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Abstract

First, we consider Kolmogorov flow (a shear flow with a sinusoidal velocity
profile) for 2D Navier—Stokes equation on a torus. Such flows, also called bar states,
have been numerically observed as one type of metastable state in the study of 2D
turbulence. For both rectangular and square tori, we prove that the non-shear part of
perturbations near Kolmogorov flow decays in a time scale much shorter than the
viscous time scale. The results are obtained for both the linearized NS equations
with any initial vorticity in L2, and the nonlinear NS equation with initial L.
norm of vorticity of the size of viscosity. In the proof, we use the Hamiltonian
structure of the linearized Euler equation and the RAGE theorem to control the low
frequency part of the perturbation. Second, we consider two classes of shear flows
for which a sharp stability criterion is known. We show the inviscid damping in a
time average sense for non-shear perturbations with initial vorticity in L. For the
unstable case, the inviscid damping is proved on the center space. Our proof again
uses the Hamiltonian structure of the linearized Euler equation and an instability
index theory recently developed by Lin and Zeng for Hamiltonian PDE:s.

1. Introduction

Consider a 2D Navier—Stokes (NS) equation
wWU+U-vyU—vAU=—-vyP (1.1)

on a torus

2
Ty =90<y<27,0<x < —}, o>0,
o

with the incompressible condition V- U = 0, where U = (u, v) is the fluid velocity
and v > 0 is the viscosity. More precisely, we impose the periodic boundary
conditions
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U@O,y,t)=U Qn/a,y,t), U(x,0,t) =U (x,2m,1).
The vorticity form of NS equation (1.1) is
o Huwy +voy —vAw =0, o=uvy—u,. (1.2)

It is convenient to introduce the stream function ¥ such that « = — A ¢ and
U=Vy = (¥, —vn)

In the numerical and experimental study of 2D turbulence, it was often observed
[6,18,23] that the solutions to the two-dimensional Navier—Stokes (NS) equation
with small viscosity rapidly approach certain long-lived coherent structures. Evi-
dence also suggested that these quasi-stationary, or metastable, solutions are closely
related to stationary solutions of the inviscid Euler equations

w; Huwy vy =0, ©=uvy —uy.

Since there is no forcing in (1.2), when t — oo, [|w (¢)||;2 — 0 in the viscous
time scale O (%), where w () is the solution of (1.2) with initial data w (0) €
L%. We are interested in the dynamics of (1.2), particularly the appearance and
persistence of coherent states in the intermediate time scale (0, T), where 1 <
T € O (%) The first step is to prove that nearby solutions converge rapidly to
these coherent states in a time scale T < O (%) Such a metastability problem
is also called enhanced damping in the literature. Among the candidates of Euler
steady solutions to explain the coherent structures, some authors (e.g. [6,18,23])
suggested that certain maximal entrophy solutions of the inviscid Euler equation
are the most probable quasi-stationary states that one would observe. The simplest
of such maximal entrophy solutions is the Kolmogorov flow (also called bar states
in [23]), that is, up = (sin y, 0) or (cos y, 0). The solution to (NS) with initial data
ugis u” (t,y) = e~V (sin y, 0). The linearized (NS) equation near u" is

dw = vAw—e " [sin o, (1 + A")] w=L0"o, (1.3)

where v is the viscosity and w is the vorticity perturbation. In [3], Beck and Wayne
studied the following approximation of the linearized problem:

dw=vAw—e Vsinydw =L () w, (1.4)

by dropping the nonlocal term e~"" sin yd, A~'w in (1.3). Define the following
weighed H'! space for non-shear vorticity functions:

Z= Zw = (y) e e L?, (1.5)

k20
ol = 3 [l + /- oy 3+ —— [hau} | < o0
z - 2 |k| y 2 3 2 ’

k£0 Vv k|2
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where C¥w, = —ike"! (cos y) wg. It was proved in [3] that for any 7 > 0 and
T e [0, %] there exist constants K, M such that if v is small enough, then the
solution to (1.4) with the initial data w (0) € Z satisfies the estimate

lo @117 £ Ke™ Y o O3, 1 €[0,T1.
The proof of this used Villani’s hypocoercivity method ([22]). For the full linearized

NS equation, numerical evidence in [3] suggested the same decay rate O eV,

In this paper, we study the full linearized equation (1.3) and the nonlinear
equation (1.1) on a torus

2
Ta={0<y<2n,0<x<7},
with o = 1, which is the sharp stability condition of Kolmogorov flows for the 2D
Euler equation (see Lemma 4.1 of [14]). To simplify notation, we use w" (¢) for
both solutions of the linearized Navier—Stokes equation (1.3) and the perturbation
solutions of the nonlinear Navier—Stokes equation (3.1) near Kolmogorov flows.
Our first result is about the enhanced damping for the linearized NS equation.

Theorem 1.1. Consider the linearized NS equation (1.3) on Ty, witha 2 1. Define
the non-shear vorticity space

X={oel’lo= Y wo()e*}. (1.6)
0#£keZ

(1) Then (Rectangular torus) Consider « > 1. For any T > 0 and § > 0,
if v is small enough, then the solution " (t) to (1.3) with non-shear initial data
"’ (0) € X satisfies ||a)" (%) ||L2 AR OITER

(ii) (Square torus) Consider « = 1. Let P, be the orthogonal projection from
the non-shear space

X={wel’lo= Za)k (y) 'k
k#0

to the ‘anomalous’ space W, spanned by {cos x, sinx}. For any t > 0 and § > 0,
if v is small enough, then the solution w" (t) to (1.3) with initial data »" (0) € X
satisfies

H (I— Py o’ (%) HLZ <8 =Py O], (1.7)

Since t can be arbitrarily small, the above result implies a much enhanced
decay in the time scale O (%) compared with the viscous time scale O (%) For
shear initial data w (0) = wq () , the linearized NS equation (1.3) is reduced to the
heat equation d;w = vdyyw and there is no enhanced decay. On the square torus,
there is a two-dimensional additional kernel space W, of the operator 1 + A~!
spanned by {cos x, sinx}, which corresponds to exact solutions e~" {cos x, sin x}
of the Navier—Stokes equations. These so called ‘anomalous modes’ (see [3]) need
to be removed for the enhanced damping to hold true.

For the nonlinear Navier—Stokes equation, we have
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Theorem 1.2. Consider the nonlinear NS equation (1.1) on Ty with o 2 1. Denote
Pxc to be the projection of L* (Ty) to the subspace of Kolmogorov flows Wi =
span {cos y, sin y}. Then,

(i) (Rectangular torus) Suppose a > 1. There exist d > 0, such that for any
T > 0and§ > 0, if v is small enough, then for any solution " (t) to (1.1) with
initial data "’ (0) € L? satisfying

|2 = Py’ O] 2 < dv. (18)
we have

T
P ()]
[P 5

Here, P is the projection of L? to the non-shear space X, that is,

L < 8 Proe” O] -

(ii) (Square torus) Suppose a« = 1. There exist d > 0, such that: for any
M >0, T > 0andd > 0, ifvis small enough, then for any solution @’ (t) to (1.1)
with initial data " (0) € L? satisfying ||(I — Px) »” O)|l;2 £ dv, either

o33, [Pae” @] 12 2 M [ Proe” O] 2 (19)
or
inf [(1 = Pa) Prow” (0] 12 < 8 Prow” ()] 2 (1.10)
0SS

must hold true.

In the above theorem, the metastability of Kolmogorov flow is studied for
perturbations of the size v. On the rectangular torus, it is shown that the non-shear
part of the perturbation is reduced to a factor § of the initial size before the time
scale T, which is much smaller than the viscous time scale % Moreover, by taking
the constant d to be smaller, we can ensure that ||(I — Px) " ()|I;2 < dv for all
t > 0, thus we can repeatedly use Theorem 1.2 i) to get the rapid decay of the
non-shear part before the viscous time scale.

The situation for the square torus is more subtle due to the existence of ‘anoma-
lous modes’. By taking M to be large and , 6 to be small, Theorem 1.2 i) implies
that if the ‘anomalous modes’ do not get too amplified before the time scale 7,
then the non-shear part of the perturbation without ‘anomalous modes’ is rapidly
reduced. If the ‘anomalous modes’ are indeed much amplified (i.e. 1.9) before
the time scale 7, it suggests that the energy of the perturbation is transferred to
‘anomalous modes’. Intuitively, this might be considered as a hint that the non-
shear part without ‘anomalous modes’ should be reduced. A quantitative estimate
of the enhanced damping for such case is under investigation.
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Next, we discuss some key ideas in the proof of Theorems 1.1 and 1.2. Our
work is partly motivated by the work of Constantin et al. [9] for the linear reaction
diffusion equation

d¢ +vo- Vo —vAp =0,

with an incompressible flow vg (x). In [9], the enhanced damping in the sense
of Theorem 1.1 is proved under the assumption that the operator vg - V has no
non-constant eigenfunction in H'. Their proof is to consider the high and low
frequency parts of the solution ¢ (¢) separately. For the high frequency part (i.e.
IVoll;2 = N |l¢|l;2 for N large), the enhanced damping is ensured by the energy
dissipation law

3 Igll7> = —v IVl - (L11)

The lower frequency part is shown to converge to zero in the time average sense, by
using the following RAGE Theorem for the unitary group ¢!’* with the self-adjoint
generator L = ivg - V:

Theorem (RAGE) [7] Let L be a self-adjoint operator in a Hilbert space H,
P, is the projection to the continuous spectrum space of L and B is any compact
operator, then

1 T ) 2
—/ HBe”LPcl//H dt - 0, whenT — oo.
T 0 H

In the proof of enhanced damping, B is taken to be the projection to the low
frequency modes. Then the RAGE Theorem implies that the low frequency modes
decay in the time average sense.

To apply these ideas to prove the enhanced damping for the linearized Navier—
Stokes equation (1.3), there are a few difficulties to be overcome. First, for the
Eq. (1.3), there is no obvious dissipation law as (1.11). We derive the identity

d
5/ (|w”|2—|vw“|2>dxdy=—2v/ (v 0'P = o' Pdrdy,  (112)
Te Ty

where ¥ = (—A)_l " is the stream function. When « > 1, the quadratic forms
on both sides of (1.12) are positive definite for non-shear vorticity (i.e. ®” € X).
When o = 1, the positivity is still true in the space X1 = (I — P,) X¢. This
provides a substitute of (1.11).

