bound of Tk(H ) for any H ∈ Yk . The
continuity of Tk(H )(W ) with respect to W follows from the same argument as in the
proof of Lemma 5.4. ThereforeTk(H ) ∈ Yk and thus (5.25) and Lemma 5.8 imply that
Tk is a contraction. ��

Recall that theLipschitz property of hcu was used in the proof of hcu ∈ C1 in Sect. 5.2.
Similarly, before we proceed to prove Dkhcu is equal to the fixed point of Tk and thus
hcu ∈ Ck , we first take a step back to prove Lip Dk−1hcu < ∞ using the above lemma.

Lemma 5.10. Let k ≥ 2 and assume Proposition 5.7 holds for each l, 0 ≤ l ≤ k − 1.
There exists C > 0 such that if η ∈ (Cδ, 1) and Q, μ, δ satisfy (4.9), (4.16), (4.18),
(4.20), (5.18), and (5.25), then

Lip Dk−1hcu + sup
t≤0

ekηt Lip Dk−1�(t, ·) < ∞.

Proof. From the induction assumption, Dk−1hcu ∈ Yk−1 and thus Tk−1(Dk−1hcu) =
Dk−1hcu . To prove the lemma, we shall show that, for some Ck−1 which might depend
on δ, Q, μ, the closed subset

Ỹk = {H ∈ Yk−1 : Lip H ≤ Ck−1}
of Yk−1 is invariant under Tk−1, which implies Dk−1hcu ∈ Ỹk−1 and thus Lipschitz.

SinceLk−1 and Gk−1, appearing in (5.26) and (5.27), involve only Dl� and Dlhcu ,
Dk−1Ĝ−, and DlĜ−, 0 ≤ l ≤ k − 2, the induction assumptions imply, for t ≤ 0,

‖DWLk−1(t)‖Yk + ‖DWGk−1(t)‖C0Lk
Q
≤ C̃e−kηt . (5.32)

Due to the slightly different forms, one has to proceed separately in the cases of k = 2
and k > 2, even though the estimates in proving these cases are essentially the same.

Case 1: k − 1 ≥ 2. For H ∈ Ỹk−1 and Wj ∈ Xcu(δ), j = 0, 1, let �
j
k−1(t) =

Dk−1�(t,Wj ), which are also the solutions to (5.27) where � is evaluated at (t,Wj ).
From Lemma 5.3, (5.31), (5.32), the induction assumptions, and the Lipschitz bound on
H , it is straightforward to obtain the desired Lipschitz estimate on Dk−1�(t, ·)

‖�1
k−1 − �0

k−1‖Lk−1
Q

≤ (C̃ + Cδη−1−(k+1)d1Ck−1)e
−kηt‖W1 −W0‖X1,Q .
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Therefore, using (4.14), (5.32), (4.16), and the induction assumptions, we can estimate
(5.26) as

‖Tk−1(H )(W0) −Tk−1(H )(W1)‖Lk−1
Q

≤
∫ 0

−∞
e(λ−kη)t(Cδη−kd1(1 + η−d1−1δ)Ck−1 + C̃)dt ‖W1 −W0‖X1,Q

≤ (λ − kη)−1(Cδη−kd1Ck−1 + C̃) ‖W1 −W0‖X1,Q .

From (5.25), there exists Ck−1 > 0 such that Tk−1(H ) ∈ Ỹk for any H ∈ Ỹk .
Case 2: k − 1 = 1. In this case, one considers (5.8) and (5.9) instead. The estimates are
similar and we omit the details. ��

Assume (5.25) and letHk ∈ Yk be the fixed point of Tk . We will prove

Lemma 5.11. There exists C > 0 such that if η ∈ (Cδ, 1) and Q, μ, δ satisfy (4.9),
(4.16), (4.18), (4.20), (5.18), and (5.25), then Dkhcu = Hk .

