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Abstract

We prove nonlinear modulational instability for both periodic and localized
perturbations of periodic traveling waves for several dispersive PDEs, including
the KDV type equations (for example the Whitham equation, the generalized KDV
equation, the Benjamin–Ono equation), the nonlinear Schrödinger equation and the
BBM equation. First, the semigroup estimates required for the nonlinear proof are
obtained by using the Hamiltonian structures of the linearized PDEs. Second, for
the KDV type equations the loss of derivative in the nonlinear terms is overcome in
two complementary cases: (1) for smooth nonlinear terms and general dispersive
operators, we construct higher order approximation solutions and then use energy
type estimates; (2) for nonlinear terms of low regularity, with some additional
assumptions on the dispersive operator, we use a bootstrap argument to overcome
the loss of a derivative.

1. Introduction

Themodulational instability, also called Benjamin–Feir or side-band instability
in the literature, is a very important instability mechanism in lots of dispersive and
fluid models. It has been used to explain the instability of periodic wave trains
to self modulation and the development of large-scale structures such as envelope
solitons. Modulational instability has been observed in experiments and in nature,
for many physical systems. The first theoretical understanding of modulational
instability arose in the 1960s, in the works of Benjamin and Feir [4] for water
waves and independently by Lighthill [27],Whitham [32], Zakharov [33] for
various dispersive wave equations. We refer to the review [34] for more details on
the history and physical applications of modulational instability. In recent years,
there have been lots of mathematical works on the rigorous justification of linear
modulational instability for various dispersivewavemodels including theKDV type
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equations, the nonlinear Schrödinger equation, theBBMequation etc.. In particular,
the modulational instability conditions for perturbations of long wavelength (that is
frequencies near zero)were derived in lots ofworks [7,8,12,16–18,20,22].We refer
to the recent survey [6] formore details and references. Themodulational instability
for perturbations of high frequencies (that is not near zero) was also considered in
some papers [9,21]. However, there has been no proof of modulational instability
under the nonlinear dynamics of the PDE models. The purpose of this paper is to
provide a proof of nonlinear modulational instability under both multi-periodic and
localized perturbations, for a large class of dispersive wave models

We mainly consider the KDV type equations

∂t u + ∂x (Mu + f (u)) = 0, (1.1)

whereM is a Fouriermultiplier operator satisfyinĝMu(ξ) = α(ξ )̂u(ξ) and f (s) ∈
C1(R,R). We make the following assumptions on the operator M:

(A1) M is a self-adjoint operator, and the symbol α : R �→ R+ is even and
continuous.

(A2) There exist constants m, c1, c2 > 0, such that

c1 |ξ |m � α (ξ) � c2 |ξ |m , for large ξ (1.2)

and

lim
ρ→0

sup
ξ∈Z

|α(ξ + ρ) − α(ξ)|
1 + |ξ |m → 0; (1.3)

or
c1 |ξ |−m � α (ξ) � c2 |ξ |−m , for large ξ. (1.4)

The assumption (1.2) implies that M is a “differential” operator with
‖M(·)‖L2 ∼ ‖ · ‖Hm , and (1.4) implies that M is a “smoothing” operator with
‖M(·)‖Hm ∼ ‖ · ‖L2 . The assumption (1.3) is clearly satisfied if α ∈ C1 (R\ {0})
and

lim sup
|ξ |→∞

α′(ξ)

|ξ |m < ∞.

For the classical KDV equation, M = −∂2x (that is α (ξ) = |ξ |2) and f (u) =
u2. Other examples include the Benjamin–Ono equation, the Whitham equation
and the intermediate long-wave (ILW) equation, which are all of KDV type with

α(ξ) = |ξ | ,
√

tanh ξ
ξ

and ξ coth (ξ H) − H−1, respectively.

For convenience, we assume minξ∈R α(ξ) > 0, since otherwise, we can always
breakM = M1 + c1, whereM1 has a positive symbol and c1 is a constant. Then
in the traveling frame (x − c1t, t), the equation (1.1) becomes

∂t u + ∂x (M1u + f (u)) = 0.

A periodic traveling wave (TW) of (1.1) is of the form u (x, t) = uc (x − ct),
where c ∈ R is the traveling speed and uc satisfies the equation

Muc − cuc + f (uc) = a (1.5)
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for some constant a. The existence of periodic TWs of (1.5 ) has been well studied,
and we refer to the book [2] and the references therein. In general, these periodic
TWs are a three-parameter family of solutions depending on period T , traveling
speed c and the constant a. The stability of TWs to perturbations of the same
period has been studied a lot in recent years (for example [1,2,19,22,28]). The
modulational instability is to study the instability of periodic TWs for perturbations
of different periods and even for localized perturbations in R. The equation (1.1)
in the traveling frame (x − ct, t) becomes

∂tU − c∂xU + ∂x (MU + f (U )) = 0. (1.6)

The linearized equation of (1.6) near uc can be written in the Hamiltonian form

∂tU = −∂x
(M−c + f ′(uc)

)

U = J LU, (1.7)

where
J = −∂x , L = M−c + f ′(uc). (1.8)

Without loss of generality, we take the minimal period T = 2π . By the stan-
dard Floquet-Bloch theory, any bounded eigenfunction φ(x) of J L takes the form
φ(x) = eikxvk(x), where k ∈ [0, 1] is a parameter and vk ∈ L2(T2π ). This leads
us to study the one-parameter family of eigenvalue problems

J Leikxvk(x) = λ(k)eikxvk(x),

or equivalently, Jk Lkvk = λ (k) vk , where

Jk = − (∂x + ik) , Lk = Mk−c + f ′(uc). (1.9)

Here, Mk is the Fourier multiplier operator with the symbol α(ξ + k).

Definition 1.1. We say that uc is linearlymodulationally unstable if there exists k ∈
[0, 1] such that the operator Jk Lk has an unstable eigenvalue λ(k)with Re λ(k) > 0
in the space L2(T2π ).

By the above definition and the analytic perturbation theory of the spectra of
linear operators, if k0 is an unstable frequency, then all k near k0 are also unstable.
Thus there exist intervals of unstable frequencies in [0, 1]. For periodic waves
which are orbitally stable under co-periodic perturbations (that is same period), it
is shown in Proposition 11.3 of [28] that when k is small (that is long wavelength),
the possible unstable eigenvalues of Jk Lk can only be perturbed from the zero
eigenvalue of J L in L2 (T2π ). The conditions of linear modulational instability for
such long wavelength perturbations had been studied in lots of papers for various
dispersive models (see the references cited at the beginning). In Section 8, we give
some examples for which the linear modulational instability condition is satisfied.

Our first main result is the proof of nonlinear modulational instability under
both multi-periodic and localized perturbations, for a smooth nonlinear term f (u)

and the operator M with a general symbol.

Theorem 1.1. Assume (A1) with (1.2) and (1.3) or with (1.4)–(2.3), f ∈
C∞ (R) and uc is linearly modulationally unstable. Then we have that



Jiayin Jin, Shasha Liao & Zhiwu Lin

i) uc is nonlinearly orbitally unstable to (1.6) for multi-periodic perturbations
in the following sense: there exists q ∈ N, θ0 > 0, such that for any s ∈ N

and arbitrarily small δ > 0, there exists a solution Uδ(t, x) to (1.6) satisfying
‖Uδ(0, x) − uc(x)‖Hs (T2πq ) < δ and

inf
y∈T ‖Uδ(T

δ, x) − uc(x + y)‖L2(T2πq ) � θ0,

where T δ ∼ |ln δ|.
ii) uc is nonlinearly unstable to (1.6) for localized perturbations in the following

sense: there exists θ0 > 0, such that for any s ∈ N and arbitrarily small δ > 0,
there exists a solution Uδ(t, x) to (1.6) satisfying ‖Uδ(0, x) − uc(x)‖Hs (R) <

δ and ‖U (T δ, x) − uc(x)‖L2(R) � θ0, where T δ ∼ | ln δ|.
For some examples, f (u) is not smooth. Our second result is complementary

to Theorem1.1, and is about nonlinear modulational instability for non-smooth f
with some additional assumptions.

Theorem 1.2. Assume the symbol α (ξ) of M satisfies the conditions (A1) and
(1.2)-(1.3) with m � 1 and

f ∈ C2n+2 (R) , where n � 1

2
max{1 + m, 1} is an integer. (1.10)

Suppose uc is linearly modulationally unstable. Then uc is nonlinearly unstable
to (1.6) for both multi-periodic and localized perturbations in the sense of Theo-
rem1.1, with the initial perturbation arbitrarily small in H2n

(

T2πq
)

or H2n (R).

Remark 1.1. In Theorem 1.2, the regularity assumption (1.10) on f is only used to
prove that the equation (1.6) is locally well-posed in H2n

(

T2πq
)

and uc + H2n (R)

by Kato’s approach (see Lemma 5.2). Assuming the local well-posedness of (1.6)
in the energy space H

m
2 , we only need the following much weaker assumptions on

f to prove nonlinear instability:
f ∈ C1 (R) and there exist p1 > 1, p2 > 2, such that
∣

∣ f (u + v) − f (v) − f ′ (v) u
∣

∣ � C (|u|∞ , |v|∞) |u|p1 , (1.11)
∣

∣

∣

∣

F (u + v) − F (v) − f (v) u − 1

2
f ′ (v) u2

∣

∣

∣

∣

� C (|u|∞ , |v|∞) |u|p2 ,

(1.12)

where F (u) = ∫ u
0 f (s) ds. The conditions (1.11), (1.12) are automatically satisfied

when f ∈ C2 (R).

In the aboveTheorems, the nonlinear instability formulti-periodic perturbations
is proved in the orbital distance since (1.6) is translation-invariant. For localized
perturbations, we study the equation (1.6) in the space uc + Hs (R) which is not
translation-invariant. Therefore, we do no use the orbital distance for nonlinear
instability under localized perturbations.

Belowwe discussmain ingredients in the proof of Theorems 1.1 and 1.2. For the
proof of nonlinear instability, first we need to establish the semigroup estimates for
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the linearized equation (1.7), more specifically, to show that the growth of solutions
of (1.7) is bounded by the maximal growth rate of unstable eigenvalues of the
linearized operator. To get such estimates,we strongly use theHamiltonian structure
of the linearized equation (1.7). For multi-periodic perturbations, since L has only
finitely many negative directions, this fits into the general theory developed by Lin
and Zeng [28] and the semigroup estimates follow directly from the exponential
trichotomy property (Theorem 3.1). For localized perturbations, the quadratic form
of L has infinitely many negative modes and we cannot use Theorem 3.1 directly.
By observing that any function u ∈ Hs(R) can be written as

u(x) =
∫ 1

0
eiξ x uξ (x)dξ, where uξ (x) = �n∈Zeinx û(n + ξ) ∈ Hs(T2π ),

and

‖u(x)‖2Hs (R) ≈

∫ 1

0
‖uξ (x) ‖2Hs (T2π ) dξ, (1.13)

et J Lu(x) =
∫ 1

0
eiξ x et Jξ Lξ uξ (x) dξ,

the estimate of et J L |Hs (R) is reduced to estimate et Jξ Lξ |Hs (T2π ) uniformly for ξ ∈
[0, 1]. This is proved in [28] for the case when M is “differential” (that is (1.2))
and in Lemma 3.5 when M is “smoothing” (that is (1.4)).

With the semigroup estimates, to prove nonlinear instability we still need to
overcome the loss of derivative of the nonlinear term in (1.6). We use two different
approaches for two complementary cases. For the case of smooth nonlinear term
(that is f ∈ C∞ (R)) and generalM including both “differential” and “smoothing”
cases, we basically adapt Grenier’s approach in [13] which was developed for
proving nonlinear instability of shear flows of the 2D Euler equation. The idea is
to construct higher order approximate solutions of (1.6) and then use the energy
estimates to overcome the loss of derivative.When the nonlinear term is smooth, the
approximate solution can be constructed to sufficiently high order to compensate
for the roughness of the energy estimates. For the multi-periodic case, the initial
perturbation is chosen to be along themost unstable eigenfunction. For the localized
case, since there is no genuine eigenfunction of J L in L2 (R), the initial perturbation
is constructed as a wave packet concentrated near the most unstable frequency.

When the nonlinear term is not smooth, we cannot use the approach of con-
structing higher order approximate solutions. Instead, a totally different approach
by bootstrap estimates is used to overcome the loss of derivative when f is C1 with
the growth conditions (1.11), (1.12) and M is “differential” with m � 1 in (1.2) .
First, the invariance of the energy functional is used to show that H

m
2 norm of the

unstable solution has the same growth as the L2 norm. Then we estimate the growth
of H−1 norm with the help of the semigroup estimate et J L |H−1 . The estimates are
closed by interpolating H−1 and H

m
2 to get back to L2. The loss of derivative in

the nonlinear term ∂x f (u) is overcome by observing that

‖∂x f (u)‖H−1 ≈ ‖ f (u)‖L2 ,
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which is controllable in H
m
2 . To get the crucial semigroup estimate et J L |H−1 used

in the above bootstrap process, by duality it is equivalently to estimate et L J |H1 ,
which is then related to et J L by certain conjugate transforms. The proof is much
more involved for the localized case. By using the norm equivalence (1.13), this
is reduced to estimate et Lξ Jξ |H1(T2π ) uniformly for ξ ∈ [0, 1]. This is done by a
careful decomposition of the spectral projections of Lξ near 0 and away from 0.We
note that the idea of overcoming the loss of derivative by bootstrapping the growth
of higher order norms from a lower order one was originated in [15] for the Vlasov-
Poisson system. This approach was later generalized to prove nonlinear instability
for other models including 2D Euler equation [3,29] and Vlasov–Maxwell systems
[30]. Here, our approach of bootstrapping the lower order norm

(

H−1
)

from a

higher order norm
(

H
m
2

)

and then closing by interpolation seems to be new. This

idea coupled with the H−1 semigroup estimates could be useful in other problems
involving the loss of derivative.

