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ABSTRACT

We present a new method for measuring the scale dependence of the intrinsic alignment (IA)
contamination to the galaxy—galaxy lensing signal, which takes advantage of multiple shear
estimation methods applied to the same source galaxy sample. By exploiting the resulting
correlation of both shape noise and cosmic variance, our method can provide an increase
in the signal-to-noise of the measured IA signal as compared to methods which rely on the
difference of the lensing signal from multiple photometric redshift bins. For a galaxy—galaxy
lensing measurement which uses LSST sources and DESI lenses, the signal-to-noise on the
IA signal from our method is predicted to improve by a factor of ~2 relative to the method of
Blazek etal. (2012), for pairs of shear estimates which yield substantially different measured IA
amplitudes and highly correlated shape noise terms. We show that statistical error necessarily
dominates the measurement of IAs using our method. We also consider a physically motivated
extension of the Blazek et al. (2012) method which assumes that all nearby galaxy pairs, rather
than only excess pairs, are subject to IA. In this case, the signal-to-noise of the method of
Blazek et al. (2012) is improved.

Key words: gravitational lensing: weak —methods: data analysis—large-scale structure of

Universe.

1 INTRODUCTION

As light from distant galaxies propagates through space, its trajec-
tory is modified by the presence of massive structures, and observed
galaxy images are distorted in an effect known as gravitational lens-
ing. Weak gravitational lensing — the case in which the distortion is
small and detectable only via averaging over many galaxy images
— is a key cosmological observable of several upcoming surveys,
including the Large Synoptic Survey Telescope (LSST; LSST Sci-
ence Collaboration et al. 2009), Euclid (Laureijs et al. 2011), and
the Wide-Field Infrared Survey Telescope (WFIRST; Spergel et al.
2015). The weak lensing measurements of these surveys are ex-
pected to enhance our understanding of the evolution of dark energy,
the nature of gravity on cosmological scales, and other fundamental
cosmological questions (see, for example, Weinberg et al. 2013).
Because of the considerable decrease in statistical uncertainties ex-
pected for these next-generation weak lensing measurements, it is
crucial that we understand and mitigate all systematic effects that
may contaminate weak lensing observables (for a review of these
effects, see Mandelbaum 2017).

* E-mail: danielll@andrew.cmu.edu

Weak gravitational lensing studies typically measure two-point
correlations between the shapes of source galaxies (cosmic shear)
and/or between the shapes of source galaxies and the positions of
foreground lens galaxies, which we call galaxy—galaxy lensing (see,
for example, van Uitert et al. 2017; DES Collaboration et al. 2017).
It is the latter of these, galaxy—galaxy lensing, which we consider
in this work. Translating these measurements into cosmological
constraints relies on accounting for the subdominant levels of cor-
relation which arise due to other effects. In this paper, we focus
on the correlation in alignment due to local gravitational effects.
These astrophysical correlations are referred to as intrinsic align-
ments (IAs). For a thorough introduction to this phenomenon, see
Troxel & Ishak (2015), Joachimi et al. (2015), Kirk et al. (2015),
and Kiessling et al. (2015).

A common approach to deal with this effect is to marginalize
over the parameters of an IA model (for two recent examples of
this approach, see DES Collaboration et al. 2017; van Uitert et al.
2017). Popular choices include the linear alignment model (Catelan,
Kamionkowski & Blandford 2001; Hirata & Seljak 2004), which
assumes that alignment is ‘frozen in’ at early time and therefore
that the IA two-point function is proportional to the linear matter
power spectrum, and the related non-linear alignment model (Bri-
dle & King 2007) which replaces the linear matter power spectrum
with its non-linear counterpart in an attempt to account for late-time
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growth of structure. However, these models, while reasonably good
descriptions on larger scales, are unable to describe the IA correla-
tion in the one-halo regime. Modelling and measuring IA on these
smaller scales is an active field of research interest (see, for exam-
ple, Schneider & Bridle 2010; Blazek et al. 2012; Blazek, Vlah &
Seljak 2015; Chisari et al. 2015; Sifén et al. 2015; Singh, Mandel-
baum & More 2015; Blazek et al. 2017), which has yet to result in
a universally accepted and fully coherent model. Therefore, any in-
sight into the scale dependence of IA is of great value, as it enables
the construction of improved models and thus the more effective
mitigation of this systematic effect in weak lensing measurements.

Furthermore, existing methods for empirically constrainming the
IA contribution to a given galaxy—galaxy lensing measurement gen-
erally require a robust way to understand the photometric redshift
(photo-z) error distribution of source galaxies (Blazek et al. 2012;
Chisari et al. 2014), such as by obtaining spectroscopic redshifts of
a representative subsample of source galaxies or employing cross-
correlation techniques. This may be challenging for upcoming lens-
ing surveys, which will image fainter source galaxies than ever be-
fore. It is important to quantify, for a given method of measuring
1As, the degree to which this source of systematic uncertainty will
impact A mitigation in upcoming surveys.

Recently, it was shown explicitly in Singh & Mandelbaum (2016)
that the use of different galaxy shape-measurement methods results
in a scale-independent multiplicative change in the measured am-
plitude of the IA contribution to the galaxy—galaxy lensing signal.
For the three shape-measurement methods examined there, the dif-
ference in the measured IA amplitude was of the order of tens
of per cent. After a series of tests which ruled out point spread
function-related systematic errors as well as environmentally de-
pendent galaxy ellipticity gradients, the suggested explanation for
this result was the presence of isophotal twisting, in which the outer
radial parts of a galaxy are more aligned with the tidal field than
are the inner regions. Different shear estimates are sensitive to dif-
ferent radial separations from the centre of source images. Thus,
if isophotal twisting is present, it is expected that shear estimates
with sensitivity to outer regions will result in a larger IA signal
than those with sensitivity to inner regions. This effect was earlier
discussed in Schneider et al. (2013), within the context of a study
of radial alignments in the Galaxy and Mass Assembly Survey. It
had also been seen in simulation studies of galaxy ellipticities and
IAs (Tenneti et al. 2014, 2015; Velliscig et al. 2015a,b; Hilbert
et al. 2017). Following its direct observational detection in Singh
& Mandelbaum (2016), Chisari et al. (2016) proposed exploiting
the effect to probe primordial non-Gaussianity, which is theorized
to introduce deviations to the IA signal on large scales, where 1A
modelling is best understood.

In this work, we take advantage of the finding of Singh & Man-
delbaum (2016) to construct a new method for measuring the scale
dependence of IA contamination to galaxy—galaxy lensing on scales
at which non-linear and one-halo effects dominate. We consider the
difference between two tangential-shear measurements using the
same set of source and lens galaxies, differing only in the shear esti-
mation method applied to sources. The lensing contribution to these
signals is identical, and is thus removed by taking their difference.
However, if the shear estimation methods selected are sensitive to
different radial regions of the galaxy light profile, an IA portion of
the signal will remain, resulting in a method to determine the IA
contribution up to a constant factor and hence to measure its scale
dependence.

For this cancellation of the lensing signal to occur, the source sam-
ple associated with both shear estimates must be the same, and any
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residual multiplicative bias must be subdominant. For this reason,
we suggest the use of two shear estimates of the Bayesian Fourier
Domain (BFD) type (Bernstein & Armstrong 2014, Bernstein et al.
2016), adjusted to accommodate different radial weighting func-
tions. BFD has been shown to result in subdominant multiplicative
bias (Bernstein & Armstrong 2014), and the use of two such similar
estimates would prevent issues of different source selection cuts.

Because in our method the lensing contribution to the signal is
entirely subtracted off, it does not need to be measured and then
removed, meaning that this method may be especially robust to
challenges in constraining the source galaxy photometric redshift
errors. This method also has the potential to reduce the statistical
uncertainty in the measured IA signal, due to the respective corre-
lation both between the shape noise of measurements made with
different shear estimates, and between the cosmic variance of those
measurements. It therefore has the potential to test our small-scale
alignments models in a way that results in improved data-driven
models. We will investigate and quantify both of these possible
advantages of this method.