Proof. As in the proof of Lemma 5.5, for any fixed W0 ∈ Xcu(δ) and W̃ ∈ Xcu\{0}, let
�k(t) ∈ L(⊗k

sym X
cu, Xcu) be defined as in (5.27) associated toHk and W0 and

R�(t) = Dk−1�(t,W0 + W̃ ) − Dk−1�(t,W0) − �k(t)(W̃ , . . .)

Rh(t) =
(
Dk−1hcu

(
�(t,W0 + W̃ )

)− Dk−1hcu
(
�(t,W0)

))(
D�(·), . . . , D�(·))

−Hk
(
�(t,W0)

)(
D�(W̃ ), D�(·), . . . , D�(·)),

where all above D� are evaluated at (t,W0). Note in the above �k(t)(W̃ , . . .) ∈
L(⊗k−1

sym Xcu, Xcu) and

Hk
(
�(t,W0)

)(
D�(W̃ ), D�(·), . . . , D�(·)) ∈ L(⊗k−1

sym Xcu, R
d),

consistent with the other terms. According to (5.2) and Lemma 5.10, Rψ and Rh satisfy
the rough estimates

‖R�(t)‖Lk−1
Q

+ |Rh(t)|Lk−1
Q

≤ C̃e−kηt‖W̃‖X1,Q, (5.33)

for t ≤ 0. Our goal is to show ‖R�,h(0)‖X1,Q/‖W̃‖X1,Q → 0 as ‖W̃‖X1,Q → 0.
Using Tk−1(Dk−1hcu) = Dk−1hcu , Lemma 5.10, and the induction assumptions,

much as the derivation of (5.22) and (5.23), we obtain

Rh(t) =
∫ 0

−∞
e−τM−((DW Ĝ− + Da− Ĝ

−Dhcu)R�

+ Da− Ĝ
−Rh + R1

)|t+τdτ

∂t R� =
(
Acu(y(t), ĜT ) + G1(�) + G̃1(�)Dhcu(�)

)
R� + G̃1(�)Rh + R2(t),

(5.34)

where DĜ− and DĜcu are evaluated at (�, hcu), hcu at �, and � at (t,W0), followed
by the shift in the integral of Rh . Here the norms r j (t) = ‖R j (t)‖Lk−1

Q
, j = 1, 2, of the

remainder terms R1(t) and R2(t) satisfy

r1(t) + r2(t) ≤ C̃e−kηt‖W̃‖X1,Q, lim
‖W̃‖X1,Q→0

‖r1 + r2‖C0([t1,t2])
‖W̃‖X1,Q

= 0 (5.35)
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for any t1 ≤ t2 ≤ 0. Lemma 5.3 and (5.2) imply

‖R�(t)‖2
Lk−1
Q

≤ Cδ2η−2d1−1
∫ 0

t
e2η(τ−t)‖Rh(τ )‖2

Lk−1
Q

dτ + r3(t) (5.36)

where

r3(t) ≤ C̃e−2kηt‖W̃‖2X1,Q, lim
‖W̃‖X1,Q→0

‖r3‖C0([t1,t2])
‖W̃‖2X1,Q

= 0. (5.37)

Finally, let

R̃h = sup
t≤0

e(k+1)ηt |Rh(t)|
‖W̃‖X1,Q

, R̃� = sup
t≤0

e(k+1)ηt
‖R�(t)‖Lk−1

Q

‖W̃‖X1,Q
.

Inequality (5.33) implies R̃h, R̃� < ∞. Inequalities (5.36) and (5.34) along with (5.35),
(5.37), and Lemma 4.3 imply

R̃� ≤ Cδη−d1−1 R̃h + sup
t≤0

r3(t)
1
2 e(k+1)ηt

and

R̃h ≤C(λ − (k + 1)η)−1(δ(R̃� + R̃h) + sup
τ≤0

r1(τ )e(k+1)ητ
)
.

Therefore

R̃� + R̃h ≤ C
(
sup
t≤0

r3(t)
1
2 e(k+1)ηt + sup

τ≤0
r1(τ )e(k+1)ητ

)
.

