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Abstract: We study the local dynamics near general unstable traveling waves of the 3D
Gross—Pitaevskii equation in the energy space by constructing smooth local invariant
center-stable, center-unstable and center manifolds. We also prove that (i) the center-
unstable manifold attracts nearby orbits exponentially before they go away from the
traveling waves along the center or unstable directions and (ii) if an initial data is not on
the center-stable manifolds, then the forward orbit leaves traveling waves exponentially
fast. Furthermore, under an additional non-degeneracy assumption, we show the orbital
stability of the traveling waves on the center manifolds, which also implies the uniqueness
of the local invariant manifolds. Our method based on a geometric bundle coordinate
system should work for a general class of Hamiltonian PDEs.

1. Introduction
Consider the Gross—Pitaevskii (GP) equation
iut+Au+(1—|u|2)u=O, u=u+iuy :Rx R = C, (GP)

where u satisfies the boundary condition |u| — 1 as |x| — oo. The (GP) equation
arises in various physical problems, such as superconductivity, superfluidity in Helium
II, and Bose-Einstein condensate (for example [1,8]). Formally, the (GP) equation is a
Hamiltonian PDE associated to the energy

_ 1 2 1 11242
E(u) == |Vul“dx + - (1 = |ul)*dx, (1.1)
2 R3 4 R3
and the energy space is
Xo={ueH (R):VueL*R,1—u?e LR (1.2)
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The global well-posedness of (GP) in X was proved by Gérard [20]. From the definition
of Xy, itis clear that the real part and imaginary part of a function in X may have different
spatial decay rates, which makes the analysis of this equation quite different from the
classical NLS.

Due to the translation invariance of (GP), the momentum P (u) = % fR3 (iVu,u —
1)dx is also formally conserved. We denote each component of P (u) as

1
Pi(u) = 5/ (iaxju, u—1)dx = —/ (uy — 1, ijuz)dx (1.3)
R3 R3

for j = 1,2, 3. The corresponding relative equilibria are traveling wave solutions to
(GP) in the form of U.(x — ct) where ¢ € R? and U, satisfies

—ic-VU.+ AU + (1 — |U)U, = 0. (1.4)

Due to the rotational invariance of (GP), we only need to consider those traveling waves
traveling in x| direction, i.e., u(t, x) = Uge, (x — aejt), where e; = (1,0, 0.

Traveling waves with finite energy play a very important role in the dynamics of
(GP). In a series of papers [2,3,23,30,31], the existence, some qualitative properties,
and the stability of traveling waves have been studied formally. A rigorous mathematical
study was initiated by Béthuel and Saut in [13], in which they proved the existence of
traveling waves for 2D (GP) with small |c| << 1, followed by [10-12,15,24,25,39,40].
In particular, Marig [40] constructed a full branch of subsonic traveling waves for 3D (GP)
by minimizing the energy-momentum functional subject to a Pohozaev type constraint.

Given any traveling wave solution U, = (u., v.) of (GP) with traveling speed ¢ € R3,
lc] € (0, 4/2), its spatial translations form a 3D manifold

M ={Uc(-+y) 1y € RY)

of traveling waves. The main goal of this paper is to study the local dynamics of (GP)
near such .# of an unstable traveling wave U, (see the remark on instability right after
Theorem 1.4).

We rewrite (GP) in the traveling frame u(¢, x) = U (¢, x — ct), where U satisfies

iU —ic-VU+AU+(1—|UPU =0. (1.5)
It is clear that U, is a steady state of (1.5). Linearizing (1.5) at U, one has

0 1

U = JL.U, J=<_1 0

), Le=(E+c-P)'(U), UeX, =H"'xH".
(1.6)

A more explicit expression of L. can be found in (2.11). Under a mild spatial decay
assumption (2.6) of U,, it is straightforward to verify that the tangent space of the energy
space X¢ at U, is X, where naturally the linearized equation (1.6) should be consid-
ered. The linearized energy-momentum quadratic form L. : X; — X7 is bounded,
symmetric, and uniformly positive except in finitely many directions. Even though the
symplectic operator J ! = J* = —J : X i — X1 is not bounded and thus the classic
framework of Grillakis—Shatah—Strauss [26,27] does not apply to (1.6), the recent re-
sults in [37] are applicable to analyze J L.. Consequently, (1.6) satisfies the following
exponential trichotomy property (even without the non-degeneracy assumed in [36]).
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Lemma 1.1. There exist C, A, d > 0 and closed subspaces X¢, X", X* of X1 invariant
under e’Le such that X; = X" & X° & X°, d = dim X" = dim X* < oo, and

le? ke xs | < CeM, Ve =0, et x|l < CeM: Vi <0,
le/Ee|xell < C(1+1t|9), VieR.

The exponential trichotomy both describes the linear dynamics near the traveling
waves and provides a framework to analyze the local nonlinear dynamics.

If X** = {0}, U, is spectrally stable and it actually implies the nonlinear orbital
stability of .# under some additional assumptions (see, for example, [17,36]). If U,
is spectrally unstable with d > 0, conceptually one expects the existence of locally
invariant submanifolds which can be viewed as the deformation from the invariant sub-
spaces under small nonlinear perturbations. Here the local invariance of a submanifold
& means that, for any initial value U (0) in the interior of .4, the solution U (¢) € A4/,
t € (=T, T), for some T > 0, and thus it can exit .4 only through its boundary. The
locally invariant submanifolds related to the exponential trichotomy are the unstable and
stable manifolds of U, and the center-unstable, center-stable, and center manifolds of
A . The former two contain U, and are tangent to X* and X* at U,, while the latter three
ones should contain ., be translation invariant, and be tangent to X* = X" @ X°¢,
X% = X* @ X¢, and X¢. Some comments on their dynamic significance:

1.) The nonlinear dynamics in these invariant manifolds are reflected by the correspond-
ing linear ones, or even exactly conjugate in the case of the unstable and stable manifolds.
For example, the unstable manifold can be characterized as the set of initial data near
U, whose solutions converge to U, as t — —oo and go away from U, at least at certain
exponential growth rate as ¢ increases. This immediately provides a stronger result than
the mere nonlinear instability.

2.) These invariant manifolds provide a framework to organize the local dynamics. For
a typical initial value near .#, its trajectory would first approach the center-unstable
manifold along the direction of X* and then exit the neighborhood of .# along the X"
direction, constituting a saddle type dynamics.

3.) Numerics [9] indicate that after leaving a neighborhood of unstable traveling waves
(upper branch), the orbits of (GP) scatter to either stable traveling waves (lower branch)
or constant states. Under non-degeneracy conditions (H1-2) in Sect. 6, there is orbital
stability on the center-stable manifolds which provides a third type of dynamics not easily
observed in numerics, where orbits stay close to .# for all ¢ > 0. In the case where the
center-stable manifold is co-dim 1, it very likely serves as the boundary between the first
two types of asymptotic behaviors. Combined with other tools like the virial identity,
such classification of dynamics near unstable solitons based on invariant manifolds has
been obtained for models including the Klein-Gordon and NLS [41,42].

Under some additional conditions, the 1-dim unstable and stable manifolds of an
unstable traveling wave U, were constructed in Xo N H 3 in [36]. As they represent low
dimensional special structures in the phase space, it is indeed more desirable for them
to have extra properties such as higher H¥ regularity, k > 1.

The main results of this paper are the existence, smoothness, and some dynamic prop-
erties of the center-stable, center-unstable, and center manifolds of unstable traveling
waves of (GP). In contrast to the finite dimensional stable and unstable subspaces, as the
center subspace has a finite codimension, it is more preferable for these invariant man-
ifolds to be constructed and describe the dynamics in the energy space Xo. Moreover,
on a center manifold where its topology is the same as the one of the energy space, the
energy conservation provides a crucial control on the nonlinear dynamics.
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Theorem 1.2. Let U, be a traveling wave of (GP) satisfying the spatial decay condition
(2.6) and that 3 & € o (J L;) with Rer > 0, (i.e. d = dim X** > 0), then

(1) There exist the locally invariant co-dim d center-unstable and center-stable mani-
folds W and W and the co-dim 2d center manifold W, all containing A .

Q) WM, WS, W are translation invariant, i.e. if U € WS¢ then U(-+ y) €
W< forany y € R3.

(3) Let r be defined in (2.2), then y ~' (# €*-5) are smooth submanifolds of X . More-
over, the tangent spaces of Y (W) at Yy~ (U,) are equal to
(DW_I)(UC)XCM’CS’C.

(4) Orbits in a small neighborhood of # are exponentially attracted to W " as t in-
creases (before they possibly exit the neighborhood in the center-unstable directions),
while repelled exponentially by W °*.

BY W =W N W D M is the transversal intersection of W and W .

Remark 1.3. In the above neither the non-degeneracy ker L, = span{axj Uc | j =
1,2, 3} of L. nor that U, is a ground state obtained in [40] is assumed. Without such
non-degeneracy, traveling waves for the given wave speed ¢ may not be locally unique.
However, all nearby traveling waves with close wave speeds must belong to #°¢. See
Proposition 4.19.

As Xp is not a flat space, we identify Xo with X through a coordinate map ¥ :
X1 — Xp given in (2.2), borrowed from [21]. So these invariant manifolds are smooth
in the sense that their images under ! are smooth submanifolds in X;. The above
statement (4) also implies that #¢ exponentially attracts nearby orbits in % and
exponentially repels those in %7 " (before they possibly exit a neighborhood of .# along
X€). Consequently .7 is orbitally unstable. More detailed statements of the results are
given in Sects. 4 and 5.

It is well-known that center-unstable manifolds, et. al. are not unique even for ODEs
and the dynamics, including the stability, on the center manifold is rather subtle. How-
ever, under non-degeneracy conditions (H1-2) which ensure the uniform positivity of
L. on X¢/ker L., in Sect. 6 we prove

Theorem 1.4. Assume (H1-2) in addition, then there exist C,§ > 0 such that

(1) Given any initial value U (0) such that 1,0_1 (U(O)) isina (C_ZB)-neighborhood of
VN A), then U) € WS if and only if W’I(U(I)) is in a 8-neighborhood
of WY A) for all 7t > 0, and U(0) € #° if and only ifl//_l(U(t)) isina
8-neighborhood of =\ () for all t € R.

(2) A is orbitally stable in W° and W -5 are locally unique.

Remarks on the Instability of Traveling Waves of (GP). Firstly, the existence of
unstable traveling waves of the 3D (GP) was first suggested in [30], where a Derrick-
type argument was used to show that the numerically derived traveling waves in the
upper branch in the energy-momentum plane are not energy minimizers under fixed
momentum. Such instability was further supported by numerical evidence in [30] that
initial perturbations near the upper branch can evolve toward the stable lower branch.
A Grillakis—Shatah—Strauss type stability criterion was formulated based on numerics
and heuristic arguments [9,30] and then later rigorously proved [36] for the traveling
waves constructed by Maris [40]. Moreover, a variation of this criterion was used to
obtain rigorously the spectral instability of a slow traveling wave of the 2D NLS with
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non-vanishing condition at infinity in [36]. Secondly, in [9], numerical computations
with high resolutions were performed to find eigenvalues of the 10° x 10° matrices
obtained from the discretization of the linearized (GP) along the whole upper branch.
At each of such traveling waves, only one unstable eigenvalue was identified and it has
cylindrical symmetric eigenfunctions (consistent with [36]). The maximal exponential
growth rate is approximately 0.012. Thirdly, when ¢ — +/2—, it was formally shown
in [31] and later rigorously proved in [16] that properly rescaled traveling waves of 3D
(GP) converge to solitary waves of 3D KP-I equation. A formal leading order relationship
between the eigenvalues of (GP) and the 3D KP-I equation was also given in [9]. As
the ground state solitary waves of the 3D KP-I display certain instability [38], it also
indicates such for some traveling waves of (GP). On the one hand, we fully admit
that we are not aware of any existing traveling waves of the 3D (GP) having been
rigorously proved to be spectrally unstable. On the other hand, we feel that there have
been strong enough indications, particularly the numerics in [9], of the existence of
spectrally unstable traveling waves to warrant the study of the local dynamics of the 3D
(GP) near such waves.

Among previous results on local invariant manifolds of relative equilibria of disper-
sive PDEs, Bates and Jones [4] proved a general theorem on the existence of Lipschitz
locally invariant manifolds of equilibria for semilinear PDEs by the graph transform
method and then applied it to the radial Klein-Gordon equation combined with an en-
ergy argument. In [44], Schlag constructed a co-dimension 1 center-stable manifold of
the manifold of ground states for the 3D cubic NLS in wLIR3) N W12(R3) under an
assumption that the linearization of NLS at each ground state has no embedded eigen-
value in the essential spectrum and proved the scattering on the center-stable manifold.
Later this result was improved by Beceanu [6,7] who constructed center-stable mani-
folds in WH2(R3) () |x|~' L>(R?) and in critical space H'/>(R?). Similar results were
obtained in Krieger and Schlag [35] for the supercritical 1D NLS. Nakanishi and Schlag
[41] constructed a center-stable manifold of ground states for 3D cubic NLS in the en-
ergy space with a radial assumption by using the framework in Bates and Jones [4].
Nakanishi and Schlag [43] constructed center-stable manifolds of ground states for non-
linear Klein-Gordon equation without radial assumption, following a graph transform
approach. Also, see [22,32-34,42] for related results.

At a rough conceptual level, our proof follows the framework as in [14,19]. How-
ever, instead of being near a steady state, our construction is around the 3-dim invariant
manifold .2, which is qualitatively comparable to [18], a more general result in finite
dimensions. A rather naive initial attempt may be to construct the local invariant man-
ifolds near U, (- + y) for each y € R? and then patch them together to obtain #/€%¢$:¢,
While the local construction for each y may follow from the standard procedure com-
bined with some space-time estimates, it is highly questionable whether such ‘patch-up’
is possible as these local invariant manifolds of each U, (- + y) are not unique in the first
place. Therefore as in [43] we construct % ¢ as the center-unstable, center-stable,
and center manifolds of the whole ./ instead of the individual U, (- + y). This requires
a coordinate system in a neighborhood of .. A rather natural option would be

U=y (@0, w, w,w)) =y UG+ +w C+y) +w' (- +y) + (- +))

where Dy (U )w"* € X*5, Dy (U )w® € X¢, and X¢ is a fixed subspace of X¢
transversal to span{dy; U : j = 1,2, 3} with codim-X“ = 2d +3. The possible polyno-

JL.

mial growth of ¢”L¢ in some directions in X¢ are too weak compared to its exponential
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decay along X** (ast — F00) to cause any real trouble. However, a more serious issue
is that the above local coordinate mapping ® is a homeomorphism but not a diffeomor-
phism from its domain to its image in X. In fact,

Dyd(y, w, w', w°) = (ay(w—l(uc)) + Oy + dyw’ + awa)(- +y).

While the first three terms on the right side belong to X due to the high regularity of
U, and functions in X", in general the last term d,w* € L2 only as w¢ € X¢ and X¢
is of finite co-dimin X; = H' x H!.

This issue of loss of regularity due to the translation parametrization also appeared in
previous works on other PDE models such as [5] and [43], in the latter of which it was
handled by a rather analytically oriented nonlinear ‘mobile distance’. Here instead we
adopt a more geometric bundle coordinate system used in [5], based on the observation
that, while the above parametrization by the spatial translation of y is not smooth with
respect to y, the vector bundles {w € X : w(- — y) € X"} are smooth in y. In
such a framework based on vector bundle coordinates, some second fundamental form
type quantities are to be carefully treated in the rather technical but intuitive analysis.
See also Remark 2.6. Based on this coordinate system, we decompose equation (GP)
and, as in the standard procedure in constructing local invariant manifolds, we cut off
the nonlinear terms (except the ones corresponding to the second fundamental form of
the center bundle) outside a small neighborhood of .#. Our subsequent estimates are
mainly based on the exponential trichotomy and the energy conservation and involve
minimal amount of dispersive estimates in Sect. 3. In particular, no spectral assumptions
such as the nonexistence of embedded eigenvalues or resonance are needed.

At this stage, with the estimates of non-homogeneous linear equations in Sect. 3, one
may apply the usual Lyapunov-Perron integral equation method or the graph transform of
Hadamard to obtain invariant manifolds for the modified system (with the cut-off) which
coincides with the original one near .#. While we obtained the invariant manifolds
by conceptually following the procedure in [14,19] which is more in line with the
Lyapunov-Perron method, one could also choose to estimate the time-7 map of the
modified equation and then apply the graph transform method as in [5,18].

While we focus on local invariant manifolds of traveling waves of the 3D (GP) in
this paper, we believe that this framework is rather general and it could be adapted with
minimal modifications to yield local invariant manifolds of unstable relative equilibria,
including ground states and excited states, of a class of Hamiltonian dispersive PDEs
such as the NLS, nonlinear Klein-Gordon equations, etc., involving finite dimensional
symmetry groups such as the phase rotations, spatial translation or rotations, etc. Gen-
erally, the main necessary assumptions would just be that the Hessian of the modified
energy functional at the relative equilibria (like L.) has only finitely many negative
directions, so that the linear analysis in [37] is applicable. In fact, we also constructed
local invariant manifolds of traveling waves of supercritical gKdV equation and analyze
the nearby dynamics [29].

The paper is organized as follows. In Sect. 2 we set up the basic framework for the
construction of local invariant manifolds of .#. Section 3 is on the estimates of non-
homogeneous linear equations. The existence of Lipschitz local invariant manifolds and
some of their properties related to the local dynamics are obtained in Sect. 4, while the
smoothness is obtained in Sect. 5. The non-degenerate case under assumption (H1-2) is
analyzed in Sect. 6. Finally, some tedious technical details are left in the Appendix.
Notations. Throughout the paper, we follow the following notations:
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H*: the homogeneous Sobolev space {u | |D|*u € L?}.