Besides the KDV type equations, modulational instability also appears in semi-
linear models such as BBM and Schrödinger equations. Since there is no loss of
derivative, the nonlinear instability can be proved by ODE arguments. The required
semigroup estimates can be obtained similarly by using the Hamiltonian structures.
As an example, we consider BBM equation in Section 7.

This paper is organized as follows. In Section 2, we study the regularity of
unstable eigenfunctions. In Section 3, we prove the semigroup estimates used in the
proof of nonlinear instability. In Sections 4 and 5, the nonlinear instability formulti-
periodic and localized cases is proved by constructing higher order approximate
solutions. In Section 6, we prove nonlinear instability by bootstrap arguments. In
Section 7, we prove nonlinear instability for BBM equation. In Section 8, we list
some models for which our theorems are applicable.

2. Linear Modulational Instability

In this section, we prove the regularity of the unstable eigenfunctions of Jk Lk .
In the proof below and throughout this paper, we use g � h

(

g, h � 0
)

to denote
g � Ch, for a generic constant C > 0, which may differ from one inequality to
another. First, we consider the case when M is a “differential” operator as in the
case of the KDV, the Benjamin–Ono and the ILW equations.

Lemma 2.1. Assume (1.2). If f ∈ C∞ (R) and vk(x) ∈ L2(T2π ) is an unstable
eigenfunction to Jk Lk with k ∈ [0, 1], then vk ∈ Hs(T2π ) for every s ∈ N.

Proof. By assumption, there exists λ (k) with Re λ (k) > 0 such that

Jk Lkvk = λ (k) vk, vk(x) ∈ L2(T2π ), (2.1)

where Jk, Lk are defined in (1.9). It is easy to see that Jk is a skew-adjoint operator
and Lk is a self-adjoint operator. Taking the real part of the L2 inner product of
(2.1) with Lkvk , we get the following “conservation law”:

Re 〈λvk, Lkvk〉 = Re 〈Jk Lkvk, Lkvk〉 = 0.
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Since Lk is self-adjoint, 〈vk(x), Lkvk(x)〉 is real. It follows that
(Re λ) 〈vk, Lkvk〉 = 0.

Noting that Re λ > 0, we have

〈vk, Lkvk〉 = 〈vk(x), (c − Mk − f ′(uc))vk(x)
〉 = 0,

that is

c
∫

T2π

vk(x)vk(x) dx −
∫

T2π

vk(x)Mkvk(x) dx −
∫

T2π

vk(x) f ′(uc)vk(x) dx = 0.

It follows immediately that

|〈Mkvk, vk〉| � |c
∫

T2π

vk(x)vk(x) dx | + |
∫

T2π

vk(x) f ′(uc)vk(x) dx |

� (c + ‖ f ′(uc)‖L∞(T2π ))‖vk(x)‖2L2(T2π )
.

Applying Mk to (2.1), we obtain

Mk Jk Lkvk = λMkvk . (2.2)

Taking the real part of inner product of (2.2) with Lkvk , one has

Re〈Mk Jk Lkvk, Lkvk〉 = Re〈λMkvk, Lkvk〉.
Note that Mk is self-adjoint and Jk is skew-adjoint, also Mk and Jk are com-
mutable, therefore Mk Jk is skew-adjoint. It follows that

Re〈Mk Jk Lkvk, Lkvk〉 = 0,

which implies

Re〈λMkvk, Lkvk〉 = 0.

Therefore, we obtain

(Re λ)〈Mkvk,Mkvk〉 = Re〈λMkvk,
(

c − f ′(uc)
)

vk〉,
which implies that

‖Mkvk‖2L2(T2π )
�
(

c + ‖ f ′(uc)‖C[
m
2 ]+1

(T2π )

)

‖M
1
2
k vk‖2L2(T2π )

,

and

‖vk‖2Hm (T2π ) � |〈Mkvk, vk〉| � ‖vk‖2L2(T2π )
.
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In the above, we use the estimate

∣

∣〈Mkvk, f ′(uc)vk〉
∣

∣ �
∥

∥

∥

∥

M
1
2
k

(

f ′(uc)vk
)

∥

∥

∥

∥

L2
‖M

1
2
k vk‖L2

�
∥

∥ f ′(uc)vk
∥

∥

H
m
2 (T2π )

‖M
1
2
k vk‖L2

� ‖ f ′(uc)‖C[
m
2 ]+1

(T2π )
‖vk‖H

m
2 (T2π )

‖M
1
2
k vk‖L2

� ‖ f ′(uc)‖C[
m
2 ]+1

(T2π )
‖M

1
2
k vk‖2L2(T2π )

.

Similarly, one can show that

‖vk‖Hs (T2π ) � C(s)‖vk‖L2(T2π )

for any s ∈ N. ��
In the next Lemma, we prove the regularity of unstable eigenfunctions when

M is a smoothing operator satisfying (1.4) as in the case of Whitham equation. We
need the following assumption on the periodic TWs of (1.1):

c − ‖ f ′(uc)‖L∞(T2π ) � δ0 > 0, (2.3)

which was assumed in [11,18] to show the regularity of TWs ofWhitham equation.
This assumption is satisfied for small amplitude waves of the Whitham equation
(see Section 8.1). By a similar proof as in [11,18], we can show that uc ∈ C∞
under the assumption (2.3) when f ∈ C∞ (R) .

Lemma 2.2. Assume (1.4) and (2.3). If f ∈ C∞ (R) and vk ∈ L2(T2π ) is an
unstable eigenfunction of Jk Lk with k ∈ [0, 1], then vk ∈ Hs(T2π ) for every
s ∈ N.

Proof. Step 1:We first prove that under the assumption (2.3), for any integer s � 0,
there exists a constant C(s), such that for any φ ∈ Hs(T2π ),

‖(λ + D)−1Dφ‖Hs (T2π ) � C(s)‖φ‖Hs (T2π ), (2.4)

where D = −(∂x + ik)
(

c − f ′(uc)
)

.
Define an inner product [·, ·] by

[u, v] = 〈u, (c − f ′(uc))v〉.
One can check that

[Du, v] = −[u, Dv],
that is D is skew-adjoint in the inner product [·, ·]. For any u ∈ Dom(D) =
H1(T2π ), denote v = (λ + D)u ∈ L2(T2π ), then one has

|[v, u]| � |Re[(λ + D)u, u]| = (Re λ)[u, u].
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Also, by the Schwartz inequality, one has

|[v, u]| � [v, v]1/2[u, u]1/2.
It follows that

‖(λ + D)u‖L̄2(T2π ) � (Re λ)‖u‖L̄2(T2π ),

where ‖ · ‖L̄2(T2π ) := [·, ·]1/2. Note that c − ‖ f ′(uc)‖L∞(T2π ) � δ0 > 0, so

L̄2(T2π ) ∼ L2(T2π ). Thus, λ + D is invertible and (λ + D)−1 is bounded from
L2(T2π ) to L2(T2π ). Taking the inner product of the equation v = (λ + D)u with
Du, we obtain

[v, Du] = λ[u, Du] + [Du, Du],
which implies that ‖Du‖L2(T2π ) � C‖v‖L2(T2π ) for some constant C . Hence, we
have that (λ + D)−1 is bounded from L2(T2π ) to H1(T2π ), from which it follows
immediately that (λ + D)−1D is bounded from H1(T2π ) to H1(T2π ). Also, (λ +
D)−1D = I − λ(λ + D)−1 is bounded from L2 to L2.

We now prove (2.4) by induction. Suppose it is true for 0 � s � l. Let ψ =
(λ + D)−1Dφ, then

(λ + D)ψ = Dφ.

From

∂ l
xλψ + ∂ l

x Dψ = ∂ l
x Dφ,

we get

∂ l
xψ = (λ + D)−1

[

∂ l
x Dφ + (D∂ l

x − ∂ l
x D)ψ

]

.

It is easy to check the following commutator estimate:

‖(D∂ l
x − ∂ l

x D)ψ‖L2 � C(l)‖ψ‖Hl .

Therefore,

‖(λ + D)−1(D∂ l
x − ∂ l

x D)ψ‖H1 � C(s)‖ψ‖Hl .

Also,

‖(λ + D)−1∂ l
x Dφ‖H1

�‖(λ + D)−1D∂ l
xφ‖H1 + ‖(λ + D)−1

(

∂ l
x D − D∂ l

x

)

φ‖H1

�C(s)
(

‖∂ l
xφ‖H1 + ‖

(

∂ l
x D − D∂ l

x

)

φ‖L2

)

�C(s)‖φ‖Hl+1 .

Thus, we obtain

‖∂ l
xψ‖H1 � C(s)(‖φ‖Hl+1 + ‖ψ‖Hl ) � C (s) ‖φ‖Hl+1 ,
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by the induction assumption. This finishes the proof of (2.4).
Step 2: From (2.1), one has

JkMkvk − Dvk = λvk,

and thus

vk(x) = (λ + D)−1 JkMkvk(x) (2.5)

= (λ + D)−1D
(

c − f ′(uc)
)−1Mkvk(x).

Let B = (λ + D)−1D(c − f ′(uc))
−1, then we have vk(x) = BMkvk(x). Since

f (uc) ∈ C∞ and c − f ′(uc) � δ0 > 0, by (2.4) B is bounded from Hs(T2π ) to
Hs(T2π ), for any integer s � 0. By using the interpolation theory, B is bounded
from Hs(T2π ) to Hs(T2π ) for any s � 0, so we have

‖BMkvk(x)‖Hm (T2π ) � C ‖Mkvk(x)‖Hm (T2π ) � C‖vk(x)‖L2(T2π ).

Repeatedly using the identity vk(x) = BMkvk(x), we arrive at

vk(x) = BMkvk(x) = BMk BMkvk(x) = · · · = (BMk)
nvk(x),

which implies that

‖vk(x)‖Hnm (T2π ) � C(n)‖vk(x)‖L2(T2π ).

Since n ∈ N is arbitrary, this finishes the proof of the lemma. ��

3. Semigroup Estimates

In this section, we consider semigroup estimates for et J L [equivalently, for
the linearized equation (1.7)], which will be used in later sections to prove non-
linear instability. First, we consider the estimates in both multi-periodic space
Hs
(

T2πq
)

and localized spaces Hs (R), with s � m
2 . Such estimates are given

in Section 11.4 of [28] and we only sketch them here; they are obtained by using
the theory in [28] for general linear Hamiltonian PDEs which we describe below.
Consider a linear Hamiltonian system

∂t u = J Lu, u ∈ X,

where X is a Hilbert space. Assume the following:

(H1) J : X∗ → X is a skew-adjoint operator;
(H2) The operator L : X → X∗ generates a bounded bilinear symmetric form

〈L·, ·〉 on X . There exists a decomposition X = X−⊕ker L ⊕ X+ satisfying
that 〈L·, ·〉 |X− < 0, dim X− = n− (L) < ∞, and there exists δ1 > 0 such
that

〈Lu, u〉 � δ1 ‖u‖2X , for any u ∈ X+;
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(H3) The above X± satisfy

ker i∗X+⊕X− = { f ∈ X∗ | 〈 f, u〉 = 0, ∀u ∈ X− ⊕ X+} ⊂ D(J ),

where i∗X+⊕X− : X∗ → (X+ ⊕ X−)∗ is the dual operator of the embedding
iX+⊕X− .

The assumption (H3) is automatically satisfied when dim ker L < ∞, as in the
case of this paper.

Theorem 3.1. [28] Under assumptions (H1)–(H3), J L generates a C0 group et J L

of bounded linear operators on X and there exists a decomposition

X = Eu ⊕ Ec ⊕ Es, dim Eu = dim Es � n−(L)

satisfying:

i) Eu, Es and Ec are invariant under et J L ;
ii) Ec = {u ∈ X | 〈Lu, v〉 = 0, ∀v ∈ Es ⊕ Eu};
iii) let λu = max{Re λ | λ ∈ σ(J L|Eu )}, there exist M > 0 and an integer k0 � 0,

such that
∣

∣

∣et J L |Es

∣

∣

∣

X
� M(1 + tdim Es−1)e−λu t , ∀ t � 0;

|et J L |Eu |X � M(1 + |t |dim Eu−1)eλu t , ∀ t � 0,
(3.1)

|et J L |Ec |X � M(1 + |t |k0), ∀ t ∈ R, (3.2)

and

k0 � 1 + 2
(

n−(L) − dim Eu) .