This paper is organized as follows. In Section 2 we provide a
brief theoretical review of the relevant galaxy—galaxy lensing ob-
servables and how they are expected to be affected by IA, then
we introduce an existing method for measuring the IA contribution
to galaxy—galaxy lensing observables to which we will compare
(Blazek et al. 2012, hereafter B2012). We proceed, in Section 3, to
present our new method for measuring IA, and we provide details
on its implementation. In Section 4, we describe the two observa-
tional scenarios in which we will forecast the capabilities of our
proposed method in comparison with the above-mentioned existing
method. We present our main results in Section 5, in which we
first describe a modification to the method of B2012 which permits
fair comparison with our method. We then consider whether our
method improves upon the existing method in terms of robustness
to systematic uncertainties, and finally we demonstrate the power
of our method in the regime in which statistical errors dominate.
We discuss our findings and conclude in Section 6. Throughout this
work, unless otherwise noted, we assume cosmological parameters
defined by the Planck 2015 results (Ade et al. 2016): h = 0.67, 2.
=0.27, Qp, = 0.049, A, =2.2 x 1077 (03 = 0.84), with Q; = 0.

2 THEORETICAL BACKGROUND

In this section, we briefly review the theoretical basis for rele-
vant galaxy—galaxy lensing quantities, and discuss the expected
IA contribution to the galaxy—galaxy lensing signal. We then de-
scribe existing methods for measuring this contribution, focussing
on the method of B2012 which will be used in this work as a
benchmark against which to measure the performance of our new
method.

2.1 Galaxy-galaxy lensing

Galaxy—galaxy lensing studies are concerned with the measurement
of the cross-correlation between the shapes of background source
galaxies and positions of foreground lens galaxies. Typically, the
measured quantity is either #(r,), the average tangential shear of
source galaxies about lens galaxies, or E(rp), the differential pro-
jected surface mass density around lens galaxies (where r, is the
projected radial distance from a lens galaxy centre in comoving
coordinates and a tilde indicates an observed quantity). For a single
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lens—source pair, y, and AX are related via
_AX
Tx.

4 . (H
where X, is the critical surface density, which depends on the
separation of lens and source galaxies. It is given (in comoving
coordinates) by

2
¢ Xs

T 4G oG = + )’
where x; and yx; are the comoving radial distances from observer to

source and from observer to lens, respectively. z; is the lens redshift.
AX(rp) is defined as

(@)

c

AX(rp) = f(rp) — X(rp)

2 rp r_! /
r—z/ drprpZ(rp) — X(rp), 3)
» Jo

where X(r,,) is the projected surface density of matter about a lens
galaxy and X(r,) is the same quantity averaged within projected
radial separation r,. Where required, we will compute the theoretical
value of X(rp) via

£(p) = pm /dH’ (14 &m (/2 + @), @)

where py, is the matter density in comoving units, IT is the line-of-
sight separation, and we use &, to denote the correlation function
of matter with lens galaxies. &;,, comprises a one-halo and two-halo
term, the ingredients for each of which we now discuss.

We first compute the two-halo term of the matter power spectrum
using CLASS (Lesgourgues 2011) with halofit (Smith et al.
2003; Takahashi et al. 2012) via CCL (LSST DESC 2017) to ob-
tain the non-linear matter power spectrum, which we then Fourier
transform using FFT1og (Hamilton 2000) to obtain & (7). We as-
sume a linear galaxy bias b for the lens galaxy sample to convert to
Em(r) via E1m(r) = bree Eqm(r), where we set the cross-correlation
coefficient r.. to unity. In computing the one-halo contribution, we
assume a Navarro—Frenk—White (NFW) profile (Navarro, Frenk &
White 1997), where we follow Mandelbaum, Seljak & Hirata (2008)
and take the concentration—mass relation to be

M —0.1
c200(M) =5 (m) ®)
and the halo radius to be defined by

M\ *
Rogo = <m) . (6)

Together with an appropriate halo occupation distribution (HOD)
model, equations (3)-(6) allow for the theoretical computation of
AX(rp) and y (). We will specify the HOD models that we use in
this work below, in Section 4.

2.2 Galaxy-galaxy lensing and IAs

IA contributions to galaxy—galaxy lensing signals arise due to cor-
relations between shapes of source galaxies and positions of lens
galaxies which are due not to lensing but to tidal gravitational ef-
fects.

Consider a generic cross-correlation of the shear of source galax-
ies with the positions of lens galaxies (y§;), where we have used y
to represent shear and §; to represent lens galaxy overdensity. The
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IA contamination to this cross-correlation can be expressed via

(¥di) = (ndi) + (iadi), N

where we use y to represent the true shear due to lensing, and ya
to represent the effective contribution to the shear due to IA.

The term (y148;) is generally non-zero in the case when galaxies
from the source sample are in physical proximity to lens galax-
ies, and therefore have shapes which are correlated with the lens
galaxy positions via tidal gravitational effects. Given perfect red-
shift measurements for both source and lens galaxies, it would be
possible to minimize or eliminate this effect by down-weighting or
cutting lens—source pairs which are close along the line of sight.
However, due to the large number of source galaxies employed in
weak lensing measurements, in general source galaxy redshifts are
determined via photometry and hence have some non-negligible
uncertainty.

The general cross-correlation (y4;) can be taken to represent
7:(rp) or AX(rp), and the contamination to either of these signals can
be quantified via 14 (rp): the contribution to the measured tangential
shear from IA, per contributing lens—source pair. For the forecasts
which we undertake below, we will require fiducial predictions for
this quantity, which are obtained via

Pia(rp) ~ pisi—, @®)
where w;(r) is the projected correlation function of the positions
of lens galaxies with those of source galaxies, w;.(rp) is the pro-
jected cross-correlation function between lens galaxy positions and
source galaxy shapes, and I, in analogy to IT above, is the co-
moving line-of-sight separation within which lens—source pairs are
sufficiently close along the line of sight to be affected by IA. A sim-
ilar equation for 74 () is given in, e.g. B2012, the difference being
the additive factor of 2I1.s included here in the denominator. This
factor is required because the method we introduce here will assume
that all physically associated lens—source pairs may be subject to A
(rather than excess pairs only), with [T being the line-of-sight
separation within which pairs are expected to be physically associ-
ated. The denominator of equation (8) can be thought of as being
obtained by integrating along the line of sight not just over &5(r}),
but over &5(r;,) + 1. We will take I¢jose to be 100 Mpc h!, although
this value is not well determined and represents an uncertainty in
our modelling of the fiducial signal. We emphasize that the choice
of a Igjose value is required only to provide a theoretical yia(rp)
signal for forecasting; it does not need to be specified a priori when
making a measurement.

Non-zero IA signals have been observed in red galaxy popula-
tions, but not yet conclusively measured in blue galaxy populations
(see e.g. Mandelbaum et al. 2011; Kirk et al. 2015); we therefore
expand equation (8) as

d bl
fredw[ri (rp) + fbluewprue(rp)

frcdw;§d(rp) + fbluch;ue(rp) + 2Hclosc

V1a(rp) ~

fredwlrs_d(rp)
wls(rp) + 2Hclose '

where fi.q and fiue, respectively, represent the fraction of red and
blue source galaxies amongst those which are sufficiently close in
line-of-sight separation to the lens sample to be subject to IAs.
The second line of equation (9) comes from the assumption that
wPl(r,) & 0 (i.e. blue galaxies are not subject to IA at a signifi-
cant level) and that blue and red galaxies cluster in the same way
(which is not strictly correct but is a sufficient approximation for

the purposes of our work).
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The two-halo terms of these projected correlation functions are
computed via (see, for example, Singh et al. 2015, where we have
neglected redshift-space distortions)

bsb k
wty =23 [awe [k [aetr, (\/kiﬁka,z)

x sin(k; Mmax) Jo(rpk 1) (10)

ArbiCrpe 2y W(z)
dz dk, / —L
D(2) (k2 +kL)k

x Py (, [i2 + k2, z) Sin(k M) J2(rpk 1) (1

where b is the large-scale bias of the source galaxies, b is the
same for the lens galaxies, and P; is the non-linear matter power
spectrum. We set by and b; to their ensemble average values as
computed from an appropriately chosen HOD (the HODs used in
this work for different observational scenarios are discussed in

Section 4).

