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ABSTRACT: 2-beam action (2-BA) spectroscopies are a recently developed class of techniques 

for determining the order(s) of absorption (1-photon, 2-photon, etc.) that contribute to an 

observable signal. When only a single order of absorption is present, 2-BA spectroscopies allow 

for the determination of that order by obtaining data at a single value of the observable. It has 

been shown previously that when two orders of absorption are present, they can be determined 

unambiguously by making measurements at several values of the observable. However, this 

latter approach cannot be used for single-valued observables, such as a polymerization threshold. 

Here we develop a theoretical comparison between conventional methods that determine the 

order(s) of absorption using logarithmic plots and 2-BA-based techniques. We also explore how 

2-BA plots arising from two orders of absorption deviate from a plot with a single, non-integer 

exponent. We demonstrate that these deviations can usually be used to identify the two orders of 

absorption and their relative contributions to the signal based on measurements made at a single 

value of the observable. 
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Introduction 

Multiphoton absorption (MPA) is one of the most commonly used of nonlinear optical 

phenomena, particularly in ultrafast optics.1-4 MPA is a powerful spectroscopic tool,5-8 and is 

also a key enabling technology for applications such as fluorescence microscopy,9-15 

microfabrication,16-22 and optical data storage.23-26 As a result, it is desirable to be able to 

characterize nonlinear absorption (NLA) processes accurately. For instance, it is often 

advantageous to maximize the MPA cross section of molecules or materials to make the 

nonlinear absorption process as efficient as possible. Accurate determination of an MPA cross 

section requires knowledge of the order of nonlinear absorption, as well as of the nature of any 

competing processes, such as excited-state absorption27-29 (ESA). Typical methods for 

characterizing MPA cannot reveal the contributions of multiple absorption pathways 

unambiguously.  

NLA processes can be characterized either directly or indirectly. In the former case the 

transmission loss of a laser beam is measured.30-32 Most direct techniques detect weak MPA over 

a large background signal, and so it is difficult to extract detailed information regarding complex 

photophysical or photochemical processes. Indirect methods rely on the detection of some proxy 

observable, such as emission or photocurrent, that is generated by MPA.33-40 The most common 

method of measuring the order of NLA from either direct or indirect methods is to create a 

logarithmic plot of the observable as a function of irradiance. The order of NLA is determined 

from the slope of such a plot. However, the accurate determination of the order of absorption 

generally requires data that span two or more orders of magnitude in the irradiance.41 

Furthermore, it is common for non-integer slopes to be observed, in which case multiple orders 

of absorption and/or other processes such as ESA may be present. Unless considerable dynamic 
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range is available, logarithmic plots cannot be used to ascertain unambiguously which processes 

contribute to the observed signal or what the relative magnitudes of these contributions are. 

Another approach for characterizing NLA is the Z-scan technique.42-50 The Z-scan is a direct 

method in which loss is measured as a function of the distance of the sample from the laser 

focus. The order of MPA in a Z scan is determined by fitting the shape of the loss curve. Under 

favorable conditions, it is possible to ascertain the order of a single absorption process from a Z-

scan measurement,51-52 but the accurate determination of the influence of multiple processes is 

again challenging. 

A further complication arises when MPA drives an irreversible process, particularly one, such 

as photopolymerization, that has an exposure threshold. Under such circumstances it is usually 

not possible to make logarithmic plots, and Z-scan studies are not feasible. The usual approach to 

this problem is to make measurements in a medium in which the reactivity of the excited species 

is unimportant, such as an inert solvent. However, there is no guarantee that the absorption 

process that is observed under such circumstances is the same as the one that leads to the 

irreversible phenomenon in the medium of interest. Alternative approaches that make 

measurements as a function of laser repetition rate39 and/or exposure time40 can also be used to 

glean insights into the order of NLA. Such methods still cannot provide an unambiguous 

description of the NLA process when multiple channels are involved. 