Moreover, for k � 1, define the space Xk ⊂ X to be

Xk = D
(

(J L)k
)

= {u ∈ X | (J L)n u ∈ X, n = 1, · · · , k.
}

and
‖u‖Xk = ‖u‖ + ‖J Lu‖ + · · · + ‖(J L)ku‖. (3.3)

Assume Eu,s ⊂ Xk, then the exponential trichotomy for Xk holds true, and Xk is
decomposed as a direct sum

Xk = Eu ⊕ Ec
k ⊕ Es, Ec

k = Ec ∩ Xk,

and the estimates (3.1) and (3.2) still hold in the norm Xk.

Byusing the aboveTheorem,we prove the following estimates for the linearized
equation (1.7):

Lemma 3.1. Consider the semigroup etJL associated with the solutions of (1.7),
where J, L are given in (1.8). Then we have:
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i) (differential case) Assume (1.2), (1.3), the exponential trichotomy in the sense
of (3.1) and (3.2) holds true in the spaces Hs

(

T2πq
) (

s � m
2 , q ∈ N

)

;
ii) (smoothing case) Assume (1.4)–(2.3), then the exponential trichotomy of et J L

holds true in the spaces Hs
(

T2πq
) (

s � 0, q ∈ N

)

.

Proof. It suffices to check the assumption (H2) in Theorem3.1, since (H1) is obvi-
ous and (H3) is automatic due to dim ker L < ∞.

For i), the quadratic form 〈L·, ·〉 is bounded in the space H
m
2 (T2πq). The oper-

ator L is a compact perturbation ofM, whose spectrum in Hm
(

T2πq
)

are positive
and discrete. Therefore, L has at most a finite number of negative eigenvalues, that
is, n− (L) < ∞. Thus, the exponential trichotomy of et J L is true in H

m
2 (T2πq). By

the proof of Lemma 2.1, any stable or unstable eigenfunction of J L in L2(T2πq)

lies in Hs
(

T2πq
)

for any s > 0. Therefore, the exponential trichotomy of et J L is
also true in Hs

(

T2πq
)

for any s � m
2 .

For ii), the quadratic form 〈L·, ·〉 is bounded in the space L2(T2πq). Under the
condition (2.3), the operator −L is a compact perturbation of the positive operator
c − f ′ (uc) , thus n− (−L) < ∞. Applying Theorem3.1 to J L = (−J ) (−L),
we get the exponential trichotomy of et J L in L2(T2πq) and in Hs

(

T2πq
) (

s � 0
)

by the regularity of stable and unstable eigenfunctions of J L in L2(T2πq) as in
Lemma2.2. ��

As an immediate corollary of the above lemma, we get the following upper
bound on the growth of the semigroup et J L :

Corollary 3.1. Let λ0 be the growth rate of the most unstable eigenvalue of J L
on L2(T2πq). Then under the conditions of Lemma3.1, for any ε > 0, there exists
some constant Cε such that

∥

∥

∥et J L
∥

∥

∥

Hs(T2πq)
� Cεe(λ0+ε)t , for any t > 0,

where q ∈ N , s � s0 with s0 = m
2 for case i) and s0 = 0 for case ii).

The above semigroup estimate implies the following lemma for the inhomoge-
neous equation (for convenience, we use T for T2πq ):

Lemma 3.2. If ‖g (t) ‖Hs (T) � Cgewt , for some s � s0 and w > λ0, then the
solution to the equation

∂t u = J Lu + g, u|t=0 = 0

satisfies

‖u‖Hs (T) � Cgewt .

Proof. Using Corollary3.1 with ε = 1
2 (w − λ0), we have

∥

∥

∥et J L
∥

∥

∥

Hs
� e

1
2 (λ0+w)t .
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Then

‖u (t)‖Hs (T) =
∥

∥

∥

∥

∫ t

0
e(t−s)J L g (s) ds

∥

∥

∥

∥

Hs (T)

�
∫ t

0
e
1
2 (λ0+w)(t−s)Cgewsds � Cgewt 2

w − λ0
.

��
To prove nonlinear instability for localized perturbations, we need to study

the semigroup et J L on the space Hs (R)
(

s � m
2

)

. In general, the operator L has
negative continuous spectra in Hs (R). For example,whenM = −∂2x , the spectrum
of L = −∂2x +V (x) with a periodic potential V (x) is well studied in the literature
and is known to have bands of continuous spectrum. Thus Theorem3.1 does not
apply. However, we can prove upper bound estimate of et J L on Hs (R), which
suffices for proving nonlinear localized instability. We will need the following
lemma to estimate et J L on Hs (R):

Lemma 3.3. Suppose h(k, x) ∈ Hs
x (T) for any k ∈ I , where I is a measurable set

contained in an interval with length less than or equal to 1. Then
∫

I h(k, x)eikx dk ∈
Hs

x (R) if and only if ‖h(k, x)‖Hs
x (T) ∈ L2

k (I ). More precisely, there exist constants
C1(s), C2(s) > 0, such that

∥

∥

∥

∫

I
h(k, x)eikx dk

∥

∥

∥

2

Hs
x (R)

� C1(s)
∫

I
‖h(k, x)‖2Hs

x (T) dk,

and
∥

∥

∥

∫

I
h(k, x)eikx dk

∥

∥

∥

2

Hs
x (R)

� C2(s)
∫

I
‖h(k, x)‖2Hs

x (T) dk.

Proof. First, we write h(k, x) as a Fourier series:

h(k, x) =
∑

j∈Z
̂h(k, j)ei j x .

By direct computations, we have

∂s
x

∫

I
h(k, x)eikx dk

=
∫

I

∑

j∈Z
(i(k + j))s

̂h(k, j)ei(k+ j)x dk =
∑

j∈Z

∫

I j

(ik)s
̂h(k − j, j)eikx dk

=
∑

j∈Z

∫

R
(ik)sXI j (k)̂h(k − j, j)eikx dk

=
∫

R

⎛

⎝

∑

j∈Z
(ik)sXI j (k)̂h(k − j, j)

⎞

⎠ eikx dk

=
⎛

⎝

∑

j∈Z
(ik)sXI j (k)̂h(k − j, j)

⎞

⎠

∨
(x),
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where

I j = I + j, XI j (k) =
{

1 if k ∈ I j

0 if k /∈ I j
.

Note that I is contained in an interval with length no more than 1, therefore I j are
disjoint with each other, which implies that XI j1

XI j2
= 0 almost everywhere, if

j1 �= j2. Then by Parseval’s identity, we have

‖∂s
x

∫

I
h(k, x)eikx dk‖2L2

x (R)

= ‖
∑

j∈Z
(ik)sXI j (k)̂h(k − j, j)‖2

L2
k (R)

=
∫

R

∑

j∈Z
|XI j (k)|2 |k|2s |̂h(k − j, j)|2 dk

=
∑

j∈Z

∫

I j

|k|2s |̂h(k − j, j)|2 dk =
∫

I

∑

j∈Z
|k + j |2s |̂h(k, j)|2 dk

≈

∫

I

∑

j∈Z
| j |2s |̂h(k, j)|2 dk.

Then the desired result follows. ��
Now, we are ready to prove the upper bound estimate of et J L on Hs (R). The

following semigroup estimates were proved in [28] for the “differential” case (1.2).

Lemma 3.4. [28] Assume (1.2), (1.3). Let λ0 � 0 be such that

Re λ � λ0, ∀ξ ∈ [0, 1], λ ∈ σ(Jξ Lξ ). (3.4)

Then for every s � m
2 , ε > 0 there exist C(s, ε) > 0 such that

‖et J Lu(x)‖Hs (R) � C(s, ε)e(λ0+ε)t‖u(x)‖Hs (R), ∀t > 0

for any u ∈ Hs(R).

For the Whitham type equation, we have the following similar result:

Lemma 3.5. Assume (1.4)–(2.3), then for every s � 0 and ε > 0 there exists
C(s, ε) > 0 such that

‖et J Lu(x)‖Hs (R) � C(s, ε)e(λ0+ε)t‖u(x)‖Hs (R), ∀t > 0 (3.5)

for any u ∈ Hs(R). Here, λ0 is the largest growth rate as defined in (3.4).

Proof. The proof is similar to that of Lemma 3.4 (or Lemma 11.2 in [28]). We
sketch it here. First, for any u ∈ Hs(R),

u(x) =
∫ 1

0
eiξ x uξ (x)dξ ; where uξ (x) = �n∈Zeinx û(n + ξ) ∈ Hs(T2π ),
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and û is the Fourier transform of u. By Lemma3.3, there exists C > 0 such that

1

C
‖u‖2Hs (R) �

∫ 1

0
‖uξ (x) ‖2Hs

x (T2π ) dξ � C‖u‖2Hs (R). (3.6)

Note that

et J Lu(x) =
∫ 1

0
eiξ x et Jξ Lξ uξ (x) dξ,

and thus

‖et J Lu(x)‖2Hs (R) ≈

∫ 1

0
‖et Jξ Lξ uξ (x) ‖2Hs

x (T2π ) dξ. (3.7)

So to prove (3.5), it suffices to show that: for any ε, s � 0, there existsC(s, ε) >

0 such that

‖et Jξ Lξ v(x)‖Hs
x (T2π ) � C(s, ε)e(λ0+ε)t‖v(x)‖Hs

x (T2π ), ∀ξ ∈ [0, 1]. (3.8)

It suffices to prove the lemma for s = 0 since the estimates for general s � 0 can be
obtained by applying Jξ Lξ repeatedly to the estimates for s = 0 (and interpolation
for the case when s is not an integer). Due to the compactness of [0, 1], it suffices
to prove that for any ξ0 ∈ [0, 1], there exist C, ε > 0 such that (3.8) holds for
ξ ∈ (ξ0 −ε, ξ0 +ε). We first note that each λ ∈ σ(Jξ0 Lξ0) is an isolated eigenvalue
with finite algebraic multiplicity and Lξ0 is non-degenerate on Eλ when λ �= 0 and
on E0/(E0 ∩ ker Lξ0), where Eλ is the generalized eigenspace of the eigenvalue λ

of Jξ0 Lξ0 . By (2.3), n− (−Lξ

)

< ∞. Let

� = {λ ∈ σ(Jξ0 Lξ0) | ∃ δ > 0 s.t. 〈−Lξ0v, v〉 � δ‖v‖2 on Eλ

}

.

By the instability index formula (Proposition 11.2 in [28]), σ(Jξ0 Lξ0)\� is finite
and thus

n = �λ∈σ(Jξ0 Lξ0 )\� dim Eλ < ∞.

Moreover, there exists ε0 > 0 such that � ∩ � = ∅, where
� = ∪λ∈σ(Jξ0 Lξ0 )\�{z | |z − λ| < ε0} ⊂ C.

Assuming for a moment that

the resolvent (λ − Jξ Lξ )
−1 is continuous in ξ ∈ [0, 1], (3.9)

we now prove (3.8) for ξ in a small interval near ξ0. Indeed, by (3.9), there exists
ε > 0 such that ∂� ∩ σ(Jξ Lξ ) = ∅ for any ξ ∈ [ξ0 − ε, ξ0 + ε]. For such ξ , let

P(ξ) = 1

2π i

∮

∂�

(λ − Jξ Lξ )
−1dλ, Zξ = P(ξ)X, Yξ = (I − P(ξ)

)

X,

which are continuous in ξ and invariant under et Jξ Lξ . Therefore dim Zξ = n. By
the definition of �, we know that −Lξ0 |Yξ0

is positive definite. Then the continuity
of Lξ in ξ implies that there exists δ0 > 0 such that

δ−2
0 ‖v‖2 � 〈−Lξ v, v〉 � δ20‖v‖2, ∀v ∈ Yξ , |ξ − ξ0| � ε.
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Thus for any ξ ∈ [ξ0−ε, ξ0+ε], there exists a generic constantC > 0 independent
of ξ such that, for any v ∈ L2 (T2π ),

‖et Jξ Lξ v‖ � ‖et Jξ Lξ P(ξ)v‖ + ‖et Jξ Lξ
(

I − P(ξ)
)

v‖
�C
(

(1 + tn)eλ0t‖P(ξ)v‖ + 〈−Lξ et Jξ Lξ
(

I − P(ξ)
)

v, et Jξ Lξ
(

I − P(ξ)
)

v〉 1
2

)

�C
(

(1 + tn)eλ0t‖P(ξ)v‖ + 〈−Lξ

(

I − P(ξ)
)

v,
(

I − P(ξ)
)

v〉 1
2

)

�C(1 + tn)eλ0t‖v‖L2 � C (ε) e(λ0+ε)t‖v‖L2 .

Along with the compactness of [0, 1], this implies estimates (3.8) and (3.5).
It remains to prove (3.9) about the continuity of the resolvent. Fix k ∈ [0, 1].

For k′ near k, we have

Jk′ Lk′ − Jk Lk = −(∂x + ik)(Mk′ − Mk) − i(k′ − k)
(Mk′ − c + f ′(uc)

)

.