Equation (11) assumes the non-linear alignment model for IA.
Here, A; controls the amplitude of IA on scales where the two-halo
term dominates, and C| is a normalization constant. Throughout this
work we follow, e.g. Joachimi et al. (2011) and set C; p. = 0.0134,
obtained via fitting the linear alignment model to low-redshift Su-
perCOSMOS observations. W(z) is the combined window function
of source and lens galaxy samples, given by (see, for example, Singh
et al. 2015)

w1+(rp) =

dN(z) dN(D) 1 (LX -1
W(z) = dz;  dzs x%(x) \dz (12)
f dz W@ NG 1 (dx)—'
dz; dzg x%(2)

dN

where and
galax1es respectlvely

The one-halo term of wy(r,) is computed using the standard
halo model in combination with the relevant chosen HOD (again,
given below in Section 4). The NFW profile is assumed, and con-
centration and virial radius are given by equations (5) and (6),
respectively.

,ljf (rp) is calculated using the halo model for IA as introduced in

Schneider & Bridle (2010). The relevant one-halo power spectrum
is

k 2
PG, 2y = TP (13)
1+ (k/pa)Ps
where
Di = qi1€xp(ginz™?). (14)

The parameters g;; are fitted in Schneider & Bridle (2010). In Singh
et al. (2015), the g;; parameters are adjusted to better fit the BOSS
LOWZ galaxy sample; here we assume the ¢;; parameters of Singh
et al. (2015) and all other g;; parameters from Schneider & Bridle
(2010). w”’ 4 (rp) can then be found via

ki

Given the capability to theoretically calculate the one- and two-
halo terms of both w;s(r,) and w; . (7,), theoretical fiducial values
for #1a(rp) can be computed using equation (8). Note that we do
not incorporate halo-exclusion terms in our fiducial calculations of
w;4(rp) and wis(rp), but instead simply add one-halo and two-halo
terms. The choice to simplify our calculations in this way has a

Wl () = / e Pk 2ol ). (15)
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minor effect on the shape of the fiducial signals calculated, however
the magnitude of this effect is negligible relative to the variation
in signal-to-noise within the IA-measurement scenarios explored
below.

2.3 Existing methods for measuring IAs

Several methods exist in the literature to measure or constrain the
IA contribution to the galaxy—galaxy lensing signal. Because lens-
ing measurements typically rely on source galaxies with redshifts
determined photometrically, it is useful that procedures for miti-
gating the effect of IA take this into account. In several existing
methods, source galaxies are separated into two or more bins using
photometric redshifts, and the lensing and IA signals are estimated
simultaneously via the assumption that the source galaxy sample(s)
which are more separated in redshift from the lens galaxies will
contain fewer galaxies which are subject to IA.

In Hirata et al. (2004) the IA contribution to an SDSS galaxy—
galaxy lensing measurement was constrained, under the assumption
that a source sample with higher photometric redshifts had no 1A
contribution. Methods by B2012 and Chisari et al. (2014) later re-
laxed this assumption, while still relying on the idea that fewer
galaxies in higher photometric-redshift source samples would be
subject to IA. In a similar vein, Joachimi & Schneider (2008) and
Joachimi & Schneider (2010) proposed methods to null or boost the
IA signal in cosmic shear measurements using its characteristic red-
shift dependence. In order to demonstrate the utility of the method
which we present in this work, we will compare against the method
put forward in B2012. We now describe this method in detail.

In the methodology of B2012, it is assumed that source galaxy
redshifts are photometric while lens galaxy redshifts are spectro-
scopic. Two measurements of the galaxy—galaxy lensing quantity
AY are then considered. The first, which we label a, is for a source
sample defined by the requirement that for a given lens redshift z;,
the source (photometric) redshift zy, satisfies zj < zpn < 21 + Az,
where Az is chosen to jointly optimize signal-to-noise of the lensing
measurement and IA constraint on a per-survey basis. The second
sample, called b, is chosen in a complementary way such that z,,
> 71 + Az. Given these two measurements of AY, it is possible
to solve both for the lensing signal and for the contribution to the
tangential shear due to IA. The expression for the latter is given by
B2012:

A ci“)ﬁa - cgb)ﬁh
(B, — D (SR — (B — De(E)8

In the form of this method originally introduced in B2012, it is
assumed that only excess lens—source pairs are subject to IA (that
is, only pairs which statistically contribute to a positive correlation
between lenses and sources). ¢ is given by (1 + b{") ~! where bY)
is the photometric-redshift bias to E,«. B; is the boost factor, which
quantifies the presence of excess galaxies in sample i, and <>“:L.)gx> is
the average critical surface density for excess galaxies. Dependence
on r, has been omitted in equation (16) for clarity.

c., B, and (2, )¢x are explicitly given for a generic source sample
by

(16)

lens - i rand . B
B(rp)Zﬁ)ch'jEc,j E II}]E( ]EL“
-1 _ _ J ~ J
z bz + I= lens . rand N (17)
W Z W
J J
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2
J

B(rp) " rand (18)
2 w;
J

excess ~ lens _ rand ~
. S wiEe; > e w5
<Ec>ex(rp) = jexcess =~ lens ra/nd ’ (19)
> w; D=3 W

J J J

where in equation (17), the second equality makes use of the fact
that the true value of X! is approximately zero for source galaxies
at or very near the lens redshift. Sums in equations (17), (18), and
(19), and similar sums below, should be interpreted as being over
lens—source pairs with source galaxies in the relevant sample. A
label of ‘lens’ indicates a sum over all such pairs, while a label of
‘excess’ implies a sum over only those pairs which are statistically
in excess of what would be present in the case without clustering.
A label of ‘rand’ indicates that the sum should be performed over a
set of ‘lenses’ which are sampled randomly from the same redshift
distribution and window function as the true set of lenses.

‘We note particularly that equation (17) for ¢, requires a sum over
the product of %, j» the estimated critical surface density (using
photometric redshifts for source galaxies) and % _}, the inverse
of the true critical surface density (using spectroscopic redshifts
for source galaxies). This sum is in practice therefore taken over
only the subsample of lens—source pairs for which sources have
spectroscopic redshifts. We assume that in the case in which a
representative spectroscopic subsample of sources is unavailable, a
re-weighting method (see, for example, Lima et al. 2008) is used
to approximate a representative subsample as closely as possible.
Such a method will be imperfect when the spectroscopic subsample
completely neglects parts of the source galaxy parameter space (in
terms of, e.g. colour or magnitude), or if the rate of redshift failure
at a fixed point in colour—-magnitude space depends on redshift.
Biases can similarly arise if the selection function of the overlapping
spectroscopic survey (for example, in colour space) cannot easily
be reproduced by the wide-field survey which images the sources.
In such cases, ¢, will be subject to a systematic uncertainty.

As stated, the objective of the B2012 method to which we will
compare is to solve simultaneously for both )7IA(rp) and AX(rp).
Therefore, the weights, W;, are chosen in that work to optimize the
signal-to-noise of AX(rp):

1

SR S (20)
£2 (02 + (o))

W,
where o, is the contribution due to shape-noise and o/ is the
measurement error associated with the source of lens—source pair j.
This choice of weights is sub-optimal for the estimation of IA, due
in part to the downweighting of nearby lens—source pairs. We do
not advocate its use with our proposed method, and will introduce a
different weighting scheme below for this purpose. We nevertheless
use the weights of equation (20) when making calculations in the
B2012 method to enable comparison with the measurements of that
work. One might then ask whether comparisons made between our
method, with a more optimal weighting scheme, and the B2012
method, with this less optimal scheme, are meaningful. To address
this issue, we have checked the effect of using a modified version
of the B2012 method which is formulated in terms of tangential
shear and uses the redshift-independent weights introduced below
in equation (23). We find no qualitative changes to our results in
this scenario, and the quantitative changes which do occur do not
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affect our overall conclusions (for example, the ratio of signal-to-
noise quantities presented in Fig. 3 below would be reduced by
30 per cent in the LSST+DESI observational scenario). We mention
a further implication of this alternative weighting scheme for the
B2012 method in Section 5.3.

