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Abstract

We prove nonlinear modulational instability for both periodic and localized
perturbations of periodic traveling waves for several dispersive PDEs, including
the KDV type equations (for example the Whitham equation, the generalized KDV
equation, the Benjamin—Ono equation), the nonlinear Schrédinger equation and the
BBM equation. First, the semigroup estimates required for the nonlinear proof are
obtained by using the Hamiltonian structures of the linearized PDEs. Second, for
the KDV type equations the loss of derivative in the nonlinear terms is overcome in
two complementary cases: (1) for smooth nonlinear terms and general dispersive
operators, we construct higher order approximation solutions and then use energy
type estimates; (2) for nonlinear terms of low regularity, with some additional
assumptions on the dispersive operator, we use a bootstrap argument to overcome
the loss of a derivative.

1. Introduction

The modulational instability, also called Benjamin—Feir or side-band instability
in the literature, is a very important instability mechanism in lots of dispersive and
fluid models. It has been used to explain the instability of periodic wave trains
to self modulation and the development of large-scale structures such as envelope
solitons. Modulational instability has been observed in experiments and in nature,
for many physical systems. The first theoretical understanding of modulational
instability arose in the 1960s, in the works of BENJAMIN and FEIR [4] for water
waves and independently by LIGHTHILL [27], WHITHAM [32], ZAKHAROV [33] for
various dispersive wave equations. We refer to the review [34] for more details on
the history and physical applications of modulational instability. In recent years,
there have been lots of mathematical works on the rigorous justification of linear
modulational instability for various dispersive wave models including the KDV type
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equations, the nonlinear Schrédinger equation, the BBM equation etc.. In particular,
the modulational instability conditions for perturbations of long wavelength (that is
frequencies near zero) were derived in lots of works [7,8,12,16-18,20,22]. We refer
to the recent survey [6] for more details and references. The modulational instability
for perturbations of high frequencies (that is not near zero) was also considered in
some papers [9,21]. However, there has been no proof of modulational instability
under the nonlinear dynamics of the PDE models. The purpose of this paper is to
provide a proof of nonlinear modulational instability under both multi-periodic and
localized perturbations, for a large class of dispersive wave models
We mainly consider the KDV type equations

dru + 9y (Mu + f(u)) =0, (1.1)
where M is a Fourier multiplier operator satisfyingm(“g‘ ) =a(&)uE)and f(s) €
C!(R, R). We make the following assumptions on the operator M:

(Al) M is a self-adjoint operator, and the symbol o : R + RT is even and
continuous.
(A2) There exist constants m, ¢y, ¢ > 0, such that

c1E]" S a(§) = 2 |&]™, forlarge & (1.2)
nd (€ +p) — a(®)]
lim sup @ +p) —a@ — 0; (1.3)
p—0¢ez, 1+ 5™
or
cllE™ = a ) =clE|™™, forlarge . (1.4)
The assumption (1.2) implies that M is a “differential” operator with
M2 ~ | - [lam, and (1.4) implies that M is a “smoothing” operator with

M am ~ || - Iz2. The assumption (1.3) is clearly satisfied if & € Cc!' (R\ {0)
and

/

lim sup

lEl>oo 1EI™

For the classical KDV equation, M = —8)% (thatis & (§) = |€|%) and f ) =
u®. Other examples include the Benjamin—Ono equation, the Whitham equation
and the intermediate long-wave (ILW) equation, which are all of KDV type with

aé) =&, % and £ coth (§H) — H™!, respectively.
For convenience, we assume mingcg @ (§) > 0, since otherwise, we can always
break M = M + ¢, where M has a positive symbol and ¢ is a constant. Then

in the traveling frame (x — ¢, t), the equation (1.1) becomes
du + 0y (Miu + f(u)) =0.

A periodic traveling wave (TW) of (1.1) is of the form u (x, 1) = u. (x — ct),
where ¢ € R is the traveling speed and u, satisfies the equation

Mue —cue+ f (ue) =a (1.5)
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for some constant a. The existence of periodic TWs of (1.5 ) has been well studied,
and we refer to the book [2] and the references therein. In general, these periodic
TWs are a three-parameter family of solutions depending on period T, traveling
speed ¢ and the constant a. The stability of TWs to perturbations of the same
period has been studied a lot in recent years (for example [1,2,19,22,28]). The
modulational instability is to study the instability of periodic TWs for perturbations
of different periods and even for localized perturbations in R. The equation (1.1)
in the traveling frame (x — ct, t) becomes

U — cd,U + 0, (MU + f(U)) =0. (1.6)
The linearized equation of (1.6) near u. can be written in the Hamiltonian form
o,U = —0y (M—c + f/(uc)) U=JLU, (1.7)

where
J=-08y, L=M—c+ f'(ue). (1.8)

Without loss of generality, we take the minimal period 7 = 2z. By the stan-
dard Floquet-Bloch theory, any bounded eigenfunction ¢ (x) of J L takes the form
¢(x) = etkx Vi (x), where k € [0, 1] is a parameter and v; € L?(T,5). This leads
us to study the one-parameter family of eigenvalue problems

JLe™* v (x) = ak)e v (x),
or equivalently, Jy Lyvr = A (k) vg, where
Jo=— 0y +ik), Ly = My—c+ f(u). (1.9)
Here, My is the Fourier multiplier operator with the symbol «(§ + k).

Definition 1.1. We say that u. is linearly modulationally unstable if there exists k €
[0, 1] such that the operator Ji L has an unstable eigenvalue A (k) withRe A (k) > 0
in the space L%(Toy).

By the above definition and the analytic perturbation theory of the spectra of
linear operators, if kg is an unstable frequency, then all k near k( are also unstable.
Thus there exist intervals of unstable frequencies in [0, 1]. For periodic waves
which are orbitally stable under co-periodic perturbations (that is same period), it
is shown in Proposition 11.3 of [28] that when k is small (that is long wavelength),
the possible unstable eigenvalues of Ji Ly can only be perturbed from the zero
eigenvalue of J L in L? (T>5). The conditions of linear modulational instability for
such long wavelength perturbations had been studied in lots of papers for various
dispersive models (see the references cited at the beginning). In Section 8, we give
some examples for which the linear modulational instability condition is satisfied.

Our first main result is the proof of nonlinear modulational instability under
both multi-periodic and localized perturbations, for a smooth nonlinear term f (u)
and the operator M with a general symbol.

Theorem 1.1. Assume (Al) with (1.2) and (1.3) or with (1.4)-2.3), f €
C* (R) and u. is linearly modulationally unstable. Then we have that
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i) uc is nonlinearly orbitally unstable to (1.6) for multi-periodic perturbations
in the following sense: there exists g € N, 6y > 0, such that for any s € N
and arbitrarily small § > 0, there exists a solution Us(t, x) to (1.6) satisfying
1Us(0, x) — e (X)|| 15 (Ty,,) < 8 and

: §
;Iequr IUs(T°, x) — uc(x + Ylr2t,,,) = 6o

where T® ~ [In§|.

ii) u. is nonlinearly unstable to (1.6) for localized perturbations in the following
sense: there exists 6y > 0, such that for any s € N and arbitrarily small § > 0,
there exists a solution Us(t, x) to (1.6) satisfying ||Us(0, x) — uc(x)||gsR) <
8 and |U(T?, x) — uc(x)|l2ry = 60, where T® ~ |In 3.

For some examples, f (1) is not smooth. Our second result is complementary
to Theorem 1.1, and is about nonlinear modulational instability for non-smooth f
with some additional assumptions.

Theorem 1.2. Assume the symbol o (§) of M satisfies the conditions (Al) and
(1.2)-(1.3) withm = 1 and

1
fe cn+2 (R), wheren > 3 max{1 + m, 1} is an integer. (1.10)

Suppose u. is linearly modulationally unstable. Then u. is nonlinearly unstable
to (1.6) for both multi-periodic and localized perturbations in the sense of Theo-
rem 1.1, with the initial perturbation arbitrarily small in H*" (Tznq) or H** (R).

Remark 1.1. In Theorem 1.2, the regularity assumption (1.10) on f is only used to
prove that the equation (1.6) is locally well-posed in H*" (T274) and u. + H*" (R)
by Kato’s approach (see Lemma 5.2). Assuming the local well-posedness of (1.6)
in the energy space H 7, we only need the following much weaker assumptions on
f to prove nonlinear instability:

f € C'(R) and there exist p; > 1, py > 2, such that

|[fu+v)—f@) = f @u| £C(uls. vls) lul, (L.11)
1
Fu+v)—F@ —fu-— Ef’(v)u2 S C(Juloo s [0]0o) [ulP?,
(1.12)

where F' (1) = fou f (s)ds. The conditions (1.11), (1.12) are automatically satisfied
when f € C? (R).

In the above Theorems, the nonlinear instability for multi-periodic perturbations
is proved in the orbital distance since (1.6) is translation-invariant. For localized
perturbations, we study the equation (1.6) in the space u. + H® (R) which is not
translation-invariant. Therefore, we do no use the orbital distance for nonlinear
instability under localized perturbations.

Below we discuss main ingredients in the proof of Theorems 1.1 and 1.2. For the
proof of nonlinear instability, first we need to establish the semigroup estimates for
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the linearized equation (1.7), more specifically, to show that the growth of solutions
of (1.7) is bounded by the maximal growth rate of unstable eigenvalues of the
linearized operator. To get such estimates, we strongly use the Hamiltonian structure
of the linearized equation (1.7). For multi-periodic perturbations, since L has only
finitely many negative directions, this fits into the general theory developed by LiN
and ZENG [28] and the semigroup estimates follow directly from the exponential
trichotomy property (Theorem 3.1). For localized perturbations, the quadratic form
of L has infinitely many negative modes and we cannot use Theorem 3.1 directly.
By observing that any function # € H*(R) can be written as

1 . .
u(x) = / e’sxug(x)dé, where ug (x) = Xpeze'™ u(n + &) € H* (Tay),
0
and
2 ! 2
||u(x)||1-1-V(R) ~ llug (x) ”HS(Tz )dS, (1.13)
0 T
1
ellLu(x) — / eléxet‘/ngMé (x) dé,
0

the estimate of e’/ L] s (g) is reduced to estimate e'/6L¢| s (T, ) uniformly for & €

[0, 1]. This is proved in [28] for the case when M is “differential” (that is (1.2))
and in Lemma 3.5 when M is “smoothing” (that is (1.4)).