We have recently developed a class of techniques that addresses many of the shortcomings of 

conventional methods for determining the effective order of NLA.53-56 These methods, called 2-

beam action (2-BA) spectroscopies, rely on using two temporally interleaved pulse trains to 

generate an observable by nonlinear and/or linear absorption. By finding different sets of average 

powers for the two pulse trains that lead to the same value of an observable, it is possible to 
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determine the effective order of NLA at that specific value of the observable. We have used this 

technique to probe NLA-induced observables including polymerization,53,56 emission,55 and 

photocurrent.54 

As we have shown previously,54 one of the advantages of 2-BA spectroscopies is that when 

multiple phenomena contribute to the measured exponent it is possible to determine the order 

and/or nature of these phenomena. The strategy that we demonstrated for elucidating the 

different contributions is to make 2-BA measurements at a range of values of the observable and 

then to test the results against a model. The above approach is only applicable when 2-BA 

measurements can be made at several values of an observable. There are many situations in 

which 2-BA measurements can only be made over a limited range of observable values. The 

extreme example of this situation is photopolymerization,53 for which there is only one value of 

the observable (the threshold exposure dose). 

Here we explore in more detail the relationship between the analysis of NLA via logarithmic 

plots and via 2-BA spectroscopy when there are two orders of absorption involved. We 

demonstrate that under these circumstances the standard equation used to fit 2-BA plots is only 

approximate. We examine six different combinations of orders of absorption, and show how the 

2-BA plot deviates from an “ideal” 2-BA plot with a single, non-integer exponent as the relative 

contributions of the two orders are varied. Based on these results, we demonstrate how the orders 

and magnitudes of the two absorption contributions can usually be distinguished even if it is only 

possible to obtain data at one value of the observable. 
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Theory 

The concept of 2-BA spectroscopy is illustrated in Figure 1A. Two temporally interleaved pulse 

trains are incident upon the sample of interest at irradiances far below the saturation regime, 

generating an observable signal. If the delay time between two temporally adjacent pulses is long 

enough for the electronic excitation to relax completely, then the action of each pulse can be 

considered in isolation. The average power of one of the pulse trains (which we will call beam 1) 

required to attain a particular value of the observable is first determined. Beam 2 is then adjusted 

to have a non-zero average power, and the average power of beam 1 that returns the observable 

to its selected value is determined. This process is repeated until only beam 2 has non-zero 

average power. 

In principle, the average power at which each individual beam gives the desired value of the 

observable should be identical. In practice, these average powers may vary slightly. As a result, 

normalized powers are typically used in 2-BA spectroscopies, i.e. the average power of a given 

beam divided by the average power at which that beam alone yields the desired value of the 

observable. In this situation, for an m-photon absorption process the 2-BA data will adhere to the 

relation53 

𝑃𝑃�1𝑚𝑚 + 𝑃𝑃�2𝑚𝑚 = 1 ,      (1) 

 
Figure 1 (A) Schematic depiction of 2-beam action spectroscopy. Two temporally interleaved pulse trains with 
average powers 𝑃𝑃�1 and 𝑃𝑃�2 are incident on a sample, generating an observable via linear and/or nonlinear 
absorption. (B) Sets of values of 𝑃𝑃�1 and 𝑃𝑃�2 are determined that lead to the same value of the observable, and 𝑃𝑃�2 
is plotted as a function of 𝑃𝑃�1 to determine the order(s) of absorption. The dashed lines denote 𝑃𝑃�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. θ is the 
angle a line from the origin to a data point makes with the x axis. 
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where the overbar indicates a normalized average power. Thus, m can be determined by plotting 

𝑃𝑃�2 as a function of 𝑃𝑃�1 (Figure 1B). So long as only one order of absorption contributes to the 

observed signal, m will correspond to the order of that process, as will the slope of a logarithmic 

plot, n.  