Second, even if we ignore the factor e~"! in (1.3), the linearized Euler operator
A = —sinyd, (1 + A‘l) is not anti-self-adjoint and the RAGE theorem cannot
be applied directly to ¢’4. An important observation is that A can be written in the
Hamiltonian form A = J L, where

J=—sinydy, L=1+A"" (1.13)

are anti-selfadjoint and selfadjoint operators in L? respectively. When o > 1, since
L =14+ A~! > 0 on the non-shear space X, we can define a new inner product by
[-,-]1 = (L-, ) on X, which is equivalent to the L? inner product. We observe that
the operator A is anti-selfadjoint in the space (X, [-, -]). Moreover, on the space X,
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the operator A can be shown to have no embedded eigenvalues in the continuous
spectra. Thus RAGE theorem can be applied to the semigroup ¢4 to show the decay
of the low frequency part in the time average sense. The linear enhanced damping
for (1.3) then follows similarly as in [9]. For the square torus (¢ = 1), there are
additional anomalous modes {cos x, sin x} lying in ker (1 + A’l). For any initial
data w” (0) € X, we note that v} = (I — P,) " satisfies the equation

Bt = vAw! — e [(1 — P,)sin yd, (1 + A‘1>] o’
Let
A = — (I — Py)sinyd, (1 + A”) —(I—P)JL,

then it can be checked that A is anti-selfadjoint on the space X1 = (I — P,) X in
the inner product [-, -] = (L-, -), where the positivity of L|x, is used. Thus applying
the RAGE theorem to the semigroup ¢’4! on X, we can again show that the low
frequency part of (I — P,) ¢'/Lw" (0) decays in the time average sense.

For the nonlinear NS equation (1.2), the evolution of the shear and non-shear
parts are strongly coupled. For an initial perturbation " (0) of size O (v) in L2, the
interaction terms are controllable and the nonlinear enhanced damping (metasta-
bility) still holds true. On the square torus, the analysis for the nonlinear problem
is more involved due to the anomalous modes. We decompose the perturbation into
four parts in: W, = span {cos x, sinx} and its complementary subspace W;" in
the non-shear space, Wic = span {cos y, sin y} and its complementary subspace
W,JC- in the shear space. By carefully analyzing the interaction of these four parts,
we can show that the interaction terms in the nonlinear term U"Y - yyw" are under
control when [@” (0)[|;2 = O (v). As a result, we can still split the non-shear
vorticity into the low and high frequency parts and treat them separately as we do
for the linearized equation. Then the nonlinear metastability can be proved. On the
square torus, numerical evidences [5,6] suggested that the dipole states of the form
wp = COs X +cos y or sin x + sin y appear more often in the long time dynamics of
2D Turbulence. The dipole flows are nonparallel and the enhanced damping prob-
lem is much more subtle to study. At the end of Section 3, we discuss some partial
results and difficulties with the dipole states. In particular, in Proposition 3.1, we
give a RAGE type theorem for the linearized Euler equation at dipoles.

In our proof of linear and nonlinear enhanced damping for Navier—Stokes equa-
tion, the Hamiltonian structures of the linearized Euler operator play an important
role both in the derivation of the dissipation law (1.12) and in the control of the
low frequency part. As a further application of these Hamiltonian structures, we
consider the linear inviscid damping of more general shear flows (U (y), 0). We
study two classes of shear flows. One class is the flows without inflection points,
which are spectrally stable by the classical Rayleigh criterion. The other class
(called class K1) is the flows U (y) with one inflection value U, and —U[i—;/y > 0.

These two classes cover all the shear flows whose nonlinear stability in L? vorticity
might be studied by the energy-Casimir method (see Remark 4.3). The flows in
the first class are nonlinearly stable for any x period 27/« and are minimizers of
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the energy-Casimir functional. The flows in the second class are stable only when
o > amax for some critical wave number omax, and are maximizers of the energy-
Casimir functional. These shear flows often appear as long lived coherent states in
2D turbulence; for example, the Kolmogorov flows are in class Kt.

In Theorem 4.1, we give a RAGE theorem on the non-shear subspace X of
L? for stable shear flows in the first class and in class KT with > Omax- As a
consequence, the decay of velocity (in the time average sense) is proved for any
non-shear initial data with L? vorticity. Another consequence is the decay of low
frequency modes in the L2 norm of vorticity, which gives a justification of the
dual cascade of 2D turbulence in a weak sense (see Remark 4.2). For the critical
case @ = Omax, the linearized Euler operator JL (defined in (1.13)) has zero as
an embedded eigenvalue due to the nontrivial ker L. This case is very similar to
the case of bar states on the square torus and can be treated similarly. The linear
damping can be obtained by projecting out ker L.

The flows in class T are unstable when o < max [10]. Moreover, by using an
instability index theory recently developed in [15] for Hamiltonian PDEs, we give
an exact counting formula (Proposition 4.1) for the dimension of unstable modes of
the linearized Euler equation. A corollary of this formula is that L|gc = 0, where
E* is the center space corresponding to the spectra of the linearized Euler operator
J L (defined in (1.13)) on the imaginary axis. Then the RAGE theorem, and as a
consequence the damping of velocity, are obtained for the linearized Euler equation
on E°.

The inviscid damping was first known for the Couette flow in the 1907 work
of Orr [19]. In recent years, the inviscid damping phenomena attracted new atten-
tion. In [13], it was showed that if we consider initial (vorticity) perturbation in
the Sobolev space H* (s < %) then the nonlinear damping is not true due to the
existence of nonparallel steady flows of the form of Kelvin’s cats eye near Couette.
In [4], nonlinear inviscid damping was proved for perturbations near Couette in the
Gevrey class (i.e. almost analytic).

The linear inviscid damping for more general shear flows was also recently stud-
ied by some authors. Monotone shears were considered in [27] for the case near Cou-
ette, and in [24] for more general cases. The optimal decay rates O (1/¢t), O (1 / tz)
for the horizontal and vertical velocities were obtained for initial vorticity in H!
and H? respectively. In [25], general shear flows satisfying some nondegeneracy
conditions were considered, and certain space-time estimates for velocities of the
linearized Euler equation were obtained for initial vorticity in H'. The optimal
decay rates were also obtained in [25] for a special class of symmetric shear flows.
The non-existence of embedded eigenvalues was assumed in above works.

We comment on some differences of our results on inviscid damping with the
previous work. First, for the two classes of shear flows we considered, we do not
need to assume the non-existence of embedded eigenvalues. This assumption is
proved to be true for flows without inflection points and for flows in class K with
o > Omax, but for ¢ = amax and some o < amax, zero is indeed an embedded
eigenvalue. For these cases, the inviscid damping can still be proved as in Corollary
4.1 ii) and Theorem 4.2 ii), as well as for the Kolmogorov flow on the square
torus. Second, the inviscid damping results we obtained are for the initial vorticity
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in L2, In [24,25], initial vorticity with higher regularity was considered and the
linear damping for L? vorticity was not studied. In [24,25,27], the linearized Euler
equation was studied in a channel. Here, we treat the cases of the channel and tori in
a unified way. We note that RAGE theorem type results contain more information
than the damping of velocities, for example the decay of low frequency part of
the vorticity. Third, our approach, which exploits the Hamiltonian structures of the
Euler equation, does not rely on ODE techniques as in other papers. Therefore, it
could be used for nonparallel flows, see Proposition 3.1 for dipoles and Theorem
11.7 in [15] for general steady Euler flows. Moreover, more information on the
damping could be derived from the regularity properties of the spectral measure
of JL (see Remark 4.1). This might provide an alternative approach to study the
inviscid damping in other models.

This paper is organized as follows: in Section 2, we study the linear enhanced
damping for the linearized Navier—Stokes equation. In Section 3, the nonlinear
enhanced damping (i.e. metastability of Kolmogorov flows) is proved for the non-
linear Navier—Stokes equation. We discuss the cases of rectangular and square tori
separately in Sections 2 and 3. In Section 4, the linear inviscid damping is proved
for both stable and unstable shear flows. Throughout the paper, we use C to de-
note a generic constant in the estimates and the dependence on parameters will be
specified when necessary.

2. Linear Enhanced Damping

In this section, we prove Theorem 1.1 on the enhanced damping for the lin-
earized Navier—Stokes equation (1.3). We consider the cases of rectangular and
square tori separately.

2.1. Linearized Navier—Stokes on a Rectangular Torus

Consider the linearized equation (1.3) on a torus

2w
Ta={0<y<2n,0<x<—},oc>l.
o

We divide the proof of Theorem 1.1 i) into several steps. In the proof, we shall use
C to denote a generic constant in the estimates. First, we prove the dissipation law
(1.12).

Lemma 2.1. Let " (1) be a solution of (1.3) with the initial data »” (1) € L? (Ty).
Then

d
— / (" — | v " 1))dxdy = —2v / (v =" Pdxdy  (2.1)
dt Ty T,

foranyt > 0.



Metastability of Kolmogorov Flows

Proof. The Eq.(1.3) can be written as
90’ =vAw+e "'JLw,
where J, L are defined in (1.13). Thus we have

i vi2 vi2 _i v v\ _ v v
dt/mqm |v1ﬂ|)dxdy_dt(La),a))_2(La),a),)
=e M (Lw”, JLw”)

+ 2/ VAw' (0" — ¥") dxdy

=20 [ (v eP - o Priedy,
T
In the last equality above, we use integration by parts and the fact that J is anti-
selfadjoint. O

In the next lemma, we show that the quadratic forms on both sides of (2.1) are
positive definite for a non-shear vorticity.