Xo: the energy space defined in (1.2).

X; = H' x H! defined in (1.6).

(-, -): Euclidean or L? duality pair unless specified otherwise.
The generic upper bound C is always independent of y € R.
Differentiations are usually not with respect to ¢, unless specified.

2. A Coordinate System Near Traveling Waves

In this section, we rewrite equation (GP) in an appropriate local coordinate system near
traveling waves.

2.1. Structure of X and a generalization of the momentum. Any u € X can be written
asu = a(l +v) wherew € S' and v € H'(R?) satisfying

I1+v]> =1 =2Re() + |v|* € L>(R?).

The distance on the energy space is introduced as following. Given u = «(1 + v) and
u = a(l+v)in Xo, we define the distance d by

d(u, i) = o — &+ Vv — V|| 23y + | [T+ 0> = 1+ (2.1)

(R3)"

Select (&) € C(C)’O(R) such that x(§) = 1 near & = 0 and define the Fourier
multiplier x (D) as

X (Dyu(E) = x(EDA).
Lemma 2.1. ([21]), The mapping

Uy o S x (HY(R?) +i H'(R?) — Xo

2 2.2
(Ohw)r—>a<1+w—x(p)(@>> (2.2)

is a homeomorphism.

Remark 2.2. Note that X is not a linear space, but this homeomorphism between H'! x
H' and X allows us to work in the linear space H' x H'. Since H!(R3) c L°(R?),
the above « € S! is invariant for any solution of (GP), which can be fixed to be 1 due to
the phase invariance of (GP). Also, this structure of X( does not depend on the choice
of the cut-off function x. To simplify the notation, we will fix « = 1 and wrote ¥ (w)
for ¥, (1, w). Apparently, ¥~ is given by

v u+iv) = (u—1+%x(D)(v2),v). (2.3)
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The coordinate mapping { commutes with the translation and S O (3) action. Namely,
let y € R3 and Q3,3 be an orthogonal matrix with det Q = 1, then

Yo w(Q) =¥l w)(@), ¥(ww—y) = w)(—y). (2.4)

This is useful as (GP) is invariant under the translation and SO (3) action.

Let X; = H' x H'. By Lemma 2.1, for any u € Xj, there exits a unique w =
wi +iwy € X1 such that u = ¥ (w). As in [36], extend the domain of the momentum
to X as

~ w2 ~
P(w) = —[ [wl +(1— X(D))—z]ngdx, PeC®X,R). (25
R3 2

One can see that F(w) = P(u) whenu = ¥ (w) € 1+ H'(R?).

2.2. Alocal form of the GP equation near a traveling wave manifold. Consider a smooth
and bounded traveling wave solution U, = u. + iv. of (GP) with the traveling velocity
¢ € R3 satisfying |c| € (0, +/2), we first rewrite the equation in the traveling frame in a
neighborhood of U.. Assume

Jim (|x|2(|Re Ue(x) — 1]+ |[VRe U,|) + |x|[Im Uc(x)l) =0. (2.6)
X|—> 00

Such traveling waves exist as proved [25,40]. In terms of the coordinate mapping
given in (2.2), let

we =¥ (Ue) = (Wie, wae) € X1.
The traveling wave manifold {U.(- + y) | y € R3} with wave velocity ¢ generated by
U, is invariant under (GP). To study the nearby dynamics, we rewrite solutions in the
traveling frame u (¢, x) = U (¢, x — ct) and then U (¢, x) satisfies

iU —ic-VU+AU+(1—|UPHU =0 (2.7)

or in the abstract form

wU=J(E+c-P)U), J= [_01 (1):| (2.8)

where we recall £ and P are the energy and momentum defined in (1.1) and (1.3),
respectively, and J is the matrix representation of —i. The traveling wave U, generates
a manifold of equilibria of (2.8):

M ={Uc(-+y):yeR3. (2.9)

Our main goal is to construct local invariant manifolds of .#. For any y € R3, let

Ke.y (u”) = Dy (we(- +)) <w1> = (““ —x(D) +y)w2)> . (2.10)

w2 w2 w2
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and

Lc,y =(E+c- P)N(Uc(' +Y))

A —1+@u2+v2)(+y) —c-V+2(ucve)(-+y) (2.11)
- - V+Qu)(+y) —A—1+@?+3v2)C+y) |

Both K,y and Ly are conjugate to K. o and L. ¢ through translation
Keyw = (Keow( = »)¢+9). LeyU = (LeoUG =) ¢+y).  (2.12)
To simply the notation, we denote
Ky =Koy, Lc=Lco.

From (2.6) and Hardy’s inequality, we have that K. , is an isomorphism on X with

Ko = <w1 +x (D) (ve(- + y)wz)> ’ (2.13)
, w)

and L.y induces a real valued symmetric bounded bilinear form on Xy, namely,

Kc,y’ K;)ly e L(Xl)s Lc,y S L(X], XT), L* g Lc,y.

c,y

Moreover, using the translation invariance (2.12) and Hardy’s inequality, there exists
C > 0 such that

IKeyllzxy + 1Kl < C, Yy € R, (2.14)
Consequently, J is viewed as a closed operator

J: X7 D> D(J)— X, satisfying J* = —J
where

D) ={w=w,w)|weH 'NnH andw, e H'Nn H"}

= {w = (wi, wy) | wi € H" and |§[iDs, |§]7 Dy € L?).
Suppose for some y(#) € R and w(#) = (w1 (1), wa(t)) € X; smooth in 7,

U@) =9y (we (- + (@) + w(r))

1 ) T (2.15)
=U:(-+y)+ Kc,yw - <§X(D)(w2): 0)

is a solution to (2.7).
Here (2.4) and the definition of K y are used. Substituting (2.15) into (2.8) and using
the definition of L. y and that U, is an equilibrium of (2.8), we obtain

3y - VU +y) + 3 (Keyw) — (x (D) (wadywn), 0)7
= JLeyKeyw+J((E+c- PY(U) = LeyKeyw).
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The above equation of w = (wy, wz)T can be written as a system of 2 equations of d;w
and 0, w>, which can be solved easily due to the upper triangular structure of K. y. In
particular we have the equation for wj,

0rwy = —(LC,yKC,yw)1 — 0y - Vo (- +y) + Ga(c, y, w) (2.16)

where G is given in the below. The above system of evolution equations for w can be
written in a compact form

0y - VU(-+y)+ at(Kc,yw) =JLcyKcyw+ G(c,y, 0y, w), (2.17)
where G = (G (c, y, iy, w), Ga(c, y, w)) are

G = (IUP = 1UeC+ 9P = 2Uel+3) - (Ke,yw)) JU+ )

2 o 2 1 2x (D) (w20;wz — w2Vwy - ¢)
+(IUF = U+ 0P ) TKeyw s (—(1 ZIUPX (D) (wd) — Ax(D)(w%))

2
and 0;w» in G should be substituted by (2.16). This results in the dependence of G
on d;y. The nonlinearity G is affine in 9,y and contains terms of w of algebraic degrees
between 2 and 6. Like K y and L.y, G(c, y, y, w) is translation invariant in the sense
of (2.12), namely,

G(c,y+x,§,w)=G(c,y,§,w(-—x))(~+x). (2.18)

A more detailed form of and some basic estimates on G are straightforward but tedious
and we leave them in the “Appendix”.

2.3. Decomposition of X1 and local coordinates near traveling waves. The free choices
of y € R3 and w € X are clearly redundant in the representation of the above U. We
shall impose appropriate restrictions on w by analyzing the linearization of (GP) near
U.. We will focus on unstable traveling waves. Namely, we assume

(H) The spectrum o (JL.) € iR.
Since |c| € (0, +/2), (2.6) and the explicit form (2.11) of L. imply that L. : X| — X}

is a compact perturbation to

—A+2 —c-V
Leoo = c-V —=A

:|ZX1—>X1<

which is an isomorphism as it induces a uniformly positive quadratic form on Xj.
This follows from a proof similar to the one in [36] and we skip the details. Therefore
dim ker L. < oo and it is uniformly positive on some finite co-dimensional subspace of
X1.Letn™ (L.) be the Morse index of L., namely,

n~ (L.) = max{dim Y | L. is negative on the subspace ¥ C X1}. (2.19)

According to the index formula of linear Hamiltonian systems [37],itholds thatn = (L.) >
0 for any unstable traveling wave. We first cite Theorem 2.1 in [37] whose hypotheses
are easily satisfied due to dim ker L. < oo and Remark 2.2 in [37].
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Theorem 2.1 in [37]. There exist closed subspaces Y;, j = 1,...,6, and Yy = ker L,
such that

1) X = @ﬁzoyj, Y; € N2, D((JLF), j # 3, and
dimY; =dim Yy, dimYs =dim Yg, dimY; +dim Y, +dim Y5 = n~ (L.);

(2) JL. and L. take the following forms in this decomposition

0 Aot Aoz Aoz Aps 0 O
0 Ay Ap A Ay O 0
0 0 Ap 0 Ay 0 0
JLe«——|0 0 0 45 Aw o0 o[, (2.20)
0 O 0 0 Ag 0 0
0 O 0 0 0 As 0
0 O 0 0 0 0 Ag
0 O 0 0 0 0 0
0 O 0 0 B4 O 0
0 0 Ly, 0 0 0 0
Le<—]0 0 0 Ly 0 0 0 2.21)
O B, 0 0 0 0 0
0 O 0 0 0 0 Bsg
O 0 0 0 0 B O

(3) Big : Y4 — Y[ and Bse : Yg — Ys are isomorphisms and there exists ¢ > 0
satisfying F(Ly, ;u, u) > elu|?, forallu € Y2 3;

(4) all blocks of J L, are bounded operators except Az, where Ag3 and A3 are under-
stood as their natural extensions defined on Y3;

(5) Ap 3 are anti-self-adjoint with respect to the equivalent inner product +(Ly, ;-, -) on
Y23

(6) the spectra o(A;) C iR, j = 1,2,3,4, £ReAr > O for all A € 0(Asp), and
0 (As) = —o(Ag); and

@) n_(LleéBYe) = dim Y5 and n_(L|Y1®Y4) =dimY;.

8) (u,v)x, =0forallu €Y1 ®Y,®Y3P Ysand v € ker L..

We modify this decomposition of X slightly for this paper. Let

X! =span{o,,Uc | j=1,2,3}, Yo={wekerLc| (w,w) =0, Vb € X/}
and
X'=Yoovi@Y, X =VYiuse.
Forany y € R3and o € {T,d1,e,d2,+, —}, define
Xoy={we X w(-y eX}
Recall the traveling wave manifold .# defined in (2.9). Clearly

xi=xl exext exBext ex;,. X =Ty, 222

.y

T,dl,e,d2,+,—. L

with associated projection I¢y et

0 <X <min{Reu | © € 0 (As)}.
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Lemma 2.3. Assume (2.6) and (H), then there exists C > 0, such that, for any y € R3,

(D) X:,’;’T’dl’dz c H*n X1 forany k > 1;

)0 <dimXF =d <n (Lc), dy =dimX¢| =n~(L.) +dimker L. —3 — d, and
dy =dim X2 <n~ (L)) —d < dy;

(3) there exist bases ch’tj, Jj=1....dof Xio’ Vc‘f’}-, J=1....d,of Xz-l,o’ Vc‘?’
Jo=1dyof X33, and VI, = 0., U, j = 1,2,3, of XL, along with ¢,
J=lod gl =1 d 5 =1y and (] = 1,23,
belonging to D((JLC,y)*) N H* = H* x (H~' N HY) for any k > 1, such that

dim Xg,o

M w= Y (&C+0).w)VE(+y), ae(T.dl,d2,+ -},
j=l1
consequently, projections HZ ’f Led2+= yre smooth in y with derivatives bounded
uniformly in 'y € R3;
(4) In the decomposition X1 = @ae{pdl,e,dz,h}Xﬁ‘,y, J L.y and the quadratic form
L.,y take the form

0 0 0 0 0 0
0 Ly 0 Li2(y) 0 0
0 0 LGy) 0 0 0
Ley<= 10 Lpo)* 0 0 0 o |
0 0 0 0 0 Li—(y)
0 0 0 0 L) 0
0 Ari(y) Are(y) Ar2(y) 0 0
0 A1(y) Ar(y) Ap®y) 0 0
0 0 Ac(y) A (y) 0 0
They<—=1¢9 o 0 Axy) 0 0
0 0 0 0 A(y) 0
0 0 0 0 0 A_(y)

where

(a) all above blocks are translation invariant in the sense of (2.12);

(b) all above blocks are bounded except A.(y);

(©) e MO + [l 2W| < C (1 + [t

(d) the quadratic form (L¢(y)V¢, V¢) > é” V"||§(1 forany V¢ € X¢ | and A(y) is
anti-self-adjoint with respect to L°(y) = L, X¢,,

@) o (A+(y) = o ((A—(), =D |y= || < CeM, for all Ft = 0;

Proof. All the conclusions directly follow from Theorem 2.1 in [37] except those on the

dual basis £ ; and the smoothness of IT¢ | in y. In particular Xz,':y_’T,dl,dZ c H N X,

is due to D((J Lc)k) = H'2k N X|. To complete the proof, we only need to show the

smoothness of 1% y in y. Due to the translation invariance, we have

neow= (M2, e =)+, aell.dled+ -} (23



Invariant Manifold

for any y € R3, which also implies

Dy yw = (D}Tleo (w(- = ) -+ ).
Let
wh o w® w® w? beabasisof X @ X @ XP @ X XT
T,d1,d2,+,—

formed by bases of X, such that w/ = 8xj U, j=1,2,3and wl, ..., whis
a basis of ker L. where dy = dimker L..

Let
1—A 0 .
. 7, i=1,...,do;
w/ = |: 0 —Ai|w / 0

Lew/, j=do+1,...,d.
Clearly o/ e X7 N H* = H* x (H™' n H*) for any kand j = 1,...,d and
(W', ..., @} and {@wP+' ... @9} are both linearly independent. Moreover
{1711, e, ﬁd/} are also linearly independent. In fact, assume
w= alwl +..., adowdo = ad0+1wd0+l +..., ad@d/
for some ay, ..., ay. Since wl € ker L, for j =1,...,dpy, we have
do d do
0= (L, Zajwf, Z ajwl)y = (i, Zajuﬂ) = (i, @) ;.
j=1 j=do+1 j=1
Therefore i = 0 and we obtain the linear independence of { !, .. ., a;d/}.

For any w € X¢, on the one hand, from the above L -orthogonality between X¢ and
Xrox'eox?oX ®X,, wehave (7, w) = (L.wj, w) = 0,for j = do+1,...,d".
On the other hand, due to the orthogonality between X¢ and ker L. with respect to the
(-, )x,, forany j = 1,...,do, we have (/, w) = (w/, w)x, = 0. Counting the
dimensions, we obtain that

~1

@', ..., w% form abasis of keriye = {f € X7 | (f,w) =0, Yw € X{}.

Asker i}"(g is isomorphic to (XCTGBXfl EBszEBX;’@XC_)*, letyr, ..., yo € ker i}"(g
be the dual basis of w!, ..., w? . Since yj can be written as a linear combination of
o', ..., 9%, we have Yj € H*x (H~'nH*) foranykand j = 1, ..., d . From (2.23)
and the definition of y;, it is easy to verify that, forany o € {T, d1,d2, +, —}, w € X1,
and y € R3,

I'If,"yw = Z (yiC+y), w)w’ (- + y).

wieX?

The smoothness of IT{ | in y follows from the regularity y; € H ks (H='n H*) and

w/ e H* N X, for any k and j = 1,...,d’, which also implies the smoothness of
ng,=1- Za:T,dl,d2,+,— N . Divide {w/, j =1, o dYand{y;, j=1,...,d}
according to o € {T,d1,d2, +, —}, we obtain VLf"j and ;Lf"j and complete the proof of
the lemma. O



J. Jin, Z. Lin, C. Zeng

Remark 2.4. Under the following additional non-degeneracy assumptions

ker(L:) = span{VU.}, n~(L;) =d =dim X", (2.24)

we have X f,l);dz = {0} and the decomposition may be simplified. We shall discuss this

case carefully in Sect. 6.

With respect to the bases {VC"‘j },a € {dl,d2, +, —}, operators

Ar1(y), A1(y), A12(y), A12(y), A2(y), A (y), A_(y)

representing Hf’yJ Leylxe, Xty — Xf y in the above block decomposition of J L.,y
can be represented by matrices

MT]a M17 MT27 M12’ M2, M+’ M*

which are independent of y due to the translation invariance (2.12) of Ky and L .
Namely,

ATi (Vo Ve a) = (VP VY (Mr1a), Ya e RY ... (2.25)
From Lemma 2.3,
le™i) +le™2 ) < C(1+1eDD, Ve e Ry [le™*|| < Ce*™ ¥V F1 > 0. (2.26)

A similar representation through translation in x — x + y of A.(y) would cause
loss of regularity when 9, is carried out. Instead we will keep working with A.(y) =
Hﬁ,yJLL.,},Hﬁ’y. When viewed as an (unbounded) operator from X to X1, it is a uni-
formly (in y) bounded perturbation to a constant coefficient operator and its derivatives
of all orders are bounded operators. In fact, separating the terms in (2.11) with constant
coefficients from those with spatially decaying variable coefficients implies

~ 2—A—c-V
JLey=JLeoo+ 00, L“”Z[c.v fA } (2.27)
and
~ AT u% -1+ 3v2 _
o) = [3(1 - ug) — vf, —2Ucve C+). (2.28)

Lemma 2.5. Fix ¢ € (0, ~/2). For any integer k > 0, there exists Cy > 0 such that for
any y € R3, it holds

k
”D}(Ae(y) - JLC’OO)||L((®k(R3))®X1,X1) < k.