With the semigroup estimates, to prove nonlinear instability we still need to
overcome the loss of derivative of the nonlinear term in (1.6). We use two different
approaches for two complementary cases. For the case of smooth nonlinear term
(thatis f € C* (R)) and general M including both “differential” and “smoothing”
cases, we basically adapt Grenier’s approach in [13] which was developed for
proving nonlinear instability of shear flows of the 2D Euler equation. The idea is
to construct higher order approximate solutions of (1.6) and then use the energy
estimates to overcome the loss of derivative. When the nonlinear term is smooth, the
approximate solution can be constructed to sufficiently high order to compensate
for the roughness of the energy estimates. For the multi-periodic case, the initial
perturbation is chosen to be along the most unstable eigenfunction. For the localized
case, since there is no genuine eigenfunction of J L in L? (R), the initial perturbation
is constructed as a wave packet concentrated near the most unstable frequency.

When the nonlinear term is not smooth, we cannot use the approach of con-
structing higher order approximate solutions. Instead, a totally different approach
by bootstrap estimates is used to overcome the loss of derivative when f is C! with
the growth conditions (1.11), (1.12) and M is “differential” with m = 1in (1.2) .
First, the invariance of the energy functional is used to show that H 7 norm of the
unstable solution has the same growth as the > norm. Then we estimate the growth
of H~! norm with the help of the semigroup estimate e’/ ~|,,-1. The estimates are
closed by interpolating H~! and H 7 to get back to L2. The loss of derivative in
the nonlinear term dy f (1) is overcome by observing that

19x f @Il g1 = ILf @)llg2,
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which is controllable in H 7 . To get the crucial semigroup estimate e’/ %| -1 used
in the above bootstrap process, by duality it is equivalently to estimate e’ | Hs
which is then related to ¢’/Z by certain conjugate transforms. The proof is much
more involved for the localized case. By using the norm equivalence (1.13), this
is reduced to estimate e'“¢7% | ;1 p, y uniformly for & € [0, 1]. This is done by a
careful decomposition of the spectral projections of L near 0 and away from 0. We
note that the idea of overcoming the loss of derivative by bootstrapping the growth
of higher order norms from a lower order one was originated in [15] for the Vlasov-
Poisson system. This approach was later generalized to prove nonlinear instability
for other models including 2D Euler equation [3,29] and Vlasov—Maxwell systems
[30]. Here, our approach of bootstrapping the lower order norm (H ’]) from a

higher order norm (H %> and then closing by interpolation seems to be new. This

idea coupled with the H ! semigroup estimates could be useful in other problems
involving the loss of derivative.

Besides the KDV type equations, modulational instability also appears in semi-
linear models such as BBM and Schrodinger equations. Since there is no loss of
derivative, the nonlinear instability can be proved by ODE arguments. The required
semigroup estimates can be obtained similarly by using the Hamiltonian structures.
As an example, we consider BBM equation in Section 7.

This paper is organized as follows. In Section 2, we study the regularity of
unstable eigenfunctions. In Section 3, we prove the semigroup estimates used in the
proof of nonlinear instability. In Sections 4 and 5, the nonlinear instability for multi-
periodic and localized cases is proved by constructing higher order approximate
solutions. In Section 6, we prove nonlinear instability by bootstrap arguments. In
Section 7, we prove nonlinear instability for BBM equation. In Section 8, we list
some models for which our theorems are applicable.

2. Linear Modulational Instability

In this section, we prove the regularity of the unstable eigenfunctions of Ji L.
In the proof below and throughout this paper, we use g < & (g, h 2z O) to denote
g < Ch, for a generic constant C > 0, which may differ from one inequality to
another. First, we consider the case when M is a “differential” operator as in the
case of the KDV, the Benjamin—Ono and the ILW equations.

Lemma 2.1. Assume (1.2). If f € C*® (R) and vi(x) € L*(Tay) is an unstable
eigenfunction to Ji Ly with k € [0, 1], then vy € H*(T2y) for every s € N.

Proof. By assumption, there exists A (k) with Re A (k) > 0 such that
JeLgvg = (k) v, ve(x) € L*(Taz), 2.1)

where Ji, Ly are defined in (1.9). It is easy to see that Ji is a skew-adjoint operator
and Ly is a self-adjoint operator. Taking the real part of the L? inner product of
(2.1) with Lyvg, we get the following “conservation law’:

Re (Mg, Lrvr) = Re (JrLrvg, Lrvg) = 0.
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Since Ly is self-adjoint, (vg(x), Lrvr(x)) is real. It follows that
(Re ) {vg, Lyvg) = 0.
Noting that Re A > 0, we have
(vk, Lyve) = (0 (), (¢ = My — f'(ue)) v (x)) = 0,

that is

c/ v () v (x) dx —/ v () Mpvp(x) dx —/ Ve () f/(ue)ve(x) dx = 0.
Tor Tar

Ton

It follows immediately that

[(Mivie, ve)| = |c/T2ﬂ v ()i (x) die] + |fT2ﬂ v (x) 7 () g (x) dx|
< e+ I @l ok 32, -
Applying M to (2.1), we obtain
My Jk Livk = AMjvg. (2.2)
Taking the real part of inner product of (2.2) with L vg, one has
Re(My Ji Livk, Lrve) = Re(AM vy, Livg).

Note that My is self-adjoint and J; is skew-adjoint, also My and J; are com-
mutable, therefore My J is skew-adjoint. It follows that

Re(MyJi Livk, Lyvi) = 0,
which implies
Re{(AMyvk, Lyvy) = 0.
Therefore, we obtain
(Re ) (Myvr, Miwg) = Re(AMwx, (¢ — f(ue)) vi),

which implies that
1
1Mk, S (04 17 @l g1, JIME 020,
and

2 2
1o e () S WMV vidl S vkl 72, -
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In the above, we use the estimate

[(Myvk, f/ue)ve)| < HM" (f (ue)vr)

1
. MG vell 2
L

1
M vell 2

< | £ evie|

H? (Ta)
1 @ g D0kl | DM il 2
< @ ot o, IV o,
Similarly, one can show that
vkl s (To) = CO Nkl 2Ty,
foranys e N. O

In the next Lemma, we prove the regularity of unstable eigenfunctions when
M is a smoothing operator satisfying (1.4) as in the case of Whitham equation. We
need the following assumption on the periodic TWs of (1.1):

¢ = |1f we)llLoo(Tyy) = 80 > 0, (2.3)

which was assumed in [11, 18] to show the regularity of TWs of Whitham equation.
This assumption is satisfied for small amplitude waves of the Whitham equation
(see Section 8.1). By a similar proof as in [11,18], we can show that u, € C*®
under the assumption (2.3) when f € C*° (R).

Lemma 2.2. Assume (1.4) and 2.3). If f € C*® (R) and v € L%(Toy) is an
unstable eigenfunction of JyLy with k € [0, 1], then vy € H*(Tay) for every
s eN.

Proof. Step 1: We first prove that under the assumption (2.3), for any integer s = 0,
there exists a constant C(s), such that for any ¢ € H*(T2,),

[k 4 D) ' D@l s (Tayy £ CEN DI s (T (2.4)

where D = — (0, + ik) (c — f’(uc)).
Define an inner product [-, -] by

[, v] = (u, (c = f'(ue)v).
One can check that
[Du, v] = —[u, Dv],

that is D is skew-adjoint in the inner product [-, -]. For any u € Dom(D) =
H! (T27),denote v = (A + D)u € Lz(Tzﬂ), then one has

v, ull = [Re[(A + Dyu, ull = Re M)[u, ul.
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Also, by the Schwartz inequality, one has
v, ull < [v, 01" [, u]'/2.
It follows that
IO+ Dyullz2er, ) = ReMullzacr,. e

where || - [l72(r,.,, = [ /2. Note that ¢ — || f'(uc)|lLo(Ty,) = 80 > 0, so
L?(Tay) ~ L?*(Tay). Thus, A 4+ D is invertible and (A + D)~! is bounded from
L?(T) to L*>(T2y,). Taking the inner product of the equation v = (A + D)u with
Du, we obtain

[v, Du]l = Alu, Du] + [Du, Du],

which implies that || Dul| 2T, ) < C|vll L2(T,,) for some constant C. Hence, we

have that (A + D)~! is bounded from L?(T2;) to H'(T55), from which it follows
immediately that (A + D)~! D is bounded from H'(T,,) to H'(T2,). Also, (A +
D) 'D =1 —x(x+ D)~ !isbounded from L? to L?.

We now prove (2.4) by induction. Suppose it is true for 0 < s < [. Let ¢ =
(A + D)~ D¢, then

A+ D)y = Dé¢.
From
Ay + 0Dy =0 Do,
we get
ol = 0+ D)7 [0 Dg + (D3] — 8LD)w ]
It is easy to check the following commutator estimate:
1D, — o, DYVl 2 < COIIY -
Therefore,
I+ D)~ (D3 — 3, DIl g1 < COIY Il
Also,
10-+ D)~ 0, Dl 1
<G+ DY Dol + 1+ D)7 (81D = Do} ) Bl
<) (I8¢l + 1 (8,0 — DAL ) 61,2
SC) 1l g
Thus, we obtain

1959 1 = COUBl gt + ¥l g1) < C () 11l g



J1IAYIN JIN, SHASHA L1A0 & ZHIWU LIN

by the induction assumption. This finishes the proof of (2.4).
Step 2: From (2.1), one has

JitMypvr — Dy = Ay,
and thus
ve(x) = O+ D)~ kMg (x) (2.5)
=04+ D)'D(c— flw)” Mp(x).

Let B = (A + D)"'D(c — f'(u.))~!, then we have vy (x) = BMjuvr(x). Since
f ) e C®and ¢ — f'(u;) = 8o > 0, by (2.4) B is bounded from H*(T,,) to
H?*(Tyy), for any integer s = 0. By using the interpolation theory, B is bounded
from H*(T5;) to H*(T,;) for any s = 0, so we have

| BMyvg () | lm (1) = C I Mrvk (O (1) = Cllok O 2T, )-
Repeatedly using the identity vi (x) = BMjvg(x), we arrive at

Uk (x) = BMyvg(x) = BMgBMyvg(x) = - -+ = (BMy)" v (x),
which implies that

[0 GO imm (1) S C @) 10k ()l 2Ty, )-

Since n € N is arbitrary, this finishes the proof of the lemma. O

3. Semigroup Estimates

In this section, we consider semigroup estimates for ¢’/ [equivalently, for
the linearized equation (1.7)], which will be used in later sections to prove non-
linear instability. First, we consider the estimates in both multi-periodic space
HS (Tznq) and localized spaces H*® (R), with s = 7. Such estimates are given
in Section 11.4 of [28] and we only sketch them here; they are obtained by using
the theory in [28] for general linear Hamiltonian PDEs which we describe below.
Consider a linear Hamiltonian system

u=JLu, ueX,

where X is a Hilbert space. Assume the following:

(H1) J : X* — X is a skew-adjoint operator;

(H2) The operator L : X — X™ generates a bounded bilinear symmetric form
(L-,-) on X . There exists a decomposition X = X_ @ker L @ X satisfying
that (L-,-) |x_ <0, dimX_ =n~ (L) < o0, and there exists §; > 0 such
that

(Lu,u) = 81 |lul|% , foranyu € X,;
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(H3) The above Xy satisfy
keriy oy ={f € X" | (fiu)=0,Vu e X_® X4} C D(J),
where i;+@ x_ 1 X* — (X4 @ X_)* is the dual operator of the embedding
X, ®X_-

The assumption (H3) is automatically satisfied when dim ker L < o0, as in the
case of this paper.