3 MEASURING INTRINSIC ALIGNMENTS
WITH MULTIPLE SHEAR ESTIMATES

Having now provided theoretical background, we introduce our new
method to measure the scale dependence of the IA contribution to
the galaxy—galaxy lensing signal.

We consider two estimates of the tangential shear obtained via
different methods but using the same source and lens galaxy sam-
ples, which we will call 7,(r,) and 7/ (rp). These are given as

lens lens lens

> w;y; Sy X wivy
7i(rp) = B(rp) i = Brphm | S— + “ @n
D) m; m;
J J J
and
lens lens . lens
W,y S a Wiy
7/(rp) = B(rp)gm— = Blrpm' | o— + — . (22)

o] > ) > W)
J

J J

where all sums are over lens—source pairs, )/Lj is the tangential
shear due to lensing for a given lens—source pair j, and Vl'jx is the
contribution to the shear signal due to IA for lens—source pair j.
B(rp) is once again the boost factor, which is included to ensure
that the tangential shear is normalized in the standard way. m =
(1 + 8m) and m = (1 + 8m') are, for each shear estimate, the
residual multiplicative bias remaining after calibration. a is the
constant by which the measured IA amplitudes are offset one from
the other. For reference, as we define a here, Singh & Mandelbaum
(2016) find a ~ 0.7 — 0.8 for the three method pairs formed by
de Vaucouleurs shapes, isophotal shapes, and re-Gaussianization.
These pairings of shear estimates are not expected to be optimal; we
provide their a values simply for reference and would expect more
optimal methods to yield smaller a values (as discussed below).
Note that our definition of a is slightly different from the ratio
of IA amplitude values used to describe this effect in Singh &
Mandelbaum (2016).

In contrast to the method described in Section 2.3, our objective
is not to simultaneously estimate both A X (rp) and 14, but simply to
measure the scale dependence of 5. We therefore choose weights
differently than in the above case:

1

Yool )
This is a typical choice of weights in measurements of lensing
tangential shear. While not being explicitly designed to optimize
for #a(rp), this choice is more optimal than, e.g. the weights of
equation (20) because it dispenses with the factor of £-2, which
down-weights the very lens—source pairs expected to be subject to
IA. It is nevertheless likely that there exist more optimal weight
choices than equation (23), and therefore the forecasts conducted
below may not reflect the highest possible signal-to-noise available
via the proposed method.

The success of our proposed method is dependent upon using the
same weighting scheme when computing #(r,) and /(rp). There-
fore, if the two shear estimates in question result in different values
of o, or different per-galaxy values of o, it is necessary to use a
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version of equation (23) which adopts the same value of these for
both methods (e.g. by adopting their average value). This ensures
the required cancellation when taking the difference of #(r;) and
7/(rp), as we do now.

Subtracting equation (22) from (21), we obtain

lens j lens j
Z WjYia Z WjYia
Pi(rp) = 7/(rp) = (1 = @) B(rp)=—— = (1 —a) ————.
2., 20
J J

(24)

Terms involving m and m’ are no longer present in equation (24).
We have assumed that calibration is performed via a method in
which any such residual uncertainty (8m or 8m" above) is demon-
strably subdominant (see, for example, Bernstein et al. 2016; Shel-
don & Huff 2017). If this is not the case, two additional terms would
be added to the right-hand side of equation (24), representing an
additive bias: one proportional to (m — m')y and one proportional
to (m — am’) 1. We estimate that in order to limit this additive bias
to at most n-per cent the value of (1 — a)ja, for a galaxy—galaxy
lensing measurement involving sources from LSST and lenses from
the Dark Energy Spectroscopic Instrument (see Section 4 below for
details on this observational scenario), we would require that the
individual absolute values of 8m and §m’ not exceed ~n-per cent x
1 —a).

We have also assumed in equation (24) that any residual additive
biases to #(r,) and 7/(r,) exactly cancel, which need not be the
case (see, for example, Sheldon et al. 2004). To circumvent this
potential issue, estimators for tangential shear which incorporate
subtraction of the signal measured about random points from that
measured about lenses could be used, which would render additive
biases to each of #(r,) and 7/ (r},) individually negligible.

We consider a sample of lens—source pairs which is defined by
the requirement that for a given lens—source pair, lens redshift and
source photometric redshift are sufficiently close that we would
naively expect them to be physically associated. As mentioned
above, we will take this maximum line-of-sight separation to be
100 Mpc h™! in this work. The quantity which we aim to measure,
up to a constant factor, is y14: the tangential shear due to IAs per
contributing lens—source pair. To obtain this quantity from equation
(24), we must multiply both sides by an additional factor, which
ensures that we divide by the sum of weights of contributing pairs
only:

rand B
2
J

1

excess rand, close = B(l’p) 1 + Fv (25)
oW+ X Wy

J J
where we have defined F:

rand, close
W,

F=— (26)

and the label ‘rand, close’ indicates that the sum should be taken over
pairs in which source and lens are sufficiently close as measured by
spectroscopic redshift that we would expect them to be intrinsically
aligned, and the ‘lenses’ are drawn randomly from the lens redshift
distribution and window function.
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F can evidently not be computed on a pair-by-pair basis, as we do
not expect to have access to the spectroscopic redshift of all source
galaxies. Instead, it should be computed statistically via % and
P(Zs, Zph), Where the former is the number density of sources with
respect to spectroscopic redshift, and the latter is the probability of
a source galaxy with measured photometric redshift z,, having true

(spectroscopic) redshift zg, or vice versa. In this way, F'is given by

Jda [ ez [75) dze 2 plzg, zpn)
Jda g [ dznw(zn) [ dze g p(zs, Zpn)

where z,(z;) and z_(z;) are, respectively, the maximum and min-
imum spectroscopic redshifts at which we would expect source
galaxies to be intrinsically aligned, for a given lens redshift z;. ‘;—Z"]' is
the number density of lens galaxies with respect to (spectroscopic)
redshift, and integrals without explicit limits should be taken as
being over the integration variable’s full range.

Equation (27) makes explicit the fact that because F encodes in-
formation about true source galaxy redshifts, it must be calculated
using 37': and p(zs, zpn) as estimated from the spectroscopic sub-
sample of sources. Much like ¢, in the B2012 method above, in
the case of an inadequately representative spectroscopic subsam-
ple or imperfect re-weighting, F may therefore become a source of
systematic error.

We finally multiply equation (24) by the factor defined in equation
(25) to get

€2))

?l(rp) - )N/t/(rp)

B(ry) — 1+ F’ 8)

(I —a)pia(rp) =
Equation (28) is the fundamental expression of our method. It allows
us to measure the IA contribution to galaxy—galaxy lensing up to
a poorly known constant in order to gain information about its
scale dependence. We now prepare to test how well this method is
expected to perform compared to the existing method described in
Section 2.3.

4 OBSERVATIONAL SCENARIOS FOR
FORECASTING

To evaluate the effectiveness of our proposed method for measuring
the scale dependence of 4, we select two observational scenarios
in which to forecast expected performance.

The first of these, which we will call the ‘SDSS’ case, assumes
that lens and source galaxies are both drawn from Sloan Digital
Sky Survey (SDSS) data. For the other, which we will call the
‘LSST+DESI’ case, we consider a scenario which combines data
from two upcoming surveys, with sources from the Large Synoptic
Survey Telescope (LSST) and lenses from the Dark Energy Spec-
troscopic Instrument Luminous Red Galaxy sample (DESI LRGs).
These two choices ensure that we can both compare our predic-
tions to the actual measurement of 5 by B2012 (in the SDSS
case), and explore how our proposed method may perform for a
next-generation measurement (in the LSST+DESI scenario).