Lemma 2.2. Let o > 1 and w € X N H' (Ty). Then there exists a constant co > 0
depending only on a such that

/T (o — |7 ¥ P)dxdy 2 o ol 22)

and
fT (I v ol* = loPdxdy Z ¢ ol - (2.3)

Proof. For any

o= w(y e e H (To),

k#0
we have
& !
/(|w|2—|w|2)dxdy= St (-5 +e ) | or o
T dy
@ 0#£keZ
> (1-a?) 3 @eon=(1-a2) ol
0#£keZ
and

2
/ (| v ol —lof)ddy = ) <<—d—2 +a2k2—1)wk,wk>
Ta ozrez \\ Y
=3 /|wzl (y)|2dy+(a2—1)f|wk P dy

0#keZ

;min[l,az—l}na)uiﬂ.
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Next, we study the linearized Euler equation at the Kolmogorov flow
i = — sin yd, (1 + A—l) w=JLo. 2.4)
Lemma 2.3. Let w (t) be a solution of (2.4) with w (0) € X N H! (Ty). Then
lo@llg = C 1 +1)llw )4
for some constant C.

Proof. First, we note that
(Lw, w) =A (lo*> = | v ¥[*)dxdy

is conserved for (1.3). Therefore, by the positivity estimate (2.2) we have

lo Wl = |0 O] , < CloOi, 2.5)
for some constant C. Taking d, of (2.4), we have

3,9, = — sin ydy (1 n A‘1> e

and therefore

l0:0 )2 = [ H 0,0 O, < C 10 O]
Taking 9, of (2.4), we have
8y = — sin yd, (1 + A’l) 8y — cos ydy (1 + A*l) ,

and

t
dyo (1) = e Ldyw (0) — / =L cos yo, (1 + A_l>  (s) ds.

0
ds)
L2

Therefore

3, (1 + A‘l) ® (s)‘

t
o0l < € (o0 O]+ [
SCA+D)IVo Oz

This finishes the proof of the lemma. O

In the next lemma, we study the spectral properties of the linearized Euler
operator A = JL.

Lemma 2.4. (i) The operator A : X — X is anti-selfadjoint in the inner product
[ -T=(L- ).

(ii) The spectrum of A lies on the imaginary axis and is purely continuous.
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Proof. (i) By the positivity of L on X, [-, -] = (L-, -) defines an equivalent inner
product to the L? inner product. For any w;, w» € X, we have

[Awi, w2] = (LJ Loy, w2) = (J Loy, Lan) = — (Lw1, J Lwn)
= - [Cl)] ) sz] )
and thus A is anti-selfadjoint on (X, [-, -]).
(ii) By property 1), the spectrum of A in L? is on the imaginary axis. Since
A = —sin ydy (1 + A‘l) is a compact perturbation of D = — sin yd,, by Weyl’s
Theorem the continuous spectrum of A is the same as that of D, which is clearly

the whole imaginary axis. It remains to show that there is no embedded eigenvalue
of A on the imaginary axis. Suppose Aw = Aw, where A € iRand 0 # w € X. Let

. a2 -1
o= Y o, Y= (—ﬁ +a2k2) W
0keZ Y

Then if wr # 0, we have
ikasiny (wy — Vi) = Awg,

which is equivalent to the Rayleigh equation
d? 2.2 sin y
A

with ¢ = - € R. Since vy € L? implies ¥, € H?, by Lemma 4.3 in the
Appendix, we must have ¢ = 0 which is the only inflection value of sin y. Thus

d2
<—d—y2 + %k — 1) Y =0,

which implies that ¥, = 0 since o > 1. This contradiction rules out the embedded
imaginary eigenvalues of Ain X. O

By the above Lemma and the RAGE theorem, we have

Corollary 2.1. Let B be any compact operator in L? (Ty). Then

1 T
?/ | Bw (l)||iz dt > 0, whenT — o0
0

for any solution w (t) of (2.4) with w (0) € X.

For the proof of the enhanced damping, we need a more quantitative version
of RAGE theorem. Let o> < A1 < 4, < ... be the eigenvalues of the operator
—A on X and eq, e ... be the corresponding orthonormal eigenvectors. Denote
Py to be the L? projection to the subspace spanned by the first N eigenvectors



ZHIWU LIN & MING XU

ey, ez,...,eyof —Aand S = {w € X : |w|[;2 = 1} be the unit sphere in X.
Denote the norms

ol = {(1+ 87 w.0) = [ o =17 wPyaxay,

Jol = {(~A — 1) o, ) =/T (15 ol - [o)dxdy,

which are equivalent to L? and H' norms on the non-shear space X. Let w =
Y k>1 Ckek, then

1
lolk =Y <1 - r) ekl
k=1 k

and

ol =Y Gu — D lexl®.

k=1
The following version of the RAGE theorem can be obtained as in [9]:

Lemma 2.5. Let K C S be a compact set and J, L are defined in (1.13). For any
N,k > 0, there exists T.(N, k, K) such that for all T 2 T. and any w (0) € K,

1 T
- / I Pxe’Ew (0) |1%dr < kllw (0) [I%-
0

Now we estimate the difference of the solutions of the linearized NS and Euler
equations.

Lemma 2.6. Let 0", ° be the solutions of the linearized NS equation (1.3) and
Euler equation (2.4) with the initial data in X \H'. Then there exists some constant
Co > 0 such that

d
dt‘

ol zanedlrnl, e

forallt € (0, +00).

Proof. Let ¥", ¥ be the corresponding stream functions. Denote » = w” — °

and ¢ = ¢ — ¢, then

wr + eV sin ydg(w — ¥) + (e — 1) sin yoe (@ — ¥°) —v A w’ = 0.
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We have
dl1 v 0H2 d 1/ 2 5
—— e - =—= - dxd
dt2”w iy = a2 Jp, 1ol — v vndedy
2‘/% oy (@ — ) dxdy

__ f (™ = Dsin yay(@” — ¥°) (@ — ) dxdy
Te
—i—v/ Ao’ (0" — ¥V)dxdy

—v/ A0’ (@ — ¢0)dxdy
Te
=I1+11+1I1.

Since 0 £ 1 — eV < vt when t > 0, we have
I=(1- e_”t)f sin yd, (@ — ¥°) (0" — ¢¥) dxdy
To
——(1- e—W)/ sin y, (0” — ¥) (a)o - wo) dxdy
To

< cvr o] ||

L2’

By integration by parts and (2.3),
Il = —v/ (| v 0")? = |0’ >)dxdy < —cov Ha)” ”?11 .
T

For the last term, we have

111 = v/m Vo' - V(@ — yO)dxdy < v e’ |, “)OHm :
Combining the above, we get
d 1 2 5
Ei/qra(lwl | v ¢[7)dxdy
< v (ol + 1o (0 o]+ [o°] )

A

2
<Cv (1 n z2) Ha)o (r)H .
Hl
This proves (2.6). O
As a corollary, combining (2.6), Lemma 2.3 and (2.3), we have
2 2 2
Hw” ) — o (1) H < Ha)“ ©0) — o° (0) H +Cw (1 n t5) Hwo 0) H 2.7
X X be

for some constant C; > 0.
We are now ready to prove the linear enhanced damping.
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Proof of Theorem 1.1 i). The proof follows the arguments in [9]. Fixing §, T > 0,
we choose N such that

exp (—2An7T) < c082,
where cg is the constant in (2.2). Define a compact set
K = spanfei,- - ,en} = R(Pn).

Denote 11 = T.(N, %, K) as in Lemma 2.5 and let v (8, t) be such that

v(8,t)C](1+t15)<ﬁ

where Cj is the constant in the estimate (2.7). For 0 < v < v (4, ), suppose that
" Ol > 2 o O
is true for ¢ in some interval (a, b) C (0, /v). Then by (2.1), we have
|0 )% < exp (—viy (b —a)) 0" @] - (2.8)
Now consider any #y € (0, 7/v) satisfying
Jo* )31 < 2x lo” o)

Denote wy = w" (ty) and let o (1) (r € [to, 1o + t1]) be the solution of (2.4) with
@° (to) = wp. By the choice of 7y, v (6 7) and (2.7), we have

o @ - (t)” <% Lol Vielion+nl. 2.9)
By the definition of 71, we have
1 [lotn 0 2
. Pxo? 0 ar < < ol
Since ||a)0 (1) Hx = |lwollx by the conservation of (Lw, w) for the Eq.(2.4), it

follows that

1 /t()—l-tl
4] 1o

Combined with (2.9), the above implies that

(1= pwo® 0] ar = ol

1 fo+11 2 1 5
—/ |1 =Py’ ()5 dt = = llwoll -
 Jy 2

For 0" (1) = 21@1 crek, we have

1 1
Jlo” O3 =D G = Dlexl? = P (1 - ﬁ) lexl?

k=1 k=N+1

1 v 2
e |1 = Py)o” @)y
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and thus

fot+ti ANt ANt
/ " 0 dr = == ool = == o @)%
0]

Then (2.1) implies that

) ) _ ) 2 to+t ; 2
| (t0+t1)||X: e (t0)||X—2v | (t)”Xl dr
1

0
< (1 =ayvm) [0 @)y S e o 1)) (@210)

We can split the interval [O, %] into a union of intervals such that either (2.8) or
(2.10) holds true. Therefore we have

o () e o O < s Jo* O
and by (2.2),
o ), 2 2 or B)] <2 1o F <22 01

This finishes the proof of Theorem 1.11). O

2.2. Linearized Navier—Stokes on a Square Torus
Now we consider the linearized equation (1.3) on the square torus
={0<y<27,0<x<2m}.

In this case, there is a two dimensional kernel space W, spanned by {cos x, sin x}
of the operator L = 1+ A~! on the non-shear space X. We will sketch the changes
induced by these anomalous modes, in the proof of Theorem 1.1 ii).

