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ABSTRACT

We present a new method for measuring the scale dependence of the intrinsic alignment (IA)

contamination to the galaxy–galaxy lensing signal, which takes advantage of multiple shear

estimation methods applied to the same source galaxy sample. By exploiting the resulting

correlation of both shape noise and cosmic variance, our method can provide an increase

in the signal-to-noise of the measured IA signal as compared to methods which rely on the

difference of the lensing signal from multiple photometric redshift bins. For a galaxy–galaxy

lensing measurement which uses LSST sources and DESI lenses, the signal-to-noise on the

IA signal from our method is predicted to improve by a factor of ∼2 relative to the method of

Blazek et al. (2012), for pairs of shear estimates which yield substantially different measured IA

amplitudes and highly correlated shape noise terms. We show that statistical error necessarily

dominates the measurement of IAs using our method. We also consider a physically motivated

extension of the Blazek et al. (2012) method which assumes that all nearby galaxy pairs, rather

than only excess pairs, are subject to IA. In this case, the signal-to-noise of the method of

Blazek et al. (2012) is improved.

Key words: gravitational lensing: weak – methods: data analysis – large-scale structure of

Universe.

1 IN T RO D U C T I O N

As light from distant galaxies propagates through space, its trajec-

tory is modified by the presence of massive structures, and observed

galaxy images are distorted in an effect known as gravitational lens-

ing. Weak gravitational lensing – the case in which the distortion is

small and detectable only via averaging over many galaxy images

– is a key cosmological observable of several upcoming surveys,

including the Large Synoptic Survey Telescope (LSST; LSST Sci-

ence Collaboration et al. 2009), Euclid (Laureijs et al. 2011), and

the Wide-Field Infrared Survey Telescope (WFIRST; Spergel et al.

2015). The weak lensing measurements of these surveys are ex-

pected to enhance our understanding of the evolution of dark energy,

the nature of gravity on cosmological scales, and other fundamental

cosmological questions (see, for example, Weinberg et al. 2013).

Because of the considerable decrease in statistical uncertainties ex-

pected for these next-generation weak lensing measurements, it is

crucial that we understand and mitigate all systematic effects that

may contaminate weak lensing observables (for a review of these

effects, see Mandelbaum 2017).

� E-mail: danielll@andrew.cmu.edu

Weak gravitational lensing studies typically measure two-point

correlations between the shapes of source galaxies (cosmic shear)

and/or between the shapes of source galaxies and the positions of

foreground lens galaxies, which we call galaxy–galaxy lensing (see,

for example, van Uitert et al. 2017; DES Collaboration et al. 2017).

It is the latter of these, galaxy–galaxy lensing, which we consider

in this work. Translating these measurements into cosmological

constraints relies on accounting for the subdominant levels of cor-

relation which arise due to other effects. In this paper, we focus

on the correlation in alignment due to local gravitational effects.

These astrophysical correlations are referred to as intrinsic align-

ments (IAs). For a thorough introduction to this phenomenon, see

Troxel & Ishak (2015), Joachimi et al. (2015), Kirk et al. (2015),

and Kiessling et al. (2015).

A common approach to deal with this effect is to marginalize

over the parameters of an IA model (for two recent examples of

this approach, see DES Collaboration et al. 2017; van Uitert et al.

2017). Popular choices include the linear alignment model (Catelan,

Kamionkowski & Blandford 2001; Hirata & Seljak 2004), which

assumes that alignment is ‘frozen in’ at early time and therefore

that the IA two-point function is proportional to the linear matter

power spectrum, and the related non-linear alignment model (Bri-

dle & King 2007) which replaces the linear matter power spectrum

with its non-linear counterpart in an attempt to account for late-time
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Intrinsic alignments and shear estimates 1413

growth of structure. However, these models, while reasonably good

descriptions on larger scales, are unable to describe the IA correla-

tion in the one-halo regime. Modelling and measuring IA on these

smaller scales is an active field of research interest (see, for exam-

ple, Schneider & Bridle 2010; Blazek et al. 2012; Blazek, Vlah &

Seljak 2015; Chisari et al. 2015; Sifón et al. 2015; Singh, Mandel-

baum & More 2015; Blazek et al. 2017), which has yet to result in

a universally accepted and fully coherent model. Therefore, any in-

sight into the scale dependence of IA is of great value, as it enables

the construction of improved models and thus the more effective

mitigation of this systematic effect in weak lensing measurements.

Furthermore, existing methods for empirically constrainming the

IA contribution to a given galaxy–galaxy lensing measurement gen-

erally require a robust way to understand the photometric redshift

(photo-z) error distribution of source galaxies (Blazek et al. 2012;

Chisari et al. 2014), such as by obtaining spectroscopic redshifts of

a representative subsample of source galaxies or employing cross-

correlation techniques. This may be challenging for upcoming lens-

ing surveys, which will image fainter source galaxies than ever be-

fore. It is important to quantify, for a given method of measuring

IAs, the degree to which this source of systematic uncertainty will

impact IA mitigation in upcoming surveys.

Recently, it was shown explicitly in Singh & Mandelbaum (2016)

that the use of different galaxy shape-measurement methods results

in a scale-independent multiplicative change in the measured am-

plitude of the IA contribution to the galaxy–galaxy lensing signal.

For the three shape-measurement methods examined there, the dif-

ference in the measured IA amplitude was of the order of tens

of per cent. After a series of tests which ruled out point spread

function-related systematic errors as well as environmentally de-

pendent galaxy ellipticity gradients, the suggested explanation for

this result was the presence of isophotal twisting, in which the outer

radial parts of a galaxy are more aligned with the tidal field than

are the inner regions. Different shear estimates are sensitive to dif-

ferent radial separations from the centre of source images. Thus,

if isophotal twisting is present, it is expected that shear estimates

with sensitivity to outer regions will result in a larger IA signal

than those with sensitivity to inner regions. This effect was earlier

discussed in Schneider et al. (2013), within the context of a study

of radial alignments in the Galaxy and Mass Assembly Survey. It

had also been seen in simulation studies of galaxy ellipticities and

IAs (Tenneti et al. 2014, 2015; Velliscig et al. 2015a,b; Hilbert

et al. 2017). Following its direct observational detection in Singh

& Mandelbaum (2016), Chisari et al. (2016) proposed exploiting

the effect to probe primordial non-Gaussianity, which is theorized

to introduce deviations to the IA signal on large scales, where IA

modelling is best understood.

In this work, we take advantage of the finding of Singh & Man-

delbaum (2016) to construct a new method for measuring the scale

dependence of IA contamination to galaxy–galaxy lensing on scales

at which non-linear and one-halo effects dominate. We consider the

difference between two tangential-shear measurements using the

same set of source and lens galaxies, differing only in the shear esti-

mation method applied to sources. The lensing contribution to these

signals is identical, and is thus removed by taking their difference.

However, if the shear estimation methods selected are sensitive to

different radial regions of the galaxy light profile, an IA portion of

the signal will remain, resulting in a method to determine the IA

contribution up to a constant factor and hence to measure its scale

dependence.

For this cancellation of the lensing signal to occur, the source sam-

ple associated with both shear estimates must be the same, and any

residual multiplicative bias must be subdominant. For this reason,

we suggest the use of two shear estimates of the Bayesian Fourier

Domain (BFD) type (Bernstein & Armstrong 2014, Bernstein et al.

2016), adjusted to accommodate different radial weighting func-

tions. BFD has been shown to result in subdominant multiplicative

bias (Bernstein & Armstrong 2014), and the use of two such similar

estimates would prevent issues of different source selection cuts.

Because in our method the lensing contribution to the signal is

entirely subtracted off, it does not need to be measured and then

removed, meaning that this method may be especially robust to

challenges in constraining the source galaxy photometric redshift

errors. This method also has the potential to reduce the statistical

uncertainty in the measured IA signal, due to the respective corre-

lation both between the shape noise of measurements made with

different shear estimates, and between the cosmic variance of those

measurements. It therefore has the potential to test our small-scale

alignments models in a way that results in improved data-driven

models. We will investigate and quantify both of these possible

advantages of this method.

This paper is organized as follows. In Section 2 we provide a

brief theoretical review of the relevant galaxy–galaxy lensing ob-

servables and how they are expected to be affected by IA, then

we introduce an existing method for measuring the IA contribution

to galaxy–galaxy lensing observables to which we will compare

(Blazek et al. 2012, hereafter B2012). We proceed, in Section 3, to

present our new method for measuring IA, and we provide details

on its implementation. In Section 4, we describe the two observa-

tional scenarios in which we will forecast the capabilities of our

proposed method in comparison with the above-mentioned existing

method. We present our main results in Section 5, in which we

first describe a modification to the method of B2012 which permits

fair comparison with our method. We then consider whether our

method improves upon the existing method in terms of robustness

to systematic uncertainties, and finally we demonstrate the power

of our method in the regime in which statistical errors dominate.