Proof. Clearly Q(O) € L and Vké(O) € L™ N L? for any k > 1, along with (2.6)
and Hardy’s inequality, it is straightforward to prove, forall y € R and V € X1,

1OV Ilx, + IDEQVIIx, + 7 QVllx: + 1T DSQVIlx: < CillVIlx,.  (2.29)
for some Cy > 0 independent of y. Write

Ae(y) = JLeoo = Ae(y) = J Loy + O ().
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Therefore, to complete the proof of the lemma, we only need to show the boundedness
of D’; (J Ley—A. (y)), which, according to Lemma 2.3, has the same blockwise decom-
position except the A.(y) component replaced by 0. The uniform boundedness (in y) of
Ac(y) — J L,y follows from the boundedness of those blocks, where the uniformity in
y is due to their translation invariance in the sense of (2.12). The uniform upper bounds
of D];(J Ley — Ae(y)) also follow from the translation invariance of these blocks and
the extra regularity of ;ffj and Vcofj, ae{Tl,dl,d2,+,—}. O

Following from that X[ | is the tangent space Ty, (+y).# and K., = Dy (we (- +))

T

¢,y is the tangent space of

is an isomorphism, K ~! X
.y

YN = {we(-+y) | y e R}
Based on the Implicit Function Theorem, it is straightforward to prove that, for small 3,

"y +uP+wt +w |

lw*|| <68, a € {dl, e, d2,+ —}}

{wc(o +y)+ w!

o -1 yo
w” € KeyXe

is a neighborhood of w_l (#) C X, where each point has a unique representation
in the above form. Locally the total lwdl|| + lwellx, + w2 + |w*|| + |lw™ || of the
transversal components is equivalent to the X distance to .Z.

2.4. A local bundle coordinate system. Accordingly, we shall set up the bundle coordi-
nates near v ~! (.#) precisely. Denote

2¢={(y. V) |yeR VeX: ) (2.30)
and balls on this bundle
2@ ={y. V) e Z° | IVIx, <8} (2.31)

Let ys € R3 and B3(8) be the open ball on R? centered at ys with radius 8. For § < 1,
a smooth (due to the smoothness of TT¢. y with respect to y) local trivialization from
B3(8) x ijy# to 2°¢, thus a local coordinate system, of .27¢ is given by (y, I'If,’yV),

V € X¢ ,,. There is a natural translation on 2°¢

(Za Y, Ve) e (y +2Z, Ve('7 +Z))'
Along with other subspaces X LT ’;”’dz’+’_, we will often consider bundles R¥ @ .2°¢ over
R3 with fibers R* @ X ﬁ y> as well as their balls
BY(61) @ 2¢(082) ={(y,a, V) |a € RY, |a| <81, (v, V) € 2°(B2)}. (2.32)

For any fixed yg, the smoothness of I |, with respect to y allows it to serve to as a local
trivialization of the fibers X¢ y for y near yy.
Define an embedding

Em : R3+d|+d2+2d o %e N Xl
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as

Em(y’aT’adl’ad2’ + — Ve)

= al o wel- +y)+KCy(Zad]Vd1( +y)
1 j=1

! (2.33)
Z aPve +y)+Za;+V§J( +y>+Z“ VoGV

= ;((a VT+ad1le+ad2Vd2+a Vi+a v, )(-+y)+Ve).
The embedding Em=+ : R4+42+2d @ 27¢ defined on the transversal bundle will be used
for the bundle coordinates near ¥ ! (.#)

Em*(y,a®, a?, a*,a=, V%) = Em(y,0,a?,a?*,a*, a, V®). (2.34)
Clearly Em™ is translation invariant in the sense
EmJ‘(y +3,a", a®” at,a", Ve( + y))

(2.35)
= Em*(y,a®,a”? a*,a”, V)(-+7), VyeR.
On the one hand, according to the above trivialization, given any Banach space
Z, a mapping f : Z — Z°¢is said to be smooth near some zo € Z if y(z) and
Ve(z) € X¢ y(z) Ar€ smooth in z near zg, where f(z) = ( (2), l'[c y(Z)V‘g(z)). Due
to the smoothness of TIT¢ »» in fact this is equivalent to the smoothness of y(z) and
V(z) € X1 where f(z) = (y(z), V(z)).
On the other hand, for any Banach space Y, a mapping g : 2°¢ — Y is said to be
smooth near some (yg, Vi) if
gy V)=g(. M, V), yeR Vex!

V4
is smooth in (y, V) € R3 x Xy, near (y#, Va). It is straightforward to verify

e gissmoothifand only iflocally g(y, l'[f.’y V),y e R3,V e X 1,18 smooth on R3x Xi.

e g is smooth if and only if locally it is the restriction to .2°¢ of a smooth mapping
defined on R? x X;;

e g is smooth if and only if g o f is smooth for any smooth f : Z — 2°¢ defined on
any Banach space Z;

e Em is smooth with respect to (y, V¢), due to the smoothness of K .. ; and the basis
V"‘ ,aoe{T,dl,d2,+,—}.

We shall often work with g(y, Em(y, a, V°)) with g smooth on R® x X;.
Near the 3-dim manifold .# of traveling waves, we will work through the mapping
® defined on R4+42+2d gy 97¢ which is diffeomorphic on RU1+%2+2d (§) @ 27¢(8)

U=, a V) =y(we(-+y) + Em-(y,a, V°)). (2.36)

This is a smooth vector bundle coordinate system in a neighborhood of .Z C Xy
for sufficiently small § > 0. From (2.33) and (2.34), ® can be naturally extended into a
smooth mapping on R3*41+d+2d gy x|
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Remark 2.6. As the subspaces XCTyd1 €, d2,%,—

XZ'dled2+

are obtained as the translations of
, it is tempting to use the coordinate system

U=1vy((we+ w + w? rwt+wT FwO(+ )

where w* € X% and y € R3. However, such translation parametrization is not smooth in
X because the differentiation in y causes a loss of one order regularity in Dyw®(- + y).
This is one of the main issues in Nakanishi and Schlag [43], where the authors constructed
the center-stable manifolds of the manifold of ground states for the Klein-Gordon equa-
tion. They introduced a nonlinear “mobile distance” to overcome that difficulty. Instead,
the above bundle coordinate system (2.36), where V¢ € X¢ | is not directly parametrized
by a translation in y, represents a different framework based on the observation that,
while the parametrization by the spatial translation of y is not smooth in X; with respect

to y, the vector bundles XCT ydl 424~ over .4 are smooth in y as given in Lemma

2.3. This approach was used also in [5]. While it avoids the loss of regularity when
differentiating in y, it will involve more geometric calculation.

2.5. An equivalent form of the GP equation near traveling waves. Let U (¢, x) be any
solution to (2.7). If U (¢, x) stays in a small neighborhood of .#, then we can express U
in the coordinate system (2.36)

U@t) = (). a), Ve®)., (y.a. V@) € BN @) @ 27°68)  (2.37)
for some § > 0. Substituting (2.37) into (2.17) and using (2.15), we obtain
3y - VU +y)+ 3,V + (@) VI + 3, VI + (8,aH)V]
+@a )V + )+ (@ dy - (vVIY +a®y - (VVI?)
+a*dy - (VVH)+a oy - (VV;))(- +y)
= JLC,yKC,yEmJ‘(y, a, Ve + G(c, v, 0:y, EmJ‘(y, a, Ve)).

(2.38)

Starting with d;y, we identify the evolution equation of each coordinate component.
Applying Hg y and using Lemma 2.3 and (2.25), we have

dy+ I+, v+l dy V(@' VI +a?V +atVi+a V)
= Mria® + Mr2a®® — (LeyJ I (- +y), V)
+ (&I ¢+, G(e,y, 3y, Em*(y,a, V9))).

Since V¢ € X{ , implies ({7 (- + y), V) = 0 for all 7, we have
(CEC+),0 V) = =By - VEOHC+y), V), aell dl,d2,+ —}. (239)
Therefore y = 9,y satisfies the following equation

F =G VeDHC+ ). Hc SKeyw)+ ¢l y-v(a -1l —T¢ DK yw)
= Mria®" + Mr2a®™ — (Ley JEL(+9), VO + (L ¢ +). G(e, y. 5. w)),



J. Jin, Z. Lin, C. Zeng

where w = EmL(y, a, V¢). We actually note that the above equation is well-defined
for any small w € X;. From Lemma A.1 and the regularity of V¥ and ¢, when |Jw] x,
is sufficiently small, one may solve for y = d;y and obtain

dy = Mria® + Mraa® — (LeyJEI (+9), VO + Gl (e, y,w),  (2.40)

where
w = EmJ‘(y, a, Vo).
According to Lemma A.1 and the regularity of ¢/ "%~ GT (c, y, w) is smooth in

yand w € X1 when |Jw| x, < 1. As we did not prove G € X in Lemma A.1, we used
the extra regularity of & € H ks (H~''n H*). Furthermore, there exists C > 0 such
that, for any y € R3 and small w € X 1

2—k,0
IDEDLGT (e y. w)l < Crpllw P40, 2.41)

Applying H‘C)"y, a € {dl,d2, +, —, e}, to (2.38) and using the basis V¥, Lemma 2.3,
(2.25), (2.39) and (2.40), we obtain

dat = Mia® +GF(c, y, w), (2.42)
da?l = Mia™ + M2a®™ — (LeyJ ¢+ ), VO + G (e, y, w),  (2.43)
aa®? = Mra® + G (c, y, w), (2.44)
ME 0,V = AV +a A (VI +3) + Gc. y,w), VEe XS, (245)

where A (y) = HinyLC,yl'Iizy is smooth in y and

w=Em"(y,a, V). (2.46)

Much as in the derivation of GT, G¥ is also well-defined for any small w € Xj,
a e{dl,d2,+, —, e}. Like K., and L, G* is translation invariant,

GYc,y+z, w(-+2)) =G%c,y,w), a€c(T,dl,d2,+ —}

(2.47)
Gé(c.y+z,w(-+2)) = G°(c, y, w)(- +2)

for all z € R3. For lwllx, <1, G% o e{T,dl,d2, e, +, —}, are quadratic in w. From
T.d1,d2,+,—

Lemma A.1 and the regularity of ¢, , they are smooth in y and w and satisfy

IDEDLG (. y. w)l < Clalwly P a e (T, d1d2,+, ). (2.48)

The multi-linear terms in G¢prevent it from belonging to X (see Lemma A.1). However,
due to the extra regularity of ¢, projections H?,y’ o € {d1,d2,+, —}, act on a larger
class of functions than X ;. From Lemma A.1, we have

(I =T )G (e, y, w) =0, Gi(c,y,w) € X1+ Wh3+(LINW3) (249)

and

k nl ~e max{2—k,0}
D: DG . < Crrllw . 2.50
|Dy, D, |X1+W1'%+L%0Wl‘g = Crrllwlly, (2.50)
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Transforming the V¢ equation. Before we end this section, we transform (2.45) to an
equivalent form. In fact, since (I — Hi’ y)V“’ = (0, we have

(I —T¢ )3, V¢ = DyTIE (3 y)V©. (2.51)
Therefore, (2.45) implies
WV =AMV +F(c, )0y, V) +aPAc(MVE(+y) +G(c.y,w)  (2.52)
where
Ac(y) = Hi’yJLc,yl'lﬁgy

is given in Lemma 2.3 and the bounded bilinear operator .% (c, y) : R3® X; — X, is
given by

F (e, y)(z, V) = DyIIg (()(Tg , V — (I = TIg )V). (2.53)

Here we can take the last part of .% in the form of V — b(I — I )V for any b, which
would not change the validity of (2.53) for V € X{ ,. The above choice of Z would
bring certain convenience in some calculation later. Using the smoothness of I1¢ | in y
given in Lemma 2.3, we obtain

.7 (¢, y)(z, V)lIx, = ClzlllVIx, (2.54)

for some C > 0 independent of y. The bilinear operator .% is a modification of the
second fundamental form of the bundle X¢ | over R3 as a sub-bundle of X; = X ey ®
((1 — Hi,y)Xl) over R3.

While (2.52) is deduced from (2.45), actually the opposite alsoholdsif V (s) € X f ¥(s)
for some s. To see this, applying I — TI{ | to (2.52) we obtain

(I =M )V)=U — g ) DyTIE (3, y)(TIE ,V — (I = TIE )V) =Dy T (3,y)V.
Differentiating IT¢ | TI | = TI¢ | with respect to y we have
DyTIg (), + TIg  DyTIE () = DyTIE (). (2.55)

It follows that
9 ((I = Mg )V) = =DyTg (3 y)(I — g V. (2.56)

Since this is a well-posed homogeneous linear equation of (/ — IT, y) V, which is finite

dimensional, the solution has to vanish if we assume V (s) € X¢ )" Therefore

V) e Xﬁyy(t), Ve, ifV(s) e Xsy(s
Finally (2.45) follows from applying IT, y t0(2.52).

Compared to (2.45), equation (2.52) is more convenient as the latter may be posed
on the whole space X;. Along with the boundedness of .%#, it makes it easier to prove
the local well-posedness and obtain estimates of (2.52) and thus we will mainly work
with (2.52).

In summary, in a neighborhood of .# C Xy, equation (GP) written in the bundle co-
ordinates (v, a?!, a??, a*,a=, V¢) € BU*a+2d(§) @ 27¢(8) is equivalent to the system
consisting of (2.40), (2.42), (2.43), (2.44), and (2.52), along with (2.46).

) and V() solves (2.52). (2.57)
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3. Linear Analysis

We first analyze the linear part of (2.52) whose unknown is valued in a vector bundle
X, y over R3. However it is observed that (2.52) is well-posed with V¢ € Xy, we will
consider this general situation as well as the case V € X{ ,. Relaxing the restriction
V € X¢ , would provide a little convenience in some estimates later. Moreover since
G*¢ does not necessarily belong to X, we give a space-time estimate which will be used

to close the nonlinear estimates in later sections. Consider the following more general
form of (2.52)

0,V = HﬁﬁyJLC,yl'Iﬁ,yV + F(c, )0y, V) + f(1). 3.1)
Here we assume y(7), —oo < fg <t < t; < oo satisfy

o=y 1, Ve (to,h). (3.2)

15 ((t0.).R3) =

For the non-homogeneous term f = ( fi(t, x), falt, x)), we need the norm

A
5P, = P 1+ 4 1 33
Wiz = 0flen g, + 120y (3.3)

along with the associated spaces X g(’ftl) and X g&f]tl)’ loc» Where By, . and Bg, rdenote the
standard Besov space as well as the homogeneous Besov space, respectively, and the
“loc” denotes “local in ¢”. In the standard terminology, an admissible Stritchartz pair

(p, q) and conjugate exponent p’ of p € [1, 0o] are those satisfying

p.q €l2,00l, 2/p+3/g=3/2; 1/p'+1/p=1 (3.4)
Our main goal in this section is to prove the following proposition.
Proposition 3.1. Suppose (3.2) holds, (p, q) is a Stritchartz pair, and f € X 5;’313,1 oc
where p € [1, pl. Then for any s € (ty, t1) and initial value V (s) € Xy, (3.1) has a

unique solution V (t) € X1. Moreover, there exists C > 0 independent of to, t1, s, 0, y(+),
and f(-), such that for any t € (ty, t1), and n > Co, we have

0 1 _ 1 -1 —
(Ley V@), VD)2 < eV Loy VEs), V)2 +Cn 711 £ oy
(s.1)

_1
V@] < TV + Ol
(s.1)

where
Ve =Tg V@), Vi) = - I () V@), 35
FEO=T¢ , fO), fH@0) =T =T, ) f ),
satisfying
Ve =T JLcyIIg VO + F(c, )0y, V) + f4(1), 36

0Vt =—DyII (3 y)V"+ [T
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Here one keeps in mind that 7 — Hﬁ)y may be applied to a larger class of functions

than X and its range is finite dimensional. The above decoupling of V+ and V¢ is due
to the choice (2.53) of .%. From the positivity of of L. , on X, y (Lemma 2.3), we have

Corollary 3.2. There exists C > 0 independent of to, t1, s, y(-), and f(-), such that for
anyt € (ty, t1) and n > Co, we have

. -1 _
IV@llx, = CE V) x, +n 711 FOll gry)-
(s.1)

Moreover, V (1) € X{ |,

- Hi,y(:))f(t’ =0, ae.te(t). (3.7)

for almost all t € (tg, ), if V(s) € X¢

ey(s) and

The above estimates indicate that the linear equation (3.1) exhibits at most weak
exponential growth due to |9, y|.

Based on the regularity of the nonlinearity given in Lemma A.1, we also consider the
space

~ 3 3.6
Xy 2 L*((to, 1), X1) + L*((t0, 1), Wh2) + L*((t0, 11), L2 N W"5)
and X (to.11).loc- The next proposition will be a simple consequence of Proposition 3.1.

Proposition 3.3. Suppose (3.2) holds and f € i(t(),tl),loc- Then for any s € (ty, t1) and
initial value V (s) € X1, (3.1) has a unique solution V (t) € X. Moreover, there exists
C > 0 independent of 1y, t1, s, o, y(-), and f(-), such that for any t € (to, t1), and
n € (Co, 1), we have

1
IVEDllx, < CTNVe@llx, +n 2l Ollg )

1
VEO] < C( I IVE©I+ 0721 Ol ),

where V&+ and f¢ are defined in defined in (3.5) which satisfy (3.6).