Let D = −(∂x + ik)
(

c − f ′(uc)
)

. Then by (2.3) and the proof of Lemma2.2, for
any a0 > 0, (a0 − D)−1 : L2 → H1 is bounded, so

∣

∣

∣(a0 − D)−1 (Jk′ Lk′ − Jk Lk)

∣

∣

∣

L2→L2
→ 0 as k → k′. (3.10)

Moreover,

I + (a0 − D)−1 (λ − Jk Lk) = (a0 − D)−1 (λ + a0 + (∂x + ik)Mk)

is compact in L2. Therefore A = (a0 − D)−1 (λ − Jk Lk) is a Fredholm operator
of index 0. Suppose λ /∈ σ(Jk Lk), then A is injective and thus A−1 is bounded on
L2. Along with (3.10), we obtain

|(λ − Jk Lk)
−1(Jk′ Lk′ − Jk Lk)| = |A−1 (a0 − D)−1 (Jk′ Lk′ − Jk Lk)| → 0

as k′ → k. From

λ − Jk′ Lk′ = (λ − Jk Lk)
(

I − (λ − Jk Lk)
−1(Jk′ Lk′ − Jk Lk)

)

we obtain the continuity of the resolvent (λ − Jk Lk)
−1 in k ∈ [0, 1]. This finishes

the proof of the lemma. ��
The following is an analogue of Lemma 3.2:

Lemma 3.6. If

‖g (t) ‖Hs (R) � Cg
ewt

1 + tb
, t � 0

for some b > 0, s � s0 and w > λ0, then the solution to the equation

∂t u = J Lu + g, u|t=0 = 0

satisfies

‖u‖Hs (R) � CCg
ewt

1 + tb
, t � 0.
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Proof. Choose ε = 1
2 (w − λ0) in Lemma3.5, then

∥

∥et J L
∥

∥

Hs � e
1
2 (λ0+w)t . Thus

we have

‖u (t)‖Hs �
∫ t

0

∥

∥

∥e(t−s)J L
∥

∥

∥

Hs
‖g (s)‖Hs ds

�
∫ t

0
e
1
2 (λ0+w)(t−s) ews

1 + sb
ds

= ewt
∫ t

0
e
1
2 (λ0−w)(t−s) 1

1 + sb
ds � ewt

1 + tb
,

since w > λ0. ��
Lastly, we prove the semigroup estimates in the space H−1, which will be

used in the proof of nonlinear instability for non-smooth nonlinear terms. First, we
consider the estimates for periodic perturbations.

Lemma 3.7. Consider the semigroup et J L associated with the solutions of (1.7),
where J, L are given in (1.8). Assume (1.2), (1.3) or (1.4)–(2.3), then for any
ε > 0 there exist C(ε) > 0 such that

‖et J Lu(x)‖H−1(T2πq ) � C(ε)e(λ0+ε)t‖u(x)‖H−1(T2πq ), ∀t > 0

for any u ∈ H−1(T2πq).

Proof. Since (J L)∗ = −L J , by duality it suffices to show that

‖et L J ‖H1(T2πq ) � C(ε)e(λ0+ε)t , ∀t > 0. (3.11)

Denote P0 and P1 = 1− P0 to be the projection operators to ker L and (ker L)⊥ =
R (L) respectively. For any v ∈ H1(T2πq), let v = P0v + P1v = v1 + v2. Then
the equation ∂tv = L Jv can be written as

∂tv1 = 0, ∂tv2 = L Jv1 + L Jv2. (3.12)

Since L1 = L|R(L) : R (L) → R (L) has a bounded inverse and

L J |R(L) = L1P1 J L1L−1
1 , et L J |R(L) = L1P1et J L |R(L)L−1

1 ,

by Lemma3.1 we have
∥

∥

∥et L J |R(L)

∥

∥

∥

H1
�
∥

∥

∥et J L |R(L)

∥

∥

∥

H1+m
� C(ε)e(λ0+ε)t

for the case of (1.2), and
∥

∥

∥et L J |R(L)

∥

∥

∥

H1
�
∥

∥

∥et J L |R(L)

∥

∥

∥

H1
� C(ε)e(λ0+ε)t

for the case of (1.4)–(2.3). By (3.12), we have v1 (t) = v1 (0). Thus

‖v2 (t)‖H1 �
∥

∥

∥et L J |R(L)v2 (0)
∥

∥

∥

H1
+
∫ t

0

∥

∥

∥e(t−s)L J |R(L) L Jv1 (0)
∥

∥

∥

H1
ds

� C(ε)e(λ0+ε)t (‖v2 (0)‖H1 + ‖v1 (0)‖H1
)

� C(ε)e(λ0+ε)t ‖v (0)‖H1 ,

which implies (3.11) and the lemma. ��
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In the next lemma, we consider localized perturbations.

Lemma 3.8. Consider the semigroup et J L associated with the solutions of (1.7),
where J, L are given in (1.8). Assume (1.2) or (1.4) and (2.3), then for any ε >

0 there exist C(ε) > 0 such that

‖et J Lu(x)‖H−1(R) � C(ε)e(λ0+ε)t‖u(x)‖H−1(R), ∀t > 0

for any u ∈ H−1(R).

Proof. By duality, it suffices to show that

‖et L J ‖H1(R) � C(ε)e(λ0+ε)t .

As in the proof of Lemmas3.4 and 3.5, it is enough to show that for any ε > 0,
there exists C (ε) > 0 such that

‖et Lξ Jξ u(x)‖H1(T2π ) � C(ε)e(λ0+ε)t‖u(x)‖H1(T2π ) (3.13)

is true for any ξ ∈ [0, 1] and u ∈ H1(T2π ). By compactness of [0, 1], again it
suffices to prove that for any ξ0 ∈ [0, 1], there exist C, ε > 0 such that (3.13) holds
for ξ ∈ (ξ0 − ε, ξ0 + ε). We consider two cases below.

Case 1 (Lξ0 is invertible): In this case, there exists ε > 0 such that Lξ is
invertible for ξ ∈ (ξ0 − ε, ξ0 + ε), so we have
∥

∥

∥et Lξ Jξ

∥

∥

∥

H1(T2π )
=
∥

∥

∥Lξ et Jξ Lξ L−1
ξ

∥

∥

∥

H1(T2π )
�
∥

∥

∥et Jξ Lξ

∥

∥

∥

H1+m (T2π )
� C(ε)e(λ0+ε)t

for the case of (1.2), and
∥

∥

∥et Lξ Jξ

∥

∥

∥

H1(T2π )
=
∥

∥

∥Lξ et Jξ Lξ L−1
ξ

∥

∥

∥

H1(T2π )
�
∥

∥

∥et Jξ Lξ

∥

∥

∥

H1(T2π )
� C(ε)e(λ0+ε)t

for the cases of (1.4) and (2.3). In the above, we use the estimate (3.8), which is
true for both cases of (1.2) and (1.4)–(2.3).

Case 2 (Lξ0 is not invertible): In this case, ker Lξ0 �= {0}. It is possible that Lξ

is invertible for ξ near ξ0. For example, whenM = −∂2x , it was shown in Remark
11.1 of [28] that Lξ has zero eigenvalue if and only if ξ = 0, 1. However, for ξ

near ξ0, there is no uniform (in ξ ) estimate for L−1
ξ and we cannot argue as in Case

1. We will separate the eigenspaces of Lξ (ξ near ξ0) for eigenvalues near 0 and
away from 0. Since 0 is an isolated eigenvalue of Lξ0 , we have that

d0 = min
{|λ| , λ ∈ σ

(

Lξ0

)

/ {0}} > 0.

Let ε > 0 be small enough such that when ξ ∈ (ξ0 − ε, ξ0 + ε),

� =
{

z | |z| = d0
2

}

∩ σ(Lξ ) = ∅.

Denote P0
ξ = ∮

�

(

z − Lξ

)−1
dz to be the Riesz projection associated with the

eigenvalues of Lξ inside �, and P1
ξ = 1 − P0

ξ . In particular, P0
ξ0

, P1
ξ0

are the
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projection operators to ker Lξ0 and R
(

Lξ0

)

respectively. By choosing ε small, we

can ensure that dim R
(

P0
ξ

)

= dim ker Lξ0 ,

min

{

|λ| , λ ∈ σ

(

Lξ |R
(

P1
ξ

)

)}

� 3

4
d0

and

max

{

|λ| , λ ∈ σ

(

Lξ |R
(

P0
ξ

)

)}

� a (ε)

with a (ε) → 0 when ε → 0. Denote

E0 = ker Lξ0 , E1 = (ker Lξ0

)⊥ = R
(

Lξ0

)

and

Eξ
0 = R

(

P0
ξ

)

, Eξ
1 = R

(

P1
ξ

)

.

It is easy to show that Eξ
1 can be written as a graph of a O (ε)-bounded operator

Sξ : E1 → E0. That is, let S̃ξ = I + Sξ , then Eξ
1 = S̃ξ (E1). For any u ∈ H1(T2π ),

let

u = P0
ξ u + P1

ξ u = u0 + u1,

then the equation ∂t u = Lξ Jξ u becomes

∂t u
0 = P0

ξ Lξ Jξ u0 + P0
ξ Lξ Jξ u1, (3.14)

∂t u
1 = P1

ξ Lξ Jξ u0 + P1
ξ Lξ Jξ u1. (3.15)

We will show that for any ε > 0 there exist C(ε), ε > 0 such that

‖et P1
ξ Lξ Jξ u‖H1(T2π ) � C(ε)e(λ0+

ε
2 )t‖u‖H1(T2π ), ∀t > 0, u ∈ Eξ

1 (3.16)

holds for ξ ∈ (ξ0 − ε, ξ0 + ε). Assuming (3.16), we now show (3.13) for ξ ∈
(ξ0 − ε, ξ0 + ε). First, by (3.15), we have

∥

∥

∥u1 (t)
∥

∥

∥

H1
(3.17)

�
∥

∥

∥et P1
ξ Lξ Jξ u1 (0)

∥

∥

∥

H1
+
∥

∥

∥

∥

∫ t

0
e(t−s)P1

ξ Lξ Jξ P1
ξ Lξ Jξ u0 (s) ds

∥

∥

∥

∥

H1

� C(ε)

(

e(λ0+
ε
2 )t‖u1 (0) ‖H1 +

∫ t

0
e(λ0+

ε
2 )(t−s)‖u0 (s) ‖H1 ds

)

.

Since the operator P0
ξ Lξ Jξ is finitely ranked and

∥

∥

∥P0
ξ Lξ Jξ

∥

∥

∥

H1
� Ca (ε) for some

constant C , from (3.14) we have

∥

∥

∥u0 (t)
∥

∥

∥

H1
� eCa(ε)t

∥

∥

∥u0 (0)
∥

∥

∥

H1
+ Ca (ε)

∫ t

0
eCa(ε)(t−s)‖u1 (s) ‖H1 ds. (3.18)
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We choose ε small enough such that Ca (ε) < ε
2 . Plugging (3.18) into (3.17), we

get
∥

∥

∥u1 (t)
∥

∥

∥

H1
� C ′C(ε)e(λ0+

ε
2 )t
(

‖u1 (0) ‖H1 +
∥

∥

∥u0 (0)
∥

∥

∥

H1

)

+ Ca (ε) C(ε)

∫ t

0
e(λ0+

ε
2 )(t−s)

∫ s

0
e

ε
2 (s−τ)‖u0 (τ ) ‖H1 dτ ds

� C ′′C(ε)e(λ0+
ε
2 )t‖u (0) ‖H1

+ Ca (ε) C(ε)e(λ0+
ε
2 )t
∫ t

0
e− ε

2 τ‖u0 (τ ) ‖H1

∫ t

τ

e−λ0sds dτ

� C ′′C(ε)e(λ0+
ε
2 )t‖u (0) ‖H1

+ Ca (ε) C(ε)e(λ0+
ε
2 )t
∫ t

0
e−(λ0+ ε

2 )τ‖u0 (τ ) ‖H1 dτ,

where C ′, C ′′ are some constants independent of ε. Defining

y (t) = e−(λ0+ ε
2 )t‖u1 (t) ‖H1 ,

the above inequality becomes

y (t) � C ′′C(ε)‖u (0) ‖H1 + Ca (ε) C(ε)

∫ t

0
y (τ ) dτ.

Choose ε even smaller such that Ca (ε) C(ε) < ε
2 . Then by Gronwall’s inequality,

we have

y (t) � C(ε)e
ε
2 t‖u (0) ‖H1 ,

that is,
∥

∥

∥u1 (t)
∥

∥

∥

H1
� C(ε)e(λ0+ε)t‖u (0) ‖H1 .

Plugging the above estimate into (3.18), we also get
∥

∥

∥u0 (t)
∥

∥

∥

H1
� C(ε)e(λ0+ε)t‖u (0) ‖H1 .

Combining the above, we have

‖u (t)‖H1 � C(ε)e(λ0+ε)t‖u (0) ‖H1 ,

and thus (3.13) is proved. It remains to prove (3.16). Since

P1
ξ Lξ Jξ |Eξ

1
= Lξ |Eξ

1
P1

ξ Jξ Lξ |Eξ
1

(

Lξ |Eξ
1

)−1

and
∥

∥

∥

∥

(

Lξ |Eξ
1

)−1
∥

∥

∥

∥

H1→H1+m
� 1

d0
,
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to prove (3.16) it suffices to show that there exist C(ε), ε > 0 such that
∥

∥

∥

∥

e
t P1

ξ Jξ Lξ |
E

ξ
1

∥

∥

∥

∥

H1+m
� C(ε)e(λ0+

ε
2 )t , ∀t > 0 (3.19)

for ξ ∈ (ξ0 − ε, ξ0 + ε). Again, it is enough to estimate e
t P1

ξ Jξ Lξ |
E

ξ
1 on the energy

space H
m
2 and then apply P1

ξ Jξ Lξ |Eξ
1
repeatedly (and by interpolation) to get the

estimates for s > m
2 . We will study the semigroup generated by P1

ξ Jξ Lξ |Eξ
1
on

H
m
2 via the perturbation of the semigroup generated by P1

ξ0
Jξ0 Lξ0 |E1 . First, we

use the transform S̃ξ : E1 → Eξ
1 to study the conjugated operators on the same

space E1. Notice that
(

S̃ξ

)−1 : Eξ
1 → E1 is exactly the projection operator P1

ξ0
.