We discuss our findings and conclude in Section 6. Throughout this

work, unless otherwise noted, we assume cosmological parameters

defined by the Planck 2015 results (Ade et al. 2016): h = 0.67, �c

= 0.27, �b = 0.049, As = 2.2 × 10−9 (σ 8 = 0.84), with �k = 0.

2 TH E O R E T I C A L BAC K G RO U N D

In this section, we briefly review the theoretical basis for rele-

vant galaxy–galaxy lensing quantities, and discuss the expected

IA contribution to the galaxy–galaxy lensing signal. We then de-

scribe existing methods for measuring this contribution, focussing

on the method of B2012 which will be used in this work as a

benchmark against which to measure the performance of our new

method.

2.1 Galaxy–galaxy lensing

Galaxy–galaxy lensing studies are concerned with the measurement

of the cross-correlation between the shapes of background source

galaxies and positions of foreground lens galaxies. Typically, the

measured quantity is either γ̃t (rp), the average tangential shear of

source galaxies about lens galaxies, or �̃�(rp), the differential pro-

jected surface mass density around lens galaxies (where rp is the

projected radial distance from a lens galaxy centre in comoving

coordinates and a tilde indicates an observed quantity). For a single

MNRAS 479, 1412–1426 (2018)
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1414 C. D. Leonard et al.

lens–source pair, γ t and �� are related via

γt =
��

�c

, (1)

where �c is the critical surface density, which depends on the

separation of lens and source galaxies. It is given (in comoving

coordinates) by

�c =
c2

4πG

χs

χl(χs − χl)(1 + zl)
, (2)

where χ s and χ l are the comoving radial distances from observer to

source and from observer to lens, respectively. zl is the lens redshift.

��(rp) is defined as

��(rp) = �(rp) − �(rp)

=
2

r2
p

∫ rp

0

dr ′
pr

′
p�(r ′

p) − �(rp), (3)

where �(rp) is the projected surface density of matter about a lens

galaxy and �(rp) is the same quantity averaged within projected

radial separation rp. Where required, we will compute the theoretical

value of �(rp) via

�(rp) = ρm

∫
d�′

(
1 + ξlm

(√
r2

p + (�′)2

))
, (4)

where ρm is the matter density in comoving units, � is the line-of-

sight separation, and we use ξ lm to denote the correlation function

of matter with lens galaxies. ξ lm comprises a one-halo and two-halo

term, the ingredients for each of which we now discuss.

We first compute the two-halo term of the matter power spectrum

using CLASS (Lesgourgues 2011) with halofit (Smith et al.

2003; Takahashi et al. 2012) via CCL (LSST DESC 2017) to ob-

tain the non-linear matter power spectrum, which we then Fourier

transform using FFTlog (Hamilton 2000) to obtain ξmm(r). We as-

sume a linear galaxy bias b for the lens galaxy sample to convert to

ξ lm(r) via ξ lm(r) = brcc ξmm(r), where we set the cross-correlation

coefficient rcc to unity. In computing the one-halo contribution, we

assume a Navarro–Frenk–White (NFW) profile (Navarro, Frenk &

White 1997), where we follow Mandelbaum, Seljak & Hirata (2008)

and take the concentration–mass relation to be

c200(M) = 5

(
M

1014h−1M�

)−0.1

(5)

and the halo radius to be defined by

R200 =
(

3M

4π200ρM

) 1
3

. (6)

Together with an appropriate halo occupation distribution (HOD)

model, equations (3)–(6) allow for the theoretical computation of

��(rp) and γ t(rp). We will specify the HOD models that we use in

this work below, in Section 4.

2.2 Galaxy–galaxy lensing and IAs

IA contributions to galaxy–galaxy lensing signals arise due to cor-

relations between shapes of source galaxies and positions of lens

galaxies which are due not to lensing but to tidal gravitational ef-

fects.

Consider a generic cross-correlation of the shear of source galax-

ies with the positions of lens galaxies 〈γ δl〉, where we have used γ

to represent shear and δl to represent lens galaxy overdensity. The

IA contamination to this cross-correlation can be expressed via

〈γ δl〉 = 〈γLδl〉 + 〈γIAδl〉, (7)

where we use γ L to represent the true shear due to lensing, and γ IA

to represent the effective contribution to the shear due to IA.

The term 〈γ IAδl〉 is generally non-zero in the case when galaxies

from the source sample are in physical proximity to lens galax-

ies, and therefore have shapes which are correlated with the lens

galaxy positions via tidal gravitational effects. Given perfect red-

shift measurements for both source and lens galaxies, it would be

possible to minimize or eliminate this effect by down-weighting or

cutting lens–source pairs which are close along the line of sight.

However, due to the large number of source galaxies employed in

weak lensing measurements, in general source galaxy redshifts are

determined via photometry and hence have some non-negligible

uncertainty.

The general cross-correlation 〈γ δl〉 can be taken to represent

γ̃t (rp) or �̃�(rp), and the contamination to either of these signals can

be quantified via γ̄IA(rp): the contribution to the measured tangential

shear from IA, per contributing lens–source pair. For the forecasts

which we undertake below, we will require fiducial predictions for

this quantity, which are obtained via

γ̄IA(rp) ≈ wl+(rp)

wls (rp)+2�close
, (8)

where wls(rp) is the projected correlation function of the positions

of lens galaxies with those of source galaxies, wl +(rp) is the pro-

jected cross-correlation function between lens galaxy positions and

source galaxy shapes, and �close, in analogy to � above, is the co-

moving line-of-sight separation within which lens–source pairs are

sufficiently close along the line of sight to be affected by IA. A sim-

ilar equation for γ̄IA(rp) is given in, e.g. B2012, the difference being

the additive factor of 2�close included here in the denominator. This

factor is required because the method we introduce here will assume

that all physically associated lens–source pairs may be subject to IA

(rather than excess pairs only), with �close being the line-of-sight

separation within which pairs are expected to be physically associ-

ated. The denominator of equation (8) can be thought of as being

obtained by integrating along the line of sight not just over ξ ls(rp),

but over ξ ls(rp) + 1. We will take �close to be 100 Mpc h−1, although

this value is not well determined and represents an uncertainty in

our modelling of the fiducial signal. We emphasize that the choice

of a �close value is required only to provide a theoretical γ̄IA(rp)

signal for forecasting; it does not need to be specified a priori when

making a measurement.

Non-zero IA signals have been observed in red galaxy popula-

tions, but not yet conclusively measured in blue galaxy populations

(see e.g. Mandelbaum et al. 2011; Kirk et al. 2015); we therefore

expand equation (8) as

γ̄IA(rp) ≈
fredw

red
l+ (rp) + fbluew

blue
l+ (rp)

fredw
red
ls (rp) + fbluew

blue
ls (rp) + 2�close

≈
fredw

red
l+ (rp)

wls(rp) + 2�close

, (9)

where fred and fblue, respectively, represent the fraction of red and

blue source galaxies amongst those which are sufficiently close in

line-of-sight separation to the lens sample to be subject to IAs.

The second line of equation (9) comes from the assumption that

wblue
l+ (rp) ≈ 0 (i.e. blue galaxies are not subject to IA at a signifi-

cant level) and that blue and red galaxies cluster in the same way

(which is not strictly correct but is a sufficient approximation for

the purposes of our work).

MNRAS 479, 1412–1426 (2018)
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Intrinsic alignments and shear estimates 1415

The two-halo terms of these projected correlation functions are

computed via (see, for example, Singh et al. 2015, where we have

neglected redshift-space distortions)

w2h
ls (rp) =

bsbl

π2

∫
dzW (z)

∫
dkz

∫
dk⊥

k⊥

kz

Pδ

(√
k2

⊥ + k2
z , z

)

× sin(kz�max)J0(rpk⊥) (10)

w2h
l+(rp) =

AIblC1ρc�M

π2

∫
dz

W (z)

D(z)

∫
dkz

∫
dk⊥

k3
⊥

(k2
z + k2

⊥)kz

×Pδ

(√
k2

⊥ + k2
z , z

)
sin(kz�max)J2(rpk⊥) (11)

where bs is the large-scale bias of the source galaxies, bl is the

same for the lens galaxies, and Pδ is the non-linear matter power

spectrum. We set bs and bl to their ensemble average values as

computed from an appropriately chosen HOD (the HODs used in

this work for different observational scenarios are discussed in

Section 4).