First, we note that L is positive on the space X; = (I — P,) X, where P, is
the projection of X to W,. Let w" (¢) be the solution of (1.3) with any initial data
" (0) € X. Then o] = (I — P,) " satisfies the equation

B! = vAw! — e [(1 — P,)sin yd, (1 n A”)] ©. (@11
It is easy to check that the same dissipation law
d
- / (i = v i [Hdxdy = —2v f (| v @} * = |o}*)dxdy,
dr T, T,
holds true for (2.11). Moreover, there exists ¢y > 0 such that
/ (o — |7 ¥ P)dxdy = co o], 2.12)
T
and

fT (15 o - loP)dxdy 2 co o],
1
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for w € X1. Define the operator A; : X1 — X by

Ay = — (I — Py)sin yd, (1 + A‘1> —(—-P)JL.
Since L|x, > 0, [-, -] = (L-, -) is again an equivalent inner product on X; and A;
is anti-selfadjoint on (X1, [+, -]). Indeed, for any w;, wsy € X

[Ajwi, wa]l = (LI — Py) JLwy, wa) = (LJLwy, wp) = — (Lwy, JLwy)
=—(Lwy, (I — Py) JLwy) = —[wy, Ajwa].

Therefore the spectrum of A1 lies on the imaginary axis. Next we show that A has
no embedded imaginary eigenvalues.

Lemma 2.7. The spectrum of A is purely continuous.

Proof. Suppose A has an eigenvalue A € iR and Ajw = Aw, where 0 # w € X;.
Then

Aw —Aw=JLw— o =w e W,.
If » # 0, by noting that A®w = 0, we get

1 1
A - =Ax —@
<a)+kw> (a)—l—)\a)),

that is, A is an eigenvalue of A. This is a contradiction, since by the proof of
Lemma 2.4, the operator A has no nonzero eigenvalues. If A = 0, then we must
have Aw = @ for some 0 # ® € W,, since € X| implies that Aw # 0. Let
& =cre* +c_je7* € W, and

v=A"'o=a (y)e* +a_(y)e ™.

From the equation Aw = sin yd, (w + V) = @, we get
c—1

aj (y) = ,adl () =

isiny —isiny’

and thus ¥ ¢ H?. This shows that 0 is not an eigenvalue of A and the proof of the

lemma is finished. 0O

By the above lemma, we can use RAGE theorem for the semigroup /4! on X1,
which corresponds to solutions of the projected linearized Euler equation

g = (I — Py) sin ydy (1 4 A—l) . (2.13)

In particular, let Py be the projection of L? to the space spanned by the first N
eigenfunction of —A on Xi, then we have for any N,x > 0 that there exists
T.(N, k, K) such that for all T = T, and any w (0) € R (Py),

1 T
. fo 1Pyt Lo (0) [2dr < ke (O) 2. 2.14)

In the next Lemma, we obtain the same estimates on the growth of solutions of
(2.13) as we did in Lemma 2.3.
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Lemma 2.8. Let (1) be a solution of (2.13) with  (0) € X1 N H' (T}). Then
lo@®lg = C A +1) O]
for some constant C.

Proof. The proof is very similar to that of Lemma 2.3. We only sketch it. By the
conservation of (Lw, w) for the Eq. (2.13) and the positivity of L|x, , the L? norm of
(1) is bounded by  (0). Since P, is the projector of X toker L = ker (1 + A™")
and V is commutable with 1 + A~!, so P, is also commutable with V. Then the
estimates of dw (¢) follow in the same way as in the proof of Lemma 2.3. O

Similarly, we can estimate the difference of solutions of (2.13) and (2.11).

Lemma 2.9. Let ', 0 be the solutions of the projected linearized NS equation
(1.3) and Euler equation (2.4) with the initial data »’ (0) € X| andwo € X1NH'.
Then there exists constants Cy > O such that

d v 0 2 2 0 2
il =l g co (1) [ o],
fort € (0, +00).

The proof is the same as that of Lemma 2.6 by using the fact that L|x, > 0 and
(LI = Pa)- )= (L")

Then by the same proof of Theorem 1.1 i), we can show the enhanced damping
for the solution ) (¢) of the projected Eq.(2.11). More precisely, for any 7 > 0
and § > 0, if v is small enough, then

ot ()], <5 1ot O,

Since | (t) = (I — P,) ®" (1), this proves Theorem 1.1 ii).

3. Nonlinear Enhanced Damping

In this section, we prove the metastability and enhanced damping of Kol-
mogorov flows for the nonlinear Navier—Stokes equation (1.1) on a torus Ty (a > 1).
Let Pk to be the projection of L2 (T,,) to the subspace Wy = span {cos y, sin y}.
For any initial data " (0) € L?, let

Pxw" (0) =djcosy+dysiny = Dsin(y + y1),

where D = 1/dl2 +a?22 and y; = tan~! (dy/d>). When |[(I — Px) @’ (0)] 2 is
small, we can equivalently consider the perturbation near the shear flow U (y) =
D sin (y + y;) with initial data " (0) satisfying Pxw” (0) = 0, for which the
analysis is almost the same as for the shear flow U (y) = sin y. For simplicity, in the
proof of Theorem 1.2, we only consider the perturbations near U (y) = sin y with
Picw” (0) = 0. As in the proof of Theorem 1.1 for the linearized NS equation, we
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will treat the high and low frequency parts of the non-shear perturbation separately.
In particular, for the low frequency part, we will compare the solutions of the
nonlinear NS equation and the linearized Euler equation, and then use the RAGE
Theorem to control the time average. However, a significant difference with the
linearized NS equation is that the shear and non-shear parts are strongly coupled
for the nonlinear NS equation. Therefore, the main issue is to control the interaction
terms. We will consider the equations on rectangular and square tori separately. On
the square torus, the existence of anomalous modes makes the interactions terms
considerably more subtle to handle.

3.1. The Case of Rectangular Torus
Consider the nonlinear Navier—Stokes equation near the Kolmogorov flow
90" = vAw’ —e [sinyax (1 + A—l)] W +U" Vo' G
=L(Nw" +U" Vo',

on T, (@ > 1), where w", UV are the perturbations of vorticity and velocity. We
split w”, U" into shear and non-shear components. More precisely, we write @ =
w{ + w),, where the shear part is

2r

o o
wg (t,y) = E/o o’ (t,x,y)dx = Pyo",

and the non-shear part is
w, (t,x,y) = (I — Py) 0’ = Pxow’ € X.

Correspondingly, U = U} + U,) and ¥* = ¥/ + v, where " is the stream
function. We also denote

U’ = (u”, v“) , Ul = (u: t,y), O) , Uy = (u,‘;, v,‘:) .
Then the Eq. (3.1) can be written as
oy = vdyor + Py (U - Vo) = vy, + dy Py (v o)), (3.2)
and
dw, = L (1) w, + uydxw), + v, dyw; + Py (U,‘l’ . Va),'i) (3.3)
=L (1) w, + u) oy, + v, dyoy + 0x (upoy) + 0y Pro (vyw,).

First, we show that the dissipation law (1.12) also holds true for solutions of
the nonlinear equation (3.1).

Lemma 3.1. Let " (t) be a solution of (3.1) with the initial data »’ (0) € L? (Ty).
Then

d
— / (”? = | v " 1P)dxdy = —2v / (v =" Pdxdy  (3.4)
dt T, T,

foranyt > Q.
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Proof. We have
d
—f (l0"* = | v ¥"))dxdy =/ o} (" — ") dxdy
dr Ty Ty
={LD) " (0" —y"))
+/ U’ Vo' (0" — ¢") dxdy
Te
N f (1 0P — |o"Pdxdy
Te

1 1
+ 3 /a U'. Via)"zdxdy

—/ (U” - V§") w”dxdy

=20 [ (v eP - o Py,
To
In the above, we used the fact that UV - Vi = 0 and
Lo @ =) =20 [ Ave'P = o Praxdy,
Ty

as in the proof of Lemma 2.1. O

Denote Y to be the space of mean zero functions in L? (T,), depending only
on y. Denote Y; = (I — Px) Y. Then the operator L = 1 4+ A~! is positive on Y.
There exists ¢y > 0 such that

/JI ("2 = [oy ¥ P)dxdy = co " |7 (3.5)

and
V2 V2 > v 2
(10ye" > — |@"[*)dxdy = co ||” |51 (3.6)
Te
for all " € Yj.

For a solution ¥ = w; + w, of the nonlinear NS equation (3.1), let w; =
/| + w,,, where o/, = Pxw, = Pxw" and o/, € Y1. Then (3.4) implies that

d
dr </11’ (%% — 19,95 )dxdy + H@ﬁ”i)

= 2 </T (10,057 — |l 1P dxdy + ! ;ﬁ(l) . 3.7)

In particular, by the positivity estimates (2.2), (2.3), it follows from the above that
there exists C > 0 such that

losall 2 @ + on] 2 © = € (Joia] 2 @ + ey 0,2) < Cdv. - 38)
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where we assume ||w" ||;2 (0) < dv for a constant d > 0 to be determined later. To
estimate

o o
wy] = a1£ cosy + a2£ siny,
‘ 2 2

we project (3.2) to {_Jg cos y, —\/‘g{ siny} to get
d Ja N
—a; = — - dxdy, 3.9
dtal v \/ET[ Ao{ OO SIRY CEEY ( )
d ﬁ R
—a = — 4+ -~ dxdy.
dta2 vay Vo /ﬂ‘l‘a U, W, COS Yy y

Let

a () = ||,z = yai +a3.

then, by (3.9), we have

2
d—aé—va(t)+ Ve / v"a)"sinydxdy2+/ vWw? cosy dxdy
dr ~ 227\, T,

< —va(@)+C Hv,‘; H ()2 ||a);l’ || ®)2-

Since a (0) = || Pxw" (0)]|;2 = 0, the above implies that

t
||l =a@) < Cdv/ e oy || (s) 2 ds (3.10)
0

< C oy 0,2 < Cdv.
Combined with (3.8), it follows from the above that

|wy]l,. @) < Cdv, forallz > 0. (3.11)

In the dissipation law (3.7), w;z and ) are coupled. In the next lemma, we show
that when d is small, the dissipation law for @) can be “separated” from (3.7).