From (5.35) and (5.37), we obtain that R̃h, R̃� → 0 as ‖W̃‖X1,Q → 0. ��
In the last step of the above proof, we may define R̃h and R̃� by using a weight eaηt

with any a > k and thus we do not have to assume λ > (k + 1)η additionally.

6. A Non-degeneracy Case

In this section, we consider a traveling waveUc = uc + ivc satisfying the following non-
degeneracy conditions. Recall Lc,y and Ly defined in (2.11), its Morse index n−(Lc) in
(2.19), and the dimensions d1, d2, d in Lemma 2.3. Assume

(H1) ker Lc = span{∂x jUc | j = 1, 2, 3};
(H2) d = dim Xu,s = n−(Lc).

Remark 6.1. Assumption (H1) is a linearized elliptic problem. Usually (H2) is not easy
to verify directly. A special situation is when n−(Lc) = 1, which is often the case when
Uc is derived from the Mountain Pass or a constrained minimization process with one
constraint. In this case, according to Theorem 2.3 and Proposition 2.2 in [37], (H2) is
satisfied if 〈LcV, V 〉 > 0 for all V ∈ ker(J Lc)

2\ ker(J Lc). More specifically, it was
proved in [36] that, if c0 ∈ R

3 and Uac0(x) is a family of traveling waves depending on
a smoothly, then d

da P(Uac0) < 0 along with n−(Lc) = 1 implies (H2).
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Under these hypotheses, among the subspaces in the decomposition given in Lemma
2.3, statement (2) there implies Xd1

c,y = Xd2
c,y = {0} and thus, in the same notations, we

have the following decomposition.

Lemma 6.2. Assume (H), (H1-2), and (2.6), then for any y ∈ R
3, it holds that

(1) X = XT
c,y ⊕ Xe

c,y ⊕ X+
c,y ⊕ X−

c,y;
(2) J Lc,y and Lc,y take the forms

Lc,y ←→
⎡
⎢⎣
0 0 0 0
0 Le(y) 0 0
0 0 0 L+−(y)
0 0 L+−(y)∗ 0

⎤
⎥⎦ ,

J Lc,y ←→
⎡
⎢⎣
0 ATe(y) 0 0
0 Ae(y) 0 0
0 0 A+(y) 0
0 0 0 A−(y)

⎤
⎥⎦ .

Here the above blocks satisfy the same properties as in Lemma 2.3.
In this non-degenerate case, we shall carefully consider the energy-momentum func-

tional E + c · P̃ invariant under (GP) and (2.7), where E and P̃ are defined in (1.1) and
(2.5). Let Ẽc(y, a+, a−, V e) be defined as

Ẽc = (E + c · P̃) ◦ � ∈ C∞(R2d ⊕X e, R),

where the coordinatemapping� is defined in (2.36), whose domain can also be extended
to R

3+2d × X1. The smoothness of Ẽc follows from Lemmas 2.2 and 2.3 of [36] along
with Lemma 2.3. Using (2.10) and (2.11) it is straightforward to obtain the leading order
expansion of Ẽ at (y, 0, 0, 0) = �−1

(
Uc(· + y)

)

Ẽ
(
y, a+, a−, V e) = Ẽc

(
y, a+, a−, V e)− Ẽc(y, 0, 0, 0)

= 〈Le(y)V
e, V e〉 + 2〈L̃+−a−, a+〉 + O

(
(|a+| + |a−| + ‖V e‖X1)

3) (6.1)

when |a+|, |a−|, and ‖V e‖X1 are small. Here Le(y) is given in Lemma 2.3, uniformly
positive, and translation invariant, i.e.