Equation (11) assumes the non-linear alignment model for IA.

Here, AI controls the amplitude of IA on scales where the two-halo

term dominates, and C1 is a normalization constant. Throughout this

work we follow, e.g. Joachimi et al. (2011) and set C1ρc = 0.0134,

obtained via fitting the linear alignment model to low-redshift Su-

perCOSMOS observations. W(z) is the combined window function

of source and lens galaxy samples, given by (see, for example, Singh

et al. 2015)

W (z) =
dN(z)

dzl

dN(z)

dzs

1

χ2(z)

(
dχ

dz

)−1

(∫
dz dN(z)

dzl

dN(z)

dzs

1

χ2(z)

(
dχ

dz

)−1
) (12)

where dN
dzl

and dN
dzs

are the redshift distributions of the lens and source

galaxies, respectively.

The one-halo term of wls(rp) is computed using the standard

halo model in combination with the relevant chosen HOD (again,

given below in Section 4). The NFW profile is assumed, and con-

centration and virial radius are given by equations (5) and (6),

respectively.

w1h
l+(rp) is calculated using the halo model for IA as introduced in

Schneider & Bridle (2010). The relevant one-halo power spectrum

is

P 1h
l+ (k, z) = ah

(k/p1)2

1 + (k/p2)p3
, , (13)

where

pi = qi1exp(qi2z
qi3 ). (14)

The parameters qij are fitted in Schneider & Bridle (2010). In Singh

et al. (2015), the qi1 parameters are adjusted to better fit the BOSS

LOWZ galaxy sample; here we assume the qi1 parameters of Singh

et al. (2015) and all other qij parameters from Schneider & Bridle

(2010). w1h
l+(rp) can then be found via

w1h
l+(rp) =

∫
dk⊥

k⊥
2πP 1h

l+ (k⊥, z)J0(rpk⊥). (15)

Given the capability to theoretically calculate the one- and two-

halo terms of both wls(rp) and wl +(rp), theoretical fiducial values

for γ̄IA(rp) can be computed using equation (8). Note that we do

not incorporate halo-exclusion terms in our fiducial calculations of

wl +(rp) and wls(rp), but instead simply add one-halo and two-halo

terms. The choice to simplify our calculations in this way has a

minor effect on the shape of the fiducial signals calculated, however

the magnitude of this effect is negligible relative to the variation

in signal-to-noise within the IA-measurement scenarios explored

below.

2.3 Existing methods for measuring IAs

Several methods exist in the literature to measure or constrain the

IA contribution to the galaxy–galaxy lensing signal. Because lens-

ing measurements typically rely on source galaxies with redshifts

determined photometrically, it is useful that procedures for miti-

gating the effect of IA take this into account. In several existing

methods, source galaxies are separated into two or more bins using

photometric redshifts, and the lensing and IA signals are estimated

simultaneously via the assumption that the source galaxy sample(s)

which are more separated in redshift from the lens galaxies will

contain fewer galaxies which are subject to IA.

In Hirata et al. (2004) the IA contribution to an SDSS galaxy–

galaxy lensing measurement was constrained, under the assumption

that a source sample with higher photometric redshifts had no IA

contribution. Methods by B2012 and Chisari et al. (2014) later re-

laxed this assumption, while still relying on the idea that fewer

galaxies in higher photometric-redshift source samples would be

subject to IA. In a similar vein, Joachimi & Schneider (2008) and

Joachimi & Schneider (2010) proposed methods to null or boost the

IA signal in cosmic shear measurements using its characteristic red-

shift dependence. In order to demonstrate the utility of the method

which we present in this work, we will compare against the method

put forward in B2012. We now describe this method in detail.

In the methodology of B2012, it is assumed that source galaxy

redshifts are photometric while lens galaxy redshifts are spectro-

scopic. Two measurements of the galaxy–galaxy lensing quantity

�̃� are then considered. The first, which we label a, is for a source

sample defined by the requirement that for a given lens redshift zl,

the source (photometric) redshift zph satisfies zl < zph < zl + �z,

where �z is chosen to jointly optimize signal-to-noise of the lensing

measurement and IA constraint on a per-survey basis. The second

sample, called b, is chosen in a complementary way such that zph

> zl + �z. Given these two measurements of �̃�, it is possible

to solve both for the lensing signal and for the contribution to the

tangential shear due to IA. The expression for the latter is given by

B2012:

γ̄ IA =
c(a)
z �̃�a − c(b)

z �̃�b

(Ba − 1)c
(a)
z 〈�̃c〉(a)

ex − (Bb − 1)c
(b)
z 〈�̃c〉(b)

ex

. (16)

In the form of this method originally introduced in B2012, it is

assumed that only excess lens–source pairs are subject to IA (that

is, only pairs which statistically contribute to a positive correlation

between lenses and sources). c(i)
z is given by

(
1 + b(i)

z

)−1
where b(i)

z

is the photometric-redshift bias to �̃�i . Bi is the boost factor, which

quantifies the presence of excess galaxies in sample i, and 〈�̃c〉(i)
ex is

the average critical surface density for excess galaxies. Dependence

on rp has been omitted in equation (16) for clarity.

cz, B, and 〈�̃c〉ex are explicitly given for a generic source sample

by

c−1
z = bz + 1 =

B(rp)
lens∑
j

w̃j �̃c,j�
−1
c,j

lens∑
j

w̃j

≈

rand∑
j

w̃j �̃c,j�
−1
c,j

rand∑
j

w̃j

(17)
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1416 C. D. Leonard et al.

B(rp) =

lens∑
j

w̃j

rand∑
j

w̃j

(18)

〈�̃c〉ex(rp) =

excess∑

j

w̃j �̃c,j

excess∑

j

w̃j

=

lens∑

j

w̃j �̃c,j −
rand∑

j

w̃j �̃c,j

lens∑

j

w̃j −
rand∑

j

w̃j

, (19)

where in equation (17), the second equality makes use of the fact

that the true value of �−1
c is approximately zero for source galaxies

at or very near the lens redshift. Sums in equations (17), (18), and

(19), and similar sums below, should be interpreted as being over

lens–source pairs with source galaxies in the relevant sample. A

label of ‘lens’ indicates a sum over all such pairs, while a label of

‘excess’ implies a sum over only those pairs which are statistically

in excess of what would be present in the case without clustering.

A label of ‘rand’ indicates that the sum should be performed over a

set of ‘lenses’ which are sampled randomly from the same redshift

distribution and window function as the true set of lenses.

We note particularly that equation (17) for cz requires a sum over

the product of �̃c,j , the estimated critical surface density (using

photometric redshifts for source galaxies) and �−1
c,j , the inverse

of the true critical surface density (using spectroscopic redshifts

for source galaxies). This sum is in practice therefore taken over

only the subsample of lens–source pairs for which sources have

spectroscopic redshifts. We assume that in the case in which a

representative spectroscopic subsample of sources is unavailable, a

re-weighting method (see, for example, Lima et al. 2008) is used

to approximate a representative subsample as closely as possible.

Such a method will be imperfect when the spectroscopic subsample

completely neglects parts of the source galaxy parameter space (in

terms of, e.g. colour or magnitude), or if the rate of redshift failure

at a fixed point in colour–magnitude space depends on redshift.

Biases can similarly arise if the selection function of the overlapping

spectroscopic survey (for example, in colour space) cannot easily

be reproduced by the wide-field survey which images the sources.

In such cases, cz will be subject to a systematic uncertainty.

As stated, the objective of the B2012 method to which we will

compare is to solve simultaneously for both γ̄ IA(rp) and ��(rp).

Therefore, the weights, w̃j , are chosen in that work to optimize the

signal-to-noise of ��(rp):

w̃j =
1

�̃2
c,j (σ 2

γ + (σ
j
e )2)

, (20)

where σ γ is the contribution due to shape-noise and σ j
e is the

measurement error associated with the source of lens–source pair j.

This choice of weights is sub-optimal for the estimation of IA, due

in part to the downweighting of nearby lens–source pairs. We do

not advocate its use with our proposed method, and will introduce a

different weighting scheme below for this purpose. We nevertheless

use the weights of equation (20) when making calculations in the

B2012 method to enable comparison with the measurements of that

work. One might then ask whether comparisons made between our

method, with a more optimal weighting scheme, and the B2012

method, with this less optimal scheme, are meaningful. To address

this issue, we have checked the effect of using a modified version

of the B2012 method which is formulated in terms of tangential

shear and uses the redshift-independent weights introduced below

in equation (23). We find no qualitative changes to our results in

this scenario, and the quantitative changes which do occur do not

affect our overall conclusions (for example, the ratio of signal-to-

noise quantities presented in Fig. 3 below would be reduced by

30 per cent in the LSST+DESI observational scenario). We mention

a further implication of this alternative weighting scheme for the

B2012 method in Section 5.3.