Theorem 3.1. [28] Under assumptions (HI1)—(H3), J L generates a C° group e'’*
of bounded linear operators on X and there exists a decomposition

X=E"®E‘@QE’, dmE"“=dmE* <n (L)
satisfying:

i) E*, E® and E€ are invariant under el
i) E={ue X|{Lu,v) =0, Yv € E' ® E"};
iii) let Ay = max{Re A | A € o (JL|gu)}, there exist M > 0 and an integer ko = 0,
such that

‘etJL|ES g M(l + tdim E’Tfl)ef)nul" V¢ z 0,
X . (3.1
e E | pulx £ M+ (|9 E DM v <0,
le"E|gelx £ M(1+1t[*), VieR, (32)
and
ko <142 (n_(L) — dim E“) .
Moreover, for k > 1, define the space X* C X to be
x* =D<(JL)") ={ueX | (JLYueX n=1,- k)
and
lall e = llull + [T Lall + - - - + 1 (T L)Eull. (3.3)

Assume E"S C X k, then the exponential trichotomy for X K holds true, and X ks
decomposed as a direct sum

xk=E" @ Ef ® ES, E{ = E° N X,
and the estimates (3.1) and (3.2) still hold in the norm X*.

By using the above Theorem, we prove the following estimates for the linearized
equation (1.7):

Lemma 3.1. Consider the semigroup e”" associated with the solutions of (1.7),
where J, L are given in (1.8). Then we have:
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1) (differential case) Assume (1.2), (1.3), the exponential trichotomy in the sense
of (3.1) and (3.2) holds true in the spaces H* (Tzﬂq) (s 2 %.q¢€ N);

ii) (smoothing case) Assume (1.4)—(2.3), then the exponential trichotomy of e
holds true in the spaces H* (Tzﬂq) (s 20,q € N) .

tJL

Proof. It suffices to check the assumption (H2) in Theorem 3.1, since (H1) is obvi-
ous and (H3) is automatic due to dim ker L < oo.

For 1), the quadratic form (L-, -) is bounded in the space H 7 (T274)- The oper-
ator L is a compact perturbation of M, whose spectrum in H™ (Tgﬂq) are positive
and discrete. Therefore, L has at most a finite number of negative eigenvalues, that
is,n™ (L) < oo. Thus, the exponential trichotomy of e’/ is true in H 7 (T2,,). By
the proof of Lemma 2.1, any stable or unstable eigenfunction of JL in Lz(Tznq)
lies in H* (Tax,) for any s > 0. Therefore, the exponential trichotomy of '/ is
also true in H*® (Tzﬂq) forany s = 7.

For ii), the quadratic form (L-, -) is bounded in the space Lz(']I‘an). Under the
condition (2.3), the operator —L is a compact perturbation of the positive operator
¢ — f'(uc), thus n= (—L) < oo. Applying Theorem3.1 to JL = (—J) (—L),
we get the exponential trichotomy of e'/% in L?(T2x4) and in H* (T2x4) (s = 0)
by the regularity of stable and unstable eigenfunctions of JL in Lz(Tzﬂq) as in
Lemma2.2. O

As an immediate corollary of the above lemma, we get the following upper
bound on the growth of the semigroup e’/ ~:

Corollary 3.1. Let Ly be the growth rate of the most unstable eigenvalue of JL
on Lz(Tzﬂq). Then under the conditions of Lemma3.1, for any ¢ > 0, there exists
some constant Cg such that

(JL H < Coe®otor |
e S Cee , foranyt > 0,
H (Targ) —

where g € N, s 2 so with so = %5 for case i) and so = 0 for case ii).

The above semigroup estimate implies the following lemma for the inhomoge-
neous equation (for convenience, we use T for Tz ):

Lemma 3.2. If |lg (t) lgs(ry < Cge™, for some s 2 so and w > Ao, then the
solution to the equation

oou=JLu+g, ulj= =0
satisfies
el s Ty S Cge™”.
Proof. Using Corollary3.1 with ¢ = % (w — Xg), we have

1
HeuLH < o3 otw)r

HX
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Then

t
nu<on;p<w>==H/£ eI Lg (5)ds

H*(T)
t
</ e%(koer)(tfs)C eWds < C ewt
~ 8 = 8 .
0 w— Ao
O

To prove nonlinear instability for localized perturbations, we need to study
the semigroup ¢’ on the space H* (R) (s > %) In general, the operator L has
negative continuous spectrain H* (R). For example, when M = —aﬁ, the spectrum
of L = —3% +V (x) with a periodic potential V (x) is well studied in the literature
and is known to have bands of continuous spectrum. Thus Theorem 3.1 does not
apply. However, we can prove upper bound estimate of ¢//% on H* (R), which
suffices for proving nonlinear localized instability. We will need the following
lemma to estimate '/~ on H* (R):

Lemma 3.3. Suppose h(k, x) € H}(T) for any k € I, where I is a measurable set
contained in an interval with length less than or equal to 1. Then |’ 1 hik, x)el** dk e
H}(R) ifand only if || h(k, x) | g3 (T) € L% (I). More precisely, there exist constants
Ci(s), Ca(s) > 0, such that

hk, x)e'™™ dk
|/ |

2
>C Rk, x)||%s o dk,
Wm,lwﬁn(mmw

and

” f h(k, x)e'™ dk)
I
Proof. First, we write i(k, x) as a Fourier series:

h(k,x) =Y hk, j)e’™.

J€EZ

2
<c Rk, x) || %5 o, dk.
Wm_zmﬁu(mm®

By direct computations, we have
N f h(k, x)e'* dk
1

N / DGk + ) hik, eV k=) / (i) Rk — j, je™ dk
1 I,

J€EZ jez ="

=> / (k) Xy, () — j, je™ dk
R

JEZL

f > (k) Xy ok — j, j) | €™ dk
JEZ
\
> kY X (ohtk— j, j) | (o),

JEZ
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where

1 ifkel;

=1+, X,k = :
=14 ® {0 ifk¢ I

Note that / is contained in an interval with length no more than 1, therefore /; are
disjoint with each other, which implies that X7; A7, = 0 almost everywhere, if
Jj1 # j2. Then by Parseval’s identity, we have

9% [ bkt aki g

= 1 DGR Xy 0=tk = J. D7, = /R > 712, 01 k1™ [htk — j, j)1 dk

JEZ JjEZ

=% [ W R Pk = [ Y e P ik )P d
JEeZ 1 IjeZ

~ [ U i P a.
IjeZ

Then the desired result follows. O

Now, we are ready to prove the upper bound estimate of ¢’/ on H* (R). The
following semigroup estimates were proved in [28] for the “differential” case (1.2).
Lemma 3.4. [28] Assume (1.2), (1.3). Let Ay = 0 be such that

Rex S Xo, VE€[0,1], A € 0(JeLe). 3.4
Then for every s 2 %, & > 0 there exist C(s, &) > 0 such that
e Fu) @y < Cls, e u) | ey, V1 >0

forany u € H*(R).

For the Whitham type equation, we have the following similar result:

Lemma 3.5. Assume (1.4)—(2.3), then for every s = 0 and ¢ > 0 there exists
C(s, &) > 0 such that

le"" P u@) sy < C (s, &)X u) gy, Yt > 0 (3.5)
for any u € H*(R). Here, Ag is the largest growth rate as defined in (3.4).

Proof. The proof is similar to that of Lemma 3.4 (or Lemma 11.2 in [28]). We
sketch it here. First, for any u € H*(R),

1
u(x) = / "% ug (x)dg; where ug (x) = Syeze™i(n + £) € H*(Tay),
0
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and # is the Fourier transform of u. By Lemma 3.3, there exists C > 0 such that

1 1
ol ) = /0 e () g5 myr) 48 S Cllulfgs gy (3.6)

Note that
1
etJLu(x) — / elf)cethLguéE (x) dt,
0

and thus 1
e Fu () 175 gy = /0 le" s eus () s, ) dE- (3.7)

So to prove (3.5), it suffices to show that: forany &, s = 0, there exists C (s, ) >
0 such that

le" s v () [l s () < C s, &)X v () s (1,), ¥E €[0,1]. (3.8)

It suffices to prove the lemma for s = 0 since the estimates for general s = 0 can be
obtained by applying Jg L¢ repeatedly to the estimates for s = 0 (and interpolation
for the case when s is not an integer). Due to the compactness of [0, 1], it suffices
to prove that for any &y € [0, 1], there exist C, & > 0 such that (3.8) holds for
& € (& — ¢, &0 +¢). We first note that each A € o (Jg, Lg,) is an isolated eigenvalue
with finite algebraic multiplicity and Lg, is non-degenerate on Ej when A # 0 and
on Eo/(Eo Nker Lg,), where Ej, is the generalized eigenspace of the eigenvalue A
of Jg,Lgy. By (2.3), n™ (—Lg) < o0. Let

A=|reo(gLls) | 38> 05t (—Lgv, v) = 8|v]|* on E; }.

By the instability index formula (Proposition 11.2 in [28]), o (Jg,Lg,))\ A is finite
and thus

n= E}LGU(‘]EOL&))\A dim E; < oo.
Moreover, there exists g > 0 such that 2 N A = @J, where
Q = Uieo (g Ley\afz | [z — 2] < g0} C C.
Assuming for a moment that
the resolvent (A — Jz Lg) ™! is continuous in & € [0, 1], (3.9)

we now prove (3.8) for £ in a small interval near &y. Indeed, by (3.9), there exists
& > O suchthat 9Q2 No (JgeLg) = P forany & € [§9 — &, & + €]. For such &, let

1
PE) = T?g (= JeLe) \dh, Ze = POX. Ye = (I — P(€)X.
Tl a0

which are continuous in £ and invariant under ¢!/¢%¢ . Therefore dim Zg = n. By
the definition of £2, we know that —Lg, |y, is positive definite. Then the continuity
of L¢ in & implies that there exists §o > 0 such that

852102 = (—Lev, v) 2 83IIvlI%, Vv € Ye, |E — &l S e
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Thus for any & € [&y —¢, &9+ €], there exists a generic constant C > 0 independent
of & such that, for any v € L? (To,),
le" 5B v)| < Jle' e Pl + [l s (1 — P &)
SC((+ M IPEW] + (~Lee s (1= P©)v, e (1 = P©)))?)
1
<O+ M IPEV]+ (~Le(1 = PO, (1 = P@)v)?)
SC(1+ 1M o]l 2 £ C () e ]| 2.