〈Le(0)V
e, V e〉 = 〈Le(y)V

e(· + y), V e(· + y)〉.
The d × d matrix L̃+− is defined by

〈L̃+−a−, a+〉 = 〈L+−(y)a−ξ−c (· + y), a+ξ−c (· + y)〉,
where ξ−c = (ξ−c,1, . . . , ξ

−
c,d) and L+−(y) are given in Lemma 2.3. Operators L̃+− are

independent of y since Lc,y and thus L+−(y) are translation invariant.
Let W cu,cs,c, hcu,cs , hc = (hc+, h

c−) be given in Sect. 4 , whose smoothness are
established in Sect. 5, and the parameters Q, μ, δ, η satisfy (4.9), (4.16), (4.18), (4.20),
and (5.25). For any

(
y, a+ = hcs(y, a−, V e), a−, V e

) ∈ W cs , since Dhcs(y, 0, 0, 0) =
0, we have

|Ẽ(y, hcs(y, a−, V e), a−, V e)− 〈Le(y)V
e, V e〉| ≤ C0(|a−| + ‖V e‖X1)

3 (6.2)

for some C0 > 0. Based on the expansion (6.1), we can prove the exponential stability
of W c inside W cs .



Invariant Manifold

Lemma 6.3. There exists C > 1 such that if η ∈ (Cδ, 1) and Q, μ, δ satisfy (4.9),
(4.16), (4.18), (4.20), and (5.25), then for any initial value

W̄ = (ȳ, ā+ = hcs(ȳ, ā−, V̄ e), ā−, V̄ e) ∈ W cs

with |ā−| + ‖V̄ e‖X1 < C−2δ, its corresponding solution W (t) = (y, a+, a−, V e)(t)
satisfies, for all t ≥ 0,

|a−(t)| + ‖V e(t)‖X1 < δ/15, a+(t) = hcs
(
(y, a−, V e)(t)

)
,

|a−(t) − hc−
(
(y, V e)(t)

)| ≤ Ce−(λ−2η)t |a−(0) − hc−
(
(y, V e)(0)

)|. (6.3)

Proof. The assumptions on W̄ , the conservation of Ẽ , and (6.2) imply

|Ẽ(W (t)
)| = |Ẽ(W̄ )| ≤ C−2δ2.

Let

T = sup{t > 0 : |a−(t ′)| + ‖V e(t ′)‖X1 < δ/15, ∀t ′ ∈ [0, t)} > 0.

On [0, T ], Proposition 4.16 implies (6.3) holds, which alongwith Dhc(y, 0) = 0 implies

|a−(t)| ≤ C‖V e(t)‖2X1
+ C−1e−(λ−2η)tδ, t ∈ [0, T ].

Applying (6.2) again, we obtain

‖V e(t)‖2X1
≤ C

(
Ẽ
(
W (t)

)
+ |a−(t)|3).

The above inequalities imply

|a−(t)| + ‖V e(t)‖2X1
≤ C−1δ2 < δ/15, t ∈ [0, T ].

Therefore T = ∞. From Propositions 4.16 and 4.19 and Lemma 4.20, the rest of the
lemma follows. ��

Following exactly the same arguments, we also obtain the exponential stability of
W c backward in time inside W cu .

Lemma 6.4. There exits C > 1 such that if η ∈ (Cδ, 1) and Q, μ, δ satisfy (4.9), (4.16),
(4.18), (4.20), and (5.25), then for any initial value

W̄ = (ȳ, ā+, ā− = hcu(ȳ, ā+, V̄ e), V̄ e) ∈ W cu

with |ā+| + ‖V̄ e‖X1 < C−2δ, its corresponding solution W (t) = (y, a+, a−, V e)(t)
satisfies, for all t ≤ 0,

|a+(t)| + ‖V e(t)‖X1 < δ/15, a−(t) = hcu
(
(y, a+, V e)(t)

)
,

|a+(t) − hc+
(
(y, V e)(t)

)| ≤ Ce(λ−2η)t |a+(0) − hc+
(
(y, V e)(0)

)|. (6.4)

Consequently, we also obtain the stability of M in W c.

Proposition 6.5. There exist C > 1 and δ > 0 such that, for any initial value W̄ =(
ȳ, (ā+, ā−) = hc(ȳ, V̄ e), V̄ e

) ∈ W c with ‖V̄ e‖X1 < C−2δ, its corresponding solution
W (t) = (y, a+, a−, V e)(t) satisfies, for all t ∈ R,

‖V e(t)‖X1 < δ/15, (a+, a−)(t) = hc
(
(y, V e)(t)

)
.
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Combine the above results and Corollary 4.13, Propositions 4.16 and 4.19, we obtain
the following characterization of W cu , W cs , and W c.