Now imagine that two different orders of absorption, j and k, where j < k, contribute to the 

observed signal. We will refer to this set of exponents henceforth as (j,k). In this situation the 

signal S will be given by 

𝑆𝑆(𝐼𝐼) ∝ 𝐴𝐴𝐼𝐼𝑗𝑗 + 𝐵𝐵𝐼𝐼𝑘𝑘 ,      (2) 

where I is the irradiance and A and B are constants that depend on factors such as the absorption 

cross sections of the different orders, the temporal shape of the laser pulses, and the quantum 

yield for the observable.33 Note that j- and k-photon transitions using the same source 

wavelengths typically excite different states. In a traditional measurement, the slope of a 

logarithmic plot of the signal as a function of irradiance at a given irradiance I will then be given 

by 

𝑛𝑛 = 𝑑𝑑 ln(𝑆𝑆)
𝑑𝑑 ln (𝐼𝐼)

= 𝑗𝑗 + ∆𝑗𝑗 𝐵𝐵𝐼𝐼𝑘𝑘

𝐴𝐴𝐼𝐼𝑗𝑗+𝐵𝐵𝐼𝐼𝑘𝑘
 ,      (3) 

where ∆j = k – j.  

Note that a given value of n could arise from any (j,k). The only way to identify these orders 

via a logarithmic plot is to collect data over a sufficient range of irradiance. However, the range 

of irradiance ∆I required to have the signal arise 90% from order j to 90% from order k is54 

∆𝐼𝐼 = 81
1
∆𝑗𝑗�  .      (4) 

Thus, unless ∆j is large, it is essential to cover an order of magnitude or more in irradiance to be 

able to determine the orders of the absorption processes from a logarithmic plot. 
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In the case of 2-BA spectroscopy, the combination of two different orders of absorption leads 

to a plot that follows 

𝑎𝑎�𝑃𝑃�1
𝑗𝑗 + 𝑃𝑃�2

𝑗𝑗� + 𝑏𝑏�𝑃𝑃�1𝑘𝑘 + 𝑃𝑃�2𝑘𝑘� = 1 ,      (5) 

where a + b = 1. This expression can be rearranged to give54 

1 − 𝑃𝑃�1𝑘𝑘 − 𝑃𝑃�2𝑘𝑘 = 𝑎𝑎�𝑃𝑃�1
𝑗𝑗 + 𝑃𝑃�2

𝑗𝑗 − 𝑃𝑃�1𝑘𝑘 − 𝑃𝑃�2𝑘𝑘� .     (6) 

This linearized equation can be used to determine a, and therefore b, at a single value of the 

observable. However, values of a and b can be found in principle for any (j,k). 

We can interpret a as being the fraction of the absorption arising from order j, which implies 

that 

𝑎𝑎 = 𝐴𝐴𝐼𝐼𝑗𝑗

𝐴𝐴𝐼𝐼𝑗𝑗+𝐵𝐵𝐼𝐼𝑘𝑘
 .       (7) 

By the same token, 

𝑏𝑏 = 𝐵𝐵𝐼𝐼𝑘𝑘

𝐴𝐴𝐼𝐼𝑗𝑗+𝐵𝐵𝐼𝐼𝑘𝑘
 .       (8) 

The ratio of the observable arising from order k to that arising from order j is therefore 

𝑏𝑏
𝑎𝑎

= 𝐵𝐵𝐼𝐼𝑘𝑘

𝐴𝐴𝐼𝐼𝑗𝑗
= 𝐵𝐵

𝐴𝐴
𝐼𝐼∆𝑗𝑗 .      (9) 

Thus, if j and k have been chosen correctly a plot of b/a as a function of I∆j will be linear with a 

slope of B/A and will pass through the origin.54 However, this approach requires that a be able to 

be determined over a sufficient range of irradiance values. 