Lemma 3.2. There exists a constant d depending only on o, such that when |»" || 2
(0) < dv, then
d

] PR ] (3.12)
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Proof. By (3.2), we have

d
5 | iR =Py

—2 /T Bty (' — 1) dxdy = 2 / B! (@ — ) dxdy

a

= _zu/T (J8ywh)?* — |wly]P)dxdy + 2/ dy (vpewy) (@fy — ¥Y) dxdy

a

220 | (ol —lopPasdy = € o} foial o

> -2va (13,0l 12 = ok )dxdy — Cdv b1 -

In the first inequality above, we use the Sobolev embedding and (2.3). Combined
with (3.7), this gives

d

a | il £ =v ol @ - ca < = o

whend < 1/C. O

To use the RAGE theorem to control the low frequency part of w,, we need to
estimate the difference of the solutions of the nonlinear NS equation (3.1) and the
linearized Euler equation (2.4).

Lemma 3.3. There exists d > 0 such that for any solution " of Navier—Stokes
equation (3.1) with initial data satisfying |” |12 (0) < dv, and any solution o’
of the linearized Euler equation (2.4) with initial data in X N H', we have

|
dt

2 2
;—wOH < Cov (1 +z2) H“’O (r)H Vi>0
X H!

for some constant Co > 0. Here, o), = P.ow" is the non-shear part of @".

Proof. Let y”, /¥ be the corresponding stream functions. Denote w = ) — «°

and ¥ = ¢) — ¢, then

w = —e "sinyd (0 — ) — (e — 1)sinydy (@ — ¢°) +v A}
+ uydcwy, + vy 0yw, + Pzo (Uy - Vo).
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Thus
d1 2
3 a)v—wouxz/q;aw,(a)—w)dxdy

_ [_ /T (™ — 1) sin yd, (@° — ¥°) (@ — ¥) dxdy
v /T Aol — W)dxdy]
+/T ul9,0! (@ — v) dxdy
+ /T wpd,0! (@ — ¥) dxdy

+/ U, - Vo, (w0 — ) dxdy
T
=1+1I+1I1+1V.
Similar to the proof of Lemma 2.6, the first term can be estimated by

1)

For the last term, noticing that, as in the proof of Lemma 3.1,

120 (=0 Jlop |+ € A+0 0]

/ Uy - Vo, (o) —¢))dxdy =0,
Te
we have
IV —_ UU V v 0 _ 0 _ % 0 _ 0 %
= w Vo, (0" — ¢ )dxdy = U, V| o' =¥ ) w,dxdy
T

o
< C U2 a o) 1 .

P E A P

wO

< Cdv

i

The second term is estimated by
11 = / u’d " (w; — o+ w(’) dxdy
Te
_ v v v 0 0
- —/ '’ (aan — 9, (a) —y )) dxdy
To

= gl oo lenllpe onll 2 + 1l o Nl 2

1)
H!

of|
H!

2
< ¢ (lotl s lin + 1] el

)
H!

< cav (5 + @
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where we use (3.11) in the last inequality. Similarly,
111 = —/ U, -V (o—v)wydxdy
Te
< Uy (lol + 0] ) 2],
2
< cav (o3 + o], lobllm)-

where the embedding H Uy HLOC <C Hw,‘j HHl and the bound (3.11) are used in the

last inequality above. Combining the above estimates, we get

d1 2 ;
Gl = v (- @-ca o+ catnlor o],
1
<v <_§Co sl + € a+0 oy H“’O”Hl)
<

2
2 0
Cv (1 e ) Ha) (l‘)HHl,

by choosingd < 5. O

By using Lemmas 3.1 and 3.3, Theorem 1.2 i) follows by the same arguments
as in the proof of Theorem 1.1.

Remark 3.1. By (3.8) and (3.10), we have the following Liapunov stability result:

|’ (1) = Pro” 0)] ;. £C|U — P) o’ (0)] 2. Vi>0, (3.13)
for some constant C > 0 and any solution w" (¢) of the NS equation (3.1). Thus
for initial data w (0) satisfying

1
(I = Po)o” O)],, < o (3.14)

we can repeatedly use Theorem 1.2 i) to get the rapid decay of the non-shear part,
before the dissipation term takes over.

3.2. The Case of Square Torus

In this subsection, we prove Theorem 1.2 ii) for the nonlinear Navier—Stokes
equation (3.1) on the square torus T;. As in the rectangular torus case, we consider
initial data satisfying Pxw (0) = 0. Compared with the rectangular torus, the
new difficulty is the existence of anomalous modes {cos x, sin x} in the kernel of
L =1+ A~!'. We decompose the vorticity perturbation as

Cl)v = C();) + w;: = C()};l + (1);.)2 + C();,ljl + C();,ljz, (315)

where the shear part w; is decomposed as in the rectangular case with o}, =
Pxw, and wy, € Y1, and the non-shear part w, is decomposed as w, = w,; +

nl
w,, with o), = P,w), and w,, € X|. Here, we recall that P, is the projection
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to the anomalous space W, spanned by {cosx, sinx} and X is the orthogonal
complement of W, in X. Correspondingly, the velocity U" and stream function ¢”
are decomposed into four parts. Then the nonlinear term can be written as

U Vo' = (U + U)) - V(o = ) + Uy - V(eh =) (3.16)
+ Uy - Vo, + Uyy - Vo, + Uy - Vo,

where we use the observation

Usi - Vo, + U, -Voi, = U -V (o, = ¥,) = U - V(0 = ¥,) ;

N

we proceed similarly for other terms. The dissipation law (3.7) becomes
d v 2 v 2 v |2
ar (L G0l =100 Praxdy + ol [ (3.17)
1

2
=—2v (/T (I1dywh]? = [whHdxdy + o), ||Xl> .
1
By using the positivity of the above functional on Y7 and X1, this implies that

|2l 2 O + lenall 2 = € (|02l 2 O + 0] @12) = Cdv. 3.18)

In the following lemma, we separate the dissipation law for @}, from (3.17):

Lemma 3.4. There exists a constant d > 0, such that when ||@"||;2 (0) < dv, then

d
i lonl £ —vlonl (loklx = loil2)- (3.19)

Proof. By (3.24), we have
d
5 / (lo% > = 18y |))dxdy
1 JT,
= 2./11‘ By, (w‘r)Z - l/fsvz) dxdy = 2/1; drwyg (wls)z - Wsuz) dxdy
1 1
= —2v/ (18y@)y > — |y [*)dxdy
Ty
2 [ (U9 (o = ) + Ui Vo) (0l = v3s) dsdy
1
> —21)/ (18ywl)?* — |w!y]?)dxdy
T
2
= (@bl @bl + lenli) lobl,
> —2v / (1305 |* — |0k P)dxdy
T,

= Cav (] 2 ol + ol ) -

By choosing d such that Cd < 1, (3.19) follows from above and (3.17). O
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Compared to the dissipation law (3.12) for the rectangular torus, from (3.19)

. 2. . . .
we cannot even infer that ||a);1’2 || i is decreasing due to the interaction of w,, and
v
1)

nl®
To prove Theorem 1.2 ii), it suffices to show that when [|@” (0)||;2 < dv and

s, oy 0] = M} O (3:20)
we have
0<1£1f lwp, @] ,2 <8 |w, O], (3.21)

for v small enough. In the next two lemmas, we derive some estimates to be used
later based on the assumption (3.20).

Lemma 3.5. Assume ||@" (0)||;2 < dv and (3.20), then

|| S Cv, 051 < % (3.22)
for some constant C' depending on d and M.
Proof. Denote
+ L b ! +b L
=aj—— cos a siny, |——cosx + by sin x,
X‘l \/_7'[ y \/57‘[ y ﬁ]‘[ ﬁ]‘[
and
a(t) = || @ = /al+a3. bt) = ||, &) =/b}+b3.
Then by (3.20),
b(t) < M|l (0)],, < Mdv, 0< 1< 2. (3.23)
v
By (3.16), we have
dw;, = vdyyy + Py (U“ VwZ) (3.24)
=viywy + P (Unl Y ("’22 - W;z) +Up- V“)ZZ) :
Projecting above to {cos y, sin y} and using (3.18), we get
da; _ y .
5 S vai(+Cdv b®+ ||on],.). i=1.2
and thus
da v
— < —va )+ Cdv (b (1) + |op, | ()2)- (3.25)

dr
Since a (0) = || Pxw (0)]| .2 = 0, we have

t
a(n = Cdu/ eV (b (s) + |lwpa |2 () ds = €' (d, M) v,
0

by (3.18) and (3.23). O
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Remark 3.2. In the rectangular torus case, ||w" (0)||;2 = O (v) implies that
Ha)}’l HL2 (t) = O (v) (see (3.10)). However, for the square torus case, it is not
clear that [|” (0)]|;2 = O (v) can imply

|t @ Jlop |2 ) =0 W),

due to the existence of anomalous modes. Indeed, projecting (3.1) to {cos x, sin x},
we get

db; 1

J— Ub —
dr : 227
= )
+ — UY - V") cos x dxdy
Ton Tl( )

—vbi + C oy | 2 + Cdv (@) + s 12)
—vbi + C o), ||L2 + Cdva (1) .

e / w), sin y sinx dxdy
Ty

A 1A

In the above, the second term is due to the identity

/ [sin vy (1 + A_l)] ' cos x dxdy
Ty
= / [sin vy (l + A*I)] w, cos x dxdy
Ty

sz w;2[<1+A—1)(sinysinx)] dxdy
1

1

= 5/ wy,sinysinx  dxdy,
Ty

and the third term is estimated as

[, @ vy eosr o] = cav a0+ ol ).
Ty

by using (3.16), integration by parts and the bound (3.18). Similarly,

db
d_t2 < —vby 4+ C o), ||L2 + Cdva (1),
and thus
db
@ < —vwb+C ”“)ZZHH + Cdva (1) .

Combining the above with (3.25) and choosing d to be small, we have

de 1

Ei_zve(t)—i_c"wzz“LZ’ e(t)za(t)+b(t)a
from which only the bound e (1) < C can be derived. This also partly explains why
the assumption (3.20) is needed in the proof of the enhanced damping.
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Our next lemma is to estimate the difference of a),‘;z and the solution of the
linearized Euler equation.