Therefore the S̃ξ−conjugated operator can be written in a Hamiltonian form:

S̃−1
ξ P1

ξ Jξ Lξ |Eξ
1

S̃ξ = P1
ξ0

P1
ξ Jξ

(

P1
ξ

)∗ (
P1

ξ0

)∗ (
S̃ξ

)∗ (
P1

ξ

)∗
Lξ P1

ξ S̃ξ = J̃ξ L̃ξ ,

where

J̃ξ = P1
ξ0

P1
ξ Jξ

(

P1
ξ

)∗ (
P1

ξ0

)∗ : (E1)
∗ → E1

and

L̃ξ =
(

S̃ξ

)∗ (
P1

ξ

)∗
Lξ P1

ξ S̃ξ : E1 → (E1)
∗

are anti-selfadjoint and self-adjoint respectively. We also write

P1
ξ0

Jξ0 Lξ0 |E1 = P1
ξ0

Jξ0

(

P1
ξ0

)∗ (
P1

ξ0

)∗
Lξ0 P1

ξ0
= J̃ξ0 L̃ξ0 ,

where

J̃ξ0 = P1
ξ0

Jξ0

(

P1
ξ0

)∗
, L̃ξ0 =

(

P1
ξ0

)∗
Lξ0 P1

ξ0
.

We note that the spectra of J̃ξ L̃ξ is discrete, n−
(

L̃ξ

)

� n− (Lξ

)

< ∞. Moreover,

the maximal growth rate of the eigenvalues of P1
ξ0

Jξ0 Lξ0 | E1 is still λ0. Therefore
by the similar proof as in Lemma 3.5 or Lemma 11.2 in [28], to prove the estimate
(3.19) in H

m
2 , it suffices to show that the resolvent (λ − J̃ξ L̃ξ )

−1 is continuous for
ξ near ξ0. We have

J̃ξ L̃ξ − J̃ξ0 L̃ξ0 =
(

J̃ξ − J̃ξ0

)

L̃ξ0 + J̃ξ

(

L̃ξ − L̃ξ0

)

.

In the above,

J̃ξ − J̃ξ0 = P1
ξ0

(

1 − P0
ξ

)

Jξ

(

P1
ξ0

(

1 − P0
ξ

))∗ − P1
ξ0

Jξ0

(

P1
ξ0

)∗

= −P1
ξ0

P0
ξ P0

ξ Jξ

(

P1
ξ0

P1
ξ

)∗ −
(

P1
ξ0

P0
ξ P0

ξ Jξ

(

P1
ξ0

P1
ξ

)∗)∗

− P1
ξ0

(

Jξ − Jξ0

)

(

P1
ξ0

)∗

= O (|ξ − ξ0|) ,
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since Jξ − Jξ0 = O (|ξ − ξ0|) ,

P1
ξ0

P0
ξ = O (|ξ − ξ0|) , P0

ξ Jξ = O (1) , P1
ξ0

P1
ξ = O (1) .

Also,

L̃ξ − L̃ξ0 =
(

S̃ξ

)∗ (
P1

ξ

)∗
Lξ P1

ξ S̃ξ −
(

P1
ξ0

)∗
Lξ0 P1

ξ0

=
(

P1
ξ0

)∗ (
Lξ − Lξ0

)

P1
ξ0

+
(

P1
ξ S̃ξ − P1

ξ0

)∗
Lξ P1

ξ S̃ξ

+
(

P1
ξ0

)∗
Lξ

(

P1
ξ S̃ξ − P1

ξ0

)

,

where

P1
ξ S̃ξ − P1

ξ0
= P1

ξ − P1
ξ0

+ P1
ξ Sξ = O (|ξ − ξ0|) .

Thus by similar arguments as in the proof of Lemma 3.5 or Lemma 11.2 in [28], we
can show the continuity of the resolvent (λ − J̃ξ L̃ξ )

−1 for ξ near ξ0. This finishes
the proof of the Lemma. ��

4. Nonlinear Modulational Instability (Multi-periodic Perturbations)

In this section, we prove that linearly modulationally unstable traveling waves
are nonlinearly orbitally unstable under multi-periodic perturbations. First, by the
definition (1.1) of linear modulational instability and the remark thereafter, there
exists an interval I0 ⊂ [0, 1] such that for any k ∈ I0, there exists an unstable
solution eλ(k)t eikxvk (x) (Re λ (k) > 0, vk (x) ∈ L2(T2π )) to the linearized equa-
tion (1.7). Thus we can pick a rational number k0 = p

q ∈ I0 with p, q ∈ N.

Then eik0xvk0 (x) is a 2πq-periodic unstable eigenfunction to the operator J L in
L2(T2πq). This leads us to consider the nonlinear instability of uc in L2(T2πq).

The proof of Theorem 1.1 i) uses the strategy in [13]; constructing higher order
approximation solutions and then using energy estimates to overcome the loss of
derivative.

The following energy estimate will be used in the proof later (we use T for
T2πq below):

Lemma 4.1. Consider the solution of the following equation:

∂tv − c∂xv + ∂xMv + ∂x ( f (uc + U + v) − f (uc + U )) = R, (4.1)

v(0, ·) = 0,

where U (t, ·) ∈ H4(T) and R (t, ·) ∈ H2(T) are given and f ∈ C∞(R). Assume
that

sup
0�t�T

‖U‖ (t)H4(T) + ‖v‖H2(T) (t) � β.

Then there exists a constant C (β) such that for 0 � t � T,

∂t ‖v‖H2(T) � C (β) ‖v‖H2(T) + ‖R‖H2(T) . (4.2)
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Proof. We write

f (uc + U + v) − f (uc + U ) =
∫ 1

0
f ′ (uc + U + τv) dτ v.

First, taking the inner product of (4.1) with v and integrating by parts, we have

1

2
∂t ‖v‖2L2(T)

= −
((∫ 1

0
f ′ (uc + U + τv) dτ v

)

x
, v

)

+ (R, v)

= −1

2

∫

T

(∫ 1

0
f ′ (uc + U + τv) dτ

)

x
v2 dx + (R, v)

� C (β) ‖ f (s)‖C2(|s|�‖uc‖∞+Cβ) ‖v‖2L2(T)
+ ‖R‖L2(T) ‖v‖L2(T) ,

where in the above we use the fact that ∂xM is anti-selfadjoint and

‖v‖∞ + ‖∂xv‖∞ � C ‖v‖H2(T) .

Thus
∂t ‖v‖L2(T) � C (β) ‖v‖L2(T) + ‖R‖L2(T) . (4.3)

Next, applying ∂2x to (4.1) and then taking the inner product with ∂2x v, we get

1

2
∂t‖∂2x v‖2L2(T)

= −
((∫ 1

0
f ′ (uc + U + τv) dτ v

)

xxx
, vxx

)

+ (Rxx , vxx ) .

(4.4)
By direct computation and integration by parts, we can show that for 0 < t � T ,
there exists a constant C(β) such that

∣

∣

∣

∣

((∫ 1

0
f ′ (uc + U + τv) dτ v

)

xxx
, vxx

)∣

∣

∣

∣

� C(β)‖v‖2H2(T)
.

We only sketch the estimates of the terms involving ∂3x v. One such term is
∣

∣

∣

∣

(∫ 1

0
f ′ (uc + U + τv) dτ vxxx , vxx

)∣

∣

∣

∣

=
∣

∣

∣

∣

∫

T

f ′ (uc + U + τv) dτ
1

2
∂x (vxx )

2 dx

∣

∣

∣

∣

= 1

2

∣

∣

∣

∣

∫

T

(∫ 1

0
f ′ (uc + U + τv) dτ

)

x
(vxx )

2 dx

∣

∣

∣

∣

� C (β) ‖vxx‖2L2(T)
.

Another term,
(∫ 1

0
f (4) (uc + U + τv) τ 3 dτ vvxxx , vxx

)

,

can be handled similarly. Thus by (4.4), we have

∂t ‖vxx‖L2(T) � C (β) ‖vxx‖L2(T) + ‖Rxx‖L2(T) ,

and combined with (4.3) this proves (4.2). ��
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Nowwe are ready to prove nonlinearmodulational instability formulti-periodic
perturbations.

Proof of Theorem 1.1 i). Let vg (x) be the eigenfunction associated with the most
unstable eigenvalue λ of J L in L2 (T). By Lemmas 2.1 and 2.2, vg ∈ Hs (T) for
any s � 0. We construct an approximate solution U app to (1.6) of the form

U app(t, x) = uc(x) +
N
∑

j=1

δ jU j (t, x), (4.5)

where
U1(t, x) = vg(x)eλt + v̄g(x)eλ̄t (4.6)

is the most rapidly growing real-valued 2πq-periodic solution of the linearized
equation (1.7). The integer N is chosen such that (N + 1)Re λ > C (1), where the
constant C (1) is the one in the energy estimate (4.2) with β = 1.

Now we construct the terms U2, · · · , UN in (4.5). By the Taylor expansion
formula,

f (U app) − f (uc) =
N
∑

k=1

f (k)(uc)

k!

⎛

⎝

N
∑

j=1

δ j U j

⎞

⎠

k

(4.7)

+
∫ 1

0

f (N+1)
(

uc + τ
∑N

j=1 δ j U j

)

N ! (1 − τ)N dτ

⎛

⎝

N
∑

j=1

δ j U j

⎞

⎠

N+1

.

Since uc is a stationary solution to (1.6) and U1 satisfies the linearized equation

∂tU1 − c∂xU1 + ∂x (MU1 + f ′(uc)U1) = 0,

by using (4.7) we have

∂tU
app − c∂xU app + ∂x (MU app + f (U app))

=
N
∑

j=2

δ j (∂tU j − c∂xU j + ∂x (MU j + f ′(uc)U j )

+ ∂x Pj (uc; U1, U2, · · · , U j−1)
)

+
N N
∑

j=N+1

δ j∂x Q j (uc; U1, U2, · · · , UN )

+ ∂x

⎛

⎜

⎝g (uc; U1, U2, · · · , UN )

⎛

⎝

N
∑

j=1

δ jU j

⎞

⎠

N+1
⎞

⎟

⎠ ,

where

g (uc; U1, U2, · · · , UN ) =
∫ 1

0

f (N+1)
(

uc + τ
∑N

j=1 δ jU j

)

N ! (1 − τ)N dτ,
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and Pj , Q j are polynomials of U1, · · · , UN with degree j such that

N
∑

k=2

f (k)(uc)

k!

⎛

⎝

N
∑

j=1

δ jU j

⎞

⎠

k

=
N
∑

j=2

δ j Pj (uc; U1, U2, · · · , U j−1) +
N N
∑

j=N+1

δ j Q j (uc; U1, U2, · · · , UN ).

For j = 2, · · · , N , we define U j to be the solution of
{

∂tU j = J LU j + ∂x Pj (uc; U1, U2, · · · , U j−1),

U j (0, ·) = 0.
(4.8)

Now we estimate U j for j � 2. First, by Lemmas 2.1 and 2.2, we have

‖U1 (t) ‖Hl (T) � Ce(Reλ)t , (4.9)

where l = s + N . By (4.8), U2 satisfies the equation

∂tU2 = J LU2 + ∂x P2(U1), U2 (0) = 0, (4.10)

where P2(U1) = 1
2 f ′′(uc)U 2

1 . By (4.9), we have

‖∂x P2(U1)‖Hl−1(T) � C (l) e2Re λt .

Then, it follows from Lemma 3.2 that

‖U2(t, x)‖Hl−1(T) � C (l) e2Re λt .

By induction, for each 2 < j � N , we have

‖∂x Pj (U1, · · · , u j−1)‖Hl+1− j (T) � C ( j, l) e j Re λt ,

and then by Lemma 3.2

‖U j (t, x)‖Hl+1− j (T) � C ( j, l) e j Re λt .