 

Results and Discussion 

We first consider the diagonal of a 2-BA plot, for which 𝑃𝑃�1 = 𝑃𝑃�2 = 𝑃𝑃�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (Figure 1B). The 

simplest manner of determining the 2-BA exponent m, which we will call the 3-point method, is 



9 

 

to measure the values of 𝑃𝑃�1 and 𝑃𝑃�2 when only one beam is used and then to measure 𝑃𝑃�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. It 

follows from Eq 1 that 

𝑃𝑃�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚 = 1
2
 .      (10) 

Thus, we have that 

𝑚𝑚 = ln (1/2)
ln (𝑃𝑃�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)

 .      (11) 

In general, it is preferable to use more than three data points to determine m, although if the 

exponent is known to be an integer then the 3-point method should generally be sufficient. This 

strategy can be thought of as a variation of one developed by Wegener and coworkers to measure 

the effective order of nonlinear absorption in multiphoton absorption polymerization.39 

When two orders of absorption contribute to the signal, Eq 5 leads to the relation 

𝑃𝑃�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑘𝑘 + 𝑎𝑎�𝑃𝑃�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑗𝑗 − 𝑃𝑃�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑘𝑘 � = 1

2
 .     (12) 

Combining Eq 10 and Eq 12 we find that 

𝑎𝑎 =
𝑃𝑃�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑚𝑚 −𝑃𝑃�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑘𝑘

𝑃𝑃�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑗𝑗 −𝑃𝑃�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑘𝑘  .      (13) 

Similarly,  

𝑏𝑏 =
𝑃𝑃�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑗𝑗 −𝑃𝑃�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑚𝑚

𝑃𝑃�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑗𝑗 −𝑃𝑃�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑘𝑘  .      (14) 

Thus, by determining m along the diagonal it is possible to find the values of a and b for a 

specific (j,k). By the same token, if a, j, and k are known then m can be found using the relation 

𝑚𝑚 =
ln �𝑃𝑃�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑘𝑘 +𝑎𝑎�𝑃𝑃�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑗𝑗 −𝑃𝑃�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑘𝑘 ��

ln (𝑃𝑃�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)
 .      (15) 

Furthermore, Eqs 3, 8, 10, and 14 can be combined to give an expression that allows the slope n 

of a logarithmic plot to be calculated from the 2-BA exponent m measured along the diagonal: 
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𝑛𝑛 = 𝑗𝑗 + ∆𝑗𝑗 1−2
−(𝑚𝑚−𝑗𝑗)/𝑚𝑚

1−2−∆𝑗𝑗/𝑚𝑚  .     (16) 

In Figure 2 we show the dependence of n on m for the six different (j,k) examined here. The 

general behavior that is observed in all cases is that n < m for values below j and above k, 

whereas n > m for values between j and k. When the exponent is either j or k then n = m. For 

values above k the dependence of n on m is roughly linear. Unfortunately, Eq 16 cannot be 

inverted to find an expression for m as a function of n. However, as shown below, specific 

expressions exist for m as a function of n for any given (j,k). 

Although the above strategy allows for the determination of a from the value of m measured 

along the diagonal, this method offers no direct means of determining what the correct (j,k) 

might be. Furthermore, if a and b are not zero, then in general the only places that data points for 

a specific value of m will be equal to data points for a combination of two explicit orders of 

absorption will be along the axes and on the diagonal. However, the deviation of a plot for a 

single, non-integer exponent m from a plot for an explicit (j,k) can provide a substantial amount 

of information about the true values of j and k. 

 
Figure 2 Plots of the logarithmic plot exponent n as a function of the 2-BA exponent m for six different (j,k): 
(A) sets for j = 1; (B) sets for j = 2; and (C) the set for j = 3. The symbols indicate the points at which n = m, 
which occurs when only a single absorption process is present. 
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The simplest manner of measuring the deviation between two different 2-BA plots is to 

determine the radial distance between points that are at the same angle θ from the x axis (see 

Figure 1b). In the case of a plot for a single exponent m, the slope s of a line from the origin to a 

data point at angle θ is given by 

𝑠𝑠 = tan𝜃𝜃 = 𝑃𝑃�2
𝑃𝑃�1

 .      (17) 

Accordingly,  

𝑃𝑃�2(𝜃𝜃) = 𝑠𝑠𝑃𝑃�1(𝜃𝜃) .      (18) 