Along with the compactness of [0, 1], this implies estimates (3.8) and (3.5).
It remains to prove (3.9) about the continuity of the resolvent. Fix k € [0, 1].
For k' near k, we have

JoLp — JiLy = =0y + ik)(Mp — M) —i(k" — k) (M —c+ f'(ue)) .

Let D = —(9y + ik) (¢ — f'(uc)). Then by (2.3) and the proof of Lemma2.2, for
any ag > 0, (ap — D)_l : L? — H' is bounded, so

@ = D)™ e = JeLi)

2—>Oask—>k/. (3.10)

L2—>L
Moreover,
I+ (ag— D) ' O — JkLy) = (ag — D) O+ ag + 8y + ik) My)

is compact in L2, Therefore A = (ap — D)_1 (A — JkLy) is a Fredholm operator
of index 0. Suppose A ¢ o (JiLy), then A is injective and thus A~! is bounded on
L2, Along with (3.10), we obtain

|(h — JkLi) " (T Ly — kL)l = |A™ (@g — D) (U Ly — Jk L)l — 0
as k' — k. From

A= JuLp = 0= JeL) (1= = L) ™ U Lie = JeLo))

we obtain the continuity of the resolvent (A — JeLy)~Vin k € [0, 1]. This finishes
the proof of the lemma. O

The following is an analogue of Lemma 3.2:

Lemma 3.6. If

wt

g @) llas®) < Cgl_’_—tb, 120

for some b > 0, s 2 sg and w > A, then the solution to the equation
oou=JLu+g, ulj= =0

satisfies

ewt
t=>0

ull gs <CC,——,
el gsry < STy 12
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Proof. Choose ¢ = % (w — Ap) in Lemma 3.5, then ||e’JL HHS < 2 G0+t Thyg
we have

t
@l < [ ] g 6 0
0 "

t 1 ews
</ o Gotw)a—s) ds
~ 0 1+Sb

1 ewt

t
zewt/ o3 Go—w)(t=s) ds < ’
0 1+ Sh 1+ lb

since w > Ag. 0O

Lastly, we prove the semigroup estimates in the space H~', which will be
used in the proof of nonlinear instability for non-smooth nonlinear terms. First, we
consider the estimates for periodic perturbations.

Lemma 3.7. Consider the semigroup e'’* associated with the solutions of (1.7),
where J, L are given in (1.8). Assume (1.2), (1.3) or (1.4)—(2.3), then for any
& > 0 there exist C(g) > 0 such that

e u g-1(7,,,) < C@EXFT u) g1 (1,5 Y2 >0
foranyu € H_I(Tznq).
Proof. Since (JL)* = —LJ, by duality it suffices to show that

||e’LJ||H1(T2”q) < Ce)e™td v > 0. (3.11)

Denote P? and P! = 1 — P9 to be the projection operators to ker L and (ker L)* =
R (L) respectively. For any v € H! (T27g), letv = PY% + P'v = v; + vy. Then
the equation d,v = LJv can be written as

ov1 =0, vy =LJvy+ LJvs. (3.12)
Since L1 = L|g() : R(L) — R (L) has a bounded inverse and
LIlgay = LiP'JLILTY, ek = [ plet/E g LT,

by Lemma 3.1 we have

ko | < e L g H < C(g)eotor
H! Hltm
for the case of (1.2), and
e LR < et”‘|R(L) ” < C(e)ettotor
H! H!

for the case of (1.4)—(2.3). By (3.12), we have v () = v (0). Thus
t
Iz Ol < et 0m, @]+ / ettt v ) as
H! 0 H!

< C(e)e™ ) ([luy ()l 1 + llvr (0) ]| 1)
< C()e™ T [y (0l 1,

which implies (3.11) and the lemma. 0O
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In the next lemma, we consider localized perturbations.

Lemma 3.8. Consider the semigroup ¢'’L associated with the solutions of (1.7),

where J, L are given in (1.8). Assume (1.2) or (1.4) and (2.3), then for any ¢ >
0 there exist C (&) > 0 such that

e Fu) -1y < C@eX M u)ll -1 r)s V1 >0
foranyu € H-'(R).
Proof. By duality, it suffices to show that
"™l ) < Cle)eotor,

As in the proof of Lemmas 3.4 and 3.5, it is enough to show that for any ¢ > 0,
there exists C (¢) > 0 such that

lle ™ %5 u ) | g r,y < C @)X Nu @) | g1,y (3.13)

is true for any & € [0, 1] and u € H! (T25). By compactness of [0, 1], again it
suffices to prove that for any &y € [0, 1], there exist C, ¢ > 0 such that (3.13) holds
for & € (&g — ¢, & + ). We consider two cases below.

Case 1 (Lg, is invertible): In this case, there exists & > 0 such that Lg is
invertible for & € (§9 — €, &y + €), so we have

HetLglg H — H Lgetfng LS—I H < “ethLg H S C(E)e()\0+8)t

H'(T2z) HY(T27) ™ HWm(Tyy) —

for the case of (1.2), and

HetLg.lg H — H LgethLsL71 H < Hetlng H < C(S)e()n()Jrs)t

H'(T2z) HY(T22) ™~ HY(T27) —

for the cases of (1.4) and (2.3). In the above, we use the estimate (3.8), which is
true for both cases of (1.2) and (1.4)—(2.3).

Case 2 (Lg, is not invertible): In this case, ker Lg, # {0}. It is possible that L
is invertible for & near &y. For example, when M = —8%, it was shown in Remark
11.1 of [28] that L¢ has zero eigenvalue if and only if £ = 0, 1. However, for &

near &, there is no uniform (in &) estimate for Lgl and we cannot argue as in Case
1. We will separate the eigenspaces of Lg (§ near &) for eigenvalues near 0 and
away from 0. Since 0 is an isolated eigenvalue of Lg,, we have that

do = min{|k|, A€o (Lgo)/{O}} > 0.

Let ¢ > 0 be small enough such that when & € (§y — ¢, &0 + ¢),
d
= {zl lz] = ?O} No(Lg) =9.

Denote PSO = 551“ (Z - Lg)_1 dz to be the Riesz projection associated with the
eigenvalues of L¢ inside I', and Pgl =1- Péo. In particular, P%, Pélo are the
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projection operators to ker Lg, and R (Lgo) respectively. By choosing ¢ small, we

can ensure that dim R (PEO ) = dimKker Lg,,

3
in{|Al, A L ==
i o (ki )| 2 5

and

max{Ml, LECT (L5|R<P§)>} <al(e)

with a (¢) — 0 when ¢ — 0. Denote
Eo =ker g, E1 = (ker Lg,)" = R (Lg)
and

Eg=R(PY). Ef =R (P}).

It is easy to show that E f can be written as a graph of a O (¢)-bounded operator

S¢ : Ey — Eo.Thatis, let S = I+ Sg, then E; = S; (Ey). Foranyu € H'(Ta,),
let

u = P§u+Pgu=uo+u1,
then the equation d;u = Lg Jeu becomes
o’ = P)LgJeu® + PP LgJeu', (3.14)
du' = P Ly Jeu® + P/ Le Jeu'. (3.15)
We will show that for any ¢ > 0 there exist C(e), € > 0 such that
1 £
le' s % w1 p, ) < C@eP D ull yiop, ), V1> 0, uc Ej  (3.16)

holds for & € (&9 — ¢, &) + ¢€). Assuming (3.16), we now show (3.13) for & €
(&0 — &, & + ¢). First, by (3.15), we have

Hu‘ ) Hm (3.17)

1
PlLgJ —s)PJLg J,
< Het gheley] (O)HH1 + H/O "Il Pl Ju® (5) ds

H!

t
< C(e) <e<*°+3)’||u1 ©) 1 + f ¢G0T E=911,0 (5 || 1 ds).
0

Since the operator PSOLS Jg is finitely ranked and H PSOLg Je H . < Ca (¢) for some

constant C, from (3.14) we have

t
[0 @], s w0 @], +cae [ Ot 61 as Gy
0
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We choose & small enough such that Ca (¢) < 5. Plugging (3.18) into (3.17), we
get

u' 0], = C'C@eCrD (! ©) 1 +

*o],,)
+ Ca (¢) C(e) /Ote(*ﬁi)(’—” /OS 27140 (7) || 1 dr ds
< C"C(e)e M D u (0) || 1
+ Ca (¢) C(e)elrot3)! /0[ el (1) | /1 et ds dr
.
< C"C(e)e M0 D Ju (0) || 1

t
+ Ca (s)C(e)e(W%)I/ e~ ot D70 (¢) | 1 dr,
0

where C’, C” are some constants independent of . Defining
_ £
y 0y = e Rt @) g,

the above inequality becomes

t
y (1) = C"C@)llu(0) |41 + Ca (S)C(S)/O y (1) dz.