3 MEASURI NG I NTRI NSI C A LI GNMENTS

WITH MULTIPLE SHEAR ESTIMATES

Having now provided theoretical background, we introduce our new

method to measure the scale dependence of the IA contribution to

the galaxy–galaxy lensing signal.

We consider two estimates of the tangential shear obtained via

different methods but using the same source and lens galaxy sam-

ples, which we will call γ̃t (rp) and γ̃ ′
t (rp). These are given as

γ̃t (rp) = B(rp)

lens∑

j

w̃j γ̃j

lens∑

j

w̃j

= B(rp)m

⎛
⎜⎝

lens∑

j

w̃j γ
j
L

lens∑

j

w̃j

+

lens∑

j

w̃j γ
j
IA

lens∑

j

w̃j

⎞
⎟⎠ (21)

and

γ̃ ′
t (rp) = B(rp)

lens∑

j

w̃j γ̃ ′
j

lens∑

j

w̃j

= B(rp)m′

⎛
⎜⎝

lens∑

j

w̃j γ
j
L

lens∑

j

w̃j

+
a

lens∑

j

w̃j γ
j
IA

lens∑

j

w̃j

⎞
⎟⎠ , (22)

where all sums are over lens–source pairs, γ
j

L is the tangential

shear due to lensing for a given lens–source pair j, and γ
j

IA is the

contribution to the shear signal due to IA for lens–source pair j.

B(rp) is once again the boost factor, which is included to ensure

that the tangential shear is normalized in the standard way. m =
(1 + δm) and m

′ = (1 + δm
′
) are, for each shear estimate, the

residual multiplicative bias remaining after calibration. a is the

constant by which the measured IA amplitudes are offset one from

the other. For reference, as we define a here, Singh & Mandelbaum

(2016) find a ≈ 0.7 − 0.8 for the three method pairs formed by

de Vaucouleurs shapes, isophotal shapes, and re-Gaussianization.

These pairings of shear estimates are not expected to be optimal; we

provide their a values simply for reference and would expect more

optimal methods to yield smaller a values (as discussed below).

Note that our definition of a is slightly different from the ratio

of IA amplitude values used to describe this effect in Singh &

Mandelbaum (2016).

In contrast to the method described in Section 2.3, our objective

is not to simultaneously estimate both ��(rp) and γ̄IA, but simply to

measure the scale dependence of γ̄IA. We therefore choose weights

differently than in the above case:

w̃j =
1

σ 2
γ + (σ

j
e )2

. (23)

This is a typical choice of weights in measurements of lensing

tangential shear. While not being explicitly designed to optimize

for γ̄IA(rp), this choice is more optimal than, e.g. the weights of

equation (20) because it dispenses with the factor of �̃−2
c , which

down-weights the very lens–source pairs expected to be subject to

IA. It is nevertheless likely that there exist more optimal weight

choices than equation (23), and therefore the forecasts conducted

below may not reflect the highest possible signal-to-noise available

via the proposed method.

The success of our proposed method is dependent upon using the

same weighting scheme when computing γ̃t (rp) and γ̃ ′
t (rp). There-

fore, if the two shear estimates in question result in different values

of σ γ , or different per-galaxy values of σ e, it is necessary to use a
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Intrinsic alignments and shear estimates 1417

version of equation (23) which adopts the same value of these for

both methods (e.g. by adopting their average value). This ensures

the required cancellation when taking the difference of γ̃t (rp) and

γ̃ ′
t (rp), as we do now.

Subtracting equation (22) from (21), we obtain

γ̃t (rp) − γ̃ ′
t (rp) = (1 − a)B(rp)

lens∑
j

w̃jγ
j

IA

lens∑
j

w̃j

= (1 − a)

lens∑
j

w̃jγ
j

IA

rand∑
j

w̃j

.

(24)

Terms involving m and m
′
are no longer present in equation (24).

We have assumed that calibration is performed via a method in

which any such residual uncertainty (δm or δm
′

above) is demon-

strably subdominant (see, for example, Bernstein et al. 2016; Shel-

don & Huff 2017). If this is not the case, two additional terms would

be added to the right-hand side of equation (24), representing an

additive bias: one proportional to (m − m
′
)γ L and one proportional

to (m − am′)γ̄IA. We estimate that in order to limit this additive bias

to at most n-per cent the value of (1 − a)γ̄IA, for a galaxy–galaxy

lensing measurement involving sources from LSST and lenses from

the Dark Energy Spectroscopic Instrument (see Section 4 below for

details on this observational scenario), we would require that the

individual absolute values of δm and δm
′
not exceed ≈n-per cent ×

(1 − a).

We have also assumed in equation (24) that any residual additive

biases to γ̃t (rp) and γ̃ ′
t (rp) exactly cancel, which need not be the

case (see, for example, Sheldon et al. 2004). To circumvent this

potential issue, estimators for tangential shear which incorporate

subtraction of the signal measured about random points from that

measured about lenses could be used, which would render additive

biases to each of γ̃t (rp) and γ̃ ′
t (rp) individually negligible.

We consider a sample of lens–source pairs which is defined by

the requirement that for a given lens–source pair, lens redshift and

source photometric redshift are sufficiently close that we would

naively expect them to be physically associated. As mentioned

above, we will take this maximum line-of-sight separation to be

100 Mpc h−1 in this work. The quantity which we aim to measure,

up to a constant factor, is γ̄IA: the tangential shear due to IAs per

contributing lens–source pair. To obtain this quantity from equation

(24), we must multiply both sides by an additional factor, which

ensures that we divide by the sum of weights of contributing pairs

only:

rand∑
j

w̃j

excess∑
j

w̃j +
rand, close∑

j

w̃j

≡
1

B(rp) − 1 + F
, (25)

where we have defined F:

F =

rand, close∑
j

w̃j

rand∑
j

w̃j

(26)

and the label ‘rand, close’ indicates that the sum should be taken over

pairs in which source and lens are sufficiently close as measured by

spectroscopic redshift that we would expect them to be intrinsically

aligned, and the ‘lenses’ are drawn randomly from the lens redshift

distribution and window function.

F can evidently not be computed on a pair-by-pair basis, as we do

not expect to have access to the spectroscopic redshift of all source

galaxies. Instead, it should be computed statistically via dN
dzs

and

p(zs, zph), where the former is the number density of sources with

respect to spectroscopic redshift, and the latter is the probability of

a source galaxy with measured photometric redshift zph having true

(spectroscopic) redshift zs, or vice versa. In this way, F is given by

F =
∫

dzl
dN
dzl

∫
dzphw̃(zph)

∫ z+(zl)

z−(zl)
dzs

dN
dzs

p(zs, zph)
∫

dzl
dN
dzl

∫
dzphw̃(zph)

∫
dzs

dN
dzs

p(zs, zph)
(27)

where z+(zl) and z−(zl) are, respectively, the maximum and min-

imum spectroscopic redshifts at which we would expect source

galaxies to be intrinsically aligned, for a given lens redshift zl.
dN
dzl

is

the number density of lens galaxies with respect to (spectroscopic)

redshift, and integrals without explicit limits should be taken as

being over the integration variable’s full range.

Equation (27) makes explicit the fact that because F encodes in-

formation about true source galaxy redshifts, it must be calculated

using dN
dzs

and p(zs, zph) as estimated from the spectroscopic sub-

sample of sources. Much like cz in the B2012 method above, in

the case of an inadequately representative spectroscopic subsam-

ple or imperfect re-weighting, F may therefore become a source of

systematic error.

We finally multiply equation (24) by the factor defined in equation

(25) to get

(1 − a)γ̄IA(rp) =
γ̃t (rp) − γ̃ ′

t (rp)

B(rp) − 1 + F
. (28)

Equation (28) is the fundamental expression of our method. It allows

us to measure the IA contribution to galaxy–galaxy lensing up to

a poorly known constant in order to gain information about its

scale dependence. We now prepare to test how well this method is

expected to perform compared to the existing method described in

Section 2.3.

4 O B S E RVAT I O NA L SC E NA R I O S F O R

FORECASTI NG

To evaluate the effectiveness of our proposed method for measuring

the scale dependence of γ̄IA, we select two observational scenarios

in which to forecast expected performance.