Plugging this result into Eq 1 leads to 

𝑃𝑃�1(𝜃𝜃) = � 1
1+𝑠𝑠𝑚𝑚

�
1/𝑚𝑚

 .      (19) 

To find the coordinates of a data point at angle θ when there are contributions from two 

exponents, we begin by rewriting Eq 5 as 

�𝑃𝑃�1𝑘𝑘 + 𝑃𝑃�2𝑘𝑘� + 𝑎𝑎
1−𝑎𝑎

�𝑃𝑃�1
𝑗𝑗 + 𝑃𝑃�2

𝑗𝑗� − 1
1−𝑎𝑎

= 0 .    (20) 

Combining this result with Eq 18 we find that 

𝑃𝑃�1𝑘𝑘(𝜃𝜃) + 𝑎𝑎�1+𝑠𝑠𝑗𝑗�
(1−𝑎𝑎)�1+𝑠𝑠𝑘𝑘�

𝑃𝑃�1
𝑗𝑗(𝜃𝜃) − 1

(1−𝑎𝑎)�1+𝑠𝑠𝑘𝑘�
= 0 .   (21) 

The x coordinate can be determined by finding the appropriate root of this polynomial, with the y 

coordinate then following from Eq 18. 

As an example, we consider the case in which j = 1 and k = 2. The polynomial for which we 

must find the root is 

𝑃𝑃�12(𝜃𝜃) + 𝑎𝑎(1+𝑠𝑠)
(1−𝑎𝑎)(1+𝑠𝑠2)𝑃𝑃�1(𝜃𝜃) − 1

(1−𝑎𝑎)(1+𝑠𝑠2) = 0 .   (22) 

The relevant root of this equation is 

𝑃𝑃�1(𝜃𝜃) = −𝑎𝑎(1+𝑠𝑠)+�𝑎𝑎2(1+𝑠𝑠)2+4(1−𝑎𝑎)(1+𝑠𝑠2)
2(1−𝑎𝑎)(1+𝑠𝑠2)  .    (23) 
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Along the diagonal this equation becomes 

𝑃𝑃�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜃𝜃) = −𝑎𝑎+√𝑎𝑎2−2𝑎𝑎+2
2(1−𝑎𝑎)  .     (24) 

Eqs 3 and 8 imply that 

𝑎𝑎 = 𝑘𝑘−𝑛𝑛
∆𝑗𝑗

 .     (25) 

By plugging this result into Eq 24 and then using Eq 11 we find that 

𝑚𝑚 = ln(1/2) ln �𝑛𝑛−2+√𝑛𝑛
2−2𝑛𝑛+2

2(𝑛𝑛−1) ��  .    (26) 

Thus, we are able to use this approach to determine m from n for this particular (j,k). Results of a 

corresponding analysis for the other five possible (j,k) with individual exponents ranging from 1 

to 4 are given in the Supporting Information. 

In Figure 3a we plot the difference between the (1,2) curve (from Eq 5) and the single effective 

exponent curve (from Eq 1) as a function of θ for values of a ranging from 0.1 to 0.9. The 

difference is symmetric about the diagonal, because the two beams are interchangeable. In all 

cases the deviation is negative, i.e. the plot with a single effective exponential extends a greater 

distance from the origin than the actual plot, except on the axes and on the diagonal. When a is 

close to 0 or 1, there is only a small contribution from one exponent, and the deviations are 

 
Figure 3 The difference between Eq 5 and Eq 1 with m determined along the diagonal for a combination of 
linear and quadratic components as a function of the amplitude of the linear component, a. The panels show 
results for a values ranging from (A) 0.1 to 0.9; (B) -0.1 to -0.9; and (C) 1.1 to 1.9. 
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relatively small. The largest deviations are observed when a = 0.5. In all cases the largest 

deviation is observed at an angle that lies in the range from roughly 5° to 15°. The larger the 

value of a, the smaller the angle at which the largest deviation is observed. 