Choose ¢ even smaller such that Ca (¢) C(e) < % Then by Gronwall’s inequality,
we have

y () S C(e)e lu (0) || 1,

that is,

w0 S C@P u ) .
H!
Plugging the above estimate into (3.18), we also get
[ ®] 5 C@e® u ©) 1
H!
Combining the above, we have
e ()11 S C)e™0F [l 0) [l 1,

and thus (3.13) is proved. It remains to prove (3.16). Since

~1
P LeJe| s = Lel pe Py JeLel s <L$|Ef>
and

L

H! > Hl+m ~ dO

—1
(o
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to prove (3.16) it suffices to show that there exist C(¢), € > 0 such that

1Pl JeLe | e
e R < C(e)e®+D) v > 0 (3.19)

Hl+tm

L . 1P} JeLe| &

for & € (& — ¢, & + ¢). Again, it is enough to estimate e Ei on the energy

space H 2 and then apply Pg1 Jg Lg| ¢ repeatedly (and by interpolation) to get the
1

estimates for s > 5. We will study the semigroup generated by Pg1 Je Le| g on

H? via the perturbation of the semigroup generated by P;O JsyLey | E, - First, we

use the transform Sg :Ey - E ‘15 to study the conjugated operators on the same

space E. Notice that (S’g)

1
: Ef — E is exactly the projection operator P;O.
Therefore the S‘g —conjugated operator can be written in a Hamiltonian form:
i—1pl < 1 pl N\ (1Y (N (p1)* 13 7
S¢'PieLel e S = PLPL (P1) (Ph) (3¢) (Pd) LebiSe = JeLe,
where
7 1 pl 1\ (p1\* *
Je = PLPLU (Pg) (Pgo) - (E))* — E
and
~ ~ * 1 * 13
Le=(3) (P!) LePdSe: B — (B
are anti-selfadjoint and self-adjoint respectively. We also write
Pl Je Leo g, = P2 Je, (P2 “(PLY Le P = Ji K
g Y&l E1 = Fgydéo \ T & &0 gy = JEo o>
where
7 1 1 7 1\* 1
T = Pa ey (PA)  Leg = (Pd) LeoPay

We note that the spectra of jg Zg is discrete, n~ (i;) <n~ (Lg) < 00. Moreover,

the maximal growth rate of the eigenvalues of Psl0 JeyLey | g1 is still Ag. Therefore
by the similar proof as in Lemma 3.5 or Lemma 11.2 in [28], to prove the estimate
(3.19) in H%, it suffices to show that the resolvent (A — JNE lig)’l is continuous for
& near &y. We have

jéié_iéoiéoz(jé_jéo> Ly + Jg (is—iso)-
In the above,
7 7 _ pl 0 1 0)\* 1 1\*
Je = Jey = P, (1—PE)J5 (PE0 (1—P§)) — P Jg, (PEO)
1 0 po 1 p1\* 1 p0 p0 151\ )
—PéoPsPsJS(PSOPs> —<PsoPéPsJ$(PsoPs>)
1 1)*
— P (Ve = i) (PY)
O (1§ —&ol) .
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since Je — Jg, = O (I& — &),
PLP)=0(E—&). PPJ:=0(), PAP/ =0().

Also,
Fe—Le = (5) (P LePS — (P L P
£ & = |\ V¢ £ &g O & s 7%
—(P2) (Lt — Ls) P! PIS — P ) L.P)S
= (Pg) (L& — L) Py + (P Se — Pyy) LePeSe
1\* 15 1
+(Pa) Le (P13 - PY).
where

P/S; — Py =P — Py + P/ Sy = 0 (I — &)).

Thus by similar arguments as in the proof of Lemma 3.5 or Lemma 11.2 in [28], we
can show the continuity of the resolvent (A — J¢ ng)_l for & near &y. This finishes
the proof of the Lemma. O

4. Nonlinear Modulational Instability (Multi-periodic Perturbations)

In this section, we prove that linearly modulationally unstable traveling waves
are nonlinearly orbitally unstable under multi-periodic perturbations. First, by the
definition (1.1) of linear modulational instability and the remark thereafter, there
exists an interval Iy C [0, 1] such that for any k € Iy, there exists an unstable
solution e*® e/ ¥y (x) (Re A (k) > 0, vg (x) € L?(T)) to the linearized equa-

tion (1.7). Thus we can pick a rational number kg = g e Iy with p,qg € N.

Then ek0* Uk, (x) is a 2 g-periodic unstable eigenfunction to the operator JL in
Lz(Tznq). This leads us to consider the nonlinear instability of u. in Lz(']I‘znq).
The proof of Theorem 1.1 i) uses the strategy in [13]; constructing higher order
approximation solutions and then using energy estimates to overcome the loss of
derivative.
The following energy estimate will be used in the proof later (we use T for
T2z4 below):

Lemma 4.1. Consider the solution of the following equation:

;v — coyv+ I Mv+ 0 (f(ue + U +v) — f(uc +U)) = R, “4.1)

v(0,) =0,

where U (t,-) € HY(T) and R (¢, -) € H*(T) are given and f € C®(R). Assume
that

sup Ul (t) oy + VIl g2y () = B.
0St<T

Then there exists a constant C (B) such that for0 <t < T,

0 ||U||H2('[r) =CP ||U||1-12(11‘) + ||R||H2(11‘) . 4.2)
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Proof. We write
1
f(uc—i—U—i—v)—f(uc—}—U):/ f (ue +U + tv) dr v.
0

First, taking the inner product of (4.1) with v and integrating by parts, we have

1 1
Eat ||U||%2(T) = - ((/0 f (e +U +tv)dr v) ,v) +(R,v)
X

| 1
=_—/ (/ I (e + U + tv) df) v?dx + (R, v)

2 Jr \Jo x
< CB I O e2(i1< oot cp) ||v||%2(T) + IR 2y vl 2Ty »

where in the above we use the fact that 9, M is anti-selfadjoint and
Wlloo + 18cvll0o < C 0l 2r -

Thus
o vl 2y = C B) vl p2ery + IR 2y - 4.3)

Next, applying 8)% to (4.1) and then taking the inner product with 8§v, we get

1
lat”a;%v”iZ(T) =" ((/ f e+ U+ o) de v) , Uxx) + (Ryx, Uxx) -
2 0 XXX
(4.4)
By direct computation and integration by parts, we can show that for 0 < ¢ < T,
there exists a constant C(8) such that

1
‘((/O F' (e + U +7v) dr v) : v)‘ < CB I Iary-

We only sketch the estimates of the terms involving 3)? v. One such term is

1
‘(f f/(”c+U+Tv) dr vxx/\nvxx)‘
0

1
/ ' (e + U + 1v) driax (vex)? dx
T

1
l/(/ f (e +U +1v) d‘L’) (vey)? dx
2 1Jr \Jo x

< CB) vl g, -

Another term,

1
(/ f(4) (e + U + Tv) ‘53 dT VU, Uxx) >

0
can be handled similarly. Thus by (4.4), we have

0 ||Uxx||L2(11') =CP ”Uxx”LZ('JI‘) + [ Rxx ||L2('Jl‘) )
and combined with (4.3) this proves (4.2). O
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Now we are ready to prove nonlinear modulational instability for multi-periodic
perturbations.

Proof of Theorem 1.11i). Letv, (x) be the eigenfunction associated with the most
unstable eigenvalue A of JL in L2 (T). By Lemmas 2.1 and 2.2, v, € H* (T) for
any s = 0. We construct an approximate solution U%"P to (1.6) of the form

N

UPP(t,x) = uc(x) + Y _ 8/ U;(t, x), 4.5)
j=1
where B
Ui(t, x) = ve(x)e* + vg(x)e™ (4.6)

is the most rapidly growing real-valued 2w g-periodic solution of the linearized
equation (1.7). The integer N is chosen such that (N + 1) Re A > C (1), where the
constant C (1) is the one in the energy estimate (4.2) with 8 = 1.

Now we construct the terms Uy, - - - , Uy in (4.5). By the Taylor expansion
formula,
a al f(k)(uc) algy '
FWP) = flue) =y = | 228U 4.7)
k=1 j=1
A N+1
et T
+/0 7 (1 -1V dr ;5 U, .

Since u, is a stationary solution to (1.6) and U satisfies the linearized equation

0 U1 — coyUp + 0, (MU, + f'(uc)Uy) =0,

by using (4.7) we have
o UMPP — co UPP 4 3, (MUPP + f(UPP))
N
=87 (U} — coxUj + (MU + f'(ue)Uj)
j=2
+axP](uu Ula U21 R U]*l))
NN
+ Z 870xQj(uc; U, Uz, --- , Un)
j=N+1

N N+1
+0x | g (e; Ur, Uz, - -+, Un) Z(SjUj s
=1

where

PV (ue+ T Y 8705
g e U, Uy, -+, UpN) =/ a1 -0V dr,

0 N!
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and Pj, Q; are polynomials of Uy, --- , Uy with degree j such that
k
N N
f(k)(uc) j
> — > sl
k=2 j=1
N NN
ZZ(S]P./(”C; U,Us,---,Uj-1) + Z 8 Qj(uc; U, Uy, -+, Un).
j=2 J=N+1
For j =2,---, N, we define U, to be the solution of
BtUj:JLU.,~+8XR,~(MC;U1,U2’... vUj—l)’ “8)
U;,-) =0. '
Now we estimate U for j 2 2. First, by Lemmas 2.1 and 2.2, we have
1UL @) g ry S CetFeVY, (4.9)

where [ = s + N. By (4.8), U, satisfies the equation
Uy = JLU, + 9, P2(Uy), Uy (0) =0, (4.10)
where P,(U1) = 1 f"(uc)UE. By (4.9), we have
195 P2(UD) | =17y < C (D) €28
Then, it follows from Lemma 3.2 that
U2, )| g1 my < C (D) 2R,
By induction, for each 2 < j < N, we have
18: Py (UL s j—Dll iy < C (D) el FeH,
and then by Lemma 3.2
U, )l grr-smy < C (J, 1) e/ KM

Therefore, there exists a constant C (N, s) such that

U (t, )l gr1-s¢my < C(N, 5)e/ReM for j =1,2,---  N. .11
By the construction of U“’P, we have
QUPP — cd UPP + 3, (MU + f(UPP)) = Rapp, (4.12)
where
NN
Rapp =Y 870:0,(ue; Ur, Uy, -+, Uy)
j=N+1

N N+1
+ 0y | 8 e Ur, U, -+, Un) | Y 87U . (4.13)
j=1
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Leave 0 < # < 1 to be determined and define 7° by eReM’ — . Clearly
7% = O (JIn8|). Choose s = 4 and recall that /| — N = s. Then by (4.11), for any
N+1=<j <NV, wehave
10x @ (ue; Ur, U, -+, Ul scry < C(N, s)e/ REM,
and thus by (4.13),

| Rapp] s < C (N, 5) N FT1eWHDREM - for o <y < 70 (4.14)

Let Us(t, x) be the solution to (1.6) with initial value u.(x) + U (0, x), and let
v = Us — U?PP. Then by using (4.12), one finds that v satisfies the equation

3 — cdyv + 9 M + 9 (f(UPP +v) — f(UP)) = —Rupp
(4.15)
v(0,-) =0.
Define T to be the maximal time such that

1
lvOllg2 = 5 0 <t

[IA

T:.