These two propositions and Corollary 3.2 will be proved in the rest of the section.
Energy estimates of homogeneous linear equation. We start with the basic well-
posedness and energy estimates of the homogeneous equation of (3.1) based on the
uniform positivity of L¢(y) = L., |X£,y~

Lemma 3.4. Assume f = 0, then (3.1) defines a bounded solution map
S(t,s) € L(X1, X1), Vt,s € [to, 11],
with initial value given at t = s, which satisfies
S(s,s) =1, S, t)S({',s)=S({,s), S,s)e L(Xﬁ,y(x), Xg,y(t))‘ (3.8)

Moreover there exists C > 0 independent of t1, tz, t, s, and y(-) such that

(LeyyS(t. )V, S(t,)V) < eV Ly V. V), YV € X¢

S (39)
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As a consequence, the lemma implies that, under the assumption f = 0, (3.1) pre-
serves the constraint V e X¢ | if it holds initially. Later we will show that this holds for
non-homogeneous equatlon as well. Furthermore the homogeneous equation induces
possible exponential growth only due to ||9; y|| .o . The coefficient 1 in front of the above
exponential is important for future estimates.

Proof. From Lemma 2.5, A.(y) = II¢ yJLe, yHe ey is a bounded perturbation to J L.
on X. This, along with the boundedness of Z, 1mphes that (3.1) is well-posedness on
X1 and thus the solution flow S(z, s) of bounded linear operators is well-defined.
Since (I — Hﬁgy)Xl C D(JL; ), for any V € Xy, by direct computation using
(3.1), one finds that (I — l'If.’y)V satisfies
(I =g V) = =g )DyTE (B, y)(TE V= (I = TIg ))V) — DyTIE (8, y) V.
Following the same procedure as in Sect. 2.5, we obtain exactly the same equation as
(2.56) which yields
- Hf,‘y(t))\/(t) =0, v, if (I — l'[i v(s))V(S) =0. (3.10)
Finally we prove inequality (3.9). Let V (¢) be a solution of (3.1) with V (s) € X¢
D(J L. ), whichyields V(1) € X¢
J* = —J = J~! one has
(LeyV, V) = (J7'DyQ( @)V, V) +2(8,V, Ley V)
—(IDy Q) @OV, V) +2(F (¢, y)(By, V), LeyV),

c, y(S)

ey D(J L. ) forall . By direct calculation using

where Q is defined in (2.28). It follows from the bounds (2.54) and (2.29) that
[0 (LcyV, V)| = ClatyIIIVllil- (3.11)

Recall from Lemma 2.3 that the bounded symmetric quadratic form (L. y-, -) satisfies
(LeyV, V) > s||V||§(] forany V € ngy. This uniform lower bound of L.y on ngy,
the above estimate, and the Gronwall inequality immediately imply (3.9) when V (s) €
Xﬁ Y(5) N D(JL¢ ). Since XC ¥(s) N D(J L. ) is dense in XC sy @ standard density
argument yields (3.9) for general solution V(¢) € X¢ The proof of the lemma is

complete. O

e, y()”

Space-time estimates of (3.1). Given initial dataatt = s € [tg, 1], the solution of (3.1)
can be written as

t
V() = S(t,s)V(s)+/ S(t, 7) f(7)dx. (3.12)

Since f(t) is not assumed to be in X, we first prove the following lemma.
Lemma 3.5. Suppose (3.2) and (3.7) hold, (p,q) is an admissible pair, and f €

(to,11),loc” e y(s) (312)
has a unique solution V (t) satisfying V (t) € Xc v(t),for almost all t € (tg, t1). More-

over, for any admissible pair (p, q), there exists T, C > 0 independent of f, ty, t1, and
v(-) such that, if ty < to <s < t1 < 1y satisfy tl — to < T, then

||V(t)||;((p,/q X <C(IlV®lx, + Il Pz ). (3.13)

01 Xagap

XI7 4 Then for any given s € (ty, t}) and initial value V(s) € X¢
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In particular, if (p, q) = (00, 2), then it holds, for t € (1, t})
1 _ 1
(Le,yiny V(1) V(1))2 <eColt Sl(Lc,y(s)V(S)a V)N +Cliflizoa - (3.14)
(1.1

Proof. We prove the lemma in several steps.

e Step 1. Change of variables and dispersive estimates of the constant coefficient ho-
mogeneous linear equation. To make it more convenient to carry out the dispersive
estimates, we first apply a similar transformation to diagonalize J L .—¢ . Let

P=yV-AQ—-MN"1, R=\/-AQ2-A), 9‘:[5 ﬂ V=27
Apparently,
& is an isomorphism from H'to X1. 3.15)
From (3.1), (2.27), and (2.28), it is straight to compute that Z satisfies
Zi=THZ+Q(y(), y())Z + f (1), (3.16)

where
o R —c-V ~ o -1

0@, 2) = «@_I(He JLc,ny-,y - JLc,oo +.7 (c, Iz, ))r@

Yy

Let Z = (§ g) From (2.54), (2.29), (3.15), and our assumptions, we have

10y, D Zlg1 < CA+ZDIZNgn, f €Ly, By (3.17)

for some C > 0 independent of y.
It was proved in [28] that for any g € [2, oo], one has

% _a(l_1
e 7ol <t Bl
q.2 q'2

Furthermore, for any admissible pairs (p;, ¢;), j = 1, 2, it holds

t
JX -0 JZ
172 By, S 18 1 [ O @dTln g, S 1)
. A ,

/. .
2 L2 B,
q2.2

These estimates lead to

JH -3(1-1 JH
llef ¢||B;2 St ||¢||gr,2, llef ¢||Lm[;gl S lellgrs
: q'. .

2

4 D) H (3.18)
-1
d I < N .
[ e gl < el s
In fact, since JH — JZ% = ¢ - V which commutes with J%, we have

7 = (@I Z) (- +ct) =T (Z(+en).
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The first two of the inequalities in (3.18) follow immediately due to the translation
invariance of the Besov norms. To see the last one in (3.18),

t t
— — 7
I / T He(@ydt g = I / T (g(T) (- + et — 1))dTll oy
0 11112 0 11112

t
— (-0 I % - a < - / = /
=| /0 I (@) = er)drlipn gy, SIOC =Dl gy = 8l iy
‘12-2 q2,2

e Step 2. Space-time estimate. In the next step, instead of (3.12), we will obtain the
space-time estimate of solutions of (3.16) based on (3.18) with

t
Z(t) — " 7(5) = / TTHTO(v(2), 3 y(D) Z(D) + f(0)]dT
§ (3.19)

—s
= / e(’_s_r)]H[Q(y(s +7), 0 y(s+ 7)) Z(s+7) + fs+ 7)]dT
0

By (3.18), (2.29), (3.17), (3.15), and 0 = |0;y|r~ < 1, for admissible pairs (p, q),
(P, q) and (00, 2),and fg < 1y < s < t] < t1, we have

_ _(t—s)JH L < .
120 =26y g1, < COZN, a+ 1Ty g )

o) (g1 a2

r (3.20)
(=02l a0 ).

(i) q'2
Consider the standard splitting of Z(¢) into
Z(t)=Zpn() + Zin(@), V(@)= PZpt)+ P Zin(1),

where Zj,(t) satisfies the corresponding homogeneous equation of (3.16) (i.e. without
f) and Z;(s) = Z(s), and Z;,(t) solves (3.16) and Z;,(s) = 0.

e Step 3. Non-homogeneous part Zi,. On the one hand, applying (3.20) to Z;,(¢) with
the admissible pair (p = oo, ¢ = 2), we obtain that there exists 7 > 0 independent of
10, t1, 1), 1], and y(r) such that, if r{ — 1) < T, it holds

”Zm”LOO HTS CIfIl, 5 B

(g1 <r0t>42

Substituting this back into (3.20), we have that for any tl’ — t(/) < T and admissible pairs
(.9,

IZinllzr, , 1, = CIlfIl AN I (3.21)
(.1 (t AN
We claim that (/ — T ym)f(t) = 0 implies
t
PZLin(t) =/ S(t,7) f(v)dt € X¢ Y@y a-e 1€ (19, 17)- (3.22)
N
In fact, let
1
Y={ge L(t i Bia | U =T () P8(1) = 0. Vi € (9. 1))} C LZ/ 0 Bj -
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Since ¢ € H* x (H* N H™'), forany k > 1 and a € {T,d1,d2,+,—}, I — e,
actually applies to Pg(t) € Bé/,z X 33/,2‘ Consider the mapping I'

t
W) = (Cg)(1) 2 / St ) P(v)dx.

N

Inequality (3.21) and the definition of & imply that I : L(t y )Bq, , = L(t p )Xl isa

bounded operator, and thus also bounded when restricted to Y Slnce Lemma 3 4 implies

I - y(l))(Fg)(t) =0, Vr e (tO, 1) if geYn L(t [)Xl

and Y N L‘(’[Q p )X | is dense in Y, we obtain that (/ — TT¢ y([))F vanishes on Y. Therefore
PZin(t) € Xe ey(t) for almost all 7 € (1), 1}).

o Step 4. Homogeneous part and the completion of the proof of the lemma. On the other
hand, it is clear

Zy(t) = 7S )V (s). PLi(t) € XE ).

which also implies V(t) = £Z;(t) + PZ;n(t) € X¢ ey(®) for almost all 7 € (#), 7).
Applying Lemma 3.4 to the || - ||« g1 on the right 51de of (3.20) for Z;, we have

1Zn — e(t—S)JHZ(S)“Lf/ /)Bqlz < C(tl — t0)||V(S)||X|
fO,fl ’

for#) <s <1t; <tj+T.From (3.18), we obtain
”Zh”Lfré,th;.z <ClIV(®llx,
and inequality (3.13) follows immediately from the above estimates.

To derive (3.14) in the case of (p = oo, g = 2), we apply (3.9) instead, along with
(3.21), (3.22), and (3.15) and the uniform positivity of L., on X{ , to compute, for

re (t07t )’

(LeyoyV(0), V() = (Le,yiny S, )V (s), S, 5)V (s))
+2(Le,yy S, )V(s), P Zin(®)) + (Le,yi) P Zin(1), P Zin(1))

= ((Lc,y(t)S(tv S)V(S), S(t, S)V(S))% + <Lc,y(t)<@Zin(t)v @Zin(t))j
= (N Ly V@, V@) +CIF Ly 50 )

(tt)qZ

c,y’?

)2

This implies (3.14). Finally as T is independent of f and y(¢), a standard continuation
argument extends the domain of solutions to (7, #1) and thus completes the proof of the
lemma. O

In the next step, we iterate the above small time estimates.

Lemma 3.6. Suppose (3.2) and (3.7) hold, (p, q) is an admissible pair, and f € XZO 31)’
where p € [1, pl. Then there exists C > 0 independent of f, ty, t1, s, t, such that for

any n > Cao, every solution V (t) to (3.1) satisfies

1
(Leyioy V), V()2 < 71N Loy V(s), V()2 +Cn 7 le™ 1l o
(s,1)

foranyty <t,s <t.
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Proof. We only prove the estimates for ¢ > s, the estimates for negative time can be
obtained similarly. Suppose t = s + kT + ¢’ where ¢’ € [0, T), we use (3.14) repeatedly
to compute

(L¢ y([)V(Z‘) V(l)) Cat ((Lc,y(r)V(TL V(T)>|r=s+kT)% + C”f”Xf’ ZT :

ST L V() VN +C(If gy +Z€C"(’ O gy

(S+kT 1) - (5+(] DT,s+jT)

£Colt= s)< cy(Y)V(S) V(s)) 2 +C(§ eP(Co—m(t—s— /T))p“en(t—)f” g
(sf)
j=0

Summing up the exponentials completes the proof of the lemma. O
Finally we drop the assumption (3.7).

Proof of Proposition 3.1. We split (3.1) into the X , component and its complementary
component as in (3.5). Much as the calculation in the derivation of (2.56), we have that
V- satisfies (3.6).

The remaining estimate of V-4 (¢) is similar to the above. In fact, for t > s,

t
VEO = IV [ mlar

N

t
- ec”('7‘§)|Vl(S)|+/ e(Cofn)(tft)efl(tft)|fL(T)|dt)

N

which implies the desired estimate on V- (z).

Due to the choice of .7, it is straightforward to compute that V¢(z) = V (¢) — IS 0)
satisfies (3.1) with the non-homogeneous term f(¢) replaced by f¢(z). Lemma 3.6
implies the estimate on V°(¢) which completes the proof of the proposition. O

Finally, we apply Lemma 3.6 to prove Proposition 3.3.

Proof of Proposition 3.3. We first decompose f € X (to,11),loc 1nto the sum of several

terms satisfying the assumptions in Lemma 3.6. In fact, by the definition of X, we can
write

f=¢+v+y

where

¢EL1()Lwl2CLl()LB32CX VELI()L(HIXH)CX

(to,t1),loc’ (t9,11),loc’
and
3
v el (L*NL3), VyelL? LS.

Let x be the same smooth cut-off function used in Sect. 2.1. Clearly

6
x(Dyy e LA, W3 ¢ LlocB c x> and V(1 — x(D))y € L} L5.

(to t),loc’
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. . . 1— ..
Moreover, since the inverse Fourier transform of % isin L', we have

1—x(D
wa c L? ,L%

~2 0
and thus (1 — x(D))y € X iy doc
The desired estimate follows immediately from applying Proposition 3.6 to each of

these terms. O

4. Construction of Lipschitz Local Invariant Manifolds of .#

Based on the space-time estimates developed in Sect. 3, we construct the center-unstable
manifold # " (.#) of .# , while the center-stable manifold % “* (.#) can be constructed
similarly. The intersection of the center-unstable and the center-stable manifolds yields
the center manifold of ..

4.1. Outline of the construction of the center-unstable manifold of .# . Our construction
roughly follows the procedure in [14]. The codim-d local center-unstable manifold are
over the directions of X! & X¢ , & X3 @ X/ along .. In coordinate system (2.36)
WU (M) is represented as the graph of some mapping /"

WCM(%) — q)({a— — hCu(y’adl’adz’a+’ Ve) |

4.1
(y,adl’adz’a+, VE) c Bdl+d2+d(8) 69 <Q//'E(a)})

where the above sets are defined in (2.32). Even though W (.#) is local, by using a
standard cut-off technique, we will carry out the construction on R4+%2+d g 27¢(§).
Moreover, for technical convenience, we shall work with 4 (y, a®l, a?? a*, V) defined
on R3+d1+d+d X, (§) to avoid the non-flat bundle. However, only the value of / on
RA+d2+d gy 97¢(§) matters.

Let

X = R o xy XU(8) = {(v.a? a®? at, V) € X | V]Ix, < 8}
The following projection I1¢, linear except in y, will be used often
= di_d2 di_d2 di+dp+d
Gy, a*",a“,a*, V) = (y,a*",a"*, a", HiﬁyV) e Rt g ¢ (4.2)
We shall modify equations (2.40), (2.42), (2.43), (2.44), and (2.52), along with (2.46),
into a system defined on X x R?. As a standard technique in local analysis, we first cut-

off the nonlinearities as well as the off-diagonal linear terms in the direction transversal
to .# . Take a cut-off function

y €CPM), sty =1 Vix <1, y(x) =0, Vx| 23, |y'|co, <1 4.3)
andfor§ > 0,a~ e R, and W = (y, a?', a®%,a*, V) € X, let

ys(Woa™) =y (387 (la” | + [a®| + |a*| + |a~ | + | V]Ix))).
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Fora— € R and W € X, let
G*W,a")=ys(W,a")G%(c, y,w), €+ —, d2}
GU(W,a™) = ys(W,a ) (G0 + ), Are (0 Ke,yw) + Mipa®™ + G (c, y, w))
GTW.a™) =ys(W,a ) (¢ (- +). Are(0Keyw) + Mria®" + Myoa®
+GT (e, y, w))
G“(W,a™) = ys(W,a ) (Ax() Keyw + G (c, y, w))

: 1 1
where functions {cT = @cT,lv CCTQ, §CT,3), g“,f“ = (;C”{l, R ;L‘f l), and operators A1e, Ae2,

and A7, are given in Lemma 2.3, matrices M2, M|, M7> in (2.25), and
w=AW,a")2 Eml(y,adl, a®?,a*, a, Hﬁ’yV)

(4.4)
= K (@' VI +a®VP +atVE+a V) +y) + T, V).

From the definitions of G, it clearly holds that they are independent of the extra
component (I — IT1¢) W added to avoid the non-flat bundle R%1+%+4 @ 2°¢ 1In particular,
G°¢ satisfies

(I-T)G =0, G eX=X+W"3+LinWh?). (4.5)
Denote
ycu — R3+d1+d2+d X i, icu(a) — {(y,adl’adz’a+, V) c icu : ”V”;(, < 8},
GUW.a™) = (G", 6", G, G*. GYW.an),
AM(y,y) = diag(O, M, My, M, Hi’yJLC,yHi’y + Z(c, y)(7, -)).
We shall consider, for W = (y, a?l, a?% g, V)ye X““anda™ € R4,
xW = A (y, GT(W,a ) )W + G“(W,a") (4.6a)
da~ =M_a +G (W,a") (4.6b)
which, for ||w| x, <, coincides with the system consisting of equations (2.40), (2.42),
(2.43), (2.44), and (2.52), along with (2.46), the representation of (GP) in the local
coordinate system near .7 .
As the off-diagonal linear blocks in J L., are incorporated into G“, the latter does not

have small Lipschitz constants, which is often a necessity in constructing local invariant
manifolds. Accordingly, we introduce metrics involving a scale constant Q > 1

Al d2 & 2 di 3 d2y L+ 2
I(y,a®" a", a”, V)lix;,0 = |yl + Qla™ |+ Q7|a™ [+ |a”| + Q°[IV Il x,

4.7
1. a® a® a*, V)ligz.o 2 Iyl + Qla? |+ Q*la®®| + a*| + Q*|IV |5 @7
to make Lipschitz constants of G~ small (Lemma 4.3).