In the SDSS case, lens galaxies are assumed to be from the SDSS
LRG sample as selected in B2012 (see also Kazin et al. 2010 and
their ‘DR7-Dim’ sample), with a surface density of n; = 8.7/deg?
(Mandelbaum et al. 2013). The median redshift of this sample is z =
0.28 (Kazin et al. 2010). Source galaxies are assumed to be from the
sample described in Reyes et al. (2012), with an effective surface
density of ny = 1/arcmin?. The per-component rms distortion of the
source sample is €,y = 0.36; with responsivity R = (1 — €2 )~

ms

0.87, this results in 0, = €ms/(2R) = 0.21 (Reyes et al. 2012). The
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overlapping sky area of these lens and source samples is taken as
7131 deg? (B2012).

The LSST+DESI observational scenario assumes lens galaxies
from the anticipated DESI sample of LRGs, which we assume to
have a surface density of 300/deg? (DESI Collaboration et al. 2016).
The effective redshift of the sample is taken as z = 0.77 (estimated
from fig. 3.8 of DESI Collaboration et al. 2016). Source galaxies in
this scenario are taken to be from the final LSST lensing sample,
with an expected effective surface density of neg = 26/arcmin?,
and a per-component rms ellipticity of €,y,s = 0.26, which with the
ellipticity definition of Chang et al. (2013) is equivalent to o, =
0.26. These source and lens samples would be expected to have an
overlapping sky area of 3000 deg? (Schmidt et al. 2014).

Further assumptions and details associated with each of these
observational scenarios are as follows:

Redshift distribution of lenses:

The number density of the SDSS LRG sample is shown as a function
of redshiftin fig. 2 of Kazin et al. (2010). We smooth with a box filter
and perform a conversion to appropriate units to obtain the redshift
distribution of SDSS LRGs. The expected redshift distribution of
the DESI LRG sample is given in fig. 3.8 of DESI Collaboration
et al. (2016). Both distributions are plotted in Fig. 1.

Redshift distribution of sources

The redshift distribution (in terms of spectroscopic redshifts z;) of
source galaxies is given for the SDSS source sample as

dN \“! 1 ( Zs ) 2

o« [ — exp| —= [ — R 29
dzs (z*) P < 2\ z4 29)
where o = 2.338 and z, = 0.303 (Nakajima et al. 2012). For the
LSST source sample, the distribution is given by

dN & s P

oxzlexp [ — [ — , (30)
dz, 20
where @ = 1.24, zp = 0.51, and 8 = 1.01 (Chang et al. 2013). In
both cases, d—’\z is appropriately normalized over the redshift range

once convolved with the photometric redshift model. The assumed
source redshift distributions are plotted in Fig. 1.

Model for photometric redshifts

In both observational scenarios under consideration, source galaxy
redshifts are photometrically determined. The source galaxy red-
shift distribution in terms of photometric redshift z;, is given by

v fdzsp(Zs’th)g%

We choose a simple Gaussian model for p(zs, zpn) in both observa-
tional scenarios:

( ) = o M (32)
P\Zs, Zph) = «/EO‘Z p 20_22 s

where o, is taken to be 0.11(1 + z;) for the SDSS source sample
(B2012) and 0.05(1 + z;) for the LSST source sample (Chang et al.
2013).

€1V
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ap, andA;:

ay, and A; are the fiducial amplitudes of the one-halo and two-halo
terms of w;,(rp), respectively. A fit to a power law in luminosity
for each of these quantities is provided in Singh et al. (2015):

AL) =« (Lép)ﬂ 33)

an(L) = oy (ﬁ)ﬂh : (34)

where L is the r-band luminosity and L, is the pivot luminosity
corresponding to an absolute r-band magnitude of —22. Parameters
are fitted in Singh et al. (2015) using data from the SDSS BOSS
LOWZ sample, and found to be « = 4.9 £ 0.6, 8 = 1.30 £+ 0.27,
ap = 0.081 £ 0.012, and B, = 2.1 £ 0.4. We take the best-fitting
values of these parameters as their fixed values in estimating a;, and
Aj for our fiducial calculations.

In order to then determine the appropriate values of a; and A, for
the scenarios under consideration, we use a Schechter luminosity
function (Schechter 1976) and integrate equations (33) and (34)
over luminosity. Following Krause, Eifler & Blazek (2016), we
use Schechter function parameters for red galaxies from Loveday
et al. (2012) and Faber et al. (2007). We assume the limiting r-band
apparent magnitude of the SDSS shape sample to be 22 (see fig. 3
of Reyes et al. 2012), and the same quantity for the LSST lensing
sample to be 25.3 (LSST Science Collaboration et al. 2009). As
a result, we find @, = 5.6 x 1073 and A; = 0.65 for the SDSS
scenario, and a, = 0.016 and A; = 1.2 for the LSST+DESI case.

Halo occupation distributions

When computing the fiducial value of #14(rp), as well as the cos-
mic variance terms of the covariance matrices for 9 and N (see
Appendix A), we must specify an HOD for both the lens and the
source samples. We use this to calculate one-halo terms of two-
point functions, as well as to obtain the large-scale galaxy bias, and
hence the two-halo term. For the SDSS LRGs, we use the HOD fit
to this same galaxy sample in Reid & Spergel (2009), which yields
a large-scale bias value of b; = 2.2. For both the SDSS and LSST
source samples, we use the HOD developed in Zu & Mandelbaum
(2015). This HOD has the benefit of accepting as input the number
density of galaxies, allowing its use for both source samples. The
galaxy bias of both source samples, according to this HOD, is by
= 1.3. For the DESI LRGs, lacking a better option, we employ an
HOD fit to the SDSS BOSS CMASS sample (More et al. 2015)
when computing one-halo terms. This is not ideal as it is fitted to
a different sample and does not accept number density of galaxies
as input. However, as we will show below, most of the power of
our proposed method is not deep within the one-halo regime, so we
do not expect this sub-optimal choice to have a significant effect
on our overall results. Recognizing that this HOD is not a perfect
choice, we do not in this case obtain a large-scale bias value from
it, but rather from the expression b(z) = 1.7/D(z), given in DESI
Collaboration et al. (2016), which at the effective redshift of the
DESI LRGs results in b; = 3.9. Where possible, we compare our
calculation of mean central and satellite galaxy occupation numbers
to those computed with the HaLoTooLs package (Hearin et al. 2017)
and find agreement.

Note also that in computing quantities such as power spectra
and correlation functions using these HODs, it is important to pair
them with theoretical quantities (e.g. the halo mass function) which
are calculated using appropriate values of cosmological parameters.
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Figure 1. The assumed spectroscopic redshift distribution of lens and source galaxies for both observational scenarios (left: SDSS, right: LSST+DESI). Source
distributions are shown normalized individually to unity over the redshift range, while lens distributions are arbitrarily scaled (for visualization purposes only).

We must use the parameter values which were either fixed in fitting
HOD parameters or simultaneously fit with HOD parameters. Oth-
erwise, the observables we calculate will not match the sample in
question. Therefore, in this context only, we divert from our default
cosmological parameters to use parameter values as given in the ref-
erences above for each HOD, in order to best replicate observable
quantities.

Measurement noise, o

We take the measurement noise, o, required to compute the weight
of each lens—source pair as in equation (23), to be related to the
average per-source-galaxy signal-to-noise via (Bernstein & Jarvis
2002)
2
O = ———. (35)
(S/N)

We take the average S/N to be 15 for the SDSS scenario. For LSST,
we take o, = 0.128 (Chang et al. 2013), equivalent to an average
per-galaxy signal-to-noise of 15.6.

Boost factors

The boost factor, defined above in equation (18), is the ratio of the
sum of weights over all lens—source pairs in a given sample, to
the sum of weights of the same sample with randomly distributed
lenses. In other words, it quantifies the degree to which correlation
augments the number of galaxy pairs in the sample. To compute the
boost for the various samples required for our analysis, we evaluate
the expression (see, for example B2012)

dN 24(21)
B(rp) —1= (/dZIT dzpnW(Zpn, 21)
2 Sz @)

dN
X /dzx Eslx(rpv H(Zx); Zl)p(Z,w th))

dN 24(21) dN
X dZ* dZ wZnaZ /dzsi 5, 2 )
( e o phW(Zphs 21) dz. P(Zss Zpn)

(36)

where z,(z)) and z_(z)) are, respectively, the upper and lower photo-
metric cuts which define the source sample for a given lens redshift.