We claim that 7y > T when 6 is chosen to be small enough. If we suppose that
Ty < T, then for 0 < t < Ty, we have

N N .
[0 —ue] o £ 380 [Us] o S C N9 Y (3R
Jj=1 j=1

co

1-6

[IA
[IA

N =

when 6 is small. Thus we have

sup ”Uapp - Mc” oy @ + Wl g2y () <L
0<i<T HA

By using Lemma 4.1 for the equation (4.15 ), we have

O vl g2 < C () vllg2 + | Rapp | g2 » for0 <2 < 7. (4.16)

Recall that (N 4+ 1) Re A > C (1). Thus by using (4.14) and Gronwall’s inequality,
we obtain from (4.16) that for0 < ¢ < Ty,

vl g2 (1) £ C (N, 5) §V TNV FDReA, 4.17)

Thus

1
vl 2 (T1) < CONT! < 3
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when 6 is small. This is in contradiction to the definition of 77, and so the claim
is proved. Moreover, for 0 < ¢ < T3 < Ty, when 6 is small enough, the estimate
(4.17) is true by the above arguments. Therefore, there exist C1, Ca > 0 such that

|Us (T°, %) = ue (0] 1

2 U (T, %) = e 0 12 = [0 (% 5) [

1\

2
C18eRM ¢, (aeR‘*”‘g) = C10 — C262

1
> (0
2

when 0 is small enough.

It remains to show that above nonlinear instability is also true in the orbital
distance. This can be done by using the argument in [14]. By the previous estimates,
there exists a constant C , such that

U3 (2, %) = e (0) | 2gpy < €O, for0 <1 < T°,
where C may depend on 6, but is independent of §. Denoting
Vi(t,x) = e RMU; (x,1) = 2 (Re vg cos (Im At) — Im v sin (Im Ar))

it is easy to see that for any s = 0, there exist two constants ¢y (s) , ¢z (s) > 0 such
that

0<ci(s) = Villgs S cals).
Let V]l (t, x) be the projection of Vi (¢, x) into Z~+ in the L? inner product, where
Z+ ={ve L*(D) : (v, dyuc) = 0}.
Let h(¢) be such that

1Us(t, x) — uc(x + h())ll 21y = ;IEI% 1Us(t, x) — uc(x + )l 2¢m)-

Then for 0 < t < T?, we have

lue(x) —ue(x +h(@)| L2cT)
< NUs (@, x) —ue )l z2ery + 1Us (2, x) — ue(x + h(O)llz2(m)
< 20|Us(t, %) — ue() 2y < 2€6,

which implies |k (¢)| = O(0). We can therefore write

Ue(x + h) = ue(x) + hoyue(x) + 0(62).
This implies that
(Us(x) — uc(x + h(T%), Vi=(T?, x))|
> [(Us(x) — uc(x), Vi(T%, x))| — 0(6?) = ¢



J1IAYIN JIN, SHASHA L1A0 & ZHIWU LIN

for some cg > 0, when 6 is small enough. On the other hand, we have
(US(T, %) = ucx + h(T), Vi(T?, )|
< dnf U, 2) = e + D2 Vi (T 0lzay.

which implies that

inf IU(T®, x) — ue(x + )l 20m) = C'0
y

for some C’ > 0. This finishes the proof of Theorem 1.11). O

5. Nonlinear Modulational Instability (Localized Perturbations)

In this section, we prove nonlinear instability for localized perturbations. Since
the linearized operator J L (defined in (1.8)) does not have an unstable eigenvalue
in H® (R), we will construct unstable initial data in the form of a wave package of
unstable eigenfunctions of Jy Ly where k is near the most unstable frequency k.
Without loss of generality, we can assume that ko € [0, %] Indeed, if k € [0, 1] is
an unstable frequency in the sense that J;L; has an unstable eigenvalue, then
—k, 1 — k are also unstable frequencies, so we can always pick ky € [O, %] such
that Ji, Lk, has the most unstable eigenvalue A (ko). That is, for any k& € [0, 1],
if JiyLy has an unstable eigenvalue A then ReA < Re (ko). To construct the
unstable wave package, we choose a small interval I C [O, %] near kq. If |7] is
small enough, then any k € [ is still an unstable frequency since Ji L depends on
k smoothly. In the case when Ay is a simple eigenvalue of Ji, Ly, by the analytic
perturbation theory [25] of linear operators, there is a smooth curve of unstable
eigenvalue A (k) of Jy Ly, with k € I. Since Re A (k) is smooth in the vicinity of ko,
and Re A (k) obtains its maximum at kg, there exists an even number / > 2, such
that

[Re(V)] (ko) = --- = [Re(W)]"™V (ko) =0, [ReM)]? (ko) <0.  (5.1)

Now consider the general case when A, is a multiple eigenvalue of Ji, L.
Since the eigenvalues of Ji Ly are all discrete, we can use the analytic perturbation
theory [25] of eigenvalues of matrices to study the eigenvalues of Ji Ly near ko. In
this case, the eigenvalues of Ji L near ko can be grouped in the manner

{)“1 (k) s Ay (k)} ’ {)‘p1+1 (k) s Apitps (k)} v

such that each group constitutes a branch of an analytic function (defined near
ko) with a branch point (if p; = 2) at k = k9. Assume p; = 2, then we have the

following Puiseux series (see p. 65 of [25]) for the first group {Al k), -, Ap (k)}
D1 (k) = & (ko) +mi0” (k — ko) P!+ maw™ (k — ko) P 4+, (5.2)
where w = exp 2wi/py) and h =0, 1, ---, p; — 1. In the next lemma, we show

that the leading order term of Aj,41 (k) in (5.2) is still given by (k — ko)’ for an even
integer /.
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Lemma 5.1. Let p; 2 2, consider the Puiseux series (5.2) near k. If
maxRe Ay (k) SRer(kg), h=0,1,---,p; —1 (5.3)
for k in a neighborhood of ky, then there exists an even integer | such that
Remy=---=Remy,, -1 =0, Remy,, <O.

Proof. Let m, be the first coefficient in (5.2) such that Re m,, # 0. Then by (5.3),
we have

Remuo™ (k — k)P <0, h=0,1,---, p; — 1.
This implies that

2mwinh
P1

Rem,,exp( )§O, whenk — kg > 0

and

in(2h + 1
Re m,, exp <M> <0, whenk — ko <0
P1

forh =0,1,---, p; — 1. Thus

mni

Rem, exp <—J> =0,0=j=2p1—1, (5.4)
P1

which implies that n/p; is an integer. Indeed, if n/p; is not an integer, then we

must have m,, = 0, which is a contradiction, since otherwise if m, # 0, it would

clearly be impossible for all the 2 p; points

ni
mnexp<ﬂj), 0§j§2P1—1
P1

to stay in the left half complex plane when n/p; is not an integer. We can further
show that the integer n/p; is even. If we supposed otherwise, then n/p; would
be odd, and for (5.4) to hold true we would have to have Rem, = 0, another
contradiction. Therefore, n/p; = [ is even and the condition (5.4) implies that
Rem, =Rem;, <0. O

Let] C [0, 3] beasmallinterval with ko being its right end point. Let A (k) , k €

I be a curve of unstable eigenvalues of Ji L ending on the right at (A (ko) , ko), as

determined by one of the functions in (5.2) when A (kp) is a multiple eigenvalue.

Then by (5.1), when A (ko) is simple, or by Lemma 5.1 when A (ko) is multiple, we
have

ReA (k) — Re & (ko) = —ao (k — ko) + o0 ((k - ko)’) , (5.5)

where ap > 0 and [/ is even. Let vy (k, x) be the corresponding eigenfunction
of A (k) for JiL, which depends on k continuously. By Lemmas 2.1 and 2.2,
vi(k, x) € H{ (T) for any s = 0 when f is smooth.
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Define the following wave packet consisting of unstable eigenfunctions with
frequencies in /:

up (x) = /v](k,x)e”” dk+/v1(k, e Hkx dk =2Re/v1(k, x)e'** dk.
1 1 1
(5.6)
Since I U -1 C [—% %] by Lemma 3.3,

s Gy S [ Boath) By k< .
1

We will choose initial data Us (0) = u. + du; to show nonlinear localized
instability. First, we follow the arguments in Section 8.5 of [31] to prove the well-
posedness of (1.6) in the space u, + H® (R). These arguments were due to Kato
[24,26].

Lemma 5.2. (Well Posedness) Assuming that M € L(H? (R), L*>(R)) (B may be
negative ) and f € Ct2 (R), where s > max{l + B, 1} is an even integer. Then
foreveryuy € B*(R) := {uc +w:we HY (R)}, there exists T > 0, such that the
Cauchy problem

ot — coyu + 0y (Mu + f(u)) =0, (t,x) € [0,00) x R
u(0, x) = ug(x)

has a unique solution u € C([0, T], B*(R)) N clqo, 71, B°(R)).

Proof. This is equivalent to proving that the problem

{a,w — cdw + O (Muw + f(ue+w) — flue)) =0 57

wl;=0 = wo
has a unique solution w € C([0, T, H*(R)) N C'([0, T, L?*(R)).

Rewrite the equation (5.7) as

1
Ow + (M — )w + f/(ue +w)ocw + Bxuc/ e +Tw)wdr =0.
0

Let Ag = —cdy+ 0y M. Itisclearthat D(Ag) = H? (R), where 0 = max{1+p8, 1}.
For any v € H* withs > o, define A;(v) : H!(R) — L2(R) as

1
At(Vw = f’(uc+v)8xw+8xuc/ f(ue + Tv)wdr.
0

Following the arguments in Section 8.5 of [31], we consider the equivalent
equation of (5.7):

w4+ A(w)w =0, w|;— = wo,

where A(v) = Ag + A1 (v).
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Let B, be the ball of radius » > 0 in H° (R). According to Theorem 6.4.6 and
Section 8.5 in [31], the following four conditions guarantee the well-posedness of
6.7):

(C1) There exists a constant K, such that if ||wol| zs®r) < r, then
A woll 2Ry < K,

for every v € B;;

(C2) The family A(v), v € B, is a stable family in L?(R) (see Definition 6.4.1 in
P. 200 of [31));

(C3) There is an isomorphism of H*(R) onto L?(R) such that for every v € B,
SA()S~!'—A(v) is abounded operatorin L?(R) and | SA(v)S~!—A(v)| <
Cr;

(C4) Foreachv € B,, D(A(v)) D H*(R), A(v) is abounded linear operator from
H*(R) into L?(R) and

IA(D) — AW Lasw). L2y = Cillvi — v2ll 2wy
Since [|wolgs®) < ¥ and ||v]| gsr) < 7, it is straightforward to show that
A wollp2wy < C(Cr, ) llwollas®) < C(Cp,r)r ==K,
where

Cr= max (| f'(®)]+f"$)D.

I el ooy +r
Thus (C1) holds.