We shall construct the local center-unstable manifold %" (.#) as the graph {a~ =
h“ (W)} of some i : X (8) — R?. Since #“ () is expect to be translation invariant,
we will only consider translation invariant mappings 4 : X“(8) — R¢, which satisfy,
forany z € R3,

h(y+z,a’,a%, a*, V(-+2)) = h(y,a?, a® a*, V). 4.8)
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Fix constants Q, §, u such that

1
<1, O0>1, ,u<§, 4.9)

whose additional assumptions will be given later. Let

Tps ={h: X"@®) - R [ h(y,0,0,0,0) =0, |[A]lco < 5/15,

4.10
h satisfies (4.8), and Lip|\~\|x,.g < u}. ( )

Here h(y,0,0,0,0) = 0 is required as # “(.#) should contain .#. Clearly ', s
equipped with || - || co is a complete metric space.

We will define a transform on I', s based on (GP). Forany h € I';, s and W e XU(s),
consider the solution W (¢) = (y, a?!, a??, a*, V)(t) € X of

HW = Ay, GT(W, (W))W + G (W, h(W)), WO =W. (411

Remark 4.1. Even though £ is defined only on X““(8), due to the cut-off function ys,
forany h € I'y s, a € {T,dl1,d2, &, e}, it holds GO‘(W, h(W)) = 0 whenever W €
X"\ X" (5). Consequently, the right side of (4.11) is well-defined for all W € X“.

We define E(W) as

0
KW)=a" =/ e M=G= (W (1), h(W(2)))d. (4.12)

—00
We denote this transformation 4 — % as
T(h) = h.

In order to construct the center-unstable manifold, in the following subsections, under
suitable assumptions on Q, §, and  we will show & € ', 5 is well-defined and that .7
is a contraction on I";, 5. The graph of the unique fixed point, restricted to the set

BWEM @)@ 2 (8) =((v.a" a®® a* V) € XU @) | @ a® ") <5, VX,

would be the desired center-unstable manifold % * (.#'). To end this subsection, we give
the following lemma to show that working on systems (4.6) or (4.11) on the expanded
domain X““, only to avoid the non-flat bundle Rér+dard gy 97¢ does not change the local
invariant manifolds.

Lemma 4.2. The following statements hold.

(1) Suppose W () satisfies (4.6a) on [t1, t2] for somea™ € C([n, 2], Rd) and l:IeW(to)
= W (ty) for some ty € [t1, 2], then l:IeW(t) = W) forallt € [t1, 1ra].

(2) Assume hj € T'y s, j = 1,2, satisfy hy(W) = ha(W) for all W e X“(8) with
[1°W = W. Then ﬂ,-, Jj = 1,2, defined in (4.12) satisfy the same property.

Proof. For the first statement, we observe that a direct consequence of (4.5), (3.6), and
our assumptionis (I —TT1¢)W(¢) = 0, forallz < [t1, t2], whichimplies W (¢) = T1° W (¢).
The second statement of the lemma is just a simple corollary of part (1) and the definition
of h. O
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4.2. Apriori estimates. Following the construction outlined in Sect. 4.1, in order to
prove that h € I', is well-defined for any given h € I';, 5, we start with the following
preliminary estimates.

Lemma 4.3. G4~ : X% x R? — X x RY are smooth, G~ (y, 0, 0, 0,0, 0) = 0.
Moreover, there exists C > 0 independent of Q and § such that

IDG Il o (xeuxra Fey < C(Q7' +8Q%),  IDG Il xeuxpe pty < C8
where || - IILQ(XMXRd);m) denote the operator norm when evaluated in || - || x,, o and
115, o
Proof. From the definitions of G~ and (2.48) and (2.50) which in turn are derived

from Lemma A.l, the smoothness of G~ and é"“*’(y, 0,0,0,0,0) = 0 follows
immediately. Moreover, it is straightforward to obtain the following estimates. Firstly,
forl,k >0,

1D a1 iz e gy DY (G GIW, a7 < Crgs' ™ (4.13)

for some Ci; > 0. When we exclude the off-diagonal terms in G, the estimates may
be improved to

k I Ad2,+,— k I AT
|D(a‘“,ad2,a+,a*,V)DyG ' |+|D DyG |

(a*,a™)
N A (4.14)
k I Ae k I Adl 2—k
+ ”D({ldl,a"',a_,\/)D)’G ” + |D(ad1)a+’a—)DyG | = Ck,18 )
for some Cy; > 0. In the above G is always evaluated in the || - || norm. The de-

sired estimates on DG~ follow from straightforward calculations based on the above
inequalities. O

The following lemma is a simple corollary of Proposition 3.1.

Lemma 4.4. There exists C > 0 such that, for any y € C 1((—oo, 0], R) satisfying
|8tY|L°° <o, f € Lz((_oo9 O], XCM)’ Q > 1’ ne (CG, 1)’ and W(t)’ r e (_OO, O])
solving

W = Ay, 9 y)W + f,

we have

0
IWO%, .0 < Cn 2 Me ™ [W©O)I%,. o+ Cn 20! f D f @I HdT

t

Proof. Since A" takes a diagonal form, we may consider each component individually.
For the a?!-4? and y components, in addition to applying (2.26) we also use

M1+ 12 < C 1+ T < Copies!
and the following estimate based on the Cauchy-Schwartz inequality

0 0
I/ 3 g(t)dr? SCn*‘/ "D g(r)PdT
t

t

to obtain the desired inequality. The estimate on the V component is a direct consequence
of Proposition 3.1 and the estimate of the a* and y component trivially follows from
(2.26). O
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Proposition 4.5. Let n € (0,1), T € [-00,0), h € T}, 5, and a; (-) € C°([T, 0], RY).
dl d2

Suppose Wi(t) = (y1,af",a{, af, V1)) € X is a solution to (4.11) and Wr =
(y2, aé“,agz, ay, V2)(t) € X< solves
HW = A (y, GT(W,a;))W + G (W, ay), (4.15)

with initial values Wj = (), &;.“, [1;.12, c_l}', \_/j) € X“(8), j = 1, 2. Then these solutions
exist for all t € [T, 0] and there exists C > 0 independent of u, T, n, Q, and 8, such
that if (4.9) is satisfied and

Cnp Mo~ 1 03 <1 (4.16)
then W;(t) € X“(C$) forallt € [T, 0] and

12 = WO, = 2 (727 [(W2 = WDOIR,

0
+n7! Q662/ AT @y — h(Wg))(r)|2dr).
t
Proof. To analyze solutions to (4.11) and (4.15), we first note
G'(W.a")=0, G(W.a")=0, if [|[V]x, =0.
Therefore if || V|l x, > 4§, (3.11), (4.11), and decomposition (3.6) yield
9yj =0, 09 (Ley, l'[f.’yj Vi, Hﬁyyj Vi)y=0, 9, — Hf,’yj)Vj =0,
which along with the initial condition and Lemma 2.3 yield
IV;HOllx, <Cé8, Vtell,O0]. 4.17)

To estimate the difference, let
B(t) = F (¢, y)(G" (Wa,a7),-) = F (e, y)(GT (Wi, (W), ) + Ae(y2) — Ac(31)
BU(1) £ A (2, GT (W1, ay)) — A% (y1, GT (Wi, h(Wh)))

= diag(0,0,0,0, B(1)).
The cut-off in the definition of GT, (4.11), and (4.13) imply

l0,yj1 =1G"| < Cs.

From Lemma 2.3, Lemma 2.5, (4.13), (4.17), and (4.17), we can estimate

IB“(0)Wa(D)llx,,0 = Q*IIBMOV2(0)lIx,

< C8Q*(Iy2 — nl(1+1GT (Wi, h(Wi))|) +|GT (W, a5) — GT (Wi, h(W1))])
< C8Q*(IIW2 — Wi |l xeu + |ay — h(Wp))).
From the definitions of W}, j = 1, 2, and decomposition (3.6), we have
0 (Wa = W) = A% (y1, GT (W1, k(W) (Wo — W) + B“W,
+GU(Wa, dy) — G (Wi, h(Wy)).



J. Jin, Z. Lin, C. Zeng

Applying Lemma 4.4 we obtain

(W2 = WD(O)%,.0 < Cn D™ (W2 = WDO)IIX, o
0
+20 / S (IBUWIDIG
t
(G W, a7) = G (Wi, kWD) (D%, )de.

The above estimate on B and Lemma 4.3 including (4.14) imply

0
(W2 = WD(DI%,.0 < Cn 2 e ™ [(Wa — W)(O)1,.0 + n_2d1_1/ ety

t
x (@71 +80M) (W5 — W(DII%,. 0 +6°0°l(@5 — (WD) (D)I*)dT.

Since h is Lipschitz with Lipschitz constant 4 < 1, we obtain

0
M [(Wa = WDD%,.0 < Cn 2 M I(Wa = W)(O)I%, o + 12" / e’
t

x (@71 +80N2 (W = WD(D)%,.0 +82Q°1(@ — h(Wa)) (1)) dx.
The estimate on W, — W follows from the Gronwall inequality. O

Remark 4.6. Tt is worth pointing out that the .% term in the equation of 9,V can not be
cutoff asitensures V € X , if this holds initially. In the proof of the above proposition,
this term was under control since it vanishes when ||V || x, = C§ which implies 9,y = 0.
Seemingly this argument heavily depends on the lack of growth of e’4¢(") for any fixed
y. If ¢4 indeed induces some weak exponential growth backward in 7, instead of
the cut-off applied to the V equation, a standard trick is to add a bump function to
modify the V equation so that it is actually slightly inflowing/decaying backward in ¢
for ||V ||x, = Cé4. The same estimates could be obtained subsequently.

4.3. Lipschitz center-unstable manifold. In this subsection, we will show that the trans-
formation outlined in Sect. 4.1 is well-defined and is a contraction on I', s for appropriate
u, Q, and §, which would imply the existence of a fixed point and thus a center-unstable
manifold. For any /2 € T, s, recall we attempted to define a new mapping h = 7 (h)
whose value 1(W) = a~ at W = (y,a4!, a%2, a*, V) is given by (4.12).

Lemma 4.7. Fix n € (0, 1) N (0, A). There exists C > 0 independent of Q, i, 8 and n,
such that if (4.9), (4.16), and

C—m =@ 3% <1, c—n)~ 'y < i, (4.18)
are satisfied, then 7 is a contraction on T’ 0,8

Proof. We first prove that i € T, 5 . Since h(y,0) = 0 and G~ (y,0) = 0, if
its initial data W = (y, 0), then the solution to (4.11) apparently is W(z) = (¥, 0).
Therefore h(y, 0) = 0. From (4.14) and (2.26), it is easy to estimate

Ihllco < CA16% < 8/15,
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where (4.18) is used.
From (2.47), (4.8), and that || - || x, is translation invariant, the cut-off is not affected
by any spatial translation. Therefore

(@ +2z,a (1), a®™ (1), a* (1), V(t, - +2))

is a solution to (4.11) for any z € R3 and any solution (y, a®l, a®, a*, V)(1) to (4.11).
Therefore the definition of /4 implies that it also satisfies (4.8).

Finally, we show the Lipschitz property for /. For any Wj € X(8),let W;(r),t <0,
be the corresponding solutions to (4.11) and sz_ be given as in (4.12), for j = 1, 2.
Applying Proposition 4.5 to these two solutions, we have, for any t < 0,

I(W2 = WD (Dlx,,0 < Cn~ e [W2 — Wilix, 0.
Therefore, we obtain from (4.12), (2.26), and (4.14) that

o o cnp~hs
la, —ay | SCB/ M |(Wa — W) (D)l 0dT < - W2 — Wilix,.0-

—00 -n

The desired Lipschitz property of h follows immediately from (4.18) and thus herl 10,8+
To see the transformation 4 — 7 is a contraction, given any h, hy € I', s and initial

value W € X (8), let W;(t),t <0, j = 1,2, be the solutions to (4.11) associated to

h j, with the initial value W. In applying Proposition 4.5, we notice the corresponding

[(a2 — hi(W)(@®)| < |lha — hillco, (W1 — W2)(0) =0,
and thus, for any < 0,
(W2 = WD (®)llx,.0 <Cn~ 7' Q%8e ™ ||y — il co.
Therefore (4.12), (2.26), and (4.14) again imply
0
lay, —ay| < Cn—<1+d1>Q352f AT dt|\hy — hyllco.
—00

Therefore (4.18) implies the contraction property. 0O

Under conditions (4.9), (4.16), and (4.18), which can apparently be satisfied by
choosing i, 8, Q, and n carefully, Lemma 4.7 implies

Ih“ €Ty, st T(h™) = h.
We are only concerned with 2 restricted to RU+2+d @y 27¢(§). Let
W = graph(h™) = {(y,a”",a?* a*,a=, V) |
a= = hy, a® a®, a*, Vo), (y,all,a®, at, vy e RI+H o 25))
and an even smaller submanifold for (2.7) and (GP)

WCL{(%) — Q({(y,adl,adz,a+,a_, VE) c WCM |

) (4.19)
la|, [a®|, la*], IVelx, < 8/15}).
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Clearly W is a Lipschitz manifold due to the Lipschitz property of 2 € ', 5.

For any a~ = h“(W), W = (y,a!,a??, a*, v¢) e RO+h+d g 27¢(§) corre-
sponding to a point on W<, let W () = (y, a?', a??, a*, V)(¢) be the corresponding
solution of (4.11) where V¢(t) € X y([)(C(S) due to Lemma 4.2 and Proposition 4.5.
Leta™ (1) = h*(W (1)) whenever f satisfies V(1) € X¢ 4 (8)- We canextend a™ (1) to
be a bounded function for r € R. For any |fg| < 1 such that W = W(t) € X(8), since

(4.11) is autonomous, W (z +1p) is its solution with initial value W. Since F (h") = h°“,
we can compute a~ = a” (f9) = h“(W) satisfies

0 1
a- =f MG ((W,a7)(to +1))dt =/0 e”TTOM-G= (W, a™)(1))dt

—0o0 —0o0

fo N
— M-~ +/ e(to—T)MfG—((W,a_)(‘r))d‘r.
0

As in Remark 4.1, the above equality does not depend on the extension of a~(f)
as G‘(W,a‘) = 0 whenever W € X\ X(§). Therefore (W,a™)(t) = (W(t),
het (W(t))) is a solution to (4.6). Along with the translation invariance (4.8) of 7%, we
have proved the local invariance of W under (4.6). Since A" is translation invariant,
we obtain

Lemma 4.8. W is locally invariant under (4.6), i.e. if w(t) is a solution to (4.6) and
w(0) € W, then exists € > 0 such that w(t) € W for all t € (—e, €). Moreover
W< satisfies, for any z € R3,

w(+z) € WY if we W

Solutions starting on W might leave W< through its boundary A< (XC”((S))\
Jcu (XCM((S))

Since (4.6) coincides with the original system (2.40), (2.42), (2.43), (2.44), and (2.52)
when

la® |+ [ +1a*| +a” |+ 1VCIIx, < 8/3,
W " is a locally invariant manifold of (2.7) and (GP). Namely

Proposition 4.9. If U (1) = ®(w(1)) solves (2.7), satisfies U(0) € #“, and w(t) €
Bl 2 ( 8y @ 27¢(L) forallt € [T, T1, T > 0, then U(t) € ¥, t € [T, T].

4.4. Local dynamics related to the center-unstable manifold. We start with the local
stability of the center-unstable manifold, which means that if a solution to (2.7) stays in
a §p-neighborhood of .# over a time interval, then its distance to # * shrinks exponen-
tially. Since (2.7) is equivalent to (4.6) for U near .# , we only need to work with (4.6).
More precisely,

Lemma 4.10. There exists C > 0 independent of Q, u,§ and n, such that if (4.9),
(4.16), (4.18), and

C(n7(2d1+1)Q662 + 327]71 + n—Z(d1+1)Q654()\ _ 2}7)71) <7 (420)
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are satisfied, then for any T > 0 and solution

(W, a™)t) = (v, a®, a®, a*,a=, Vo)(1) € R4+ g gre(s).
t € [0, T], to (4.6), we have

la™ (1) = K (W(0)] < Ce™*72Ma™(0) — h (W (0))]

foranyt € [0, T].
Proof. Let

Wi@t) = W), a;()=a (1), A™()=a @) —h"(W(@)).
Fix + € (0,T] and let ((Wz,&; )(r)) be the solution to (4.6) with initial value
(W(), h“(W(1))) at T = t. The invariance of W under (4.6) implies that, for all
T<It,

ay (v) = K (Wa(D), A~ (1) = ay (1) — @ (1),

where we note the latter holds at T = ¢ only. Denote

I(t) = |(W2 = WD(®Dlx,,0-

Lemma 4.2 implies 1:1er(7:) = Wj(r)fort <1, j = 1,2, since it holds at T = 1.
From Proposition 4.5, we have, for any 7 < ¢,

t
l(r)z S Cn7<2dl+l)Q682/ 627](‘[ 7r)|A7(T/)|2dT/. (4.21)

T

Using the variation of parameter formula, we have
AT (1) = (a; —ay )(1)
t
=e™M-(a; —a;)(0) +f el mM- (G‘((Wl, a;)(),) = G ((Wa, a;)(r)))dr.
0

It follows from (2.26) and (4.14) that

t
AT ()] < Ce ™ |(a; —a,)(0)| + ca/ M (1(0) + @) — a3)(0)])dr.
0
Since
(@, —a, ) (D] < |A™ (D) + pl(r),
we obtain

t
AT ()] < Ce™™(1(0) + |A—(0)|)+c5/ eI (1() + |A™ ()])dr.
0
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We use (4.21) to proceed
t
|A7(t)|2 S Cefz()ufn)qu(O)'Z + Cn7(2d1+1) Q652672M / 62nt|A7(T)|2dT
0

t
+ caz(/ e MDA (1) |dT)? + Oy D gbst
0

t t , 1 2
x (f e—“’—”(/ 2 _T)|A_(r’)|2dr/)2dr>

0 T
L Ce 2 MNATO) + I + b + L.

The above integrals are estimated by Cauchy-Schwartz inequality. Firstly,
t t
I < C§? / e 2= g f e 2= A~ ()2 dT
B 0 0
t
<cstp! f e 20D A= (1) 2d .
0
Secondly,

t t t
I < Cn7(2d|+l) Q684672M / eandT / / 62()»777)1'+277(t’7t)|A7(r/)|2dr/dt
0 0 Jr

!

t T
S Cn—2(d1+1) Q654e—2()x—7’])t / |A_(T/)|2/ 627}1'/+2(}»—2T])Tdrdt/
0 0

< Cp2d+) 54— 2y~ /' =20 =) A= (1) P,
0
Finally, it is also easy to see
I} <Cp~@aith g2 /’ =20 0=D) | A~ (1) 2.
0
Therefore we obtain
A~ = Ce2MAT(O) +7 /0 P I

where assumption (4.20) is used. The desired estimates follow immediately from the
Gronwall inequality and the proof is complete. 0O

Remark 4.11. The proof of the local asymptotic stability of the center-unstable manifold
could have been much simpler if 2“ had been smooth, which will be proved in the
next section. In that case, one could obtain the decay estimate using certain property
derived by differentiating the invariance equation of 4*. In this subsection, even though
we went a greater length to obtain the result, it has the benefit to show that the local
asymptotic stability still holds even if 2* is only Lipschitz, which is the case when G
is only Lipschitz.