Az

For the method developed in B2012 and reviewed in Section 2.3, we
require a value of Az, which defines the photometric redshift range
of each source sample. In the SDSS scenario, we follow B2012 and
choose Az = 0.17. In the case of LSST+DESI, we choose Az to
optimize the signal-to-noise of 5 in the B2012 method, and find
that the optimal choice is Az = 0.1.

Red fraction

To obtain f;.q, Wwe once again employ Schechter luminosity functions
with parameters fitted by Loveday et al. (2012) and Faber et al.
(2007) as in Krause et al. (2016). In this case, we consider one
luminosity function with parameters fitted to red galaxies only, as
above, and another with parameters fitted to a full sample including
red and blue galaxies. To obtain the red fraction in each case, we
simply take the ratio of the integrated luminosity function for red
galaxies to the integrated luminosity function for all galaxies, and
find the value averaged over the line-of-sight separation on which
we expect pairs to be physically associated. We find fi.q = 0.27 for
SDSS, and freq = 0.16 for LSST.

5 RESULTS

We now describe the results of forecasting constraints on the IA
contamination to galaxy—galaxy lensing using our method, as com-
pared to the method of B2012. We first describe an extension to
the method of B2012 which will enable a fair comparison, then
discuss the impact of systematic uncertainties associated with an
inadequately representative spectroscopic subsample of sources.
We finally present the type of measurement which may be possible
in a scenario in which statistical uncertainties are dominant.

5.1 Incorporating all physically associated galaxies

In order to make a fair comparison between the constraining power
of our proposed method and the method of B2012, we revisit the
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derivation of equation (16) under the assumption that all physically
associated galaxies may be subject to IA (rather than only excess
galaxies). In this scenario, equation (16) becomes

cg")ﬁa - cg’)ﬁh
(By = 1+ F) (S0 — By — 1+ Fpel (£

7)) =

(37

This result contains the new terms F, and F), where F was in-
troduced in equation (26), as well as the modified term (i,)&),
which is the average critical density over all physically associated
lens—source pairs for sample i. (5,14 is given (for a generic source
galaxy sample) by
excess  _ rand, close  _
_ 2 wiBejt 3 Wi
(Zhalrp) = < —mioo : (38)

X o+ X b
j j

F; and (f}c)ix depend on sums over pairs for which the true (rather
than photometric) redshift of the source galaxy is close enough to
that of the lens that the pair is considered physically associated.
Therefore, F; and (26)&) must be computed via integration over the
source redshift distribution, and may also be subject to systematic
error in the case of an inadequately representative spectroscopic
subsample of sources or an imperfect re-weighting scheme. As this
updated version of the B2012 method contains six terms which
are in principle subject to this type of systematic uncertainty, it is
reasonable to consider whether our proposed method, for which
only F'is subject to this type of error, may be more robust to this
effect. We will address this question in Section 5.2.

Consider, though, for the moment, a scenario in which the sys-
tematic error due to source galaxy redshift uncertainty is negligible
(an assumption which will be justified below). Uncertainties are
then a combination of statistical errors and systematic errors asso-
ciated with the boost. We can compare the expected constraints on
#1a from the original version of the method (encapsulated in equa-
tion 16) and this modified version (described in equation 37). The
forecast signal-to-noise in each case is displayed in Fig. 2, for both
observational scenarios described in Section 4.

We see that the extension to the method of B2012 introduced
here improves the signal-to-noise, in particular for the LSST+DESI
scenario. This can be understood by noting that the boost factor
is subject to a non-negligible systematic error due to effects such
as variation of the density of lenses as a result of observational
conditions and fluctuations in large-scale clustering (B2012). The
boost, representing as it does the weighted ratio of all lens—source
pairs to non-excess lens—source pairs, goes to unity on large r,
scales, and so the fractional error associated with the boost increases
arbitrarily on these scales, as discussed in B2012. The addition of
F, which is constant with projected radial separation, ensures that
the equivalent term in equation (37) never grows arbitrarily large,
controlling this error and resulting in the improvement seen in Fig. 2.
When comparing our proposed method to the method of B2012, for
the remainder of this work, we use the modification described by
equation (37).

5.2 Redshift-related systematic uncertainties

Due to the faint limiting magnitude of future lensing surveys such as
LSST, potential systematic errors due to inadequately characterized
photo-z uncertainty are a concern (Newman et al. 2015). Quantities
affected by this source of error enter our method only via F (see
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equation 28), while in the case of the B2012 method, ¢!", (E)0,
and F; all may be subject to this source of uncertainty. We now
compare our method to that of B2012 in terms of robustness to this
type of systematic error.

We first determine the maximum level of redshift-related system-
atic error which is of practical interest for the measurement of 1A
contamination to the galaxy—galaxy lensing signal. This is set by
the fact that the mitigation of IA is only relevant when the lensing
uncertainty itself is not dominated by redshift-related systematics.
We therefore work in the regime where the fraction of the total
integrated uncertainty on AX(rp) which is due to redshift-related
systematic error is less than 50 per cent. We find that in order for this
to be true, assuming that the b source sample is representative and
typical for a AX(rp) measurement, the maximum fractional sys-
tematic error on ¢!”’ must be less than ~9 x 107 in the SDSS case
and ~7 x 10~* for LSST+DESI. These values in fact also represent
upper limits on the redshift-related systematic error of the other six
quantities of interest (¢, F;, (£, F), because each of these is
sensitive to near-lens sources, for which the photo-z calibration is
expected to be best.

We are interested in how the total redshift-related systematic un-
certainty on the IA signal compares to its statistical uncertainty, for
our method and for the B2012 method. To investigate this, we con-
sider the ratio of oy, (integrated redshift-related systematic error)
to 0 gy (integrated statistical error); a smaller value of this ratio in-
dicates greater robustness to redshift-related systematic uncertainty,
while unity indicates that statistical uncertainty and redshift-related
systematic uncertainty are equally important. We examine this ratio
as a function of the fractional error on each of cff ) F;, (fip)ix, and F
in turn (fixing the error on the others to zero), and find a power-law
relation, with slopes given in Table 1. To be explicit, the power law
takes the form

Osysz dx
— =Al—, 39
Ojstat X

where x is one of F, ¢!, (£, or F;. We see in Table 1 that
within the B2012 method, the overall importance of redshift-related
systematic uncertainty is most sensitive to the level of systematic
uncertainty on ¢ and ¢{”. This is sensible: the B2012 method

incorporates the difference of the two large quantities cg“)ﬁa and

cgb)ﬁb; uncertainty in either of these terms will result in a rela-
tively large error on their much smaller difference.

We use this set of power-law relationships to easily calculate
the ratio 0,/0g When each of F, ¢, (£,){}, or F; in turn
takes its maximum tolerable fractional error (with errors on the
remaining quantities fixed at zero). These ratio values are listed in
Table 2. We see there that applying the maximum interesting level of
redshift-related systematic uncertainty to any individual quantity is
insufficient to cause this source of error to dominate over statistical
uncertainty.

Even when the redshift-related systematic error on F takes
its maximum value of interest, statistical error heavily domi-
nates our method, with o y,/0 i ~ 1 per cent for both SDSS and
LSST+DESI. For the B2012 method, we examine the worst case
scenario in which the redshift-related systematic errors of cé s (if)&),
and F; all take their maximum values simultaneously, and find the
corresponding maximum value of o y,/0 g, to be 29 per cent for
SDSS and 5 percent for LSST+DESI. Although these values are
larger than in our method, and thus we see that the B2012 method
is less robust to redshift-related systematic errors in the worst-case
scenario, statistical error remains dominant.
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Figure 2. Forecast signal-to-noise on 4 using the Blazek et al. (2012) method, including both the original version, which assumes that only excess lens—source
pairs are subject to IA, and the modified version developed herein, which assumes that all physically associated pairs are subject to IA. The latter choice
improves the signal-to-noise due to a reduced sensitivity to systematic errors which affect the boost factor. Note that we do not predict a detection of 14 in the
SDSS case with either version of the Blazek et al. (2012) method, which is in agreement with the measurements of that work.