Note that Ag is skew-adjoint, therefore one has (Aqw, w) = 0. Also, it is easy
to check that

(i@ w) = [ 5+ @ ds
+/axucf01 £ (e + Tv)w drwds
= —%ff”(uc+v)8x(uc+v)w2dx
+/axucf01 £ (e + Tv)w drwds

1
2 — <§I|f”(uc + v)0x (e + V)|l Le0
" 2
+ |Bxucllzo | f7 (e + TV) [ L20) [lw ]l

Therefore A(v) generates a Cp semigroup from L*(R) to L?(R) and A(v) is stable
for v € B,.

Following an argument similar to that of the proof of Lemma 5.5 in [31], one
can verify (C3) by letting S = A, where A* is an operator with Fourier symbol
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(14 £2)%/%. We only consider s = 2n, where n is any positive integer. It is easy to
check that

(1 _ a)%)s/z 2)11 — Z Ck( 82)k

where C}/ is the number of k-combinations.
Then one can check that

AP (e + VAT 0w) — £ (e + v)dyw
n n
= CHEID (f (e + v)A0w) — fue +v) Y CH=0DH (A" d,w).
k=1 k=1
It follows that
IAP F (e + V)A " 9w — f/(ue + )wl 2wy < CCr)lwlem).
where

Cron = max — (IF/ &+ 1]+ 1)),
IsISlluell oo ®y+r

Moreover, it is easy to check that

1 1
| A% (D e / F" (e + A" wdr) — 8xuc/ [ (e + Tv)wde| 2R,
0 0

SC(Cyroms Nucllworrc) w2y -

Thus, (C3) holds. It is trivial to verify (C4). Thus we complete the proof of this
lemma. 0O

Now we are ready to show nonlinear localized instability. Let
Ui(t, x) = 2Re/ vik, )" gk, (1, x) e RT xR.  (5.8)
1

It is easy to see that Uj (¢, x) is a real-valued solution to (1.7) with initial data
U1 (0, x) = uq (x) (defined in (5.6)). Denote Ag = Re A (ko).

Lemma 5.3. There exist c; > ¢y > 0 such that

2 Ccl
M UV D)l gy £ ——— €™, 1 20. (5.9)
I+ t)l A+n7

Proof. By Lemma 3.3, we have

10 oy~ [ Iorhn) By, 40 a [ R
I e I

Denote I = [kg — 1, ko], n > 0. By (5.5), when 7 is small enough, for any k € I,
we have

1
—2a (k — ko)! < Rex (k) —Rex (ko) < —5a0 (k= ko' ,
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so letting k1 = k — ko,
Aot 0 —2agkl t Re A(k)t ot 0 —Laoklt
o e " dk S [ e dk < e e~ 2% .
= 4 -
When 0 < 1 £ 1, it is easy to estimate that
0 1 1 0 1 !
/ e_iaoklt dk; § 1, / e—2a0k|tdk1 2 e—Zaon .
- -0

When ¢ > 1, by direct calculations we have

0 1 [t pr—le—3za0p I
o—haokle g = L P 4p<? (5.10)
1 l 1
—n t7 J0 t7
where
1 [t | 1
co = 7/ pTﬁ e 2%0pP dp < OQ.
0
Similarly,

0 /

10 C 17" 1, _

/ e_zaolqtdkl > _(1)’ C6 = _/ pl 1, 2a0Pdp.
-1 t7 0

Combining the above, we get the estimate (5.9). O

Proof of Theorem 1.1 ii). Proceeding in the same way as in the periodic case, we
construct an approximate solution U“P? to (1.6) of the form

N
U =u.+ Y §U;, (5.11)
j=1
where U] is defined in (5.8). By Lemma 5.3
e)not
ULt ) s ®) S C(s)——.
(I+0)7

Following the same arguments as in the proof of Theorem 1.1 i), for j =
1,2,.--, N, wesolve U; by the equation

8;Uj = JLUJ +8XP/(U1, UZ, tet Uj_l), Uj|t:0 :O

By Lemma 3.6, we obtain

ekot J
U llaswy <Cj | — ) - (5.12)
1+n7
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Define Ts by the equation
§etoTs

(1 + Tyt

)

where 0 is to be determined. Then 75 = O (|In §]). The energy estimate in Lemma
4.1 is still true in H2 (R). Let Us (x, t) be the solution of (1.6) with initial data
Us (x,0) = u, + dup (x). Then by the same arguments as in the periodic case,
when 0 is small enough, we have

” Us (TB’ x) - Uc (x)”LZ(R)

seReAT? seReAT? \ 2
>Cl———— G| ——— | =C10—26?
(1+T5)7 1+ Ts)7
1
> —C16.
2

This proves the nonlinear instability in the localized space. O

6. Nonlinear Instability for Non-smooth Nonlinear Terms

The proof of nonlinear instability by constructing higher order approximate
solutions requires the nonlinear term f (s) in (1.6) to be smooth (that is, in C*°(R)).
In this section, we give a different proof by using bootstrap arguments, for the case
when f is not smooth. We assume that (1.6) is locally well-posed in the energy space
H %, which is certainly satisfied under the assumption (1.10) (see Lemma 5.2). We
will prove nonlinear instability for the nonlinear term f € C!(R) satisfying the
growth conditions (1.11), (1.12 ). The bootstrap arguments are done in three steps.
First, we use the energy conservation to control the growth of the energy norm
-1l g from the assumed L2 growth. Then we use the semigroup estimates in H -1

to control the growth of H ! norm of the nonlinear part of the solution. Lastly, the
estimates are closed by using the interpolation of L?> by H2 and H~!.

Proof of Theorem 1.2. We only give the proof for localized perturbations since it
is similar for multiple periodic perturbations.

Step 1. (bootstrap from L* to H 7).

The nonlinear equation for the perturbation u of u. in the traveling frame
(x —ct,t)is

du — JLu + 0y (f(u+uc)_f(uc)_f/(uc)u):Os 6.1

where J, L are defined in (1.8). For any é > 0, we choose the initial data us (0) =
Su1, where uj is defined in (5.6). Then by Lemma 5.3,
Code™o! Cy8e™!

T le""Fus (0) [l 2m) S — T
(1+0)! (0!
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for some Co, C; > 0,1 € N, where A is the largest growth rate defined in (3.4).
Define 77 > 0 to be the maximal time such that

2C;8eM0!
1+t

0=t=<T,

llus Ol 2 =

where u; (t) is the solution of (6.1) with the initial data u;s (0). Define T by

§eroTs
— =0,
(I1+Ts)1

where 6 > 0 is to be determined. We will show that 7; > T5 when 6 is small
enough. Suppose otherwise Ty < Ts. The equation (6.1) has the conserved energy-
momentum functional

H(u):%(Lu,u)—/

R

(F (u+ue) — F(ue) — f (ue) u — %f’ (uc) u2> dx,

since (6.1) can be written in the Hamiltonian form d,u = 9, H' (). By the assump-
tion (1.2), there exists c¢g > 0 such that

m
(Mu, u) = cq ||M||i1% , foranyu € H2.

Let T, be the maximal time such that

CaSe™t
llus 11,5 S——F, 02157, (6.2)
(I+n7
where
3
2 3[(Luy, uy)l
Cr=—|8|c+ f (u cP4 " ,
2 \/C_0< ‘ f ( C)‘OO 1 a%
with
] e)»()t
ap = min - > 0.
120 (14 £)7

We claim that 7> > T} when 6 is small enough. Suppose otherwise, 7> < Ty < Ts.
Then by the energy conservation H (us (1)) = H (us (0)) and the assumption
(1.12), we have

co llus DI 5 < (Mus (1), u5 (1)) (63)
< e+ £ ue)| o lus NI 2 + (Lus (0) . us (0))
+ 0 (llus 17 + lus O] )
H?2 H?2
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for any 0 < ¢ < T». Here, we use the fact that L?2 (R) < HZ (R) whenm > 1.
Forany t < T, < Ty < T, by (6.2) we have
Ca8ehot Cr8eM0Ts
lus DIl 2 = r = - =20,
I+n1r  (A+TH)7

Therefore (6.3) implies that for 0 < ¢ < T,, we have

2
, 2C8e™0!
co lus OI2 » = e+ f e ((11—) + 82 [(Luy, uy)|

+ 1)1
+C'Co07 72 (s 1 + 6% lr ).
H?2 H?2

and thus by choosing 6 small enough,

2
1 2C; 80!
lus DI w £ — [2]c+ £ )|, [ =) +36% (Lui. uy)|
B2 o (1+07

2
Lot
(st M) 2

0 A+
2
1 o[ seM
(A +1)1

for 0 < ¢t < T5.This is in contradiction to the definition of C, and shows that
T, > Ti.

Step 2 (bootstrap from L? to H™1).

The solution ug (¢) to (6.1) can be written as

A

t
us (t) =e'’Fus (0) — f eUTILY (f (us () +ue) — f (ue)
0

— ' (uc)us (s))ds
=u (1) +u, (1).

By (6.2), Lemma 3.7 and the assumption (1.11), when 0 < ¢ £ T we have
t
oy s 5 [ [0, s 00+ 0 = £ o
—f (ue) us (s) ||L2 ds

t
S / C@)e ™t s ()17 ds
0

2

A Pl
= /t C(g)ePote)t=s) &eoi o
" d+s)7

Aot P1
< Carbe 1
(1+nT
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by choosing ¢ < (p1 — 1) Ag and using Lemma 3.6.
Step 3 (Interpolation and closing of the estimates).
For 0 < ¢ < T, by interpolation we have

_ m
it @)l122 = Nt O e O (al = m—H)
Aot api+1—ag
< 58_1 ,
(1+0)7
where we use
Selo!
lin O < s Ol — g O, S ——.
H? H? H? (1+t)%

Noticing that p3 = ap; + 1 —a; > 1, when 0 < ¢ < 71 < T we have

lus Ol z2 = Nur 2 + o @112

§ Lot 5 Aot p3
=G ‘ 1 +C ‘ 1
(I+n7 1+0n7

8 rot
< (Cl + C/Qm—l) e—l —
1+1)7 1+1)7

(6.4)

by choosing 6 to be small enough. This is in contradiction to the definition of 7.

Thus we must have 71 > Ts. Att = Tj, by using (6.4) we have

lus (Ts)llz2 = Nlur (Ts)llz2 — llun (T3)l 2

§ YK § roTs p3
Z Co ‘ T c’ ( ‘ 1
(1+T)1 (I+Ts)7

1
= Cof — C'OP3 = 5Cob

when 6 is chosen to be small. This finishes the proof of nonlinear instability for

localized perturbations. 0O

Remark 6.1. The assumption (1.2) for m = 1 could be weakened to 0 < m < 1
depending on the nonlinearity. More precisely, we only need m € (0, 1) such that
the embedding H2 <> L7 is true, where p > 1 is the highest power of the

nonlinear term f (1) and its anti-derivative F (u).