Although in most circumstances the contributions of two different orders of absorption are 

expected to be additive, it is also possible for them to be of opposite sign. One example of this 

situation would be a system in which linear absorption generates fluorescence, but 2-photon 

absorption populates a dark state. We should therefore also consider values of a that are less than 

zero or greater than 1. We investigate the former case in Figure 3b for values of a ranging from  

-0.1 to -0.9. In this case the deviation is positive, and grows in magnitude as |a| increases. The 

angle of maximum deviation also increases as |a| increases. 

In Figure 3c we plot the deviation for values of a ranging from 1.1 to 1.9. We note that when  

a > 1, the quantity 1 – a is negative, and so the other root of Eq 22 (with a negative sign before 

the square root) is used. This range of a was chosen because the slope of a logarithmic plot is 0 

when a = 2 (see Eq 25). In this case the deviation is also positive. The maximum deviation grows 

with increasing a, but becomes smaller again as a approaches 2. The angle at which the 

maximum deviation occurs also decreases with 

increasing a.  

Plots corresponding to Figure 3 for the five 

other pairs of combinations of exponents from 1 

to 4 are given in the Supporting Information 

(Figures S1 to S5). The same general trends are 

observed for these other sets of exponents. The 

deviations are negative for 0 < a < 1, and 

 
Figure 4 The difference between Eq 5 and Eq 1 for 
m = 2.5 for each of the different (j,k) examined. 
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generally positive for a < 0 and a > 1, although for large enough values of a the deviations can 

become negative. The angle at which the maximum deviation occurs shifts in the same manner 

as a is varied, but for fixed a the angle at which the largest deviation occurs generally becomes 

larger as the exponents become larger. The magnitudes of the deviations are also dependent upon 

(j,k). 

It is also useful to consider how the deviations for a fixed value of m depend on (j,k). As a 

representative case, in Figure 4 we plot the deviations for m = 2.5 for the six different (j,k). Two 

general trends are apparent in this plot. First, the deviations are positive when j and k are both 

less than m or both greater than m, and are negative when m is between j and k. Second, for 

deviations of the same sign, the magnitude of the deviation grows with the ratio k/j. 

As discussed above, 2-BA spectroscopy data can generally be fit to Eq 6 for multiple (j,k). The 

correct values of j and k can be determined by determining a and b for different values of m and 

finding which set of exponents is consistent with Eq 9. However, it is worthwhile to consider 

whether there are conditions under which (j,k) can be determined from data obtained for a single 

value of m, and what data are required to make such a determination. Making a measurement for 

a single value of m requires fewer experiments than making measurements for multiple values. 

Furthermore, in the case of processes with thresholds, such as photopolymerization, it is not 

possible to make measurements at different values of m.  

As a representative example, we consider the case in which m = 2.1. In Figure 5 we plot Eq 6 

for data corresponding to (1,2). The data points are color-coded based on their angle relative to 

the x axis in a 2-BA plot. Given any significant experimental uncertainty, the data could also be 

fit well to (2,3), (2,4), and (3,4). Equivalent plots for (1,3) and (2,3) are shown in Figures 6 and 

7, respectively. In the former case, any combination other than (1,2) might reasonably fit the 
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plots given a noise level that is typical experimentally. In the latter case, (1,3) could likely be 

ruled out as well. Plots for the other three combinations of j and k for m = 2.1 are given in the 

Supporting Information (Figures S6 to S8). 

Although the plots of Eq 6 for the specific (j,k) of interest do not always yield a clear sense of 

the appropriate sets of exponents, it should be noted that plots for other sets of exponents can be 

quite revealing. For instance, in the (2,3) case, the data points for plots for (1,2) are entirely in 

the second quadrant. However, in the (1,3) case, the data points for plots for (1,2) are in the first 

and second quadrants. Thus, even when a plot for a given j and k ends up not to be linear, it can 

still give insight into the actual values of (j,k). When m is not an integer, it is therefore generally 

useful to make plots of Eq 6 for all six (j,k) explored here, even when not all of these (j,k) are 

physically plausible. 