Table 1. Slope of the linear relationship between the ratio of total integrated
(redshift-related) systematic to statistical error on the IA signal and the
fractional level of systematic error on the quantity in the leftmost column.
A larger value indicates that the importance of systematic error in the total
error budget depends more sensitively on the systematic error on the given
quantity.

Slope A, Slope A, Eqn
SDSS LSST+DESI

¢ 23 48 17
& 2 4l 7
F, 0.72 43 26
Fp 0.063 0.012 26
(EN? 0.95 6.5 38
(£)% 0.081 0.018 38
F 1.2 8.1 26

Table 2. Maximum expected value of the ratio of total integrated (redshift-
related) systematic to statistical error on the IA signal, given that the quantity
in the leftmost column carries the maximum tolerable redshift-related sys-
tematic uncertainty and each other quantity carries none. A value of less
than unity indicates that statistical error is dominant.

Max 2z Max 25z Eqn
Ostat Ostat
SDSS LSST+DESI

& 0.21 0.035 17
& 0.20 0.030 17
F, 6.6 x 1073 32 %1073 26
Fy, 58 x 107* 9.1 x 107° 26
(S 8.8 x 1073 4.8 x 1073 38
(SR 75 % 1074 13 x 1075 38
F 0.011 59 x 1073 26

5.3 Statistical uncertainty

As we have shown in Section 5.2, the uncertainty on j in our
proposed method (and in the method of B2012) cannot realistically
be dominated by redshift-related systematic errors. With this in
mind, we now examine the relative performance of these methods
when statistical errors dominate.

We compute the signal-to-noise of the IA measurement from each
method, assuming only statistical uncertainty and a small contribu-
tion due to systematic error on the boost factor, o5 = 0.03 (B2012)
(see Appendix A for how the required covariance matrices are cal-
culated in each scenario). Note that for both methods, we assume
that statistical uncertainty on the boost is negligible; we have tested
this assumption and found that including this source of error yields
less than a 1 per cent change in the total uncertainty. For our method,
we compute the signal-to-noise as a function of a, the ratio of IA
amplitudes between the two shape measurement methods, and of the
correlation between the shape noise of the shear estimates, which
we call p. As stated above, a ~ 0.7 — 0.8 for the shear estimation
methods found in Singh & Mandelbaum (2016) (isophotal shapes,
de Vaucouleurs shapes, and re-Gaussianization). The same work
finds p ~ 0.7 for pairs of these methods, as quoted in Chisari et al.
(2016). However, as previously stated we imagine our proposed
method to be most useful in the context of a modified Bayesian
Fourier Domain method with custom radial weighting, which could
in principle allow for the construction of shear estimates with a wide
variety of @ and p values.

In Fig. 3, we plot the forecast ratio of the integrated signal-to-
noise of our method to the signal-to-noise of the B2012 method as
a function of a and p, for both SDSS and LSST+DESI. A value
greater than unity indicates that for the given (a, p) pair, the pro-
posed method outperforms the existing one. Our method is shown to
perform best for lower values of a and for higher values of p. Lower
values of a correspond to pairs of shear estimates which produce
more divergent IA amplitudes, and therefore which increase the
signal (1 — a)71a. Higher values of p indicate increased correlation
between the shape-noise terms of the two shear estimates, which
results in a reduced level of noise on the difference of tangential
shear estimators.

The segment of the (a, p) plane for which our method performs
better than that of B2012 is larger in the LSST+DESI scenario,
the reason for which is not entirely obvious and warrants men-
tion. The reduction in photo-z uncertainty in going from SDSS to
LSST+DESI means that for a given source sample, less spurious
sources are inadvertently included. In our method, this means that
a yet higher proportion of pairs are subject to IAs. Similarly, the
effective fraction of pairs subject to IA in source sample b of the
B2012 method drops. Less intuitively, the effective proportion of
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Figure 3. Integrated signal-to-noise in our proposed method, divided by integrated signal-to-noise in the method of Blazek et al. (2012), under the assumption
that redshift-related systematic uncertainties are subdominant. a represents the difference in measured IA amplitude between shear estimates (where smaller a
is a greater difference), and p is the correlation between the shape noise of each shear estimate. Signal-to-noise is reported for signal of 5 or (1 — a)jia as
appropriate for the method, and is integrated over scales r, = 0.05 — 20 Mpc h~!. A value of unity or greater indicates that the proposed method outperforms
the existing method; the black curve indicates the contour where the ratio is equal to one, with values greater than unity to the upper right corner in both

cases.

pairs subject to IA in the a sample of B2012 also drops, because this
method down-weights pairs which are close in photometric redshift,
of which there are more in the @ sample when photo-z uncertainty
is reduced. Using redshift-independent weights in a B2012-like
method does not entirely remove this effect, as it is dominated by
the decrease in IA-subject lens—source pairs in the b sample. The
choice of Az for the B2012 method also leads to some perceived
increase in our method’s performance in the LSST+DESI scenario
as compared to SDSS, which is an artefact of the fact that we adopt,
in the SDSS case, a value of Az that jointly optimizes for lensing
and IA measurement. For LSST+DESI, we select Az = 0.1 to op-
timize the signal-to-noise of y15, while in the SDSS case, we have
set Az = 0.17 to follow the methodology of B2012. The redshift
extent of source sample a, the noise of which dominates the B2012
method, is therefore decreased in moving from the SDSS to the
LSST+DESI scenario, while that in our method remains roughly
constant.

In Fig. 4, we show the signal-to-noise in our method as a function
of rp, as well as the ratio of signal-to-noise in our method to that
in the B2012 method, for two sets of (a, p) values: (a = 0.8, p
= 0.2) and (@ = 0.2, p = 0.8). The former is an example of the
region of parameter space in which the B2012 method is superior
for both observational scenarios, while the latter is a case for which
our proposed method performs significantly better. For (a = 0.2, p
= 0.8) and in the LSST+DESI scenario, we forecast an integrated
signal-to-noise for our method of 11 (integrated over r, = 0.05
— 20 Mpc h™!). This represents a significant improvement over
the existing method, for which we predict a signal-to-noise of 6.
Thus, given two shear estimates with these characteristic values of
a and p, our method has the potential to allow useful inferences
about the signal for modelling purposes. Additionally, we have
computed these forecast signal-to-noise values assuming a source
sample consisting of all LSST source galaxies down to 7y, = 25.3;
with restriction to a subset with a less faint limiting magnitude
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and hence higher IA contamination, yet a higher signal-to-noise
could presumably be achieved. Finally, we note from Fig. 4 that the
relative signal-to-noise of our method is higher at larger r,. This
scale dependence is characteristic for all (a, p) pairs, and suggests
that our method may be of the most use in making measurements
which inform the modelling of the transitional regime in which
one-halo and two-halo contributions are both relevant.

6 DISCUSSION AND CONCLUSIONS

In this work, we have proposed a new method of measuring the
scale dependence of the IA contribution to the galaxy—galaxy lens-
ing signal. Our method takes advantage of the result of Singh &
Mandelbaum (2016), who found that shear estimates with sensitiv-
ity to different radial parts of the light profile of galaxies produce IA
signals with amplitudes which are offset by a constant multiplicative
factor.

Comparing our method to the existing method of B2012, we
find that for considerable portions of the (a, p) parameter space, the
proposed method is forecast to outperform the existing method when
redshift-related systematic errors are controlled. The improvement
of signal-to-noise in our method as compared to the existing method
is greater for the LSST+DESI observational scenario than for the
SDSS case, primarily due to the reduction in photometric redshift
uncertainties. This suggests that this method may be especially
fruitful in mitigating IA effects in future surveys. This promising
situation merits a more detailed investigation, using appropriate
simulated data sets.