A direct corollary of Lemma 4.10 is the following condition for a point to belong to
wex,
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Lemma 4.12. There exists C > 0 such that if n € (C$, 1) and Q, u, 6 satisfy (4.9),
(4.16), (4.18), and (4.20), then a solution of (4.6)

(W,a")(1) = (y,a”,a®, a*,a™, V(1) € W
if (W,a")(t) € RO+d2+2d gy 97¢(§) for all t < 0 and satisfies sup, <o la™ (¢)] < oo.

Since (GP), or equivalently (2.7), is equivalent to (4.6) in a neighborhood of .Z, we
have

Corollary 4.13. If U (1) = ®(w(t)) is a solution of (2.7) satisfying
8 8
t Bdl +dr+2d qe
w(r) € (—15)@ (—15)

forallt <0, thenU(t) € #“, t <0.

Remark 4.14. Note that the assumption in the above lemma is satisfied if a solution stays
in a neighborhood of .# for all r < 0, which is the case of neighboring traveling waves.

More precisely, consider another travel wave Uz = (uz, vz) = ¥ (wg) with traveling
velocity ¢ € R3. Here we recall ¢ and ! are given in (2.2) and (2.3), respectively.

Lemma 4.15. There exists g > 0 such that

() ifcnc=0,|lwg— wellx, < o, then Uz € W,
(2) or without ¢ A ¢ = 0, but instead with the additional ||xV (wg — wc) lx, < o and
that the angel between ¢ and € is bounded by 8, then uy € W .

Proof. The solution to (2.17) corresponding to Uz is given by wz(x — ¢t). If ¢ and ¢
are parallel, then w.(- — &) € ¥~ (#) and |wz(- — ¢1) — we(- — C) | x, < 8o for all
t <0, then Uz € #'“* by Corollary 4.13.

In the general case, there exists a near identity orthogonal matrix O3zx3 such that
OC = |¢|c|™ c. Tt is easy to verify that wC(O(x — E't)) is a traveling wave of (2.17)
with traveling velocity IZllel"te. As 1O — 1] < 1 yields that w.(Ox) is close to w,
satisfying the assumption of case (1), therefore U.(Ox) € % °*. Our assumptions imply
lwzg — w(0-)|lx, < 1 and thus Corollary 4.13 implies Uz € #“*. O

4.5. Construction of local center-stable manifolds. Basically by reversing the time in
the previous procedure, we can construct a local Lipschitz center-stable manifold W<*
of . . 1t is given by the graph of a function ¢ : BU+2+d(§) @ 27¢(5) — R,
WCS(%) — q)({a+ — hCS(y’adl’adz’a—’ VE) |
(v.a® a®® a7, V) € B () @ 27 (5)}).

We briefly outline the steps here. Let X = R3*41+®+d « X| be same as X

and equipped with the same || - ||x,,o metric as in (4.7). The set Fff s of mappings

h: X5(8) — R also takes the same form as F;’fa.
On X x R4, we rewrite (4.6) as
HW = A% (y, GT(W,aH))W + G (W, a¥) (4.22a)
dat = Mya* + Gt (W, a") (4.22b)
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where G = (GT, é‘“, édz, G‘, ég) are as defined in Sect. 4.1 and
A%(y, §) = diag (0, My, My, M_, TI¢ ,J LTI + F (c. Y)(F, ).
For any /h and W e X (8), let W(z), t > 0, be the solution to
dW = A% (y, GT (W, h(W))W + G (W, h(W)), W) =W

and define E(W) as
h(W) =a* =~ f TG (W), h(W (1))dr
0

and T (h) = h. Following exactly the same procedure, one proves that this defines a
contraction mapping on Ffj 5 the graph of whose fixed point, restricted to Ré1+d2+d ( 1‘3—5 )®

v e(%), leads to the locally invariant Lipschitz center stable manifold of .# .

Proposition 4.16. There exist § > 0 such that there exists h* € '}’ s and

(1) the center-stable manifold
WS =d({(W,a*) e W | W e B2 (5/15) @ 27¢(5/15)})
is locally invariant under (2.7), where
W = graph(h®) = {a* = k(W) | W € RU*2+ gy 27¢(5)},

is locally invariant under (4.22).

(2) There exists C > 0 independent of Q,u,$ and n € (0, 1), such that if (4.9),
(4.16), (4.18), and (4.20) are satisfied, then for any T > 0 and any solution U (t) =
D((W, a*)(1)) to (4.22) with (W, a*)(t) € RN+ g 27¢(5/15), t € [0, T, we
have

la*(t) — h (W(0)| = Ce* 2" |a*(0) — h (W(0))]

foranyt € [0,T].
(3) A solution of (2.7) @((W, a+)(t)) e W forallt >0 if

(W, a*)(t) € BH+*2 (5/15) @ 27¢(5/15)
forallt > 0.

The estimate in part (2) on the growth of a*(¢), r > 0, for any solution follows
directly from the decay estimate of a*(¢), t < 0, which is parallel to Lemma 4.10 for
W€ in the opposite time evolution direction.

Remark 4.17. The local invariance of 7 is in the same sense as in Proposition 4.9.

Like w/ %, WS is translation invariant in the sense as in Lemma 4.8, and #¢ is
Lipschitz. As in Lemma 4.15, all neighboring traveling waves belong to W under the
same assumptions.

Remark 4.18. The above statement (2) implies that, if the initial value is not on the
center-stable manifold, then the solution would eventually leave the %-neighborhood
of .# , and thus ./ is orbitally unstable.
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4.6. Local center manifolds. A center manifold #¢ = ®(W¢) is given by the intersec-
tion of a center-unstable and a center-stable manifold, and thus it is also locally invariant
and extends in the directions of the center subspace XZ yBX fly eX ‘Cizy @ X{ , atany y.

For0 < 8 <« 1, (v,a%, a??,a*,a=, V¢) e R4+2+2d gy 97¢(8) belongs to W€ if and
only if

a = hcu(y’ adl’adZ’ Cl+, Ve)’ Cl+ — hCS(y’adl’ adZ’ Cl+, ve) (423)

The Lipschitz property implies that (4.23) is equivalent to that (a*, a™) is the fixed point
of a contraction (A", h°®) with Lipschitz constant . Therefore we obtain

Proposition 4.19. There exists C > 0 independent of Q, ., é and n € (0, 1), such that
if (4.9), (4.16), (4.18), and (4.20) are satisfied, then there exists h¢ : R+ @ 27¢(8) —
R? such that

(1) the center manifold
7 =o({(y,a,a® a* a7, V) e WO
(v, a’,a? V) e B2 (5/15) @ 27°(8/15)))
is locally invariant under (2.7), where
W€ = graph(h®) = graph(h) Ngraph(h®) = {(y.a",a®, a*,a=, V°)
c Rd1+d2+2d @ %8(8) | (a+,a—) — hc(y’adl,adz’ VE)}’

is locally invariant under (4.22).
(2) h€ satisfies (4.8), h°(y,0,0,0) =0, and

. dl _d2 g g dl _d2
|hc(y27a2 ,Clz vVZL)_hc(ylva] sal 7v1€)|

dl _ dl, 03,2 _ d2) . 2
=< (Ily2 =yl + Qlas’ —a{'| + Q°1ay” — af*| + Q°|V5 — V{lx,)-

=1-4

(3) a solution CD((y,a‘“,adz, V.at,a™)®)) € 7 if (v,a® a?? at,a”, V)(@) €
Bé+da+2d 515y @ 27¢(8/15) forall t € R.

(4) There exists § > 0 such that any traveling wave solution satisfying assumptions in
Lemma 4.15 belongs to W'°.

The following lemma states that, as a submanifold, the center manifold attracts orbits
on the center-unstable and center-stable manifolds.

Lemma 4.20. There exists C > 0 independent of Q, i, and n € (0, 1), such that if
(4.9), (4.16), (4.18), and (4.20) are satisfied, then for any T > 0 the following hold.

(1) LetU(t) = CD((W, at, a_)(t)) € W be a solution to (2.7), where W = (y, a?!,
a®?,ve), satisfying (W,a*,a")(t) € BU+2+24(5/15) @ 2°¢(8/15), t € [0,T],

then we have
l(@*,a™) (1) — (W (D) < Ce=*72D(@*, a™)(0) — h(W(0))]

foranyt € [0, T].
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(2) Let U(t) = Q((W, at, a_)(t)) € W“ be a solution to (2.7), where W = (y, a®!,
a2, ve), satisfying (W,a*,a~)(t) € B4+2+2d(§/15) @ 2°¢(8/15), t € [-T, 0],
then we have

l(a@*,a™)(t) — h(W(®)| < Ce* 2" |(a*, a™)(0) — h*(W(0))]
foranyt e [T, 0].
Proof. Let us denote the components of hA¢ by h¢ = (h<, h® ). From (4.23), we have
hE(W) = h (W, hS(W)),  hS(W) = h (W, hS.(W)). (4.24)

We shall only prove part (1) of the lemma, where a* = h“(W,a™), as part (2) is
verbatim. One may compute

la™ — h (W)l =la™ = R“(W, BS(W))| < la™ — h(W, a*)| + pla* — h (W)
and
la* — hS (W) = |h (W, a™) — h (W, hE.(W)| < pla™ — hE. (W),
Therefore
@ a )@ —h (WD) < (1= a™ = h (W, a")|

which along with Lemma 4.10 implies the desired estimates. O

5. Smoothness of the Center-Unstable Manifold

We will prove the smoothness of the local center-unstable/center-stable/center manifolds
roughly following the approach in [19].

Proposition 5.1. For any k > 0, there exists C > 0 such that if n € (C$5,1) and
0, 1, 8 satisfy (4.9), (4.16), (4.18), (4.20), (5.18), and (5.25), then h*, h°*, h¢ e C*
and Dh"(y,0,0,0,0), Dh“(y,0,0,0,0), and Dh(y, 0,0, 0, 0) are equal to 0.

Unlike in [19], however, A°“ in (4.6) depends on the unknowns and extra care has to
be taken. Without loss of generality, we will work on A°* e I';, s, which is defined on
X"(8), and the proof of 7¢* is verbatim. The smoothness of the center manifold, as the
intersection of the center-unstable and center-stable manifolds, follows subsequently.

5.1. Outline of the framework of the smoothness proof. We firstintroduce some notations
to simplify the presentations. Consider (4.11) with 7 = h“. For t < 0, let

W, W) = (y,a®,a® a*, V)(0), W=(y,a" a% a*, V)ec X)),
be the solution with initial value W. We have from Lemma 4.2 that
O°W(@, W) =W, W), Vr<0 if I°W = W. (5.1)
Moreover, assuming (4.9) and (4.16), Proposition 4.5 implies, for all < 0,

Lipjy, oW, ) < Cp~De™™, W, W) € X“(C8), YW € X“(8).  (5.2)
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As the fixed point of the transformation .7, h satisfies

0
e (W) :f e_[M*é_<\lJ(t, W), ke (W s, W)))dt. (5.3)

—00

Since (4.11) is autonomous, a time translation of (5.3) implies, for r <0,

t
R (W, W)) = /

—00

MG (Wir W), K (W W) )T, (54
By differentiating (5.3) formally, we obtain, for any W e xeu,
0
Dh“(WYW = / e M- (DafG*(\I/(t, W), b (W (t, W))) DR (W (2, W))
—00

+ Dy G (W(t, W), h (W, W))))D\l/(t, W) Wdt.

Here DW also depends on DAh* as it solves the following system of equation derived
by differentiating (4.11)

3DV = A%(y(t), GT)DW + % (W) DV + % (V) Dh“ DV, (5.5)

where W and DW are evaluated at (z, W), G at (W, h"), h* and D“h at W. In the
above &) € CK(X, L(X")) and 4 € C¥(X", L(RY, X)) are given by

GW)T™ = Dy (A" (v, GT (W, a")))la=peu(w) @ IW + D= G @)

= (0.0.0,0,7(c.y)(Dy-G" @), V)) + Dy G @) (56)
G W)W = Dy (A (y, GT (W, a)))lu-—peuqwy (W)W + Dy G (W)

= (0.0.0,0, (D A“ DTV + F (e, y) (Dw G (W), V)

+(DyF (e, D) (G, V)) + Dy G (W) (5.7)

where W = (y, a?, a®,a=, V), W = v, a®, a? @, \7) € X and G are evalu-
ated at (W, h(W)).
Motivated by the above formally derived equations, we define a linear transformation
J1 on
Yl — CO(XC”((S), L(XCM,Rd))
as, for any 57 € Y1, W € X (), and W e xeu,

0
(T )Y (W)W = f e M- (DWG‘(\IJ, he (W)
- (5.8)

+ Dy G~ (W, h (W) (W) ) Wi (0 Wt
where W is evaluated at (¢, W). Operator W{(r) € L(X") satisfies ¥1(0) = I and

W = A% (y(1), GT )W + % ()W) + % ()4 (9) Wy, (5.9)



J. Jin, Z. Lin, C. Zeng

where %Nl and ¢, are given in (5.6) and (5.7), G is evaluated at (\IJ, hC”(\IJ)), and 7
at W(z, W). Just as in Remark 4.1, the right side of (5.9) and the integrand in (5.8) are
well-defined. Since (4.11) is autonomous, when W is shifted to W (zy, W), the principle
fundamental solution to the associated (5.9) becomes W1 (¢ + 1) W (to)’1 . Therefore we
obtain

I
(A (¥ (to. W)) U1 (1) W = / "M Dy 6 (W (w)
—00 (5.10)

+ Dy G (W, A (9)) (W) ) Wi (0 War,

where W is still evaluated at (¢, W) and W defined for W.

If h“ € C!, then Dh* must be the fixed point of .7;. Therefore, our strategy to
prove h“ € C! is to show 1.) .7 is a well-defined contraction and 2.) the fixed point of
1 is indeed Dh* (Sect. 5.2). In the proof of the C¥ and higher order C¥ smoothness of
h¢" we shall need the following spaces Y, k > 1, of symmetric k-linear transformations
depending smoothly on the base points,

Y, = (CO(X””(é), L&k (XM), R"))), k> 0.

sym
We equip Y} with the norm
1721y, = Sup{II%(W)IILIb :We X,

HAWYWL, ., W)~ ~ (5.11)
AW - - k)|:W1,...,WkeX”‘\{0}}.
Willg ... I1Wkllo

172 (W)l i, = supf

We also use the || - ||;x norm of multilinear transformations in L(®ls‘ym (X, X
where || - [ x,, 0 is used in both the domain and the range.

Formally differentiate (5.3) twice, we see D>h<* is a fixed point of the following affine
transformation % on the space Y> of symmetric k-linear (with k = 2) transformations

depending continuously on the base points, where
Y, = (CO(X”‘ (8), L(®,,, (X), Rd))>.

Here for any 7 € Y, W € X“(8), and V~V1, Wz e X,

o 0
(AI)Y W) (Wi, Wa) = /

—00

e tM- ((Da_é—%(\y) + waé—)

(DY Wy, DUW2) + Dy-o- G~ (DR DU Wy, Dh" DY W) (5.12)
+2Dy -G~ (DY W\, Dh“ DY W,)
+(D,- G~ Dh" + Dy G~ )Wa (1) (W), W2)>dt,
where W and DV are evaluated at (¢, W), h“ and Dh" at W, G~ and DG~ at (W, ht),

and the symmetric bilinear transformation W, (t) € L (®%ym X, Xy satisfies o (0) =
0 and

_ cu AT 7 cu
0w, = (zi (v, GT) + 41 (W) + G (W) DI ) 513
+ G (WA (W) (DW, DY) +%>(W, DV, DI,
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Here % (W, DW, Dh") € L(®2, X, X*) is given by

sym
G (W, DW, D) (W1, Wa) = Dy (A% (y, GT) + 41 (¥)) (W) (D (W>))
+ Dy (% (W) (W1) DR DW (Wy).