Therefore, there exists a constant C(N , s) such that

‖U j (t, x)‖Hl+1− j (T) � C(N , s)e j Re λt , for j = 1, 2, · · · , N . (4.11)

By the construction of U app, we have

∂tU
app − c∂xU app + ∂x (MU app + f (U app)) = Rapp, (4.12)

where

Rapp =
N N
∑

j=N+1

δ j∂x Q j (uc; U1, U2, · · · , UN )

+ ∂x

⎛

⎜

⎝
g (uc; U1, U2, · · · , UN )

⎛

⎝

N
∑

j=1

δ jU j

⎞

⎠

N+1
⎞

⎟

⎠
. (4.13)
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Leave 0 < θ < 1 to be determined and define T δ by δeRe λT δ = θ . Clearly
T δ = O (|ln δ|). Choose s � 4 and recall that l − N = s. Then by (4.11), for any
N + 1 � j � N N , we have

‖∂x Q j (uc; U1, U2, · · · , UN )‖Hs (T) � C(N , s)e j Re λt ,

and thus by (4.13),

∥

∥Rapp
∥

∥

Hs � C (N , s) δN+1e(N+1)Re λt , for 0 � t � T δ. (4.14)

Let Uδ(t, x) be the solution to (1.6) with initial value uc(x) + δU1(0, x), and let
v = Uδ − U app. Then by using (4.12), one finds that v satisfies the equation

{

∂tv − c∂xv + ∂xMv + ∂x ( f (U app + v) − f (U app)) = −Rapp

v(0, ·) = 0.
(4.15)

Define T1 to be the maximal time such that

‖v (t)‖H2 � 1

2
, 0 � t � T1.

We claim that T1 > T δ when θ is chosen to be small enough. If we suppose that
T1 � T δ , then for 0 � t � T1, we have

∥

∥U app − uc
∥

∥

H4 �
N
∑

j=1

δ j
∥

∥U j
∥

∥

Hs � C (N , s)
N
∑

j=1

(

δeRe λt
) j

� Cθ

1 − θ
� 1

2

when θ is small. Thus we have

sup
0�t�T1

∥

∥U app − uc
∥

∥

H4(T)
(t) + ‖v‖H2(T) (t) � 1.

By using Lemma 4.1 for the equation (4.15 ), we have

∂t ‖v‖H2 � C (1) ‖v‖H2 + ∥∥Rapp
∥

∥

H2 , for 0 � t � T1. (4.16)

Recall that (N + 1)Re λ > C (1). Thus by using (4.14) and Gronwall’s inequality,
we obtain from (4.16) that for 0 � t � T1,

‖v‖H2 (t) � C (N , s) δN+1e(N+1)Re λt . (4.17)

Thus

‖v‖H2 (T1) � Cθ N+1 <
1

2
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when θ is small. This is in contradiction to the definition of T1, and so the claim
is proved. Moreover, for 0 � t � T δ < T1, when θ is small enough, the estimate
(4.17) is true by the above arguments. Therefore, there exist C1, C2 > 0 such that

∥

∥Uδ

(

T δ, x
)− uc (x)

∥

∥

L2

�
∥

∥U app (T δ, x
)− uc (x)

∥

∥

L2 − ∥∥v (T δ, x
)∥

∥

H2

� C1δeRe λT δ − C2

(

δeRe λT δ
)2 = C1θ − C2θ

2

� 1

2
C1θ

when θ is small enough.
It remains to show that above nonlinear instability is also true in the orbital

distance. This can be done by using the argument in [14]. By the previous estimates,
there exists a constant ˜C , such that

‖Uδ(t, x) − uc(x)‖H2(T) � ˜Cθ, for 0 < t � T δ,

where ˜C may depend on θ , but is independent of δ. Denoting

V1 (t, x) = e−Re λtU1 (x, t) = 2
(

Re vg cos (Im λt) − Im vg sin (Im λt)
)

,

it is easy to see that for any s � 0, there exist two constants c1 (s) , c2 (s) > 0 such
that

0 < c1 (s) � ‖V1‖Hs � c2 (s) .

Let V ⊥
1 (t, x) be the projection of V1(t, x) into Z⊥ in the L2 inner product, where

Z⊥ = {v ∈ L2(T) : 〈v, ∂x uc〉 = 0
}

.

Let h(t) be such that

‖Uδ(t, x) − uc(x + h(t))‖L2(T) = inf
y∈T ‖Uδ(t, x) − uc(x + y)‖L2(T).

Then for 0 < t � T δ , we have

‖uc(x) − uc(x + h(t))‖L2(T)

� ‖Uδ(t, x) − uc(x)‖L2(T) + ‖Uδ(t, x) − uc(x + h(t))‖L2(T)

� 2‖Uδ(t, x) − uc(x)‖L2(T) � 2C̃θ,

which implies |h(t)| = O(θ). We can therefore write

uc(x + h) = uc(x) + h∂x uc(x) + O(θ2).

This implies that

|〈Uδ(x) − uc(x + h(T δ)), V ⊥
1 (T δ, x)〉|

� |〈Uδ(x) − uc(x), V ⊥
1 (T δ, x)〉| − O(θ2) � c0θ



Jiayin Jin, Shasha Liao & Zhiwu Lin

for some c0 > 0, when θ is small enough. On the other hand, we have

|〈Uδ(T
δ, x) − uc(x + h(T δ)), V ⊥

1 (T δ, x)〉|
� inf

y∈T ‖U (T δ, x) − uc(x + y)‖L2(T)‖V ⊥
1 (T δ, x)‖L2(T),

which implies that

inf
y∈T ‖U (T δ, x) − uc(x + y)‖L2(T) � C ′θ

for some C ′ > 0. This finishes the proof of Theorem 1.1 i). ��

5. Nonlinear Modulational Instability (Localized Perturbations)

In this section, we prove nonlinear instability for localized perturbations. Since
the linearized operator J L (defined in (1.8)) does not have an unstable eigenvalue
in Hs (R), we will construct unstable initial data in the form of a wave package of
unstable eigenfunctions of Jk Lk where k is near the most unstable frequency k0.
Without loss of generality, we can assume that k0 ∈ [0, 1

2

]

. Indeed, if k ∈ [0, 1] is
an unstable frequency in the sense that Jk Lk has an unstable eigenvalue, then
−k, 1 − k are also unstable frequencies, so we can always pick k0 ∈ [0, 1

2

]

such
that Jk0 Lk0 has the most unstable eigenvalue λ (k0). That is, for any k ∈ [0, 1],
if Jk Lk has an unstable eigenvalue λ then Re λ � Re λ (k0). To construct the
unstable wave package, we choose a small interval I ⊂ [

0, 1
2

]

near k0. If |I | is
small enough, then any k ∈ I is still an unstable frequency since Jk Lk depends on
k smoothly. In the case when λk0 is a simple eigenvalue of Jk0 Lk0 , by the analytic
perturbation theory [25] of linear operators, there is a smooth curve of unstable
eigenvalue λ (k) of Jk Lk , with k ∈ I . Since Re λ(k) is smooth in the vicinity of k0,
and Re λ (k) obtains its maximum at k0, there exists an even number l � 2, such
that

[Re(λ)]′ (k0) = · · · = [Re(λ)](l−1) (k0) = 0, [Re(λ)](l) (k0) < 0. (5.1)

Now consider the general case when λk0 is a multiple eigenvalue of Jk0 Lk0 .
Since the eigenvalues of Jk Lk are all discrete, we can use the analytic perturbation
theory [25] of eigenvalues of matrices to study the eigenvalues of Jk Lk near k0. In
this case, the eigenvalues of Jk Lk near k0 can be grouped in the manner

{

λ1 (k) , · · · , λp1 (k)
}

,
{

λp1+1 (k) , · · · , λp1+p2 (k)
}

, · · ·
such that each group constitutes a branch of an analytic function (defined near
k0) with a branch point (if pi � 2) at k = k0. Assume p1 � 2, then we have the
following Puiseux series (see p. 65 of [25]) for the first group

{

λ1 (k) , · · · , λp1 (k)
}

λh+1 (k) = λ (k0) + m1ω
h (k − k0)

1/p1 + m2ω
2h (k − k0)

2/p1 + · · · , (5.2)

where ω = exp (2π i/p1) and h = 0, 1, · · · , p1 − 1. In the next lemma, we show
that the leading order term of λh+1 (k) in (5.2) is still given by (k − k0)l for an even
integer l.



Nonlinear Modulational Instability

Lemma 5.1. Let p1 � 2, consider the Puiseux series (5.2) near k0. If

maxRe λh+1 (k) � Re λ (k0) , h = 0, 1, · · · , p1 − 1 (5.3)

for k in a neighborhood of k0, then there exists an even integer l such that

Rem1 = · · · = Remlp1−1 = 0, Remlp1 < 0.

Proof. Let mn be the first coefficient in (5.2) such that Remn �= 0. Then by (5.3),
we have

Remnωnh (k − k0)
n/p1 � 0, h = 0, 1, · · · , p1 − 1.

This implies that

Remn exp

(

2π inh

p1

)

� 0, when k − k0 > 0

and

Remn exp

(

π in (2h + 1)

p1

)

� 0, when k − k0 < 0

for h = 0, 1, · · · , p1 − 1. Thus

Remn exp

(

πni

p1
j

)

� 0, 0 � j � 2p1 − 1, (5.4)

which implies that n/p1 is an integer. Indeed, if n/p1 is not an integer, then we
must have mn = 0, which is a contradiction, since otherwise if mn �= 0, it would
clearly be impossible for all the 2p1 points

mn exp

(

πni

p1
j

)

, 0 � j � 2p1 − 1

to stay in the left half complex plane when n/p1 is not an integer. We can further
show that the integer n/p1 is even. If we supposed otherwise, then n/p1 would
be odd, and for (5.4) to hold true we would have to have Remn = 0, another
contradiction. Therefore, n/p1 = l is even and the condition (5.4) implies that
Remn = Remlp1 < 0. ��

Let I ⊂ [0, 1
2

]

be a small intervalwith k0 being its right endpoint. Letλ (k) , k ∈
I be a curve of unstable eigenvalues of Jk Lk ending on the right at (λ (k0) , k0), as
determined by one of the functions in (5.2) when λ (k0) is a multiple eigenvalue.
Then by (5.1), when λ (k0) is simple, or by Lemma5.1 when λ (k0) is multiple, we
have

Re λ (k) − Re λ (k0) = −a0 (k − k0)
l + o

(

(k − k0)
l
)

, (5.5)

where a0 > 0 and l is even. Let v1(k, x) be the corresponding eigenfunction
of λ (k) for Jk Lk , which depends on k continuously. By Lemmas 2.1 and 2.2,
v1(k, x) ∈ Hs

x (T) for any s � 0 when f is smooth.
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Define the following wave packet consisting of unstable eigenfunctions with
frequencies in I :

u1 (x) =
∫

I
v1(k, x)eikx dk +

∫

I
v1(k, x)e−ikx dk = 2Re

∫

I
v1(k, x)eikx dk.

(5.6)
Since I ∪ −I ⊂ [− 1

2 ,
1
2

]

, by Lemma 3.3,

‖u1 (x)‖2Hs (R) �
∫

I
‖v1(k, x)‖2Hs

x (T) dk < ∞.

We will choose initial data Uδ (0) = uc + δu1 to show nonlinear localized
instability. First, we follow the arguments in Section 8.5 of [31] to prove the well-
posedness of (1.6) in the space uc + Hs (R). These arguments were due to Kato
[24,26].

Lemma 5.2. (Well Posedness) Assuming that M ∈ L
(

Hβ(R), L2(R)
)

(β may be
negative ) and f ∈ Cs+2 (R), where s � max{1 + β, 1} is an even integer. Then
for every u0 ∈ Bs(R) := {uc +w : w ∈ Hs(R)

}

, there exists T > 0, such that the
Cauchy problem

{

∂t u − c∂x u + ∂x (Mu + f (u)) = 0, (t, x) ∈ [0,∞) × R
u(0, x) = u0(x)

has a unique solution u ∈ C([0, T ], Bs(R)) ∩ C1([0, T ], B0(R)).

Proof. This is equivalent to proving that the problem
{

∂tw − c∂xw + ∂x (Mw + f (uc + w) − f (uc)) = 0

w|t=0 = w0
(5.7)

has a unique solution w ∈ C([0, T ], Hs(R)) ∩ C1([0, T ], L2(R)).

Rewrite the equation (5.7) as

∂tw + ∂x (M − c)w + f ′(uc + w)∂xw + ∂x uc

∫ 1

0
f ′′(uc + τw)w dτ = 0.

Let A0 = −c∂x +∂xM. It is clear that D(A0) = Hσ (R), whereσ = max{1+β, 1}.
For any v ∈ Hs with s � σ , define A1(v) : H1(R) → L2(R) as

A1(v)w = f ′(uc + v)∂xw + ∂x uc

∫ 1

0
f ′′(uc + τv)w dτ.

Following the arguments in Section 8.5 of [31], we consider the equivalent
equation of (5.7):

∂tw + A(v)w = 0, w|t=0 = w0,

where A(v) = A0 + A1(v).



Nonlinear Modulational Instability

Let Br be the ball of radius r > 0 in Hσ (R). According to Theorem 6.4.6 and
Section 8.5 in [31], the following four conditions guarantee the well-posedness of
(5.7):

(C1) There exists a constant K , such that if ‖w0‖Hs (R) � r , then

‖A(v)w0‖L2(R) � K ,

for every v ∈ Br ;
(C2) The family A(v), v ∈ Br is a stable family in L2(R) (see Definition 6.4.1 in

P. 200 of [31]);
(C3) There is an isomorphism of Hs(R) onto L2(R) such that for every v ∈ Br ,

S A(v)S−1− A(v) is a bounded operator in L2(R) and ‖S A(v)S−1− A(v)‖ �
C1;

(C4) For each v ∈ Br , D(A(v)) ⊃ Hs(R), A(v) is a bounded linear operator from
Hs(R) into L2(R) and

‖A(v1) − A(v2)‖L(Hs (R),L2(R)) � C1‖v1 − v2‖L2(R).