Proposition 6.6. There exist C > 1 and δ > 0 such that the following hold. Let U (t) =
�
(
W (t)

)
, where W (t) = (y, a+, a−, V e)(t), is a solutions to (2.7) with initial value

W̄ = (ȳ, ā+, ā−, V̄ e) ∈ B2d(C−2δ) ⊕X e(C−2δ),

then

(1) W̄ ∈ W cu and thus W (t) ∈ W cu for all t ≤ 0, if and only if W (t) ∈ B2d(δ/15) ⊕
X e(δ/15) for all t ≤ 0.

(2) W̄ ∈ W cs and thus W (t) ∈ W cu for all t ≥ 0, if and only if W (t) ∈ B2d(δ/15) ⊕
X e(δ/15) for all t ≥ 0.

(3) W̄ ∈ W c and thus W (t) ∈ W c for all t ∈ R, if and only if W (t) ∈ B2d(δ/15) ⊕
X e(δ/15) for all t ∈ R.

Remark 6.7. Note that when we construct the local invariant manifolds, we cut off the
nonlinearities to focus on the local dynamics. Different choices of the cut-off could yield
different local invariant manifolds. Therefore local center-stable, center-unstable, and
center manifolds are usually not unique. However, under the non-degeneracy conditions
(H1-2), we obtain the above characterization of the local invariant manifolds which are
independent of the cut-off. Therefore the local manifolds are unique in this case.

Appendix A

In the Appendix, we give some estimates of the nonlinear term G in (2.17). One may
compute in (2.16)

G2(c, y, w) = −
(
|U |2 − |Uc(· + y)|2 − 2Uc(· + y) · (Kc,yw)

)
uc(· + y)

−
(
|U |2 − |Uc(· + y)|2

)
(w1 − χ(D) (vc(· + y)w2))

− 1

2

(
(1− |U |2)χ(D)(w2

2) + �χ(D)(w2
2)
)

,

(A.1)

where U is given in (2.15) as

U = ψ (wc (· + y) + w) = Uc (· + y) + Ky,cw −
(
1

2
χ(D)(w2

2), 0

)T

. (A.2)

Substituting this into G1 we obtain

G1 = G1(c, y, ∂t y, w) = G11(c, y, w) + G12(c, y, ∂t y, w)

where

G11 =
(
|U |2 − |Uc(· + y)|2 − 2Uc(· + y) · (Kc,yw)

)
vc(· + y)

+
(
|U |2 − |Uc(· + y)|2

)
w2 − 1

2
χ(D)(w2∇w2 · c)

(A.3)
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and by substituting (2.16) into G1

G12 = G12(c, y, ỹ, w) = χ(D)
(
w2
(− (Lc,yKc,yw)1 − ỹ · ∇vc(· + y)

+ G2(c, y, w)
))

.
(A.4)

Here (Lc,yKc,yw)1 denotes the first component of Lc,yKc,yw. For fixed c and y, G is a
polynomial ofw and ỹ.More precisely, it is the sumof somemulti-linear transformations
on w and ỹ of degrees between 2 and 6.

Lemma A.1. Fix c. It holds that

G(c, ·, ·, ·) ∈ C∞(R3 × R
3 × X1,W

1, 32 ) + C∞(R3 × X1, L
3
2 ∩ Ẇ 1, 65 ),

and

G(c, y, 0) = 0, DwG(c, y, 0) = 0.

In particular, the only term G12 containing ỹ belongs to C∞(R3 ×R
3 × X1,W 1, 32 ).

More refined estimates on G can be found in (A.10), (A.11), (A.12), (A.13), (A.14), and
(A.15), where the generic constants C in those inequalities are independent of y.