The first of these, which we will call the ‘SDSS’ case, assumes

that lens and source galaxies are both drawn from Sloan Digital

Sky Survey (SDSS) data. For the other, which we will call the

‘LSST+DESI’ case, we consider a scenario which combines data

from two upcoming surveys, with sources from the Large Synoptic

Survey Telescope (LSST) and lenses from the Dark Energy Spec-

troscopic Instrument Luminous Red Galaxy sample (DESI LRGs).

These two choices ensure that we can both compare our predic-

tions to the actual measurement of γ̄IA by B2012 (in the SDSS

case), and explore how our proposed method may perform for a

next-generation measurement (in the LSST+DESI scenario).

In the SDSS case, lens galaxies are assumed to be from the SDSS

LRG sample as selected in B2012 (see also Kazin et al. 2010 and

their ‘DR7-Dim’ sample), with a surface density of nl = 8.7/deg2

(Mandelbaum et al. 2013). The median redshift of this sample is z =
0.28 (Kazin et al. 2010). Source galaxies are assumed to be from the

sample described in Reyes et al. (2012), with an effective surface

density of neff = 1/arcmin2. The per-component rms distortion of the

source sample is εrms = 0.36; with responsivity R = (1 − ε2
rms) ≈

0.87, this results in σγ = εrms/(2R) = 0.21 (Reyes et al. 2012). The
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1418 C. D. Leonard et al.

overlapping sky area of these lens and source samples is taken as

7131 deg2 (B2012).

The LSST+DESI observational scenario assumes lens galaxies

from the anticipated DESI sample of LRGs, which we assume to

have a surface density of 300/deg2 (DESI Collaboration et al. 2016).

The effective redshift of the sample is taken as z = 0.77 (estimated

from fig. 3.8 of DESI Collaboration et al. 2016). Source galaxies in

this scenario are taken to be from the final LSST lensing sample,

with an expected effective surface density of neff = 26/arcmin2,

and a per-component rms ellipticity of εrms = 0.26, which with the

ellipticity definition of Chang et al. (2013) is equivalent to σ γ =
0.26. These source and lens samples would be expected to have an

overlapping sky area of 3000 deg2 (Schmidt et al. 2014).

Further assumptions and details associated with each of these

observational scenarios are as follows:

Redshift distribution of lenses:

The number density of the SDSS LRG sample is shown as a function

of redshift in fig. 2 of Kazin et al. (2010). We smooth with a box filter

and perform a conversion to appropriate units to obtain the redshift

distribution of SDSS LRGs. The expected redshift distribution of

the DESI LRG sample is given in fig. 3.8 of DESI Collaboration

et al. (2016). Both distributions are plotted in Fig. 1.

Redshift distribution of sources

The redshift distribution (in terms of spectroscopic redshifts zs) of

source galaxies is given for the SDSS source sample as

dN

dzs

∝
(

zs

z∗

)α−1

exp

(
−

1

2

(
zs

z∗

)2
)

, (29)

where α = 2.338 and z∗ = 0.303 (Nakajima et al. 2012). For the

LSST source sample, the distribution is given by

dN

dzs

∝ zα̃
s exp

(
−
(

zs

z0

)β
)

, (30)

where α̃ = 1.24, z0 = 0.51, and β = 1.01 (Chang et al. 2013). In

both cases, dN
dzs

is appropriately normalized over the redshift range

once convolved with the photometric redshift model. The assumed

source redshift distributions are plotted in Fig. 1.

Model for photometric redshifts

In both observational scenarios under consideration, source galaxy

redshifts are photometrically determined. The source galaxy red-

shift distribution in terms of photometric redshift zph is given by

dN

dzph

=
∫

dzsp(zs, zph) dN
dzs∫

dzph

∫
dzsp(zs, zph) dN

dzs

. (31)

We choose a simple Gaussian model for p(zs, zph) in both observa-

tional scenarios:

p(zs, zph) =
1

√
2πσz

exp

(
−
(
zph − zs

)2

2σ 2
z

)
, (32)

where σ z is taken to be 0.11(1 + zs) for the SDSS source sample

(B2012) and 0.05(1 + zs) for the LSST source sample (Chang et al.

2013).

a h and A I :

ah and AI are the fiducial amplitudes of the one-halo and two-halo

terms of wl +(rp), respectively. A fit to a power law in luminosity

for each of these quantities is provided in Singh et al. (2015):

AI (L) = α
(

L
Lp

)β

(33)

ah(L) = αh

(
L
Lp

)βh

, (34)

where L is the r-band luminosity and Lp is the pivot luminosity

corresponding to an absolute r-band magnitude of −22. Parameters

are fitted in Singh et al. (2015) using data from the SDSS BOSS

LOWZ sample, and found to be α = 4.9 ± 0.6, β = 1.30 ± 0.27,

αh = 0.081 ± 0.012, and βh = 2.1 ± 0.4. We take the best-fitting

values of these parameters as their fixed values in estimating ah and

AI for our fiducial calculations.

In order to then determine the appropriate values of ah and AI for

the scenarios under consideration, we use a Schechter luminosity

function (Schechter 1976) and integrate equations (33) and (34)

over luminosity. Following Krause, Eifler & Blazek (2016), we

use Schechter function parameters for red galaxies from Loveday

et al. (2012) and Faber et al. (2007). We assume the limiting r-band

apparent magnitude of the SDSS shape sample to be 22 (see fig. 3

of Reyes et al. 2012), and the same quantity for the LSST lensing

sample to be 25.3 (LSST Science Collaboration et al. 2009). As

a result, we find ah = 5.6 × 10−3 and AI = 0.65 for the SDSS

scenario, and ah = 0.016 and AI = 1.2 for the LSST+DESI case.

Halo occupation distributions

When computing the fiducial value of γ̄IA(rp), as well as the cos-

mic variance terms of the covariance matrices for γ̃t and �̃� (see

Appendix A), we must specify an HOD for both the lens and the

source samples. We use this to calculate one-halo terms of two-

point functions, as well as to obtain the large-scale galaxy bias, and

hence the two-halo term. For the SDSS LRGs, we use the HOD fit

to this same galaxy sample in Reid & Spergel (2009), which yields

a large-scale bias value of bl = 2.2. For both the SDSS and LSST

source samples, we use the HOD developed in Zu & Mandelbaum

(2015). This HOD has the benefit of accepting as input the number

density of galaxies, allowing its use for both source samples. The

galaxy bias of both source samples, according to this HOD, is bs

= 1.3. For the DESI LRGs, lacking a better option, we employ an

HOD fit to the SDSS BOSS CMASS sample (More et al. 2015)

when computing one-halo terms. This is not ideal as it is fitted to

a different sample and does not accept number density of galaxies

as input. However, as we will show below, most of the power of

our proposed method is not deep within the one-halo regime, so we

do not expect this sub-optimal choice to have a significant effect

on our overall results. Recognizing that this HOD is not a perfect

choice, we do not in this case obtain a large-scale bias value from

it, but rather from the expression b(z) = 1.7/D(z), given in DESI

Collaboration et al. (2016), which at the effective redshift of the

DESI LRGs results in bl = 3.9. Where possible, we compare our

calculation of mean central and satellite galaxy occupation numbers

to those computed with the HALOTOOLS package (Hearin et al. 2017)

and find agreement.

Note also that in computing quantities such as power spectra

and correlation functions using these HODs, it is important to pair

them with theoretical quantities (e.g. the halo mass function) which

are calculated using appropriate values of cosmological parameters.
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Intrinsic alignments and shear estimates 1419

Figure 1. The assumed spectroscopic redshift distribution of lens and source galaxies for both observational scenarios (left: SDSS, right: LSST+DESI). Source

distributions are shown normalized individually to unity over the redshift range, while lens distributions are arbitrarily scaled (for visualization purposes only).

We must use the parameter values which were either fixed in fitting

HOD parameters or simultaneously fit with HOD parameters. Oth-

erwise, the observables we calculate will not match the sample in

question. Therefore, in this context only, we divert from our default

cosmological parameters to use parameter values as given in the ref-

erences above for each HOD, in order to best replicate observable

quantities.

Measurement noise, σ e

We take the measurement noise, σ e, required to compute the weight

of each lens–source pair as in equation (23), to be related to the

average per-source-galaxy signal-to-noise via (Bernstein & Jarvis

2002)

σe =
2

〈S/N〉
. (35)

We take the average S/N to be 15 for the SDSS scenario. For LSST,

we take σ e = 0.128 (Chang et al. 2013), equivalent to an average

per-galaxy signal-to-noise of 15.6.