Lemma 3.6. There exists d > 0 such that for any solution " (t) of the Navier—
Stokes equation (3.3) on Ty satisfying ||w”| ;2 (0) < dv and (3.20), and any solu-
tion & (t) of the linearized Euler equation (2.4) with initial data »° (0) € X NH?,

we }lalle
H 1>
H

d
dt ’

(3.20)
vVt € (0, %), for some constant Cy > 0 depending only on d and M. Here, the
notations in the decomposition (3.15) for " is used.

2 2
wb—wkganuuﬂwwwm+wm@+wmm

Proof. Denote v = w,, — o’ and ¢ = Yy — %9, then
w = —e " (I = Py)sinyde (@ — ) — (¢ — 1) (I = Py) sin yd, (@ — ¢°)
+vAaw,
+ (= Pa) P2o (U + Upy) - V(02 = ¥ip)
+ (= Pa) (Uyy - V(0 = ¥33))
+ (= Po) (U - Vo, + Uy, - Vaoy,)
+ (I = Pa) Pxo (Uy - Voor,) .

Thus we have

dl1 2
wZZ_onXZ/T or (@ — ) dxdy
1

dr2

= |:— (e — sinyde (@ — ¥°) (@ — ¥) dxdy
T

+”/T Dwyy (0 — W)dxdy:|

i M (Usz - Vo + Upy - Vaoip) (@ = ) dxdy

+/T Uy - Vo (@ = w)dxdy]

- @) (o= ) (o0 - ) s |

+/T m1 V(@ — ¥s) (@ — ¥) dxdy
1
=14+I1I1+1II+1V.

For the first three terms, by using the bounds (3.20) and (3.22), as in the proof
of Lemma 3.3, we get

1
T+ 1+ 11T S = Seov [l + Cv (40 [opal |00
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by choosing d > 0 small enough. The last term is estimated by
1 == [ U9 [l = ) = (0 = 9)] ks — ) vy
1
0
< cvlon b, (Il +],)-
Combining the above, we have
i
dr

2 2
o= o[} < cow (147 [, + o+ ol

w )
H!
fOI some constant CO dependlng on d and 1 4 N O

We are now ready to prove Theorem 1.2 ii).

Proof of Theorem 1.2 ii). For any fixed M, 3§, > 0, we will show that under
the assumption (3.20), there exists v (M, §, ) > 0 such that (3.21) holds when
0<v<v(M,S§,t). Suppose that (3.21) is not true. Then

|wls @] 2 2 8]l ©],.. YOS~ (3.27)

< |«

where " () is the solution of (3.1) satisfying Pxw” (0) = 0, [[@” (0)[;2 < dv
and (3.20). Here, d is a constant chosen such that Lemmas 3.4 and 3.6 hold true.
Then by (3.20) and (3.27), for any ¢, t" € (0, %) , we have

] /!
om 0] 2 £ M o} @32 £ 5M w3 ()] 2

< M o (1) (3.28)

Choose Ay big enough such that

A A
exp | — N \/ 2N €Oy ) < 82,
2 2 6
where ¢ is the constant in (2.12). We consider two cases below.
Case 1: w), (1) € R (I — Py) is true for ¢ in some interval (a, b) C (0, T/v).
That is,
v 2 v 2
lwr, O |1 > A |wp, O]y . 1€ (@ b).
Then, by (3.19) and (3.28), we have
v 2 o o v 2
" ®)]% < exp (—vv/An (vVAn — EM b-a) |’ @|y. (329

Case 2: Let #y be any point in (0, t/v) satisfying

lops o) 31 S A [k (o)



Metastability of Kolmogorov Flows

Denote t; = T (N, %) to be such that the RAGE Lemma 2.14 is true for « = 1/10
andall T > T.. Let o° (1) (t € [t9, to + #1]) be the solution of (2.4) with 0 (19) =
w,, (tp). By (3.26), (3.28) and Lemma 2.8, we have

2 2
wy (to + 1) — ° (1o + I)HX < sz{ (1 + t5> | (20) | 51

2
(9 12 o

+ 20 (142) ol @) [t @] 0 |
(3.30)

for any ¢ € [0, #;] and some constant C, > 0 independent of 7, v. Let v (M, §, T)
be such that

2 !
Cav (8, 7) {(1 + tf) oy + (CS—O) M2+ 9y (1 +z12) \//\N} <=

) 10°
By (3.30), when 0 < v < v (M, §, T), we have

Then as in the proof of Theorem 1.1, by using the RAGE theorem for o (1), we
obtain

2 1 2
)= O = 15 len [y, vieln+nl.

to+11 A
[ oo ) ar 2 220k a0 [
0

Thus by (3.19) and (3.28), we have
. 2 N o ) )
oz (o + 10 = o )y — ”/, lonallxr (el xr = leom [ 2) ar
0

; 2 to+11 b2
< Jopz @l =v [ ol a
0
to+11 b2 % o )
o ([ lenliar) vaS o w0l
0
A AN C
< fotsli (135 + 550w )
A A
< |l () |5 exp (— (7N - ,/%?M) vt1> . (3.31)

Splitting the interval [0, %] into a union of intervals such that either Case 1 or
Case 2 is true, then we have

R G s (-5 ) ) bl

< co8? [, O] §
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This implies that

|

which is in contradiction to the assumption (3.27). This finishes the proof of The-
orem 1.21i). O

T
itz ()], <2 10h 01,2 £ 8]0} O 2.

Remark 3.3. In the statement (1.10) of Theorem 1.2 ii), the non-shear part remov-
ing anomalous modes is reduced to a factor § of the initial norm of the whole
non-shear part. This is different from the result (1.7) for the linearized NS equation
on a square torus, where the anomalous modes can be separated. The nonlinear cou-
pling due to the anomalous modes can be seen from the term U}), - V (a);’2 — ws‘a)
in (3.16), which reflects the nonlinear interaction of the anomalous modes and
the shear part. For the rectangular torus, there is no such interaction term and the
nonlinear enhanced damping result is consistent with that for the linearized NS
equation.

3.3. Further Issues and Dipole States

We comment on some further issues. First, it would be interesting to enlarge
the metastability basin from O (v) in Theorem 1.2 to be O (v¥) (0 <« < 1) or
independent of v if possible. Also, it is desirable to improve the decay time scale
from O (t/v)to O (l / ﬁ) as given in [3] for the approximated linearized equation
(1.4). This might require us to work on initial data of higher regularity. We note
that the time scale O (1/4/v) in [3] was obtained for initial data in H'.

Numerical simulations ([6]) suggested that on the rectangular torus the bar states
(i.e. Kolmogorov flows) are usually observed. However, on the square torus [23],
the dipole states of the form wy = cos x 4 cos y or sin x + sin y appear more often
than the bar states. These dipole states are maximum entropy solutions of the 2D
Euler equation, and hence are likely candidates for relevant quasi-stationary states
according to the statistical approaches of 2D turbulence (e.g. [20]). The dipole states
represent nonparallel flows with saddle points on the stream lines and therefore
are more difficult to study. Consider the dipole with wg = cosx + cos y, then the
quasi-stationary Navier—Stokes solution is w” (¢, x, y) = ¢~ (cos x + cos y). The
linearized NS equation around it becomes

dw=vAw+e V! [(sin Yy, — sin xay) (1 + A_l)] w. (3.32)

There are some similarities with the linearized equation (1.3) near bar states. First,
the same dissipation law (1.12) holds true for (3.32). The linearized Euler operator
is of the Hamiltonian form

(sin yd, — sin xd,) (1 n A”) —JL, (3.33)
with

J =sinydy —sinxdy, L =1+ AL
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Consider the energy space X to be the set of L? functions with zero mean. Define
P to be the projection of L? to ker J. It was shown in [11] that for any ¢ € L2,

d(x,y) dl

Poly )= i ,
o) o4l

where c is in the range of {9 = cosx + cosy and y; (c) is a branch of {9 = c}.
Define the operator A, Ag: H>N X — X by

A=—-A—-1+P, Ay=-A-—1.
We note that A = Ag = 0 and
ker Ag = ker L = {cos x, sin x, cos y, sin y}.

Therefore ker A C ker Ag and by Proposition 2.8 and Lemma 11.3 of [15], we have
the decomposition
L?> =ker(JL)+ R (J). (3.35)

Here, ker (JL)NR (J) C ker L andker (JL), R (J) are both invariant under J L.
The space ker (J L) corresponds to the steady solution space of the linearized Euler
equation d;w = J Lw. Different from the case of bar states where ker (J L) is the
space of shear flows, for the dipole states the steady space ker (JL) has a more
complicated structure. We can restrict the Euler semigroup e’/% on the invariant
subspace R (J). Denote P; to be the orthogonal projection of L2 (T) to

ker L = {cos x, sinx, cos y, sin y}.
We have the following RAGE type result for JL on R (J):

Proposition 3.1. Suppose that the operator J L defined in (3.33) has no nonzero
purely imaginary eigenvalues. Let B be any compact operator in L? (T1). Then for
any o (0) € R (J), we have

2
o dt - 0, whenT — 0. (3.36)

%/OT ”B I — P3)e”La)(0)‘

Proof. The proof is similar to Lemma 2.7 for bar states. We only sketch it. For
any solution w (¢) of the equation d;w = J Lw with w (0) € R (J), define w; (t) =
(I —P3)w(t) and let X1 = (I — P3) R(J). Then w; (¢) satisfies the equation
d;w1 = (I — P3) JLw on the space X;. Since L|x, > 0, the operator (I — P3) JL
is anti-selfadjoint on (X1, (L-, -)). Our assumption on the spectrum of J L implies
that (I — P3) JL has no nonzero purely imaginary eigenvalues. To show that the
operator (I — P3) JL has purely continuous spectrum on X1, it remains to show
that O is not an embedded eigenvalue of (I — P3) J L. Supposing otherwise, there
exists 0 # w € X such that (I — P3) JLw = 0. Let Y| = Lo, then Jy| =
P3JLw € ker L. Denote

JY1 =ajcosx +axcosy+ bysinx 4 by sin y. (3.37)
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Since cos y +cosx € ker J L Jy1, wehavea; +a; = 0.Leta; = —ap = a. Itis
easy to see that for any ¢ # 0 in the range of ¥y = cos x + cos y, each of the two
branches of {9 = c} is symmetric to x, y in the sense that both (x, y) and (y, x)
are on the branch. Since any function ¢ in ker J takes the form (3.34), we conclude
that cos x —cos y L ker J, which implies that cosx —cos y € R (J), so there exists
a double periodic function ¥, such that Jy» = cos x — cos y. By noting that Jx =
sin yand Jy = — sin x,itfollows from (3.37) that J (/1 — ayr» + b1y — byx) = 0.
Then by (3.34), the function ¥r{ — ayry + b1y — box must take constant on each
branch of the level set {9 = c}. Since ¥ is double periodic in x, y, this implies
that Y1 — ayp + b1y — bax is also double periodic. This contradiction shows that
0 is not an embedded eigenvalue of (I — P3) J Lw. Then (3.36) follows from the
standard RAGE theorem. O

Even with the dissipation law (1.12) and above RAGE theorem, there are still
significant differences with the bar states to get the linear enhanced damping for
dipoles, besides the issue of proving the non-existence of imaginary eigenvalues
of J L. The most important difference is that the decomposition (3.35) is no longer
invariant when the viscosity is added. It is under investigation to find a subspace of
initial data such that the enhanced damping is true for dipoles.