Proof. Due to the polynomial form of G in w ∈ X1 and ỹ ∈ R
3, we only need to

estimate the boundedness of each monomial, i.e. multi-linear transformation. To handle
the terms with χ(D), we will repeatedly use

‖|∇|sχ(D) f ‖L p∩L∞ ≤ Cs,p‖ f ‖L p , ∀k ≥ 0, 1 ≤ p ≤ ∞. (A.5)

We start with the consideration on |U |2 − |Uc(· + y)|2. Let

ρ = 1

2
χ(D)

(
w2
2 + 2w2w2c(· + y)

)
$⇒ Dk

yρ = χ(D)
(
w2D

kw2c(· + y)
)

for any k ≥ 1 and

∇ρ = χ(D) (w2∇w2 + ∇w2w2c(· + y) + w2∇w2c(· + y)) .

Using w2c = vc ∈ Ḣ1, (A.5) implies, for any s + k ≥ 1

‖∇s Dk
yρ‖L 3

2 ∩L∞ ≤ Cs,k‖w2‖Ḣ1(‖w2‖Ḣ1 + 1) (A.6)

where Cs,k is independent of y. Here we used the property Dkw2c = Dkvc ∈ L2 ∩ L∞

for all k ≥ 1 due to equation (1.4) and also the embedding Ẇ 1, 32 (R3) → L3(R3) on
ρ. The second term in ρ actually has a better spatial decay estimate by using Hardy’s
inequality and (2.6). Namely,

‖w2w2c(· + y)‖L2 = ‖w2(· − y)vc‖L2 ≤ C‖w2(· − y)

|x | ‖L2 ≤ C‖w2‖Ḣ1 .
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On some occasions, we also need to consider
(
I − χ(D)

)
( f1 f2), for f1,2 ∈ Ḣ1. Since

∇( f1 f2) ∈ L
3
2 , we have

‖(I − χ(D)
)
( f1 f2)‖

L
3
2
= ‖ I − χ(D)

|D| |D|( f1 f2)‖
L

3
2

≤ C‖∇( f1 f2)‖
L

3
2
≤ C‖ f1‖Ḣ1‖ f2‖Ḣ1

where we used that the inverse Fourier transform of 1−χ(ξ)
|ξ | is in L1. It implies

‖(I − χ(D)
)
( f1 f2)‖

W 1, 32
≤ C‖ f1‖Ḣ1‖ f2‖Ḣ1 . (A.7)

One may compute that

|U |2 − |Uc|2 = w2
1 + 2uc(· + y)(w1 − ρ) + ρ2 − 2w1ρ + 2vc(· + y)w2 + w2

2

= w2
1 + 2w1 + 2

(
uc(· + y) − 1

)
(w1 − ρ) + ρ2 − 2w1ρ

+ 2
(
I − χ(D)

)(
vc(· + y)w2 + w2

2

)
.

By using the above inequalities and (2.6), we obtain, through straightforward calcula-
tions, for k ≥ 1,

‖|U |2 − |Uc|2 − 2w1‖
W 1, 32

+ ‖Dk
y(|U |2 − |Uc|2)‖

W 1, 32 ∩Ḣ1

≤ C‖w‖X1(‖w‖3X1
+ 1).

(A.8)

Similarly,

|U |2 − |Uc|2 − 2Uc(· + y) · (Kc,yw)

= w2
1 +
(
1− χ(D)

)
(w2

2) +
(
1− uc(· + y)

)
χ(D)(w2

2) + ρ2 − 2w1ρ

and along with the above inequalities, it implies for k ≥ 1

‖Dk
y

(|U |2 − |Uc|2 − 2Uc(· + y) · (Kc,yw)
)‖

W 1, 65 ∩Ḣ1

+ ‖|U |2 − |Uc|2 − 2Uc(· + y) · (Kc,yw)‖
W 1, 32

≤ C‖w‖2X1
(‖w‖2X1

+ 1).
(A.9)

Substituting (A.8) and (A.9) into (A.1) and using (A.5), we obtain through straightfor-
ward calculations