Boost factors

The boost factor, defined above in equation (18), is the ratio of the

sum of weights over all lens–source pairs in a given sample, to

the sum of weights of the same sample with randomly distributed

lenses. In other words, it quantifies the degree to which correlation

augments the number of galaxy pairs in the sample. To compute the

boost for the various samples required for our analysis, we evaluate

the expression (see, for example B2012)

B(rp) − 1 =
(∫

dzl

dN

dzl

∫ z+(zl )

z−(zl )

dzphw̃(zph, zl)

×
∫

dzs

dN

dzs

ξls(rp,�(zs); zl)p(zs, zph)

)

×
(∫

dzl

dN

dzl

∫ z+(zl )

z−(zl )

dzphw̃(zph, zl)

∫
dzs

dN

dzs

p(zs, zph)

)−1

(36)

where z+(zl) and z−(zl) are, respectively, the upper and lower photo-

metric cuts which define the source sample for a given lens redshift.

� z

For the method developed in B2012 and reviewed in Section 2.3, we

require a value of �z, which defines the photometric redshift range

of each source sample. In the SDSS scenario, we follow B2012 and

choose �z = 0.17. In the case of LSST+DESI, we choose �z to

optimize the signal-to-noise of γ̄IA in the B2012 method, and find

that the optimal choice is �z = 0.1.

Red fraction

To obtain fred, we once again employ Schechter luminosity functions

with parameters fitted by Loveday et al. (2012) and Faber et al.

(2007) as in Krause et al. (2016). In this case, we consider one

luminosity function with parameters fitted to red galaxies only, as

above, and another with parameters fitted to a full sample including

red and blue galaxies. To obtain the red fraction in each case, we

simply take the ratio of the integrated luminosity function for red

galaxies to the integrated luminosity function for all galaxies, and

find the value averaged over the line-of-sight separation on which

we expect pairs to be physically associated. We find fred = 0.27 for

SDSS, and fred = 0.16 for LSST.

5 R ESULTS

We now describe the results of forecasting constraints on the IA

contamination to galaxy–galaxy lensing using our method, as com-

pared to the method of B2012. We first describe an extension to

the method of B2012 which will enable a fair comparison, then

discuss the impact of systematic uncertainties associated with an

inadequately representative spectroscopic subsample of sources.

We finally present the type of measurement which may be possible

in a scenario in which statistical uncertainties are dominant.

5.1 Incorporating all physically associated galaxies

In order to make a fair comparison between the constraining power

of our proposed method and the method of B2012, we revisit the
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1420 C. D. Leonard et al.

derivation of equation (16) under the assumption that all physically

associated galaxies may be subject to IA (rather than only excess

galaxies). In this scenario, equation (16) becomes

γ̄ IA(rp) =
c(a)
z �̃�a − c(b)

z �̃�b

(Ba − 1 + Fa)c
(a)
z 〈�̃c〉(a)

IA − (Bb − 1 + Fb)c
(b)
z 〈�̃c〉(b)

IA

.

(37)

This result contains the new terms Fa and Fb, where F was in-

troduced in equation (26), as well as the modified term 〈�̃c〉(i)
IA,

which is the average critical density over all physically associated

lens–source pairs for sample i. 〈�̃c〉IA is given (for a generic source

galaxy sample) by

〈�̃c〉IA(rp) =

excess∑

j

w̃j �̃c,j +
rand, close∑

j

w̃j �̃c,j

excess∑

j

w̃j +
rand, close∑

j

w̃j

. (38)

Fi and 〈�̃c〉(i)
IA depend on sums over pairs for which the true (rather

than photometric) redshift of the source galaxy is close enough to

that of the lens that the pair is considered physically associated.

Therefore, Fi and 〈�̃c〉(i)
IA must be computed via integration over the

source redshift distribution, and may also be subject to systematic

error in the case of an inadequately representative spectroscopic

subsample of sources or an imperfect re-weighting scheme. As this

updated version of the B2012 method contains six terms which

are in principle subject to this type of systematic uncertainty, it is

reasonable to consider whether our proposed method, for which

only F is subject to this type of error, may be more robust to this

effect. We will address this question in Section 5.2.

Consider, though, for the moment, a scenario in which the sys-

tematic error due to source galaxy redshift uncertainty is negligible

(an assumption which will be justified below). Uncertainties are

then a combination of statistical errors and systematic errors asso-

ciated with the boost. We can compare the expected constraints on

γ̄IA from the original version of the method (encapsulated in equa-

tion 16) and this modified version (described in equation 37). The

forecast signal-to-noise in each case is displayed in Fig. 2, for both

observational scenarios described in Section 4.

We see that the extension to the method of B2012 introduced

here improves the signal-to-noise, in particular for the LSST+DESI

scenario. This can be understood by noting that the boost factor

is subject to a non-negligible systematic error due to effects such

as variation of the density of lenses as a result of observational

conditions and fluctuations in large-scale clustering (B2012). The

boost, representing as it does the weighted ratio of all lens–source

pairs to non-excess lens–source pairs, goes to unity on large rp

scales, and so the fractional error associated with the boost increases

arbitrarily on these scales, as discussed in B2012. The addition of

F, which is constant with projected radial separation, ensures that

the equivalent term in equation (37) never grows arbitrarily large,

controlling this error and resulting in the improvement seen in Fig. 2.

When comparing our proposed method to the method of B2012, for

the remainder of this work, we use the modification described by

equation (37).

5.2 Redshift-related systematic uncertainties

Due to the faint limiting magnitude of future lensing surveys such as

LSST, potential systematic errors due to inadequately characterized

photo-z uncertainty are a concern (Newman et al. 2015). Quantities

affected by this source of error enter our method only via F (see

equation 28), while in the case of the B2012 method, c(i)
z , 〈�̃c〉(i)

IA,

and Fi all may be subject to this source of uncertainty. We now

compare our method to that of B2012 in terms of robustness to this

type of systematic error.

We first determine the maximum level of redshift-related system-

atic error which is of practical interest for the measurement of IA

contamination to the galaxy–galaxy lensing signal. This is set by

the fact that the mitigation of IA is only relevant when the lensing

uncertainty itself is not dominated by redshift-related systematics.

We therefore work in the regime where the fraction of the total

integrated uncertainty on ��(rp) which is due to redshift-related

systematic error is less than 50 per cent. We find that in order for this

to be true, assuming that the b source sample is representative and

typical for a ��(rp) measurement, the maximum fractional sys-

tematic error on c(b)
z must be less than ≈9 × 10−3 in the SDSS case

and ≈7 × 10−4 for LSST+DESI. These values in fact also represent

upper limits on the redshift-related systematic error of the other six

quantities of interest (c(a)
z , Fi, 〈�̃c〉(i)

IA, F), because each of these is

sensitive to near-lens sources, for which the photo-z calibration is

expected to be best.

We are interested in how the total redshift-related systematic un-

certainty on the IA signal compares to its statistical uncertainty, for

our method and for the B2012 method. To investigate this, we con-

sider the ratio of σ sysz (integrated redshift-related systematic error)

to σ stat (integrated statistical error); a smaller value of this ratio in-

dicates greater robustness to redshift-related systematic uncertainty,

while unity indicates that statistical uncertainty and redshift-related

systematic uncertainty are equally important. We examine this ratio

as a function of the fractional error on each of c(i)
z , Fi, 〈�̃c〉(i)

IA, and F

in turn (fixing the error on the others to zero), and find a power-law

relation, with slopes given in Table 1. To be explicit, the power law

takes the form

σsysz

σstat

= A

(
δx

x

)
, (39)

where x is one of F, c(i)
z , 〈�̃c〉(i)

IA, or Fi. We see in Table 1 that

within the B2012 method, the overall importance of redshift-related

systematic uncertainty is most sensitive to the level of systematic

uncertainty on c(a)
z and c(b)

z . This is sensible: the B2012 method

incorporates the difference of the two large quantities c(a)
z �̃�a and

c(b)
z �̃�b; uncertainty in either of these terms will result in a rela-

tively large error on their much smaller difference.

We use this set of power-law relationships to easily calculate

the ratio σ sysz/σ stat when each of F, c(i)
z , 〈�̃c〉(i)

IA, or Fi in turn

takes its maximum tolerable fractional error (with errors on the

remaining quantities fixed at zero). These ratio values are listed in

Table 2. We see there that applying the maximum interesting level of

redshift-related systematic uncertainty to any individual quantity is

insufficient to cause this source of error to dominate over statistical

uncertainty.