In order to prove h* € C 2 we shall 1.) show that .7 is a well-defined affine
contraction and 2.) its fixed point is D*h".

The general C*¥ smoothness of h* (Sect. 5.3) follows much as #* € C? by 1.)
differentiating (5.3) repeatedly to obtain an affine operator on the space Y; of multilinear
transformations, and 2.) proving its fixed point is indeed D¥h <.

Remark 5.2. A possible alternative adopted approach to prove the C¥, k > 1, smoothness
of h" is to prove that iteration sequences of the transformation .7 defined in (4.11) and
(4.12) actually converge in C* topology. That proof usually required the C*! bound
on nonlinearity. Even though G is indeed smooth in our problem, this proof in Sect. 5
shows that the C* smoothness holds as long as G e C*.

5.2. C' smoothness of h“. We first prove the following estimate on equation (5.9)
where W = W(r, W), W € X“(§).

Lemma 5.3. There exists C > 0 such that, if n € (C$§, 1) and w, 5, Q satisfy (4.9)
and (4.16), then for any B € C° ([T, 0], L(X°", Rd)) with ”B”CPUQ < 1, any solution

W) € X of
WW = (A“(y(1), GT) + G (V) + G (W) B)W + £ (1),

satsfies

0
W%, .0 < Cn 2 Me ™ WOk, o+ Cn 2! f AN f (%, pdT.
t ,

Proof. From Lemma 2.5, (2.53), (4.13), and (4.14), we have, for any
W = (y7adl’adz,a+7 V), W — (y7ad1’ad2’a+, V) c XC“,
it holds that
IGI (W) lIg.9 < COL+ IV Ix)la |, (5.14)
19 (W)W lig.o < CUIVIx, + Q"+ Q%)W ]x, 0. (5.15)

Lemma 4.4, (5.2), and the above inequalities imply that, for any ¢ € [T, 0],

IWON%, o < Cn 2D (WO,
1,0 1,0

0 ~
+n7! / (@7 + QO IW O, 0 +1F (DI p)dT)-
t

The lemma follows from the Gronwall inequality. 0O

Recall the Lipschitz constant u in the definition of I';, s, which naturally should be
an upper bound of || DA ||L1Q.
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Lemma 5.4. There exists C > 0 such that, if n € (C8, 1) and u, 8, Q satisfy (4.9),
(4.16), (4.18), and (4.20), then 7 defines a mapping on the closed p-ball Y1(i) =
(A €Yy ||y, <p}with Lipschitz constant Cén~h(n—2np)~ L.

Proof. Let 7 € Yi(n). Lemma 5.3 implies that, for any W € X““(§), t < 0, the
operator W (¢) defined in (5.9) satisfies

1%L (D)l g(xeny < Cn~De™™. (5.16)

Therefore (2.26), definition (5.8) of 7], and (4.13) imply
0
17 )y, < Con~ / At =Con =T = (5.17)
—0o0

due to (4.18). To prove .71 () € Y1, it remains to show (W) is continuous in W. In
fact, the above estimate implies that 91(")(%” ) = 71 () uniformly, where

0
(z(")(%))(w)ﬁl = e_tM* (Dwé_(‘-p, hcu(qj))

—n

+ Dy G (W, A () (W) ) W (0 Wt

From the continuity of DG~ it is easy to verify that (Z(")(%))(W) is C%in W.
Therefore .77 () is also continuous and thus .77 (%) € Y1 ().

In the following we estimate the Lipschitz constant of .7]. Let JZ; € Y;(u) and
W (1) be defined in (5.9) for S, j = 1, 2, which satisty

(Wi — W) = (A%, G -9 — ?I(\U)«%ﬁ)(%,z - Vi)
+ G (W) (A5 — A7) (V)W) 2

and (W12 — W¥1,1)(0) = 0. Using Lemma 5.3 and (5.6), we obtain

gLl
(W12 — W DO llLgxeny < Cp 2D 728]112e7 |55 — Ay,

From the definition of .7], we have, for any W € X (3),

0
(Z1(4) — T1(H5)) (W) = / e M(Dy-G (I8 — Q)W 1(1)

—00

+(DwG™ + Dy- G~ IA) (W15 — W1 1)(1))dt,

where DG is evaluated at (\Il, hev (\II)), Jt; at W, and W at (t, W). Using (2.26), (4.14),
and the above estimates on Wy ; and Wy > — Wy 1, it follows that

0 1 1
I71(47) — A1)y, < CS/ = (=7 2801|2)di || 5 — Ay,

e9]

< Con~ M. =27 IB — Ay,

The proof of the lemma is complete. O
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Assume
Ccsn~hov—2m ! <1, (5.18)

then 7] is a contraction mapping on Y (u). Let 27" € Y1 (u) be the unique fixed point
of 77. In the rest of this subsection, we will prove

Lemma 5.5. There exists C > 0 such that if n € (C§, 1) and Q, , § satisfy (4.9),
(4.16), (4.18), (4.20), and (5.18), then h* € CY' (X, R?) and Dh“(W) = (W)
forany W € X,

Proof. Since 7 (W) is continuous in W, it suffices to show Dh" (W) W= Dt (Wy) W
at any fixed Wp € X“(8) and W € X““\{0}. Let W (¢) be defined as in (5.9) associated
to 7* and Wy and

Ry (6) = W(t, Wo + W) — Wz, Wo) — W1 ()W,
Ri(1) = h (W (2, Wo + W) — h (W (1, Wo)) — A (W (1, Wo)) W1 (1)W.

According to (5.2), (5.16), [|2“|ly, < u, and the Lipschitz property of h°“, Ry, and
R, satisfy the rough estimates

IRy ()llx,.0 + |RL(1)| < Cp~1e™™ | W||x, .0, (5.19)

for # < 0. Our goal is to show ||R¢(O)||X1,Q/||VA[7||X1,Q — Qas ||VT/||X1,Q — 0.
To analyze Rj and Ry, denote

Ws, 1) = (1 — )W, Wo) +sW(t, Wo + W),
a= (s, 1) = (1 — )R (W (1, Wo)) + sh" (¥ (1, Wo + W))
and fora € {T,d1,d2, %+, V, cu}, let
R*(t) = G*(W(1,0),a”(1,1) — [G* + DwG*(W(1,1) — W(0, 1))
+D,-G(a=(1,1) —a=(0,1)]
where G and DG in the brackets [...] are evaluated at
(W(0.1,a7(0,0) = (W&, Wo), h™(W(t, Wo)) ).
From (5.16), we have
IRz, +IR™ ()] < r(t)”WHXl,Q (5.20)
where r(t) > 0 satisfies
r@) < Cpe™ Il o mr) — 0 as 1Wllx,0 — 0 (5.21)

forany r; <1, <0.!
From (5.3) and .77 (") = 7", we have

0
Ry (0) :/ e ™M=(R™(t) + DwG™ Ry (t) + Dy G~ Ry(1))d.

I Here we only need some uniform continuity of DG, instead of G € C2 or C1+1,
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Moreover, using (5.3) and (5.10) instead, we obtain

0
Ry(t) = / e ™~ (R~ +DwG Ry +D,y~G Rp)|ewrdr, t <0, (5.22)

—00

where again the above DG~ are evaluated at (\If(t +1, Wo), h (W (1 +, WO))).
From (4.11), Ry (¢) satisfies Ry (0) = 0 and

1
Ry = A" (1) Ry + Ay ()Ry + R + DGRy + Dy- G Ry, + / ("
0
— AYO(WA, 1) = WO,0) + (7, — o)) (a~(1,1) —a (0, 1)ds

where DG is evaluated at (W(0,1),a=(0,1)), operators (1) € L(X“) and
A (t) € L(R4, X*) are given by

Daw,a (A% (v, GT (W, a_))W)|(W(s,z>,a—(s,z)) (W,a7) = M OW +, (1a

or more explicitly,
AW = A (y(s, 0, GT(W(s,1),a (s, t)))ﬁ/

+DW<AC“(y, GT(W,a_))>|( )(W)W(S,t)

W(s,t),a=(s,t)

A (0F = Dy (A% (v, GT (W, a—)))|( @)W, 1)

W(s.1).a=(s.1))

with W (s, t) and a™ (s, t) defined in the above and y(s, ¢t) being the y component of
W(s, t) (so the Dy also acts on the y component in A°*). Note DA acts only on the
V component of W. From Lemma 2.5, (5.2), (5.6), (5.7), (5.14), (5.15), and (5.20), it is
straightforward to obtain
18Ry — (A +91)Ry |z o = 18R — 75" Ry — DwG™ Rz o
< CSIRu| + IR Iz, o +r () IWllx, 0 < C8IRu| + (DI Wlx, 0

where A" and ¢, are evaluated based on W (¢, W) and r(¢) satisfies (5.21). Lemma 5.3
implies

0
IRy ()N}, o < 82720~ / ARy (P + i OIWN, o (523)
t

where A and ¥, are evaluated based on W (¢, Wyp) and r|(¢) satisfies
() < Cn M2 A+ 1the ™, lrllcoqn.mim = 0 as 1Wlx0 =0 (5.24)

forany t; < <0.
Finally, let

~ Ry, (¢ ~ Ry (t
R, = supern LBl 5 IRy Ollxio
<0 Wlx,.o 1<0 Wlx.0
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Inequality (5.19) implies 13;,, Ry < 00. We will prove ﬁh, Ry — Oas ||W||X1)Q — 0.
In fact, (5.23) and (5.22) along with (5.20) and Lemma 4.3 imply

~ ~ 1
Ry < Csn 1Ry + supry (1) 2

t<0

and

~ 0 ~ ~

Ry <C f 8T (Ry + Ry) + T r(r + 1)dT

—0o0
< CO.—2n) " (8(Ry + Ry) +supr()e®™).
<0

Therefore

Ry + Ry, < C(sup rl(t)%ezm + supr(r)em”).
<0 <0

From (5.21) and (5.24), we obtain that I?h, E\p — Qas || VT/HXI,Q — 0. Consequently
Dh(Wy) = 5 (W) and DV (¢, Wo) = W (¢, Wy). O

Finally we prove that, at any traveling wave, the center-unstable manifold is tangent
to the center-unstable subspace.

Lemma 5.6. There exists C > 0 such that if n € (C§, 1) and Q, u, § satisfy (4.9),
(4.16), (4.18), (4.20), and (5.18), then Dh“(y,0,0,0,0) = 0 atany y € R3.

Proof. In the proof of this lemma, we adopt the notation (y, 0) = (y, 0,0, 0,0) € X“.
Observe that (4.11) and the definition of G“ implies \IJ(t, (v, O)) = (y,0) forallt <O0.

For any J# € Y1, (4.12), the fact DCA;’(y, 0) = 0 and the above observation imply
N (H)(y, 0) = 0. The conclusion of the lemma follows immediately. O

5.3. Higher order smoothness of h*. In this subsection, we shall prove

Proposition 5.7. For any k > 1, there exists C > 0 such thatifn € (C3, 1) and Q, i, 8
satisfy (4.9), (4.16), (4.18), (4.20), (5.18), and

Con~ (. —kn) "' <1 (5.25)

then h* € C* and

I D* 1 Iy, +sup | DR W 2, Mot < oo.

t<0

Here D* W denotes the differentiation with respect to W only. In particular || DA | v, <
wand || D¥Re || y, may depend on § for k > 1. In the rest of this subsection, C as usual

denotes a generic upper bound independent of 1, W € X(§), and §, Q, u, while Cis
independent of r and W € X““(§), but may depend on §, Q, u.
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Formally differentiating (4.11) and (4.12) k times implies that D¥A should be a
fixed point of the following affine transformation .7; on the space Y. Here for k > 2,
any J € Yy, W € X“(§),and Wy, ..., W, € X,

(TeHO) W)W, ..., Wi)

O ~ ~
= / e M- (((DafG’DhC" + Dw G )W () + L (1)) (Wh, ..., Wi) (5.26)

—00

+D, G~ A W)(DYW,, ..., quvT/k))dr,

where D! is evaluated at (¢, W), D'h at W, D' G at (¥, h°*), the symmetric multilin-
ear mapping .% () € Yy is an algebraic combination involving D'W and D'h¢*, D¥G~,

and D'G=,0 <1 < k — 1, and the symmetric multilinear Wy (¢) € L(®smeC” Xy
satisfies \I/k (0) =0and
0w = (A (v(0), GT) + W) + G (W) DH (W) )W 52,

+ %Nl(\ll)%”(kll)(D\IJ, e, DU) + 9 ().

Here % (1) € C° (X cu(s), L(QF sym X aX C”)) is again an algebraic combination involv-

ing D'W and D'h“, DKG, and D'G*,0 < | < k — 1. These terms % and .% are the
lower order term in the higher order differentiation of compositions of mappings. The
explicit forms of 75, %, and % can be found in (5.8) and (5.27).

The proof of Proposition 5.7 is inductive in k. The case of k = 1 has been proved in
Sect. 5.2. Assume it holds for 1 <[ < k, we will prove it for k. As outlined in Sect. 5.1,
we shall prove by showing that D*" is given by the fixed point of the contraction ..
Based on the usual formula of higher order derivatives of compositions of mappings,
the induction assumptions imply

k
sup &M (| L (1)|ly, +supe
t<0 <0

NG (0] o, < 00 (5.28)

In the following proof we will skip some details which are similar to those in Sect. 5.2.
For k > 2, as 7 is an affine transformation on Yy, we first consider its homogeneous
part F € L(Yy)

(T AOY W)W, ..., W)
0
=/ ¢ ™M=((Dy- G~ DR + Dy G )W (1)(Wr, ..., W) (5.29)

+ Dy~ G~ A (W) (DWW, ..., DYW))d1
with the same convention of the notations and

T cu AT 7 cu T
0,0y = (fi (300, G) + 41 (W) + G (W) DI () ) Ty 530,
+ G (W (V)(DVY, ..., DW).

Lemma 5.8. Let k > 2. There exists C > 0 such that if n € (C§, 1) and Q, i, 8 satisfy
(4.9), (4.16), (4.18), (4.20), and (5.18), then

1Tl Ly < C 7% (L — k™.
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Proof. Lemma 5.3 and (5.6) imply, for r < 0,
1Bkl < Con~F DAl )y, (5.31)

Substituting it into (5.29) yields the lemma. O

Lemma 5.9. Let k > 2 and assume Proposition 5.7 holds for each l, 0 < | < k. There
exists C > 0 such that if n € (C8,1) and Q, i, § satisfy (4.9), (4.16), (4.18), (4.20),
(5.18), and (5.25), then 9} is a contraction on Y. Moreover, for any 5 € Yy and
W e XU(8), the Vi (t) defined in (5.27) satisfies

knt
sup MW ()|l k< oo.
<0, WeXeu(s) 0

Proof. Firstly, the || - ||y, bound of .7 (0) can be easily obtained using (5.28), which
along with Lemma 5.8 implies the || - ||y, bound of % (s¢) for any ¢ € Yi. The
continuity of 4 ()(W) with respect to W follows from the same argument as in the
proof of Lemma 5.4. Therefore 7, () € Y and thus (5.25) and Lemma 5.8 imply that
J is a contraction. O

Recall that the Lipschitz property of 4% was used in the proof of h“ € C!in Sect. 5.2,
Similarly, before we proceed to prove D¥A" is equal to the fixed point of .7} and thus
he" e C*, we first take a step back to prove Lip D*~'h* < oo using the above lemma.

Lemma 5.10. Let k > 2 and assume Proposition 5.7 holds for each [, 0 <1 < k — 1.
There exists C > 0 such that if n € (C§, 1) and Q, u, § satisfy (4.9), (4.16), (4.18),
(4.20), (5.18), and (5.25), then

Lip D*'h 4 sup ! Lip D* 1w (1, ) < o0.
1<0

Proof. From the induction assumption, D* 1A € Y;_; and thus F4_(D*"1h*) =
D¥1heu To prove the lemma, we shall show that, for some Cy_; which might depend
on §, Q, i, the closed subset

Yo = {H € Yi_1 : Lip H# < Cr_1}

of Yx—1 is invariant under .7;_, which implies Df—1peu ¢ )N’k_l and thus Lipschitz.
Since %1 and %, _1, appearing in (5.26) and (5.27), involve only D'W and D'k,
D*1G~,and D'G~,0 <1 < k — 2, the induction assumptions imply, for r < 0,

| Dw L1 Ol + 1Dwh1 (Dl o < Ce™ " (5.32)
Due to the slightly different forms, one has to proceed separately in the cases of k = 2
and k > 2, even though the estimates in proving these cases are essentially the same.

Case 1: k — 1 > 2. For 7 € )71(_1 and W; € X“(5), j = 0,1, let \Il,f_l (t) =
D1y (g, W), which are also the solutions to (5.27) where W is evaluated at (¢, W;).
From Lemma 5.3, (5.31), (5.32), the induction assumptions, and the Lipschitz bound on
€, it is straightforward to obtain the desired Lipschitz estimate on D _llll(t, 2

Iwl  —w, ”LSI < (C+Csp~I=®Ddicy e 1wy — Wollx,. 0.
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Therefore, using (4.14), (5.32), (4.16), and the induction assumptions, we can estimate
(5.26) as

| k1) (Wo) — %71(%)(W1)IILkQ—1

0
< / AR (s (1 4+ =118 Cymy + C)dt |Wy — Wollx, 0
—00

<=k~ (ConTHICr_y + C) W1 — Wollx, o

From (5.25), there exists Cr_1 > 0 such that J;_ () € 17k for any 7 € ?k.
Case 2: k — 1 = 1. In this case, one considers (5.8) and (5.9) instead. The estimates are
similar and we omit the details. O

Assume (5.25) and let 7, € Y}, be the fixed point of 7. We will prove

Lemma 5.11. There exists C > 0 such that if n € (C$8,1) and Q, u, § satisfy (4.9),
(4.16), (4.18), (4.20), (5.18), and (5.25), then D*h* = 4.