7. Semilinear Equations

In this section, we consider the nonlinear modulational instability of the gen-

eralized BBM equation

(1 = 3xx)du + 3x (u + f(u)) = 0.

(7.1)



J1IAYIN JIN, SHASHA L1A0 & ZHIWU LIN

The BBM equation can be viewed as an ordinary differential equation in H'
B+ (1= e~ 9x(u + f () =0.

Assume that (7.1) admits a T-periodic traveling solution u.(t, x) = u.(x — ct).
Writing (7.1) in the traveling frame u (¢, x) = U (¢, x — ct), we arrive at

BU — cayU + (1 — dex) "0 (U + fW)) =0. (7.2)
Linearizing (7.2) at u., we obtain the linearized equation in the Hamiltonian form
oU =JLU, (7.3)
where
J=(0=00) "0, L=c(l=0u)— (1+ f ). (74)
Assume T = 2x. For any k € [0, 1], define

Je=0 =0 +ik)>)7 @0y +ik), Ly=c (1 — (O + ik)2> — (14 f" ().

As for the KDV type equations, the linear modulational instability of #. means that
Ji Ly has an unstable eigenvalue for some k € [0, 1]. Denote Aq to be the maximal
growth rate of ¢//kLk | k e [0, 1]. By the same proof of Lemmas 3.1 and 3.4, we
have the semigroup estimates for (7.3).

Lemma 7.1. Suppose u,. is modulationally unstable. Consider the semigroup e'’*

associated with the solutions of (7.3), where J, L are given in (7.4). Then we have:

i) the exponential trichotomy in the sense of (3.1) and (3.2) holds true in the spaces
H (Tang) (s 2 1.q € N);
ii) for every s 2 1, ¢ > 0 there exist C(s, &) > 0 such that

le" Fu )l as @y < Cls, £)eX T u ()| s )y, Vi >0,
forany u € H°(R).

For (7.2), there is no loss of derivative in the nonlinear term. Therefore, we
can use the semigroup estimates in Lemma 7.1 to prove nonlinear modulational
instability directly by ODE arguments. We consider localized perturbations below.

Theorem 7.1. Assume f € C! (R) and there exists p1 > 1, such that

|[fw+v)—f@) = f u| $C(uls. vls) lul'. (7.5)

Letu. (x — ct) be atraveling wave solution of (7.1) which is assumed to be linearly
modulationally unstable. Then u. is nonlinearly unstable under localized pertur-
bations in the following sense: there exists 6y > 0, such that for any s € N and
arbitrarily small § > 0, there exists atime T® = O (|In §|) and a solution Us(t, x) to
(7.2) satisfying | Us (0, x) —uc ()| sy < 8 and |Us(T°, x) —uc ()|l 2y = bo-
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Proof. For any § > 0, choose the initial perturbation us(0) = du;, where u; is
defined as in (5.6). Then by the proof of Lemma 5.3,

Codelot C;8ehot
——— = e us 0) llgry S ——. k=0,1

(1401 (1407
for some Co, C; > 0,1 € N and Ag is the maximal growth rate defined before. Let

Us(t, x) be the solution to (7.2) with initial value u. + Sus(0) and us = Us — u,,
then ug satisfies

oius = J Lus + g(us), us(0) =duy, (7.6)

where

W) = —(1 — 8yx) '8 (f (ue +v) — fue) — f'(ue)v).

Define T1 > 0 to be the maximal time such that

2080t
lus Ol € =, 01 < 1.
+1)7
Define Ts by
sehoTs
— =0,
(14Tt

where 6 > 0 is to be determined. We will show that 71 > Ts. If we were to suppose
otherwise, i.e. that T; < Ty, then from (7.6) we would have

t
us(t, x) = ¢ us(0) + fo L) g (ug (5)) ds

= U+ uy,.

Then when 0 < ¢+ < Ty < Ts, by using assumption (7.5) we would have

t
o O 5[] G 6000 = £ ) = f e s 9] 2 s

t
S / C () Jlus ()17, ds
0

! A Pl
S/ / C(g)e()xo-i-a)(l—s) <M> ds
0

(1+s)7
Aot P1
5 Se 1
e
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by choosing ¢ > 0 small. By the same arguments as in the proof of Theorem 1.2,
this leads to a contradiction with the definition of Tj. Therefore, 77 = T5 and

lus (Ts)llz2 = Nlur (Ts)ll g2 — llun (Ts)|

§ Ao Ts $ Mo Ts Pl
st o
(14Tt (I+T5)7

= Cof — C'OP' = =Cy0,

| =

when 6 is chosen to be small. This finishes the proof of the Theorem. O

Remark 7.1. For multi-periodic perturbations, following the same arguments, we
can prove the nonlinear modulational orbital instability of the generalized BBM
equation. Moreover, since the generalized BBM equation is an infinite dimensional
ODE in H', one can even construct stable and unstable manifolds by the standard
theory.

8. Applications

In this section, we apply our results to some concrete examples.

8.1. Whitham Equation
Consider the Whitham equation for surface water waves:
du + Mayu + 3, (u?) = 0, (8.1)

where M is the Fourier multiplier given by

— h o~
MFE) = ,/m‘; S 7).

Itis clear that || M(:)|| g1/2 ~ || - || .2 and the symbol m () =

analytic and even.
The existence of a periodic traveling wave solutions was shown in [18].

is real-valued,

tanh &
§

Lemma 8.1. [18] For each k > 0 and each b with |b| sufficient small, there exists
a family of periodic traveling wave solutions to (8.1) taking the form

uc(a,b,k)(x,t) = wla, b)(k(x —c(k,a, b)t)) =: w(k, a, b)(z)

for |a| sufficiently small, where w and c depend analytically upon k, a, and b.
Moreover, w is smooth, even, and 21 -periodic in z, and c is even in a. Furthermore,

w(k,a,b)(z)

_ l 2 1 cos(2z) 2 2
= wo(k, b) +acosz + 2a (m(ic) 7 + ) —m(2fc)> + O (a(a +b ))
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and

1 1
) — 1 + 2 m(k) — m(2k)

c(k,a,b) = co(k, b) +a? <m ) + O (a(a2 + bz))

as |a|, |b] — 0, where
co(k, b) :== m(k) + 2b(1 — m(x)) — 6b>(1 — m(k)) + O(b°)
and
wo(k, b) = b(1 —m(x)) — b>(1 — m(k)) + OB>).

One can check that

¢ — I f we)llLee(m
= ¢ — 2||ucllLoo(m)
=m(x) +2b(1 —m(x)) — b(1 —m(k)) —acosz+ O(a2 +b?)
=g > 0,
when |a|, |b| are sufficiently small. Thus the assumption (2.3) is satisfied.
Moreover, the linear modulational instability of u.(a, b, k) is shown in [18]
for « > 0 large enough. Therefore, we can apply Theorem 1.1 to obtain nonlinear

modulational instability of u.(a, b, k) when |a|, |b| are sufficiently small and « >
0 is sufficiently large.

8.2. The Nonlinear Schrodinger Equation
We consider in this section the focusing NLS equation
ity 4 uyy + lul’u =0, (8.2)

in which x € R, t € RT, and u(x,t) € C. Note that like the generalized BBM
equation discussed in Section 7, the NLS equation is also semi-linear. From the
results in [10, 12], we know that (8.2) possesses a family of small periodic waves
of the form u, ,(x, t) = e~ e!lab* P, , (ky px), where

1
lop = 4_1(02 —bY) + 0(a* +bY,

3
kap =1+ Z(az +b%) + 0@a* +bY),
Py (y) = ae™™ +be” + O(lab|(lal + |b]))

as (a,b) — 0.
In [12], uq p(x, t) were written in the form of

g p(x, 1) = &Pt Q4 (2ky px),
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and solutions of (8.2) of the form u(x, ) = ¢! (Pabx=0 Q(2kg px, t) were consid-
ered, where

Pab =lap +kap, Qup(@) = e * Py p(z/2).

Here Q, 1 (z) were claimed to be members of a two-parameter family of traveling
and rotating waves, see Claim 2 in [12] . Moreover, Q, ;(z) were regarded as an
equilibrium of a corresponding evolution equation, and the spectrum of a linear
operator at O, ,(x) was studied to obtain the linear modulational instability of the
small periodic waves u, ,(x, t). Thus, we can use the same arguments as in Section
7 to prove nonlinear modulational instability of the small periodic waves u, ,(x, t)
as a solution of (8.2).

8.3. Fractional KDV-Type Equation

Consider the KDV-type equation
O + 0y (A"u — uP) =0, (8.3)

where the pseudo differential operator A = \/—3? is defined by its Fourier multi-
plier as j/\ﬂ(é‘) = |&|i(§). Here we consider m > % and either p € Nor p = %
with ¢ and n being even and odd natural numbers, respectively.

Itisclear that [[M () |l;2 ~ ||-||g» and «(§) = |&|™ isreal-valued and even, and
satisfies (1.2), (1.3). In [22], a family of small periodic traveling waves u, (¢, x)
of (8.3) were constructed for |a|, |b| << 1. It was also showed in Theorem 3.4 of
[22] that u, ; (¢, x) is linearly modulationally unstable if m € (%, Dorifm > 1
and p > p*(m), where p*(m) is defined by

e 2"G4m)—4—2m
pm) = e = D)

Therefore, if m € (%, 1) and p € Norifm > 1 and p > p*(m) and
lal, |b] << 1,then Theorems 1.1 and 1.2 are applicable to obtain nonlinear modula-
tional instability of u, 5 (¢, x) for both multiple periodic and localized perturbations.
When m = 2, equation (8.3) is reduced to the generalized KDV equation.

8.4. BBM Equation
Consider the BBM equation
(1 = 8yx)u + 3y (u 4+ u®) = 0. (8.4)

In [20], the authors showed that (8.4) admits a family of periodic traveling wave
solutions u. in the following form:

214+ m? 3
uc(t,x;m,a) =acos(m(x —ct)) +a P cos(2m(x —ct) — 3) + o(a”),
m
5
c(m,a) = —a®>—— +o(a"),

1 +m? 6m?
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with |a| « 1. Furthermore, it was showed in [20] that u.(¢, x; m, a) is linearly
modulationally unstableif m > +/3. Applying Theorem 7.1, we obtain the nonlinear
modulational instability of u. (¢, x; m, a).
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