Even when the redshift-related systematic error on F takes

its maximum value of interest, statistical error heavily domi-

nates our method, with σ sysz/σ stat ≈ 1 per cent for both SDSS and

LSST+DESI. For the B2012 method, we examine the worst case

scenario in which the redshift-related systematic errors of ci
z, 〈�̃c〉(i)

IA,

and Fi all take their maximum values simultaneously, and find the

corresponding maximum value of σ sysz/σ stat to be 29 per cent for

SDSS and 5 per cent for LSST+DESI. Although these values are

larger than in our method, and thus we see that the B2012 method

is less robust to redshift-related systematic errors in the worst-case

scenario, statistical error remains dominant.
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Intrinsic alignments and shear estimates 1421

Figure 2. Forecast signal-to-noise on γ̄IA using the Blazek et al. (2012) method, including both the original version, which assumes that only excess lens–source

pairs are subject to IA, and the modified version developed herein, which assumes that all physically associated pairs are subject to IA. The latter choice

improves the signal-to-noise due to a reduced sensitivity to systematic errors which affect the boost factor. Note that we do not predict a detection of γ̄IA in the

SDSS case with either version of the Blazek et al. (2012) method, which is in agreement with the measurements of that work.

Table 1. Slope of the linear relationship between the ratio of total integrated

(redshift-related) systematic to statistical error on the IA signal and the

fractional level of systematic error on the quantity in the leftmost column.

A larger value indicates that the importance of systematic error in the total

error budget depends more sensitively on the systematic error on the given

quantity.

Slope A, Slope A, Eqn

SDSS LSST+DESI

c
(a)
z 23 48 17

c
(b)
z 22 41 17

Fa 0.72 4.3 26

Fb 0.063 0.012 26

〈�̃c〉(a)
IA 0.95 6.5 38

〈�̃c〉(b)
IA 0.081 0.018 38

F 1.2 8.1 26

Table 2. Maximum expected value of the ratio of total integrated (redshift-

related) systematic to statistical error on the IA signal, given that the quantity

in the leftmost column carries the maximum tolerable redshift-related sys-

tematic uncertainty and each other quantity carries none. A value of less

than unity indicates that statistical error is dominant.

Max
σsysz

σstat
Max

σsysz

σstat
Eqn

SDSS LSST+DESI

c
(a)
z 0.21 0.035 17

c
(b)
z 0.20 0.030 17

Fa 6.6 × 10−3 3.2 × 10−3 26

Fb 5.8 × 10−4 9.1 × 10−6 26

〈�̃c〉(a)
IA 8.8 × 10−3 4.8 × 10−3 38

〈�̃c〉(b)
IA 7.5 × 10−4 1.3 × 10−5 38

F 0.011 5.9 × 10−3 26

5.3 Statistical uncertainty

As we have shown in Section 5.2, the uncertainty on γ̄IA in our

proposed method (and in the method of B2012) cannot realistically

be dominated by redshift-related systematic errors. With this in

mind, we now examine the relative performance of these methods

when statistical errors dominate.

We compute the signal-to-noise of the IA measurement from each

method, assuming only statistical uncertainty and a small contribu-

tion due to systematic error on the boost factor, σ B = 0.03 (B2012)

(see Appendix A for how the required covariance matrices are cal-

culated in each scenario). Note that for both methods, we assume

that statistical uncertainty on the boost is negligible; we have tested

this assumption and found that including this source of error yields

less than a 1 per cent change in the total uncertainty. For our method,

we compute the signal-to-noise as a function of a, the ratio of IA

amplitudes between the two shape measurement methods, and of the

correlation between the shape noise of the shear estimates, which

we call ρ. As stated above, a ≈ 0.7 − 0.8 for the shear estimation

methods found in Singh & Mandelbaum (2016) (isophotal shapes,

de Vaucouleurs shapes, and re-Gaussianization). The same work

finds ρ ≈ 0.7 for pairs of these methods, as quoted in Chisari et al.

(2016). However, as previously stated we imagine our proposed

method to be most useful in the context of a modified Bayesian

Fourier Domain method with custom radial weighting, which could

in principle allow for the construction of shear estimates with a wide

variety of a and ρ values.

In Fig. 3, we plot the forecast ratio of the integrated signal-to-

noise of our method to the signal-to-noise of the B2012 method as

a function of a and ρ, for both SDSS and LSST+DESI. A value

greater than unity indicates that for the given (a, ρ) pair, the pro-

posed method outperforms the existing one. Our method is shown to

perform best for lower values of a and for higher values of ρ. Lower

values of a correspond to pairs of shear estimates which produce

more divergent IA amplitudes, and therefore which increase the

signal (1 − a)γ̄IA. Higher values of ρ indicate increased correlation

between the shape-noise terms of the two shear estimates, which

results in a reduced level of noise on the difference of tangential

shear estimators.

The segment of the (a, ρ) plane for which our method performs

better than that of B2012 is larger in the LSST+DESI scenario,

the reason for which is not entirely obvious and warrants men-

tion. The reduction in photo-z uncertainty in going from SDSS to

LSST+DESI means that for a given source sample, less spurious

sources are inadvertently included. In our method, this means that

a yet higher proportion of pairs are subject to IAs. Similarly, the

effective fraction of pairs subject to IA in source sample b of the

B2012 method drops. Less intuitively, the effective proportion of

MNRAS 479, 1412–1426 (2018)
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1422 C. D. Leonard et al.

Figure 3. Integrated signal-to-noise in our proposed method, divided by integrated signal-to-noise in the method of Blazek et al. (2012), under the assumption

that redshift-related systematic uncertainties are subdominant. a represents the difference in measured IA amplitude between shear estimates (where smaller a

is a greater difference), and ρ is the correlation between the shape noise of each shear estimate. Signal-to-noise is reported for signal of γ̄IA or (1 − a)γ̄IA as

appropriate for the method, and is integrated over scales rp = 0.05 − 20 Mpc h−1. A value of unity or greater indicates that the proposed method outperforms

the existing method; the black curve indicates the contour where the ratio is equal to one, with values greater than unity to the upper right corner in both

cases.

pairs subject to IA in the a sample of B2012 also drops, because this

method down-weights pairs which are close in photometric redshift,

of which there are more in the a sample when photo-z uncertainty

is reduced. Using redshift-independent weights in a B2012-like

method does not entirely remove this effect, as it is dominated by

the decrease in IA-subject lens–source pairs in the b sample. The

choice of �z for the B2012 method also leads to some perceived

increase in our method’s performance in the LSST+DESI scenario

as compared to SDSS, which is an artefact of the fact that we adopt,

in the SDSS case, a value of �z that jointly optimizes for lensing

and IA measurement. For LSST+DESI, we select �z = 0.1 to op-

timize the signal-to-noise of γ̄IA, while in the SDSS case, we have

set �z = 0.17 to follow the methodology of B2012. The redshift

extent of source sample a, the noise of which dominates the B2012

method, is therefore decreased in moving from the SDSS to the

LSST+DESI scenario, while that in our method remains roughly

constant.

In Fig. 4, we show the signal-to-noise in our method as a function

of rp, as well as the ratio of signal-to-noise in our method to that

in the B2012 method, for two sets of (a, ρ) values: (a = 0.8, ρ

= 0.2) and (a = 0.2, ρ = 0.8). The former is an example of the

region of parameter space in which the B2012 method is superior

for both observational scenarios, while the latter is a case for which

our proposed method performs significantly better. For (a = 0.2, ρ

= 0.8) and in the LSST+DESI scenario, we forecast an integrated

signal-to-noise for our method of 11 (integrated over rp = 0.05

− 20 Mpc h−1). This represents a significant improvement over

the existing method, for which we predict a signal-to-noise of 6.

Thus, given two shear estimates with these characteristic values of

a and ρ, our method has the potential to allow useful inferences

about the signal for modelling purposes. Additionally, we have

computed these forecast signal-to-noise values assuming a source

sample consisting of all LSST source galaxies down to rlim = 25.3;

with restriction to a subset with a less faint limiting magnitude

and hence higher IA contamination, yet a higher signal-to-noise

could presumably be achieved. Finally, we note from Fig. 4 that the

relative signal-to-noise of our method is higher at larger rp. This

scale dependence is characteristic for all (a, ρ) pairs, and suggests

that our method may be of the most use in making measurements

which inform the modelling of the transitional regime in which

one-halo and two-halo contributions are both relevant.

6 D I S C U S S I O N A N D C O N C L U S I O N S

In this work, we have proposed a new method of measuring the

scale dependence of the IA contribution to the galaxy–galaxy lens-

ing signal. Our method takes advantage of the result of Singh &

Mandelbaum (2016), who found that shear estimates with sensitiv-

ity to different radial parts of the light profile of galaxies produce IA

signals with amplitudes which are offset by a constant multiplicative

factor.