An additional approach that can be used to analyze 2-BA data that have a non-integer m is to 

plot the angles that the data points in Eq 6 make with the x axis (φ) as a function of the angle θ 

derived from the 2-BA plot (see Figure 5). Such plots can complement plots of Eq 6, giving 

 
Figure 5 Plots of Eq 6 using different (j,k) for data generated using (1,2) and m = 2.1. The data points are color-
coded based on their angle θ relative to the x axis in a 2-BA plot (see legend). φ is the angle a line from the 
origin to a data point makes with the x axis. 
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insight into which orders of absorption contribute to the signal in 2-BA spectroscopies. In many 

cases such plots in conjunction with plots of Eq 6 can lead to an unambiguous determination of 

two different orders of absorption that contribute to 2-BA spectroscopy data. As representative 

examples of this strategy, in Figure 8 we show the angular plots corresponding to the plots in 

Figures 5, 6, and 7. The corresponding plots for the other combinations of j and k for m = 2.1 are 

 
Figure 6 Plots of Eq 6 using different (j,k) for data generated using (1,3) and m = 2.1. The data points are color-
coded based on their angle θ relative to the x axis in a 2-BA plot (see legend). 

 

 
Figure 7 Plots of Eq 6 using different (j,k) for data generated using (2,3) and m = 2.1. The data points are color-
coded based on their angle θ relative to the x axis in a 2-BA plot (see legend). 
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given in the Supporting Information (Figure S9). In conjunction with plots of Eq 6, these angular 

plots provide clear distinctions among different (j,k) in most cases, with the one exception in this 

example being that it remains difficult to tell the difference between (2,3) and (2,4).  

Once a non-integer value of m has been measured along the diagonal in a 2-BA spectroscopy 

experiment, it is useful to make plots of Eq 6 and the associated angular plots for the different 

(j,k) examined here. Such plots will reveal that angles at which 2-BA data will provide that 

greatest degree of discrimination among different possible (j,k). The most useful angles for 

measuring 2-BA data are typically ones at which there is a substantial deviation from linearity 

observable when incorrect (j,k) are tested.  

 

Conclusions 

2-BA spectroscopies are a useful alternative to traditional logarithmic plots for determining the 

order(s) of absorption that contribute to an experimental observable. A measured exponent that is 

non-integral is generally indicative of a signal that is generated by two (or more) orders of 

absorption. In such situations, logarithmic plots and 2-BA plots yield a different effective 

exponent. We have developed a mathematical description of the relationships between these 

exponents for six different pairs of absorption orders: (1,2), (1,3), (1,4), (2,3), (2,4), and (3,4). 

 
Figure 8 The angle that plots of Eq 6 make with the x axis (φ) as a function of the 2-BA plot angle (θ) for m = 
2.1 and different (j,k) using the data in (A) Figure 5; (B) Figure 6; and (C) Figure 7.  
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We have demonstrated previously how 2-BA measurements made at different values of the 

observable can be used to make an unambiguous determination of which two orders of 

absorption contribute to an observable.54 However, in some circumstances the observable may be 

single-valued, as in the case of a photopolymerization threshold.53 Here we have presented 

general principles for data analysis that, in most cases, can lead to the unambiguous 

determination of the orders of absorption at a single value of the observable. The crux of this 

strategy is the fact that 2-BA plots for pairs of contributions differ from “idealized” plots for a 

single, non-integer exponent. The form of this deviation is dependent upon the orders of 

absorption that contribute to the signal. Furthermore, analyzing 2-BA data assuming pairs of 

orders of absorption other than the pair that contributes to the signal can provide a characteristic 

signature of the actual orders of absorption. 

Based on the results presented here, we suggest the following approach to analyzing 2-BA 

data. First, for a given value of the observable, the 3-point method should be used to determine 

the 2-BA exponent m via Eq 11. At this point, the expected shapes of plots of Eq 6 and plots of φ 

as a function of θ can be determined. These plots will give guidance regarding the range of 

values of θ that will be most useful for distinguishing among different plausible (j,k). Additional 

2-BA measurements can then be made in this range. 