Proof. As in the proof of Lemma 5.5, for any fixed Wy € X““(§) and WeXx €\ {0}, let
W () € L(®F, X, X) be defined as in (5.27) associated to .74 and W, and

sym

Ry(t) = D*""W(t, Wo + W) — DX 1W(z, Wy) — Wi (t)(W, ...)

Ry (1) = (Dk_lh“‘(\ll(t, Wo + W)) — D' (w, Wo)))(D\I/(~), ... DW())
— A4V (t, W) (DY (W), DU (), ..., DU(")),

where all above DV are evaluated at (r, Wy). Note in the above \Ilk(t)(VT/, ...) €
L(®k, X, X) and

sym

H4 (W (1, Wo)) (DW (W), DW(-), ..., D¥()) € L(®, 1 x“ RY),

sym
consistent with the other terms. According to (5.2) and Lemma 5.10, Ry, and R, satisfy
the rough estimates

IRw )]l + R (D] o < Ce™ | Wlix,. 0 (5.33)

for t < 0. Our goal is to show ||Rq,,h(O)||X1,Q/||VA[7||Xl,Q — 0 as ||VT/||X1,Q — 0.
Using Z5_1(D*1h*) = D¥1h* Lemma 5.10, and the induction assumptions,
much as the derivation of (5.22) and (5.23), we obtain

0
Riu() =/ e"™M-((DwG™ + D,-G~Dh)Ry

—00

+D,-G™ Ry + Ry )|rcdt (5.34)
0 Ry = (A (y(1), GT) + (W) + G (W) DH" () Ry + T (W) R + Ro(0),
where DG~ and DG" are evaluated at (Y, h"), h" at W, and W at (¢, Wy), followed
by the shift in the integral of Rj,. Here the norms r;(¢) = ||R;(#)[|, -1, j = 1,2, of the
0
remainder terms R (¢) and R (¢) satisfy

& —knt | 17 . lr1+r2llcoqy, .
F0) + @) < Ce ™ Wik, 0, lim  —— e

~ = =0 (5.39)
IWix;.0—0  [IWlx,0



Invariant Manifold
for any #; <t < 0.Lemma 5.3 and (5.2) imply

0
IRy ()l < €820 f SNTNRNOIpdT 4730 (5.36)
t

where

Irslleoqun.np _

r3(t) < Ce | W%, o (5.37)

~ m Ind 2
Wi, 0—0 [Wilx, o
Finally, let

. ol IRy )l i
Ry = supeterim IReOL 5 et Lo

10 Wllx,.0 10 Wllx,.0

Inequality (5.33) implies Rj,, Ry < oc. Inequalities (5.36) and (5.34) along with (5.35),
(5.37), and Lemma 4.3 imply

Ry < Con 1Ry + supr3 (1) 16+
<0
and
Ry <CO— (k+ 1) (8(Ry + Ry) + sup ry (1)e®+ D7),
<0
Therefore

>3 >3 1
Ry + Ry < C( supr3 (t)zek+Dut 4 sup rl(r)e(k“)"f).
t<0 <0

From (5.35) and (5.37), we obtain that Rj,, Ry — 0 as |W||x,.0 — 0. 0O

In the last step of the above proof, we may define Ry, and Ry by using a weight e’
with any a > k and thus we do not have to assume A > (k + 1)7n additionally.

6. A Non-degeneracy Case

In this section, we consider a traveling wave U, = u. +iv,. satisfying the following non-
degeneracy conditions. Recall L. y and Ly defined in (2.11), its Morse index n™ (L) in
(2.19), and the dimensions d1, d2, d in Lemma 2.3. Assume

(H1) ker Lo = span{oy,Uc | j = 1,2,3};
(H2) d = dim X*S =n~(L.).

Remark 6.1. Assumption (H1) is a linearized elliptic problem. Usually (H2) is not easy
to verify directly. A special situation is when n™ (L) = 1, which is often the case when
U, is derived from the Mountain Pass or a constrained minimization process with one
constraint. In this case, according to Theorem 2.3 and Proposition 2.2 in [37], (H2) is
satisfied if (L.V, V) > 0 for all V € ker(JL.)*\ ker(JL.). More specifically, it was
proved in [36] that, if ¢ € R3 and Uy (x) is a family of traveling waves depending on
a smoothly, then %P(Uaco) < 0 along with n™(L.) = 1 implies (H2).
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Under these hypotheses, among the subspaces in the decomposition given in Lemma
2.3, statement (2) there implies X¢ dl = X¢. d2 = {0} and thus, in the same notations, we
have the following decomposmon

Lemma 6.2. Assume (H), (H1-2), and (2.6), then for any y € R>, it holds that

X=X, ®&X, &X &X;
(2) JL,y and Ly take theforms

0 0 0 0
0 L°»y) 0 0
Ley<—=10 0 0 L]
0 0 LG 0
0 Are(y) 0 0
0 A.(y) O 0
Tley<=10 0 A,») 0
0 0 0 A_()

Here the above blocks satisfy the same properties as in Lemma 2.3.

In this non-degenerate case, we shall carefully consider the energy-momentum func-
tional E+¢c- P 1nvar1ant under (GP) and (2.7), where E and P are defined in (1.1) and
(2.5). Let E (y,a*,a=, V¢) be defined as

E.=(E+c-P)o®ec C®R* @ 2°.R),

where the coordinate mapping @ is defined in (2.36), whose domain can also be extended
to R3*24 x X . The smoothness of E follows from Lemmas 2.2 and 2.3 of [36] along
with Lemma 2.3. Using (2.10) and (2 11) itis straightforward to obtain the leading order
expansion of E at (v,0,0,0) = (Uc( + y))

E(y,a’“,a Ve)— (y,a a” Ve)—Ec(y,O, 0, 0)

) 6.1)
= (Le(V, V) +2(Lema™,a") + O((la*| + ™|+ [V<]x,)°)

when |a*|, |a~|, and || V¢||x, are small. Here L,(y) is given in Lemma 2.3, uniformly
positive, and translation invariant, i.e.

(LeO)VE, V) = (LeMVC+y), VEC+ ).
The d x d matrix L,_ is defined by
(Ly—a™,a") = (Le—(V)a & (+),a"E (- +Y)),

where £ = (EC_J, ey E;d) and L,_(y) are given in Lemma 2.3. Operators Z+_ are
independent of y since L. y and thus L,_(y) are translation invariant.

Let w/":¢5¢, h¢5 h¢ = (hS, h) be given in Sect. 4 , whose smoothness are
established in Sect. 5, and the parameters Q, u, §, n satisfy (4.9), (4.16), (4.18), (4.20),
and (5.25). Forany (y,a* = h*(y,a™, V¢),a~, V¢) € #'*,since Dh*(y,0,0,0) =
0, we have

|E(y.h(y.a™. V), a™. V) = (L) V. V)| < Cola™ | + IV ]x,)* (6.2)

for some Cp > 0. Based on the expansion (6.1), we can prove the exponential stability
of #¢ inside #'“*.
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Lemma 6.3. There exists C > 1 such that if n € (C§, 1) and Q, u, § satisfy (4.9),
(4.16), (4.18), (4.20), and (5.25), then for any initial value

W=.a" =r"G.a,V).a ,V)ew

with |a~| + |V¢|x, < C~28, its corresponding solution W(t) = (y,a*,a™, Vé)(t)
satisfies, for all t > 0,

la” I+ IV Ollx, < 8/15. a*(t) =h"((y.a™, V)(®),
la™ (1) =K ((r, VO®)] = Ce™* 72 a™(0) — hE((r, VYOI (6.3)
Proof. The assumptions on W, the conservation of E,and (6.2) imply
[E(W®) = [E(W)| < 5%
Let
T =sup{t >0:|a” @)+ |V )lx, <8/15, Vi’ €[0,1)} > 0.
On [0, T'], Proposition 4.16 implies (6.3) holds, which along with D4 (y, 0) = 0 implies
la= ()] < CIVEDI%, +C e @205, 10, T1.
Applying (6.2) again, we obtain
IVe@l%, < C(E(W®) +la=0)1).
The above inequalities imply
la= O+ IVODII%, <C7'8% <8/15, t€[0,T].

Therefore T = oco. From Propositions 4.16 and 4.19 and Lemma 4.20, the rest of the
lemma follows. O

Following exactly the same arguments, we also obtain the exponential stability of
W€ backward in time inside # .

Lemma 6.4. There exits C > 1 suchthatifn € (Cé, 1) and Q, 1, 8 satisfy (4.9), (4.16),
(4.18), (4.20), and (5.25), then for any initial value

W= (3,a*%a" =h"Qy,a*ve),ve) e
with |a*| + ||V¢|x, < C26, its corresponding solution W(t) = (y,a*,a”, Vé)(t)
satisfies, for all t <0,
la* @)+ IVE@Dx, < 8/15, a~ () = h™((y,a*, V)()),
ja* (1) = hS (v, VOD)| = Ce*72Ma*(0) = (0, VOO)I.  (64)
Consequently, we also obtain the stability of .Z in #.

Proposition 6.5. There exist C > 1 and § > 0 such that, for any initial value W =
()7, (a*t,a”) =he(@y, Vo), Ve) e W with||V|x, < C ™28, its corresponding solution
W) = (y,a*,a, V(1) satisfies, forall t € R,

IVEmlx, < 8/15, (@*,a™)@) = h((y, VD).
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Combine the above results and Corollary 4.13, Propositions 4.16 and 4.19, we obtain
the following characterization of # 4, #/'°5, and #'“.

Proposition 6.6. There exist C > 1 and § > 0 such that the following hold. Let U (t) =
CID(W(t)), where W(t) = (y,a™,a™, V¢)(t), is a solutions to (2.7) with initial value

W = (y’ C_l+,6_l_, ‘_/e) e BZd(C—Za) @ %e(c—z(s),
then

(1) W € #“ and thus W(t) € #* forallt < 0, if and only if W(t) € B*(8/15) @
Z€(8/15) forallt < 0.

Q) W € # and thus W(t) € #* forall t > 0, if and only if W(t) € B> (5/15) ®
Z¢(8/15) forallt > 0.

B) W € #¢ and thus W(t) € #€ forallt € R, if and only if W(t) € B*(8/15) @
2 €(8/15) forallt € R.

Remark 6.7. Note that when we construct the local invariant manifolds, we cut off the

nonlinearities to focus on the local dynamics. Different choices of the cut-off could yield

different local invariant manifolds. Therefore local center-stable, center-unstable, and

center manifolds are usually not unique. However, under the non-degeneracy conditions

(H1-2), we obtain the above characterization of the local invariant manifolds which are
independent of the cut-off. Therefore the local manifolds are unique in this case.

Appendix A

In the Appendix, we give some estimates of the nonlinear term G in (2.17). One may
compute in (2.16)

Gale,yow) = = (U = Vel + 3IP =20 +3) - (Keyw) el + )
— (U2 = U+ 0 P) wr = x (D) e +9)w2) (A
1
— 3 (A= 1P D)) + ax(D)wh).

where U is given in (2.15) as

1 T
U=y we(+y)+w) =Uc(-+y)+Kycw— <§X(D)(wg),0> - (A2

Substituting this into G| we obtain
G1=Gi(c,y, 0y, w) = Guile, y, w) + Grale, y, 0y, w)

where

Gui = (IR = Vel + 0P = 20 +3) - (Keyw)) vel- + )
(A.3)

1

+ (U7 = 1Ue+ )P ) wa = Sx (D) w2V - o)
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and by substituting (2.16) into G

Gi2 = Gra(e, v, 5, w) = x(D) (w2 = (LeyKeyw)y = 5+ Vo +)

(A.4)
+ Ga(c, y, w))).

Here (L y K. yw); denotes the first component of L. y K. yw. For fixedcand y, Gisa
polynomial of w and y. More precisely, it is the sum of some multi-linear transformations
on w and y of degrees between 2 and 6.
Lemma A.1. Fix c. It holds that

Ge, ) e COM3 xR x X1, W)+ CP[R3 x X;, L N Wh$),
and

G(c,y,0)=0, Du,G(c,y,0)=0.

In particular, the only term G, containing ¥ belongs to C*®(R3 x R3 x X, Wl'%).
More refined estimates on G can be found in (A.10), (A.11), (A.12), (A.13), (A.14), and
(A.15), where the generic constants C in those inequalities are independent of y.
Proof. Due to the polynomial form of G in w € X; and § € R3, we only need to
estimate the boundedness of each monomial, i.e. multi-linear transformation. To handle
the terms with x (D), we will repeatedly use

VI x (D) fllLrnre < Cs pll fllr, Yk =0, 1 < p < oo. (A.5)

We start with the consideration on |U|> — |Uc(- + y)|*. Let

p = 50 (D) (w3 + 2wswe(c+ 1)) = Do = x(D) (w2Dhwnct- + )
for any £k > 1 and
Vp = x (D) (w2Vwy + Vwawae (- +y) + waVwae (- +y)) .
Using wy, = v, € Hl, (A.5) implies, for any s +k > 1

1V°Dipll 5 = Coallwallgn(lwzll i + D) (A.6)

where C; i is independent of y. Here we used the property D¥wy. = DFy. € L2NL™®

for all k > 1 due to equation (1.4) and also the embedding Wl’%(R3) — L3(R%) on
p. The second term in p actually has a better spatial decay estimate by using Hardy’s
inequality and (2.6). Namely,

=y

w2
lwawae (- + y)llz2 = lwa (- = y)vel2 = Cl ] 22 = Cllwall g1
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On some occasions, we also need to consider (I — X(D))(ﬁ f2), for f12 € H'. Since
V(fif) € L%, we have

||(I_X(D))(f1f2)||L = |g|( )IDI(flfz)llL%

=CIVUADI 3 = Cllflligill 2l

where we used that the inverse Fourier transform of 1 é‘(s) isin L!. It implies

3 < CllAllg 2l (A7)

wh2

I(7 = x (D) (f1 )
One may compute that
U = Ul = wi +2uc(- + y)(wi — p) + p* — 2wip +2ve(- + y)wa + w3
= wi +2wi +2(uc(-+y) — 1) (w1 — p) + p* — 2wip
+2(I = X (D)) (ve(- + y)wa +w3).

By using the above inequalities and (2.6), we obtain, through straightforward calcula-
tions, fork > 1,

U - |UJ? =2 DF(U? —|U. .
U= — U] wlllwl,%+ll MU% Bl Wi g AS)

< Clwlx, (Iwlk, + 1.
Similarly,
[UI? = |Uel* = 2Uc(- +y) - (Ke,yw)
= wi+ (1= x(D))w3) + (1 = uc(- + ) x (D)(w3) + p* — 2wy p
and along with the above inequalities, it implies for k > 1

k 2 2
IDY(UP = Ul = 20eC+3) - (Keyw)ll s ro)

(
U = Uel® = 2Uc(- +3) - (Keyw)ll 1 3 < Cllwlg, (lwlk, + 1)

Substituting (A.8) and (A.9) into (A.1) and using (A.5), we obtain through straightfor-
ward calculations

IG2ll 3, +1IVGall 3 o < Cllwlk, (lwl, + 1. (A.10)

LS
Here we have to estimate VG in L% + Lg since
IVAX(DYwI 3 = Cllwal,
does not seem to have better decay and
(U P = UelP) V]l o < Clwllk, (wilk, + 1.
does not seem to have better regularity. Similarly, for any £ > 1,

IDYGall 16 < Cllwli, (lwl, + . (A.11)

13
nw=2
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The estimates for G are

2 3
IGul 3+ VGl 3 = Clwlk, (wly, + D (A12)

Again, we have to estimate VG in this norm as
2
IVX(D)@2Vws - )]l 3 = Cllwl,

does not seem to have better decay and

1V (0P = 10C+»P)wa) I, o = Clul, (wliy, + 1)
does not seem to have better regularity. Differentiating in y implies that

s < Clwlk, (wlk, + . k=1 (A.13)

nw'2

k
IDSG s
Next we consider G1>. Recall from (2.11), for any f = (f1, f2) € X1,
(Ley 1= Q= A) fi+ Bz — D) +02) ¢+ fi — ¢ V+20ucve) (- +y) fa.
Using Hardy’s inequality, and the fact K , being an isomorphism, we obtain
”(Lc,yKC,yw)l +Awi| 2 < Cllwllx,.
From wyAw; =V - (waVw)) — Vwy - Vwy and (A.5), we have, for any s > 0,
IIVEXD)@2awn)l| 3 = Cllwallgilwill-
Therefore, (A.4), (A.10), and the above inequalities yield
IVI*G2ll L = Cllwall g1 (131 + llwill g1 + ||u)I|§(1(|IwII§(1 +1)). (A.14)
Differentiating in y, we have, for k > 1,
Dl;;(Lc,ch,yw)l = 2Dk(ucvc)(' +y)wz

+DF(3u2 — 1)+ 02) (- + y)wi — 2 — A)x(D)((D*ve) (- + y)ws)

= Y DA = D+ +Nx(D)((DRu)( + y)wa).
k1+k2=k

By using (A.5) and (A.11), we obtain, for any k > 1,
NVEDYGI 3 < Clwall g (1514 will g+ Twl, (IR, + D). (A.15)

Finally, we note that G{, G2, and G, are polynomials of w and y consisting of
monomials of degrees between 2 and 6 with coefficients depending on U, (- +y). There-

. 3
fore, one may regroup those monomials so that some of them belong to W' 2 while

others to WS . Moreover it is easy to obtain the estimates on Dl DkG and the proof is
complete. O
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