Comparing our method to the existing method of B2012, we

find that for considerable portions of the (a, ρ) parameter space, the

proposed method is forecast to outperform the existing method when

redshift-related systematic errors are controlled. The improvement

of signal-to-noise in our method as compared to the existing method

is greater for the LSST+DESI observational scenario than for the

SDSS case, primarily due to the reduction in photometric redshift

uncertainties. This suggests that this method may be especially

fruitful in mitigating IA effects in future surveys. This promising

situation merits a more detailed investigation, using appropriate

simulated data sets.

Our method is found to be more robust to systematic uncertainties

related to difficulties in characterizing photo-z errors than is the

existing method to which we compare. However, for realistic levels

of this redshift-related systematic error (for which this source of

uncertainty does not dominate measurements of the lensing signal

MNRAS 479, 1412–1426 (2018)
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Intrinsic alignments and shear estimates 1423

Figure 4. Top panel: signal-to-noise as a function of projected radius in our proposed method, under the assumption that redshift-related systematic uncertainties

are subdominant, for two sample pairs of a and ρ. The characteristic scale dependence of the signal-to-noise within a given survey does not change significantly

with the values of a and ρ. Lower panel: the same, divided by signal-to-noise in the Blazek et al. (2012) method. Signal-to-noise is reported for signal of γ̄IA

or (1 − a)γ̄IA as appropriate for the method.

itself), the IA measurement of both our method and the method of

B2012 are necessarily dominated by statistical uncertainty.

The signal-to-noise of the IA measurement forecast by our

method in the regime in which redshift-related systematic errors

are controlled depends on a and ρ. Given that it is possible to

predict for which segments of this parameter space our method’s

signal-to-noise is best (see Fig. 3), the possibility arises of con-

structing pairs of shear estimates for which the values of a and

ρ optimize this signal-to-noise. This could in principle be accom-

plished through minor modifications to the Bayesian Fourier Do-

main (BFD) method (Bernstein & Armstrong 2014; Bernstein et al.

2016), into which multiple radial weighting functions could po-

tentially be incorporated to create shear estimation methods with

custom values of a and ρ. Currently, the BFD method is under de-

velopment, with further work required to create mature estimators

for two-point functions within this framework as well as to deal

with other effects such as, for example, blending. However, it is

a promising shear-estimation framework and one which could be

combined with the method proposed in this work to great effect. An-

other option of potential interest would be to use a BFD-type shear

estimate and a metacalibration shear estimate (Huff & Mandelbaum

2017; Sheldon & Huff 2017), provided the two could be constructed

in such a way that their radial weightings were different. However,

in this latter scenario, it would be necessary to somehow account for

any differing selection effects, which if unmitigated could negate

the essential cancellation of the lensing signal.

One particularly interesting scenario in which the proposed

method could potentially be employed is the case of a joint analysis

of weak lensing data from a ground-based survey such as LSST and

a space-based survey such as WFIRST or Euclid. The atmospheric

point spread function associated with ground-based surveys tends

to prevent the use of the smallest radii of the light profile in shear

estimation, whereas for space-based imaging this issue is avoided.

Given an overlap in sky area and a similar limiting magnitude,

one could therefore imagine measuring γ̃t from LSST and γ̃ ′
t from

WFIRST or Euclid. The object detection and deblending could be

carried out in the space-based survey, avoiding selection-related

biases. In this application of the proposed method, the two shear es-

timation methods could have maximally different radial sensitivity,

due to the fact that in the case of measuring γ̃ ′
t from the space-based

survey, the chosen shear estimation method could be sensitive at

smaller radii than would be possible in ground-based imaging.

In order to make a fair comparison between our proposed method

and the method of B2012, we introduced a modification to the latter

such that we assume that all physically associated lens–source pairs

are subject to IA, as opposed to only excess pairs. We find that this

modification improves the signal-to-noise of this method. Although

this modification may appear at first glance to introduce new sources

of redshift-related systematic uncertainties, we have also shown,

as discussed, that these types of systematic uncertainties must be

subdominant.
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1424 C. D. Leonard et al.

Our proposed method is forecast to improve upon the signal-

to-noise of the existing method to which we compare for the

LSST+DESI observational scenario, presenting a promising situ-

ation which invites further investigation. For example, a straight-

forward practical exploration of this method could be made by

considering isophote estimators at different galactic radii. It would

be interesting to investigate initially the relatively simple case of

an analytic galaxy profile parametrization, in order to gain insight

as to the expected range of a values. Additionally, as our method

is intended to primarily constrain the scale dependence of the IA

signal while being largely insensitive to amplitude, it would ben-

efit from combination with an existing method to enable a full IA

signal measurement. One obvious avenue would be to extend our

proposed method to incorporate elements of the method of B2012,

potentially providing an even more powerful probe of IA. Further-

more, in this work, we have not derived the redshift dependence of

weights which would optimize the signal-to-noise of our measure-

ment, rather assuming a typical redshift-independent choice. With

such an optimal weighting, we anticipate that the signal-to-noise of

the method we present would be yet higher.

Several upcoming cosmological surveys, including LSST, as dis-

cussed in this work, but also Euclid, WFIRST, and others, will soon

engender a radical reduction in statistical uncertainties of lensing

measurements. Understanding the IA contribution to lensing signals

and mitigating its effect will thus become critically important, as

percent-level effects such as this will begin to have significant rel-

evance. The new method of measuring the scale dependence of the

IA signal which we have presented here may be of great assistance,

as it has the capacity to perform significantly better than the existing

method to which we compare for a next-generation galaxy–galaxy

lensing measurement.
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A P P E N D I X A : C OVA R I A N C E M AT R I C E S O F γ̃t

A N D �̃�

In this appendix we provide the required theoretical expressions

to compute the statistical covariance matrices used to produce the

results of Section 5.3.

A1 �̃�

The covariance of �̃� in projected radial bin r i
p and rj

p is given by

(see, for example, Jeong, Komatsu & Jain 2009; Singh et al. 2016)

Cov
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(
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)(
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σ 2

γ

neff

)]
,

(A1)

where r i,h
p and r i,l

p represent the high and low edges of bin r i
p,

respectively, (and similarly for bin rj
p ), nl is the surface density of

lens galaxies, neff is the effective surface density of source galaxies

(both in galaxies per steradian), and �−2
c is given by

�−2
c =

∫
dzl

dN

dzl

∫
dzph

dN

dzph

�−2
c (zl, zph). (A2)

The angular power spectra in equation (A1) should be computed for

the source and lens samples of interest, incorporating in the case of

sources cuts on photometric redshifts. Note that we integrate over

the full lens redshift distribution everywhere except in the argument

of the Bessel functions. In this case, we use the comoving distance

corresponding to the effective lens population redshift. We do not

expect this to affect results significantly.

We use equation (A1) in calculating the statistical uncertainty

and covariance between rp bins of γ̄IA(rp) for the existing method

of B2012. A covariance matrix of this form is computed indepen-

dently for each source sample, a and b, and for each of the two

observational scenarios. Because source samples a and b do not

have significant overlap, the covariance matrices for �̃�a(rp) and

�̃�b(rp) are considered independent and are combined under this

assumption. Practically, when performing this computation, we take

advantage of the orthogonality of the Bessel functions to separate

out of the constant shape-noise term.

Note that we include one-halo terms in the calculation of the

power spectra in equation (A1); this is necessary particularly in

the case of the LSST+DESI observational scenario, as for this case

shape noise is sufficiently low that cosmic variance dominates on

some scales in the one-halo regime.

A2 γ̃t

The covariance matrix for γ̃t , which is required for the computation

of the statistical contribution to the covariance matrix for the new

method proposed in this work, is given by an expression very similar

to equation (A1), different only in factors of the critical surface mass

density:
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)]
.

(A3)

In this case, we ultimately require the covariance matrix for

γ̃t − γ̃ ′
t in projected radial bins. Because γ̃t and γ̃ ′

t are measured

from the same set of lens–source pairs, terms in the above expres-

sion which depend only on the galaxy–galaxy lensing signal (or

which depend only on the signal and the shot noise of the lenses,

i.e. the term proportional to C l
κκ/nl) are fully correlated. These

terms therefore subtract off entirely when computing the covari-

ance of γ̃t − γ̃ ′
t . Terms which are related to the shape noise (i.e.

the terms proportional to C l
ggσ

2
γ /neff and σ 2

γ /(neffnl)) are partially

correlated, where the degree of correlation of these terms depends

on the shear estimation methods in question, and is parametrized

by ρ, as discussed in Section 5.3. The resulting covariance matrix
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is given by
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(A4)

where we have this time explicitly separated off the shape-noise

term by taking advantage the orthogonality of the Bessel functions.

In this work we have had σγ = σ ′
γ in both scenarios considered, but

this need not be the case and is left general in equation (A4).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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