Since ‖w0‖Hs (R) < r and ‖v‖Hs (R) < r , it is straightforward to show that

‖A(v)w0‖L2(R) � C(C f , r)‖w0‖Hs (R) < C(C f , r)r := K ,

where

C f = max
|s|�‖uc‖L∞(R)+r

(| f ′(s)| + | f ′′(s)|).

Thus (C1) holds.

Note that A0 is skew-adjoint, therefore one has 〈A0w,w〉 = 0. Also, it is easy
to check that

〈A1(v)w,w〉 =
∫

f ′(uc + v)(∂xw)w dx

+
∫

∂x uc

∫ 1

0
f ′′(uc + τv)w dτwdx

= −1

2

∫

f ′′(uc + v)∂x (uc + v)w2 dx

+
∫

∂x uc

∫ 1

0
f ′′(uc + τv)w dτwdx

� −
(

1

2
‖ f ′′(uc + v)∂x (uc + v)‖L∞

+‖∂x uc‖L∞‖ f ′′(uc + τv)‖L∞
) ‖w‖2L2 .

Therefore A(v) generates a C0 semigroup from L2(R) to L2(R) and A(v) is stable
for v ∈ Br .

Following an argument similar to that of the proof of Lemma 5.5 in [31], one
can verify (C3) by letting S = �s , where �s is an operator with Fourier symbol
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(1+ ξ2)s/2. We only consider s = 2n, where n is any positive integer. It is easy to
check that

(1 − ∂2x )s/2 = (1 − ∂2x )n =
n
∑

k=0

Cn
k (−∂2x )k,

where Cn
k is the number of k-combinations.

Then one can check that

�2n( f ′(uc + v)�−2n∂xw) − f ′(uc + v)∂xw

=
n
∑

k=1

Cn
k (−∂2x )k( f ′(uc + v)�−2n∂xw) − f ′(uc + v)

n
∑

k=1

Cn
k (−∂2x )k(�−2n∂xw).

It follows that

‖�2n f ′(uc + v)�−2n∂xw − f ′(uc + v)∂xw‖L2(R) � C(C f,n)‖w‖L2(R),

where

C f,2n = max
|s|�‖uc‖L∞(R)+r

(| f ′(s)| + | f ′′(s)| + · · · | f (2n+1)(s)|).

Moreover, it is easy to check that

‖�2n(∂x uc

∫ 1

0
f ′′(uc + τv)�−2nw dτ) − ∂x uc

∫ 1

0
f ′′(uc + τv)w dτ‖L2(R)

�C(C f ′,2n, ‖uc‖W 2n+1,∞)‖w‖L2(R).

Thus, (C3) holds. It is trivial to verify (C4). Thus we complete the proof of this
lemma. ��

Now we are ready to show nonlinear localized instability. Let

U1(t, x) = 2Re
∫

I
v1(k, x)eλ(k)t eikx dk, (t, x) ∈ R+ × R. (5.8)

It is easy to see that U1 (t, x) is a real-valued solution to (1.7) with initial data
U1 (0, x) = u1 (x) (defined in (5.6)). Denote λ0 = Re λ (k0).

Lemma 5.3. There exist c1 > c2 > 0 such that

c2

(1 + t)
1
l

eλ0t � ‖U1(t, x)‖L2(R) � c1

(1 + t)
1
l

eλ0t , t � 0. (5.9)

Proof. By Lemma 3.3, we have

‖U1(t, x)‖2L2(R)
≈

∫

I
‖v1(k, x)‖2L2

x (T2π )
eRe λ(k)t dk ≈

∫

I
eRe λ(k)t dk.

Denote I = [k0 − η, k0], η > 0. By (5.5), when η is small enough, for any k ∈ I,
we have

−2a0 (k − k0)
l � Re λ (k) − Re λ (k0) � −1

2
a0 (k − k0)

l ,
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so letting k1 = k − k0,

eλ0t
∫ 0

−η

e−2a0kl
1t dk1 �

∫

I
eRe λ(k)t dk � eλ0t

∫ 0

−η

e− 1
2 a0kl

1t dk1.

When 0 � t � 1, it is easy to estimate that

∫ 0

−η

e− 1
2 a0kl

1t dk1 � η,

∫ 0

−η

e−2a0kl
1t dk1 � e−2a0ηl

η.

When t > 1, by direct calculations we have

∫ 0

−η

e− 1
2 a0kl

1t dk1 = 1

t
1
l

∫ ηl t

0

p
1
l −1e− 1

2 a0 p

l
dp � c0

t
1
l

, (5.10)

where

c0 = 1

l

∫ +∞

0
p

1
l −1e− 1

2 a0 p dp < ∞.

Similarly,

∫ 0

−η

e− 1
2 a0kl

1t dk1 � c′
0

t
1
l

, c′
0 = 1

l

∫ ηl

0
p

1
l −1e−2a0 p dp.

Combining the above, we get the estimate (5.9). ��
Proof of Theorem 1.1 ii). Proceeding in the same way as in the periodic case, we
construct an approximate solution U app to (1.6) of the form

U app = uc +
N
∑

j=1

δ jU j , (5.11)

where U1 is defined in (5.8). By Lemma 5.3

‖U1(t, x)‖Hs (R) � C(s)
eλ0t

(1 + t)
1
l

.

Following the same arguments as in the proof of Theorem 1.1 i), for j =
1, 2, · · · , N , we solve U j by the equation

∂tU j = J LU j + ∂x Pj (U1, U2, · · · , U j−1), U j |t=0 = 0.

By Lemma 3.6, we obtain

‖U j (t, x)‖Hs (R) � C j

(

eλ0t

(1 + t)
1
l

) j

. (5.12)
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Define Tδ by the equation

δeλ0Tδ

(1 + Tδ)
1
l

= θ,

where θ is to be determined. Then Tδ = O (|ln δ|). The energy estimate in Lemma
4.1 is still true in H2 (R). Let Uδ (x, t) be the solution of (1.6) with initial data
Uδ (x, 0) = uc + δu1 (x). Then by the same arguments as in the periodic case,
when θ is small enough, we have

∥

∥Uδ

(

T δ, x
)− uc (x)

∥

∥

L2(R)

� C1
δeRe λT δ

(1 + Tδ)
1
l

− C2

(

δeRe λT δ

(1 + Tδ)
1
l

)2

= C1θ − C2θ
2

� 1

2
C1θ .

This proves the nonlinear instability in the localized space. ��

6. Nonlinear Instability for Non-smooth Nonlinear Terms

The proof of nonlinear instability by constructing higher order approximate
solutions requires the nonlinear term f (s) in (1.6) to be smooth (that is, inC∞(R)).
In this section, we give a different proof by using bootstrap arguments, for the case
when f is not smooth.We assume that (1.6) is locallywell-posed in the energy space
H

m
2 , which is certainly satisfied under the assumption (1.10) (see Lemma 5.2). We

will prove nonlinear instability for the nonlinear term f ∈ C1(R) satisfying the
growth conditions (1.11), (1.12 ). The bootstrap arguments are done in three steps.
First, we use the energy conservation to control the growth of the energy norm
‖·‖

H
m
2
from the assumed L2 growth. Then we use the semigroup estimates in H−1

to control the growth of H−1 norm of the nonlinear part of the solution. Lastly, the
estimates are closed by using the interpolation of L2 by H

m
2 and H−1.

Proof of Theorem 1.2. We only give the proof for localized perturbations since it
is similar for multiple periodic perturbations.

Step 1. (bootstrap from L2 to H
m
2 ).

The nonlinear equation for the perturbation u of uc in the traveling frame
(x − ct, t) is

∂t u − J Lu + ∂x
(

f (u + uc) − f (uc) − f ′ (uc) u
) = 0, (6.1)

where J, L are defined in (1.8). For any δ > 0, we choose the initial data uδ (0) =
δu1, where u1 is defined in (5.6). Then by Lemma 5.3,

C0δeλ0t

(1 + t)
1
l

� ‖et J Luδ (0) ‖L2(R) � C1δeλ0t

(1 + t)
1
l
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for some C0, C1 > 0, l ∈ N, where λ0 is the largest growth rate defined in (3.4).
Define T1 > 0 to be the maximal time such that

‖uδ (t)‖L2 � 2C1δeλ0t

(1 + t)
1
l

, 0 � t � T1,

where uδ (t) is the solution of (6.1) with the initial data uδ (0). Define Tδ by

δeλ0Tδ

(1 + Tδ)
1
l

= θ,

where θ > 0 is to be determined. We will show that T1 > Tδ when θ is small
enough. Suppose otherwise T1 � Tδ . The equation (6.1) has the conserved energy-
momentum functional

H (u) = 1

2
〈Lu, u〉 −

∫

R

(

F (u + uc) − F (uc) − f (uc) u − 1

2
f ′ (uc) u2

)

dx,

since (6.1) can be written in the Hamiltonian form ∂t u = ∂x H ′ (u). By the assump-
tion (1.2), there exists c0 > 0 such that

〈Mu, u〉 � c0 ‖u‖2
H

m
2

, for any u ∈ H
m
2 .

Let T2 be the maximal time such that

‖uδ (t)‖
H

m
2

� C2δeλ0t

(1 + t)
1
l

, 0 � t � T2, (6.2)

where

C2 = 2√
c0

(

8
∣

∣c + f ′ (uc)
∣

∣∞ C2
1 + 3 |〈Lu1, u1〉|

a2
0

) 1
2

,

with

a0 = min
t�0

eλ0t

(1 + t)
1
l

> 0.

We claim that T2 > T1 when θ is small enough. Suppose otherwise, T2 � T1 � Tδ .
Then by the energy conservation H (uδ (t)) = H (uδ (0)) and the assumption
(1.12), we have

c0 ‖uδ (t)‖2
H

m
2

� 〈Muδ (t) , uδ (t)〉 (6.3)

�
∣

∣c + f ′ (uc)
∣

∣∞ ‖uδ (t)‖2L2 + 〈Luδ (0) , uδ (0)〉
+ O

(

‖uδ (t)‖p2

H
m
2

+ ‖uδ (0)‖p2

H
m
2

)
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for any 0 � t � T2. Here, we use the fact that L P2 (R) ↪→ H
m
2 (R) when m � 1.

For any t � T2 � T1 � Tδ , by (6.2) we have

‖uδ (t)‖
H

m
2

� C2δeλ0t

(1 + t)
1
l

� C2δeλ0Tδ

(1 + Tδ)
1
l

= C2θ .

Therefore (6.3) implies that for 0 � t � T2, we have

c0 ‖uδ (t)‖2
H

m
2

�
∣

∣c + f ′ (uc)
∣

∣∞

(

2C1δeλ0t

(1 + t)
1
l

)2

+ δ2 |〈Lu1, u1〉|

+ C ′C2θ
p2−2

(

‖uδ (t)‖2
H

m
2

+ δ2 ‖u1‖2
H

m
2

)

,

and thus by choosing θ small enough,

‖uδ (t)‖2
H

m
2

� 1

c0

⎛

⎝2
∣

∣c + f ′ (uc)
∣

∣∞

(

2C1δeλ0t

(1 + t)
1
l

)2

+ 3δ2 |〈Lu1, u1〉|
⎞

⎠

� 1

c0

(

8
∣

∣c + f ′ (uc)
∣

∣∞ C2
1 + 3 |〈Lu1, u1〉|

a2
0

)(

δeλ0t

(1 + t)
1
l

)2

= 1

4
C2
2

(

δeλ0t

(1 + t)
1
l

)2

for 0 � t � T2.This is in contradiction to the definition of C2 and shows that
T2 > T1.

Step 2 (bootstrap from L2 to H−1).
The solution uδ (t) to (6.1) can be written as

uδ (t) =et J Luδ (0) −
∫ t

0
e(t−s)J L∂x ( f (uδ (s) + uc) − f (uc)

− f ′ (uc) uδ (s) ) ds

= ul (t) + un (t) .

By (6.2), Lemma 3.7 and the assumption (1.11), when 0 � t � T1 we have

‖un (t)‖H−1 �
∫ t

0

∥

∥

∥e(t−s)J L
∥

∥

∥

H−1
‖ f (uδ (s) + uc) − f (uc)

− f ′ (uc) uδ (s)
∥

∥

L2 ds

�
∫ t

0
C(ε)e(λ0+ε)(t−s) ‖uδ (s)‖p1

H
m
2
ds

�
∫ t

0
C(ε)e(λ0+ε)(t−s)

(

C2δeλ0s

(1 + s)
1
l

)p1

ds

�
(

C2δeλ0t

(1 + t)
1
l

)p1
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by choosing ε < (p1 − 1) λ0 and using Lemma 3.6.
Step 3 (Interpolation and closing of the estimates).
For 0 � t � T1, by interpolation we have

‖un (t)‖L2 � ‖un (t)‖α1
H−1 ‖un (t)‖1−α1

H
m
2

(

α1 = m

m + 2

)

(6.4)

�
(

δeλ0t

(1 + t)
1
l

)αp1+1−α1

,

where we use

‖un (t)‖
H

m
2

� ‖uδ (t)‖
H

m
2

− ‖ul (t)‖
H

m
2

� δeλ0t

(1 + t)
1
l

.