4. Linear Inviscid Damping of Shear Flows

Consider a shear flow ug = (U (y),0) in a channel {y; <y < y;} orona
torus. The linearized Euler equation can be written as

w +U () 30+ U" (y) d:¢ =0, 4.1)

where w and ¥ = (—A)~! w are the vorticity and stream functions respectively.

4.1. Stable Case

We consider two classes of stable shear flows.

Class 1: U” # 0, that is, U has no inflection points. This case is restricted
to a channel, since such flows can not exist on a torus. By the classical Rayleigh
inflection point theorem, (U (y) , 0) is linearly stable. Suppose U” > 0, choose a
constant Uy < min U. Then in the frame (x — Uyt, y, 1), the Eq. (4.1) becomes

w; + (U (y) = Uy) dxw + U" (y) 0,9 = 0. (4.2)
Define
Uy
O=vm-u 7"

Let the x period be 27/« for any o > 0. Define the non-shear space on the periodic
channel Sz /o X [y1, y2] by

ik 2 2
X=jo= Y o), ol = |2 <00

1
keZ, k#0 VK ()
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Clearly, X ¢ L? and L?> = X if min K; > 0. The Eq.(4.2) can be written in a
Hamiltonian form

” w _
o =—U" (y) 0x (r(y) +1ﬁ> = JLw,

where

J==U"(yo: X" —> X, L + (=N X - X

K 6))

are anti-selfadjoint and self-adjoint respectively. Moreover, L is uniformly positive
on X and thus JL is anti-selfadjoint in the equivalent inner product (L-, -). Since
X C L?, by Lemma 4.3, JL has no purely imaginary eigenvalues in X and the
entire spectrum of J L is continuous.

Case 2: Assume that there exists Uy in the range of U such that

"

KZ(y)Z_U—U
N

>0 4.3)

is bounded. We call these flows to be in class K, as used in [10]. The assumption
(4.3) implies that Uy is the only inflection value of U. Examples include U (y) =
siny, tanh y, and more generally any U (y) satisfying the ODE U” = g (U) with
a decreasing g. Then (4.3) is satisfied with Ug; = —1(0). Let the x period be
27 /a. We can consider the class KT flows in a periodic channel S, Ja % [y1,¥2]
or on a torus S7 /¢ X Sy,—y,. The linearized Euler equation (4.2) with U being the
inflection value can be written in the Hamiltonian form

w
w;=U"(y)d (— — w) =JLw, 4.4)
’ “\ K2 ()
where
J=U"(y)d,, L= —(=A)7!.
(¥) Ox K () (=4)
Define the non-shear space of vorticity
: 1
X={o= N (), Nolly = l——==wlj, <oof. (4.5)
keZZIS;éO ' VK2 o)

Again, X C L? and L? = X if min K> > 0. Denote n~ (L) (n° (L)) to be the
number of negative (zero) directions of L on X. Define the operator

Ag=—-A—Ky(y): H> > L? (4.6)
in the channel Sy; /4 X [y1, ¥2] or on the torus Sz /o X Sy,—y, and

d2
bo=—gz % ) H? 1, 32) = L2 (1, »2) (4.7)
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with the Dirichlet boundary conditions for the channel and periodic boundary con-
ditions for the torus. Then, by Lemma 11.3 in [15], we have

n® (L) =n® (Ag) =2 " (Lo + kzaz) ,
K>

and

n(L) =n" (A =23 0~ (Lo n kzaz) .

k=1

If n= (Lo) # 0, let —a2,,, be the smallest eigenvalue of L¢ and ¢y be an eigen-

function. When Lo 2 0, let amax = 0. Then by the above relations, L is positive
when o > amax. Again, by Lemma 4.3, the spectrum of J L is purely continuous
in X. When o = oyyax, we have n~ (L) = 0 and

. 42
ker L = {500 (1) |, wn () = (_d_y2 + oﬂ) Bo.

Let P; be the projection of X to ker L and X1 = (/ — P1) X. Then L|x, > 0 and
A; = (I — Py) JL is anti-selfadjoint on (X1, (L-, -)).

Lemma 4.1. A| has purely continuous spectrum on X|.

Proof. By Lemma 3.5 of [10], ¢9 # O at at least one of the points in the set
{U = U,}. By using this fact, the rest of the proof follows that of Lemma 2.7, so
we skip the details. O

By the above spectral properties, the following is a direct consequence of the
RAGE Theorem:

Theorem 4.1. If i) U” # 0 or ii) U is in class KT and o > amay, then for any
compact operator B on X, we have

Lt L, ||
?/ HBe” a)HX dt - 0, whenT — oo (4.8)
0

forany w € X. If U is in class KT and o = atmax, then for any compact operator
B on X, we have

1 (7 L |2
—/ HB(I—Pl)e” w” dt - 0, whenT — o0
T 0 X

forany w € X.
By choosing
Bow =Vt (=A)""w=u,

that is, the mapping from vorticity to velocity, we get
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Corollary 4.1. G) Ifa) U"” # 0 or b) U is in class KT and o > omax, then
1 T
—/ flu (ﬂ”iz dt - 0, whenT — o0
T Jo

for any solution w (t) of (4.1) with w (0) € X.
(i) If U is in class Kt and o = amay, then

1 T
7/ lur (OII7>dt — 0, when T — oo,
0

where uy (t) is the velocity corresponding to the vorticity (I — P1) w (t) with
w(0) € X.

Remark 4.1. More information on the decay of |[u (¢)]|;2 could be obtained by
studying the regularity of the spectral measure of the anti-selfadjoint operator J L
on (X, (L-, -)). In particular, if the spectral measure of J L is absolutely continuous
(i.e. absence of singular continuous spectrum), then when t — oo, w(t) — 0
weakly in X. Asaresult, ||u (¢)|[;2 — 0 whent — oo.

Remark 4.2. Let B = Py in (4.8), i.e., the projection operator to the first N Fourier
modes (in x), then

1 T
?/ IPyo (t)|17,dt — 0, when T — oo. (4.9)
0

This shows that in the time averaged sense, the low frequency part of w tends to zero.
As canbe seen in the proof of Theorems 1.1 and 1.2, this property plays an important
role in the proof of metastability of Kolmogorov flows. In the fluid literature (see
e.g. [5,21]), a dual cascade was known for 2D turbulence that energy moves to low
frequency end and the enstrophy (i.e. ||w|| iz) moves to the high frequency end. The
result (4.9) can be seen as a justification of such physical intuition in a weak sense.

Remark 4.3. The two classes of shear flows considered above are linearly stable
in the L? norm of vorticity (assuming inf K; > 0), in the Liapunov sense. This
follows directly from the conservation of (Lw, w) for the linearized Euler equation
(4.2) and the positivity of L|x. Moreover, these two classes seem to exhaust all the
possible shear flows for which nonlinear stability could be proved by the energy-
Casimir method initiated by Arnold [1,2] in 1960s. We briefly discuss it below
and refer to [17] for more discussions on energy-Casimir method for 2D Euler
equations. The energy-Casimir functional is of the form

H (w) :/(G (a))~|—%|V1ﬁ|2) dxdy,

which is invariant for the nonlinear Euler equation. Suppose ¥o = F (wg), where
Yo = [ (U —Uy)dy and wy = —U". Choose G such that G’ (wp) = —F (wy),
then H' (wp) = 0 and the second order variation is given by

1 [ Bw)?

y 1 1
(H" (@) 8o, 00} = 5 oo T2 Vs |* = 5 (L8, 80)
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for U (y) in class 1 and

(H' (@) 50, 50) = ~ Gl L Gsyp =~ (160, s
(w)éow, w>_§,/_l(2(y)+§| (4 ——§< w, dw)

for U (y) in class 2. In the above, we use the relation

U-—-Us

G (@) = —F (@0) = —

Thus (H " () Sw, Sa)) on X is positive definite for class 1 flows and negative definite
for class 2 flows when & > &max. Then nonlinear stability (in L? vorticity) could be
proved by properly handling the higher order terms. However, if U[;,’/»f (equivalently
K1, K>) changes sign, then the quadratic form (H” (») 8w, dw) is highly indefinite
and the energy-Casimir method does not work. Despite above restrictions, the steady
flows whose stability can be studied by energy-Casimir method do appear often as

observable coherent states in 2D turbulence.

4.2. Unstable Case

The shear flows U (y) in class K" are proved to be linearly unstable when the
horizontal wave number & < amax, see Theorem 1.2 in [10]. In this subsection,
we will prove the inviscid damping on the center space which is complementary
to the stable and unstable subspaces. The proof of linear instability in [10] is by
studying the possible neutral limiting modes and the bifurcation of unstable modes
near them. By using the Hamiltonian structure of (4.2) and the instability index
formula in [15], we can recover this linear instability criterion. Moreover, we get
more detailed information about the number of unstable modes which is important
to study the inviscid damping on the center space.