‖G2‖
L

3
2 ∩L2

+ ‖∇G2‖
L

3
2 +L

6
5
≤ C‖w‖2X1

(‖w‖3X1
+ 1). (A.10)

Here we have to estimate ∇G2 in L
3
2 + L

6
5 since

‖∇�χ(D)(w2
2)‖L 3

2
≤ C‖w2‖2X1

does not seem to have better decay and

‖(|U |2 − |Uc|2
)∇w1‖

L
6
5
≤ C‖w‖2X1

(‖w‖3X1
+ 1),

does not seem to have better regularity. Similarly, for any k ≥ 1,

‖Dk
yG2‖

W 1, 65 ∩Ẇ 1, 32
≤ C‖w‖2X1

(‖w‖3X1
+ 1). (A.11)



Invariant Manifold

The estimates for G11 are

‖G11‖
L

3
2 ∩L2

+ ‖∇G11‖
L

3
2 ∩L∞+L1∩L 6

5
≤ C‖w‖2X1

(‖w‖3X1
+ 1). (A.12)

Again, we have to estimate ∇G2 in this norm as

‖∇χ(D)(w2∇w2 · c)‖
L

3
2 ∩L∞ ≤ C‖w‖2X1

does not seem to have better decay and

‖∇
((

|U |2 − |Uc(· + y)|2
)

w2

)
‖
L1∩L 6

5
≤ C‖w‖2X1

(‖w‖3X1
+ 1)

does not seem to have better regularity. Differentiating in y implies that

‖Dk
yG11‖

W 1, 65 ∩Ẇ 1, 32
≤ C‖w‖2X1

(‖w‖3X1
+ 1), k ≥ 1. (A.13)

Next we consider G12. Recall from (2.11), for any f = ( f1, f2) ∈ X1,

(Lc,y f )1 = (2− �) f1 +
(
3(u2c − 1) + v2c

)
(· + y) f1 − c · ∇ f2 + 2(ucvc)(· + y) f2.

Using Hardy’s inequality, and the fact Kc,y being an isomorphism, we obtain

‖(Lc,yKc,yw)1 + �w1‖L2 ≤ C‖w‖X1 .

From w2�w1 = ∇ · (w2∇w1) − ∇w2 · ∇w1 and (A.5), we have, for any s ≥ 0,

‖|∇|sχ(D)(w2�w1)‖
L

3
2 ∩L∞ ≤ C‖w2‖Ḣ1‖w1‖Ḣ1 .

Therefore, (A.4), (A.10), and the above inequalities yield

‖|∇|sG12‖
L

3
2 ∩L∞ ≤ C‖w2‖Ḣ1

(|ỹ| + ‖w1‖Ḣ1 + ‖w‖2X1
(‖w‖3X1

+ 1)
)
. (A.14)

Differentiating in y, we have, for k ≥ 1,

Dk
y(Lc,yKc,yw)1 = 2Dk(ucvc)(· + y)w2

+ Dk(3(u2c − 1) + v2c
)
(· + y)w1 − (2− �)χ(D)

(
(Dkvc)(· + y)w2

)
−

∑
k1+k2=k

Dk1
(
3(u2c − 1) + v2c

)
(· + y)χ(D)

(
(Dk2vc)(· + y)w2

)
.

By using (A.5) and (A.11), we obtain, for any k ≥ 1,

‖|∇|s Dk
yG12‖

L
3
2 ∩L∞ ≤ C‖w2‖Ḣ1

(|ỹ| + ‖w1‖Ḣ1 + ‖w‖2X1
(‖w‖3X1

+ 1)
)
. (A.15)

Finally, we note that G11, G12, and G2 are polynomials of w and ỹ consisting of
monomials of degrees between 2 and 6 with coefficients depending onUc(·+ y). There-

fore, one may regroup those monomials so that some of them belong to W 1, 32 while

others to Ẇ 1, 65 . Moreover it is easy to obtain the estimates on Dl
wDk

yG and the proof is
complete. ��
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