Noticing that p3 = αp1 + 1 − α1 > 1, when 0 � t � T1 � Tδ we have

‖uδ (t)‖L2 � ‖ul (t)‖L2 + ‖un (t)‖L2

� C1
δeλ0t

(1 + t)
1
l

+ C ′
(

δeλ0t

(1 + t)
1
l

)p3

�
(

C1 + C ′θ p3−1
) δeλ0t

(1 + t)
1
l

< 2C1
δeλ0t

(1 + t)
1
l

by choosing θ to be small enough. This is in contradiction to the definition of T1.
Thus we must have T1 > Tδ . At t = Tδ , by using (6.4) we have

‖uδ (Tδ)‖L2 � ‖ul (Tδ)‖L2 − ‖un (Tδ)‖L2

� C0
δeλ0Tδ

(1 + Tδ)
1
l

− C ′
(

δeλ0Tδ

(1 + Tδ)
1
l

)p3

= C0θ − C ′θ p3 � 1

2
C0θ

when θ is chosen to be small. This finishes the proof of nonlinear instability for
localized perturbations. ��
Remark 6.1. The assumption (1.2) for m � 1 could be weakened to 0 < m < 1
depending on the nonlinearity. More precisely, we only need m ∈ (0, 1) such that
the embedding H

m
2 ↪→ L p is true, where p > 1 is the highest power of the

nonlinear term f (u) and its anti-derivative F (u).

7. Semilinear Equations

In this section, we consider the nonlinear modulational instability of the gen-
eralized BBM equation

(1 − ∂xx )∂t u + ∂x (u + f (u)) = 0. (7.1)
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The BBM equation can be viewed as an ordinary differential equation in H1

∂t u + (1 − ∂xx )
−1∂x (u + f (u)) = 0.

Assume that (7.1) admits a T -periodic traveling solution uc(t, x) = uc(x − ct).
Writing (7.1) in the traveling frame u(t, x) = U (t, x − ct), we arrive at

∂tU − c∂xU + (1 − ∂xx )
−1∂x (U + f (U )) = 0. (7.2)

Linearizing (7.2) at uc, we obtain the linearized equation in the Hamiltonian form

∂tU = J LU, (7.3)

where
J = (1 − ∂xx )

−1∂x , L = c (1 − ∂xx ) − (1 + f ′ (uc)
)

. (7.4)

Assume T = 2π . For any k ∈ [0, 1], define

Jk = (1 − (∂x + ik)2)−1 (∂x + ik) , Lk = c
(

1 − (∂x + ik)2
)

− (1 + f ′ (uc)
)

.

As for the KDV type equations, the linear modulational instability of uc means that
Jk Lk has an unstable eigenvalue for some k ∈ [0, 1]. Denote λ0 to be the maximal
growth rate of et Jk Lk , k ∈ [0, 1]. By the same proof of Lemmas 3.1 and 3.4, we
have the semigroup estimates for (7.3).

Lemma 7.1. Suppose uc is modulationally unstable. Consider the semigroup et J L

associated with the solutions of (7.3), where J, L are given in (7.4). Then we have:

i) the exponential trichotomy in the sense of (3.1) and (3.2) holds true in the spaces
Hs
(

T2πq
) (

s � 1, q ∈ N

)

;
ii) for every s � 1, ε > 0 there exist C(s, ε) > 0 such that

‖et J Lu(x)‖Hs (R) � C(s, ε)e(λ0+ε)t‖u(x)‖Hs (R), ∀t > 0,

for any u ∈ Hs(R).

For (7.2), there is no loss of derivative in the nonlinear term. Therefore, we
can use the semigroup estimates in Lemma 7.1 to prove nonlinear modulational
instability directly by ODE arguments. We consider localized perturbations below.

Theorem 7.1. Assume f ∈ C1 (R) and there exists p1 > 1, such that
∣

∣ f (u + v) − f (v) − f ′ (v) u
∣

∣ � C (|u|∞ , |v|∞) |u|p1 . (7.5)

Let uc (x − ct) be a traveling wave solution of (7.1)which is assumed to be linearly
modulationally unstable. Then uc is nonlinearly unstable under localized pertur-
bations in the following sense: there exists θ0 > 0, such that for any s ∈ N and
arbitrarily small δ > 0, there exists a time T δ = O (|ln δ|) and a solution Uδ(t, x) to
(7.2) satisfying ‖Uδ(0, x)−uc(x)‖Hs (R) < δ and ‖Uδ(T δ, x)−uc(x)‖L2(R) � θ0.
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Proof. For any δ > 0, choose the initial perturbation uδ(0) = δu1, where u1 is
defined as in (5.6). Then by the proof of Lemma 5.3,

C0δeλ0t

(1 + t)
1
l

� ‖et J Luδ (0) ‖Hk (R) � C1δeλ0t

(1 + t)
1
l

, k = 0, 1

for some C0, C1 > 0, l ∈ N and λ0 is the maximal growth rate defined before. Let
Uδ(t, x) be the solution to (7.2) with initial value uc + δuδ(0) and uδ = Uδ − uc,
then uδ satisfies

∂t uδ = J Luδ + g(uδ), uδ(0) = δu1, (7.6)

where

g(v) = −(1 − ∂xx )
−1∂x ( f (uc + v) − f (uc) − f ′(uc)v).

Define T1 > 0 to be the maximal time such that

‖uδ (t)‖H1 � 2C1δeλ0t

(1 + t)
1
l

, 0 � t � T1.

Define Tδ by

δeλ0Tδ

(1 + Tδ)
1
l

= θ,

where θ > 0 is to be determined. We will show that T1 > Tδ . If we were to suppose
otherwise, i.e. that T1 � Tδ , then from (7.6) we would have

uδ(t, x) = et J Luδ(0) +
∫ t

0
eJ L(t−s)g(uδ (s)) ds

= ul + un .

Then when 0 � t � T1 � Tδ , by using assumption (7.5) we would have

‖un (t)‖H1 �
∫ t

0

∥

∥

∥e(t−s)J L
∥

∥

∥

H1

∥

∥ f (uδ (s) + uc) − f (uc) − f ′ (uc) uδ (s)
∥

∥

L2 ds

�
∫ t

0
C(ε)e(λ0+ε)(t−s) ‖uδ (s)‖p1

H1 ds

�
∫ t

0
C(ε)e(λ0+ε)(t−s)

(

2C1δeλ0s

(1 + s)
1
l

)p1

ds

�
(

δeλ0t

(1 + t)
1
l

)p1
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by choosing ε > 0 small. By the same arguments as in the proof of Theorem 1.2,
this leads to a contradiction with the definition of T1. Therefore, T1 � Tδ and

‖uδ (Tδ)‖L2 � ‖ul (Tδ)‖L2 − ‖un (Tδ)‖H1

� C0
δeλ0Tδ

(1 + Tδ)
1
l

− C ′
(

δeλ0Tδ

(1 + Tδ)
1
l

)p1

= C0θ − C ′θ p1 � 1

2
C0θ,

when θ is chosen to be small. This finishes the proof of the Theorem. ��
Remark 7.1. For multi-periodic perturbations, following the same arguments, we
can prove the nonlinear modulational orbital instability of the generalized BBM
equation. Moreover, since the generalized BBM equation is an infinite dimensional
ODE in H1, one can even construct stable and unstable manifolds by the standard
theory.

8. Applications

In this section, we apply our results to some concrete examples.

8.1. Whitham Equation

Consider the Whitham equation for surface water waves:

∂t u + M∂x u + ∂x (u
2) = 0, (8.1)

where M is the Fourier multiplier given by

̂M f (ξ) =
√

tanh ξ

ξ
̂f (ξ).

It is clear that ‖M(·)‖H1/2 ∼ ‖·‖L2 and the symbol m(ξ) =
√

tanh ξ
ξ

is real-valued,
analytic and even.

The existence of a periodic traveling wave solutions was shown in [18].

Lemma 8.1. [18] For each κ > 0 and each b with |b| sufficient small, there exists
a family of periodic traveling wave solutions to (8.1) taking the form

uc(a, b, κ)(x, t) = w(a, b)(κ(x − c(κ, a, b)t)) =: w(κ, a, b)(z)

for |a| sufficiently small, where w and c depend analytically upon κ , a, and b.
Moreover, w is smooth, even, and 2π -periodic in z, and c is even in a. Furthermore,

w(κ, a, b)(z)

= w0(κ, b) + a cos z + 1

2
a2
(

1

m(κ) − 1
+ cos(2z)

m(κ) − m(2κ)

)

+ O
(

a(a2 + b2)
)
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and

c(κ, a, b) = c0(κ, b) + a2
(

1

m(κ) − 1
+ 1

2

1

m(κ) − m(2κ)

)

+ O
(

a(a2 + b2)
)

as |a|, |b| → 0, where

c0(κ, b) := m(κ) + 2b(1 − m(κ)) − 6b2(1 − m(κ)) + O(b3)

and

w0(κ, b) := b(1 − m(κ)) − b2(1 − m(κ)) + O(b3).

One can check that

c − ‖ f ′(uc)‖L∞(T)

= c − 2‖uc‖L∞(T)

= m(κ) + 2b(1 − m(κ)) − b(1 − m(κ)) − a cos z + O(a2 + b2)

� ε0 > 0,

when |a|, |b| are sufficiently small. Thus the assumption (2.3) is satisfied.
Moreover, the linear modulational instability of uc(a, b, κ) is shown in [18]

for κ > 0 large enough. Therefore, we can apply Theorem 1.1 to obtain nonlinear
modulational instability of uc(a, b, κ) when |a|, |b| are sufficiently small and κ >

0 is sufficiently large.

8.2. The Nonlinear Schrödinger Equation

We consider in this section the focusing NLS equation

iut + uxx + |u|2u = 0, (8.2)

in which x ∈ R, t ∈ R+, and u(x, t) ∈ C. Note that like the generalized BBM
equation discussed in Section 7, the NLS equation is also semi-linear. From the
results in [10,12], we know that (8.2) possesses a family of small periodic waves
of the form ua,b(x, t) = e−i t eila,bx Pa,b(ka,bx), where

la,b = 1

4
(a2 − b2) + O(a4 + b4),

ka,b = 1 + 3

4
(a2 + b2) + O(a4 + b4),

Pa,b(y) = ae−iy + beiy + O(|ab|(|a| + |b|))
as (a, b) → 0.

In [12], ua,b(x, t) were written in the form of

ua,b(x, t) = ei(pa,bx−t)Qa,b(2ka,bx),
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and solutions of (8.2) of the form u(x, t) = ei(pa,bx−t)Q(2ka,bx, t) were consid-
ered, where

pa,b = la,b + ka,b, Qa,b(z) = e−i z/2Pa,b(z/2).

Here Qa,b(z) were claimed to be members of a two-parameter family of traveling
and rotating waves, see Claim 2 in [12] . Moreover, Qa,b(z) were regarded as an
equilibrium of a corresponding evolution equation, and the spectrum of a linear
operator at Qa,b(x) was studied to obtain the linear modulational instability of the
small periodic waves ua,b(x, t). Thus, we can use the same arguments as in Section
7 to prove nonlinear modulational instability of the small periodic waves ua,b(x, t)
as a solution of (8.2).

8.3. Fractional KDV-Type Equation

Consider the KDV-type equation

∂t u + ∂x (�
mu − u p) = 0, (8.3)

where the pseudo differential operator � = √−∂2x is defined by its Fourier multi-
plier as ̂�u(ξ) = |ξ |û(ξ). Here we consider m > 1

2 and either p ∈ N or p = q
n

with q and n being even and odd natural numbers, respectively.
It is clear that ‖M(·)‖L2 ∼ ‖·‖Hm andα(ξ) = |ξ |m is real-valued and even, and

satisfies (1.2), (1.3). In [22], a family of small periodic traveling waves ua,b(t, x)

of (8.3) were constructed for |a|, |b| << 1. It was also showed in Theorem 3.4 of
[22] that ua,b(t, x) is linearly modulationally unstable if m ∈ ( 12 , 1) or if m > 1
and p > p∗(m), where p∗(m) is defined by

p∗(m) := 2m(3 + m) − 4 − 2m

2 + 2m(m − 1)
.

Therefore, if m ∈ ( 12 , 1) and p ∈ N or if m > 1 and p > p∗(m) and
|a|, |b| << 1, thenTheorems 1.1 and 1.2 are applicable to obtain nonlinearmodula-
tional instability of ua,b(t, x) for bothmultiple periodic and localized perturbations.
When m = 2, equation (8.3) is reduced to the generalized KDV equation.

8.4. BBM Equation

Consider the BBM equation

(1 − ∂xx )∂t u + ∂x (u + u2) = 0. (8.4)

In [20], the authors showed that (8.4) admits a family of periodic traveling wave
solutions uc in the following form:

uc(t, x; m, a) = a cos(m(x − ct)) + a2 1 + m2

6m2 cos(2m(x − ct) − 3) + o(a3),

c(m, a) = 1

1 + m2 − a2 5

6m2 + o(a4),



Nonlinear Modulational Instability

with |a| � 1. Furthermore, it was showed in [20] that uc(t, x; m, a) is linearly
modulationally unstable ifm >

√
3.ApplyingTheorem7.1,weobtain the nonlinear

modulational instability of uc(t, x; m, a).
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