Proposition 4.1. Consider U (y) in class Kt and o > 0, where 21 /o is the x
period. Let k, be the total algebraic multiplicities of unstable eigenvalues of the
operator J L defined in (4.4). Then k, = n~ (Ag), where Ay is defined in (4.6).

Proof. It is easy to see that the unstable eigenfunctions of J L are in the space X
defined in (4.5). Since on the energy space X, n™~ (L) = n~ (Ag) < 0o, we can use
Theorem 2.3 in [15] to get the index formula

<0 <0 _
ky 4 2ke +2k= +ky =n"(L). (4.10)

Here, k, and k. are the algebraic multiplicities of unstable eigenvalues of J L ly-

. ... . . <0 .
ing on the positive axis and the first quadrant respectively, k;~  is the number of
non-positive directions of L restricted to the generalized eigenspace of imaginary

. . <0 . .. ..
eigenvalues on iR™, and ko~ is the number of non-positive directions of L on
Ey/ker L where Ey is the generalized zero eigenspace of JL. Since JL has no

<
nonzero imaginary eigenvalue, kl.:O = 0. As in the proof of Lemmas 2.7 and 4.1, it

<
can be shown that Ey = ker L and thus k():0 = 0. Therefore (4.10) implies that
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ky =k +2k. =n~ (L) =n~ (Ag).

The space X has an invariant decomposition X = Ujez, 120X ! where

x! = {ei“b‘wl (y), w € L? 1, y2) } .

1
LoIE)
On the subspace X', the operator J L is reduced to an ODE operator J;L; on the
weighted space L | (y1, y2) , where
o
1 2,0\
J=U"ial, L= —(———i—a ) ) . 4.11)
K> (y) dy?

We have a similar counting formula for unstable eigenvalues of J;L;.

Proposition 4.2. Consider U (y) in class Kt and o > oax. Let ky.1 be the total al-
gebraic multiplicities of the unstable eigenvalues of the operator JiL; (0 #1 € Z)
defined in (4.11). Then

kut=n~ (Lo + 12a2) , (4.12)
where L is defined in (4.7).

Proof. Since J; is not a real operator, we can not directly apply the index Theorem
2.3 in [15]. Define the space

V= X' x!

Ky ()

= {COS (lx) o1 (y) + sin (@dx) w2 (3), w102 € L* | (31, yz)},

2
which is isomorphic to the space Y = (L2 O, yz)) . For any

Ky (y)

o = cos (alx) w1 (¥) + sin (alx) wa (y) € Y7,

we have
JLw = (cos (alx) , sin (alx)) J'L! ( Zl ) ,
2
where
I _ 0 alU” I _ L[ 0
J_<—oclU” o ) E=\o )

In the above, the operator L; is defined in (4.11). Thus to study JL on Y}, it is
equivalent to study J'L! on Y. Let kft be the total algebraic multiplicities of the
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unstable eigenvalues of the operator J'L!. Then by Theorem 2.3 in [15] and the
same proof of Proposition 4.2, we have

—— (Ll) =2 (L) =2n" (Lo + l%ﬂ) .
Since the spectra of J;L; is complex conjugate of that of J_;L_;, so
ki = kg + ku -1 = 2k 1,
and this finishes the proof of the proposition. O

Remark 4.4. Let A = ialc be an eigenvalue of J;L; and J;L;w = Aw for some
0 # w € X'. Then the stream function

d2 272 -
vy = <_W +a’l ) w (y)
satisfies the classical Rayleigh equation
d2 U//
(_W +a212+m>¢:0 (4.13)

with Dirichlet or periodic boundary conditions. It was shown in [8] that for U (y)
in class KT, the total number (i.e. geometric multiplicities) of unstable eigenvalues
(i.e. Imc > 0) can not exceed n~ (Lo + [?a?). In [10], it was shown that k,; = 1
when n~ (Lo + l2a2) # 0. The precise index formula (4.12) not only gives an
improvement over previous results, but also is important for studying the dynamics
on the center space (see below).

Denote E* (E") C X to be the stable (unstable) eigenspace of J L, then
dimE’ =dimE" =k, =n" (L).
Moreover, by Corollary 6.1 in [15], L|gsgE« is non-degenerate and
n” (E*®E")=dimE"=n"(L). (4.14)

Define the center space E€ to be the orthogonal (in the inner product (L-, -)) com-
plement of E® @ E" in X, that is,

E‘={weX| (Lo,w1) =0, Vo1 € E* ®E"}. (4.15)
Then we have

Lemma 4.2. The decomposition X = E* ® E* @ E€ is invariant under J L. More-
over, n~ (L|gc) = 0 and as a consequence L|ge/yer 1 > 0.

Proof. The invariance of the decomposition follows from the invariance of (L-, -)
under J L. By (4.14), we have

n~ (Llge) =n" (L) —n~ (E°® E") =0,

and thus LlE‘/kerL >0. 0O
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Since E* is invariant under J L, we can restrict the linearized Euler equation on
E*€. The linear inviscid damping still holds true for initial data in E€. Denote P; to
be the projection of X to ker L. By the same proof of Theorem 4.1 and Corollary
4.1, we have the following:

Theorem 4.2. Suppose U (y) is in class KT and a < amax. Then :
(i) If ker L = {0}, then

1 T
7/ lu (0)113, dt = 0, when T — oo,
0

for any solution w (t) of (4.1) with w (0) € E€. Here, E€ is the center space defined
in (4.15).
(ii) Ifker L # {0}, then

1 T
?f [lui (f)||iz dt - 0, whenT — oo,
0

where uy (t) is the velocity corresponding to the vorticity (I — P1) w (t) with
w (0) € E°.

Remark 4.5. Above theorem suggests that the dynamics of solutions of the lin-
earized Euler equation on the center space E° is similar to the stable case.

The invariant decomposition X = E® @ E" @ E° can be used to prove the
exponential trichotomy of the semigroup e’’~. We refer to Theorem 2.2 in [15]
for the precise statement. The next natural step is to construct invariant manifolds
(stable, unstable and center) for the nonlinear Euler equation, which will give a
complete description of the local dynamics near ug = (U (y), 0). The stable and
unstable manifolds near any unstable shear flow were constructed in [14]. The
construction of center manifold is under investigation. Once constructed, on such
center manifold, the positivity of L|gc (Lemma4.2) could be used to prove nonlinear
stability of solutions on the center manifold.

Remark 4.6. Recently, in [16], the stability of class Kt shear flows under Cori-
olis forces was studied. By using the Hamiltonian formulation and the instability
index formula, the sharp stability condition can be obtained for some shear flows.
Moreover, the linear damping as in Theorems 4.1 and 4.2 was proved for non-shear
initial data.

Appendix

Lemma 4.3. Let U (y) € C? (y1, y2), where —o0 < y; < yp < oc. Consider the
Rayleigh equation

d2 ) U’
_ —o, 4.16
( dy2+oz +U_C>1ﬂ (4.16)

with the periodic boundary condition

v =y, v o) =v"(n),
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or the Dirichlet boundary condition

Y1) =v¥ () =0.

If (4.16) has a neutral solution with a > 0, ¢ € R and ¢ € H? (y1, y2), then ¢
must be an inflection value of U.

Proof. First, we show that ¢ must be in the range of U (y). Suppose otherwise ¢ >
max U or ¢ < min U. Assume ¢ > max U. For the Dirichlet boundary condition,
since U — ¢ < 01in [yy, y2], by the proof of Lemma 3.5 of [10], ¥ = O in [y1, y2],
which is a contradiction. For the periodic boundary condition, (4.16) implies that
%?2 — % has a negative eigenvalue —a?. Let g < —a? < 0
be the smallest eigenvalue of L, then the corresponding eigenfunction ¢ can be
taken to be positive. The equation Lo = Ao¢ can be written as

(U=0c)¢' —U'$) =—xo (U —0) .

Integrating above from yj to y; and using the periodic boundary condition, we have

the operator Ly = —

»
/ (U —c)¢pdy =0,
Vi

which is a contradiction again. Therefore ¢ must be in the range of U.

Letz) < 22 < -+ < 2k (ke 2 1) be the zeros of U (y) — ¢ in [y, y2]. We
claim that there exists 1 < k < k. such that v (zx) # 0. For the Dirichlet boundary
condition, this follows by Lemma 3.5 of [10]. For the periodic boundary condition,
suppose otherwise ¥ (zx) = Oforallk =1,2,...,ke. Let zg 41 = 21 + y2 — y1
which is the translation of z; by one period. Then U — ¢ takes the same sign on
each interval [zi, Z,~+1], i =1,2,...,k;, and ¥ = 0 at the end points. By the
proof of Lemma 3.5 of [10], it follows that ¥ = 0 in all the intervals [z;, zi11].
Thus ¥ = 0 in [yj, y2], which is a contradiction. Let 1 < ko < k. be such that
¥ (zx,) # 0. Then we must have U” (z,) = 0, that is, ¢ = U (zx,) is an inflection
value. Suppose otherwise, then U” (zx,) # 0 and thus UU—_//Cw is notin L}  near
Zky» Which is in contradiction to the Rayleigh equation (4.16) and the assumption
that ¢ € H?. This finishes the proof of the Lemma. 0O

Remark 4.7. The above lemma shows that for general shear flows U (y), any H?>
neutral mode must have its phase speed c to be one of the inflection values. This fact
is used in section 4 to exclude embedded eigenvalues and to obtain the instability
index formula (4.12) and the positivity of L|gc. In [10,12], it was shown for a
class of shear flows (called class F in [10]) that any neutral limiting mode (i.e.
the limit of a sequence of unstable modes) must be in H? and therefore the phase
speed must be inflection values. These neutral limiting modes are important for
finding linear stability/instability criteria since they give the transition points for
stability/instability.

The flows U (y) in class F (see [10] for definition) include any monotone flow,
class KLt flows, and more generally, any U (y) satisfying an ODE U” = k (y) g(U)
for some k > 0 and any g. However, for shear flows not in class F, the limiting
neutral modes might be singular (i.e. not in H2). Such singular neutral modes might
have their phase speeds as ¢ other than the inflection values.
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