Our method is found to be more robust to systematic uncertainties
related to difficulties in characterizing photo-z errors than is the
existing method to which we compare. However, for realistic levels
of this redshift-related systematic error (for which this source of
uncertainty does not dominate measurements of the lensing signal
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Figure4. Top panel: signal-to-noise as a function of projected radius in our proposed method, under the assumption that redshift-related systematic uncertainties
are subdominant, for two sample pairs of a and p. The characteristic scale dependence of the signal-to-noise within a given survey does not change significantly
with the values of a and p. Lower panel: the same, divided by signal-to-noise in the Blazek et al. (2012) method. Signal-to-noise is reported for signal of 5

or (1 — a)jia as appropriate for the method.

itself), the IA measurement of both our method and the method of
B2012 are necessarily dominated by statistical uncertainty.

The signal-to-noise of the IA measurement forecast by our
method in the regime in which redshift-related systematic errors
are controlled depends on a and p. Given that it is possible to
predict for which segments of this parameter space our method’s
signal-to-noise is best (see Fig. 3), the possibility arises of con-
structing pairs of shear estimates for which the values of a and
p optimize this signal-to-noise. This could in principle be accom-
plished through minor modifications to the Bayesian Fourier Do-
main (BFD) method (Bernstein & Armstrong 2014; Bernstein et al.
2016), into which multiple radial weighting functions could po-
tentially be incorporated to create shear estimation methods with
custom values of a and p. Currently, the BFD method is under de-
velopment, with further work required to create mature estimators
for two-point functions within this framework as well as to deal
with other effects such as, for example, blending. However, it is
a promising shear-estimation framework and one which could be
combined with the method proposed in this work to great effect. An-
other option of potential interest would be to use a BFD-type shear
estimate and a metacalibration shear estimate (Huff & Mandelbaum
2017; Sheldon & Huft 2017), provided the two could be constructed
in such a way that their radial weightings were different. However,
in this latter scenario, it would be necessary to somehow account for
any differing selection effects, which if unmitigated could negate
the essential cancellation of the lensing signal.

One particularly interesting scenario in which the proposed
method could potentially be employed is the case of a joint analysis
of weak lensing data from a ground-based survey such as LSST and
a space-based survey such as WFIRST or Euclid. The atmospheric
point spread function associated with ground-based surveys tends
to prevent the use of the smallest radii of the light profile in shear
estimation, whereas for space-based imaging this issue is avoided.
Given an overlap in sky area and a similar limiting magnitude,
one could therefore imagine measuring # from LSST and j, from
WFIRST or Euclid. The object detection and deblending could be
carried out in the space-based survey, avoiding selection-related
biases. In this application of the proposed method, the two shear es-
timation methods could have maximally different radial sensitivity,
due to the fact that in the case of measuring 7, from the space-based
survey, the chosen shear estimation method could be sensitive at
smaller radii than would be possible in ground-based imaging.

In order to make a fair comparison between our proposed method
and the method of B2012, we introduced a modification to the latter
such that we assume that all physically associated lens—source pairs
are subject to IA, as opposed to only excess pairs. We find that this
modification improves the signal-to-noise of this method. Although
this modification may appear at first glance to introduce new sources
of redshift-related systematic uncertainties, we have also shown,
as discussed, that these types of systematic uncertainties must be
subdominant.
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Our proposed method is forecast to improve upon the signal-
to-noise of the existing method to which we compare for the
LSST+DESI observational scenario, presenting a promising situ-
ation which invites further investigation. For example, a straight-
forward practical exploration of this method could be made by
considering isophote estimators at different galactic radii. It would
be interesting to investigate initially the relatively simple case of
an analytic galaxy profile parametrization, in order to gain insight
as to the expected range of a values. Additionally, as our method
is intended to primarily constrain the scale dependence of the IA
signal while being largely insensitive to amplitude, it would ben-
efit from combination with an existing method to enable a full IA
signal measurement. One obvious avenue would be to extend our
proposed method to incorporate elements of the method of B2012,
potentially providing an even more powerful probe of IA. Further-
more, in this work, we have not derived the redshift dependence of
weights which would optimize the signal-to-noise of our measure-
ment, rather assuming a typical redshift-independent choice. With
such an optimal weighting, we anticipate that the signal-to-noise of
the method we present would be yet higher.

Several upcoming cosmological surveys, including LSST, as dis-
cussed in this work, but also Euclid, WFIRST, and others, will soon
engender a radical reduction in statistical uncertainties of lensing
measurements. Understanding the IA contribution to lensing signals
and mitigating its effect will thus become critically important, as
percent-level effects such as this will begin to have significant rel-
evance. The new method of measuring the scale dependence of the
IA signal which we have presented here may be of great assistance,
as it has the capacity to perform significantly better than the existing
method to which we compare for a next-generation galaxy—galaxy
lensing measurement.
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APPENDIX A: COVARIANCE MATRICES OF ¥
AND AX

In this appendix we provide the required theoretical expressions
to compute the statistical covariance matrices used to produce the
results of Section 5.3.

Al AZ

The covariance of A in projected radial bin r[") and rl-j is given by

(see, for example, Jeong, Komatsu & Jain 2009; Singh et al. 2016)

Cov [Zf (rli) AT (Vé)] = 47T1fsky (?)71

(AD)

where ri" and r})' represent the high and low edges of bin r/,
respectively, (and similarly for bin rl{ ), ny is the surface density of
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lens galaxies, nef is the effective surface density of source galaxies
(both in galaxies per steradian), and £2 is given by

- dN dN
2= [ da— [ dzgh— (21 Zpn)- A2
B / 2 & / Zph dzpn e (21, Zph) (A2)

The angular power spectra in equation (A1) should be computed for
the source and lens samples of interest, incorporating in the case of
sources cuts on photometric redshifts. Note that we integrate over
the full lens redshift distribution everywhere except in the argument
of the Bessel functions. In this case, we use the comoving distance
corresponding to the effective lens population redshift. We do not
expect this to affect results significantly.

We use equation (Al) in calculating the statistical uncertainty
and covariance between r, bins of 14 (1) for the existing method
of B2012. A covariance matrix of this form is computed indepen-
dently for each source sample, a and b, and for each of the two
observational scenarios. Because source samples a and b do not
have significant overlap, the covariance matrices for AX,(r;,) and
Eb(rp) are considered independent and are combined under this
assumption. Practically, when performing this computation, we take
advantage of the orthogonality of the Bessel functions to separate
out of the constant shape-noise term.

Note that we include one-halo terms in the calculation of the
power spectra in equation (Al); this is necessary particularly in
the case of the LSST+DESI observational scenario, as for this case
shape noise is sufficiently low that cosmic variance dominates on
some scales in the one-halo regime.

A2 7

The covariance matrix for 7, which is required for the computation
of the statistical contribution to the covariance matrix for the new
method proposed in this work, is given by an expression very similar
to equation (A1), different only in factors of the critical surface mass
density:

Cov [)7[ (r;) Vi (rP])} - 47T1fsk}’

2 2

NOEIGE

" "p 1di r
d drirl | —J [ 1—2—
X/r;'-’ rprp/rly rprp/zn_ 2<X(Zleff)>
Bt [(C’ )2+<c’ +1>(C’ +UV2)}
X — — 1.
: X (fof) & 8 K e

(A3)

In this case, we ultimately require the covariance matrix for
7+ — y/ in projected radial bins. Because 7, and / are measured
from the same set of lens—source pairs, terms in the above expres-
sion which depend only on the galaxy—galaxy lensing signal (or
which depend only on the signal and the shot noise of the lenses,
i.e. the term proportional to C.,_/n)) are fully correlated. These
terms therefore subtract off entirely when computing the covari-
ance of 7 — p/. Terms which are related to the shape noise (i.e.
the terms proportional to Cégaf /e and af /(negny)) are partially
correlated, where the degree of correlation of these terms depends
on the shear estimation methods in question, and is parametrized

by p, as discussed in Section 5.3. The resulting covariance matrix
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is given by

cov [5 () =7 () 70 (4) =7 ()] = 3y

(A4)
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where we have this time explicitly separated off the shape-noise
term by taking advantage the orthogonality of the Bessel functions.
In this work we have had 0, = o7, in both scenarios considered, but
this need not be the case and is left general in equation (A4).
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