The ultimate success of this approach depends upon a number of factors. First, as discussed 

above, in some relatively rare cases this strategy on its own will not allow for distinction 

between two or three (j,k). However, practical considerations may still allow the appropriate set 

to be determined under such circumstances. Second, experimental uncertainty can be a limiting 

factor in such analysis. The higher the precision and accuracy of 2-BA data, the better the ability 

to distinguish among different (j,k). Finally, in some cases a 2-BA signal with a non-integer 
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exponent will not arise from two independent contributions. For instance, the observable may 

arise from two sequential contributions (e.g., absorption followed by ESA), or more than two 

contributions. Although the framework developed here does not describe such situations, in 

practice the inability to describe 2-BA data within this scheme can be taken to be indicative of 

the need for a more complex model. For non-cumulative observables (e.g., fluorescence and 

photocurrent, as opposed to photopolymerization) one way to test for phenomena such as thermal 

effects or interpulse ESA is to compare results when the beams are overlapped in space and 

when they are not overlapped in space. If the data are not the same in both cases then additional 

effects must be considered. We have shown previously how to model the signal in the presence 

of intrapulse ESA when there is also 2-photon and 3-photon absorption,55 and similar approaches 

can be used for related cases. 

 

Associated content 

Supporting information: Equations for m as a function of n and for (1,3), (1,4), (2,3), (2,4), and 

(3,4), the deviations between a plot of a non-integer m and the corresponding plots for two 

different integer exponents as a function of a for (1,3), (1,4), (2,3), (2,4), and (3,4), plots of Eq 6 

for the different (j,k) for data based on (1,4), (2,4), and (2,3), and angular plots for (1,4), (2,4), 

and (2,3). This material is available free of charge via the Internet at http://pubs.acs.org. 

 

AUTHOR INFORMATION 

Corresponding author 

* E-mail: fourkas@umd.edu 

* Phone: John T. Fourkas (301) 405-7996 



20 

 

 

Notes 

These authors declare no competing financial interest. 

 

ACKNOWLEDGMENTS 

This work was supported by the National Science Foundation, grant CHE-1800491. 

 

 

 

References 

1. Bhawalkar, J. D.; He, G. S.; Prasad, P. N., Nonlinear Multiphoton Processes in Organic 

and Polymeric Materials. Rep. Prog. Phys. 1996, 59, 1041-1070. 

2. He, G. S.; Tan, L. S.; Zheng, Q.; Prasad, P. N., Multiphoton Absorbing Materials: 

Molecular Designs, Characterizations, and Applications. Chem. Rev. 2008, 108, 1245-1330. 

3. Liaros, N.; Fourkas, J. T., The Characterization of Absorptive Nonlinearities. Laser 

Photon. Rev. 2017, 11, 1700106. 

4. Rumi, M.; Perry, J. W., Two-Photon Absorption: An Overview of Measurements and 

Principles. Adv. Opt. Photon. 2010, 2, 451-518. 

5. Frohlich, D.; Sondergeld, M., Experimental Techniques in Two-Photon Spectroscopy. J. 

Phys. E 1977, 10, 761-766. 

6. Friedrich, D. M.; McClain, W. M., Two-Photon Molecular Electronic Spectroscopy. 

Annu. Rev. Phys. Chem. 1980, 31, 559-577. 



21 

 

7. Birge, R. R., Two-Photon Spectroscopy of Protein-Bound Chromophores. Acc. Chem. 

Res. 1986, 19, 138-146. 

8. Dai, H. L.; Kung, A. H.; Moore, C. B., Resonant Multi-Photon Dissociation and 

Mechanism of Excitation for Ethyl Chloride. Phys. Rev. Lett. 1979, 43, 761-764. 

9. Carriles, R.; Schafer, D. N.; Sheetz, K. E.; Field, J. J.; Cisek, R.; Barzda, V.; Sylvester, 

A. W.; Squier, J. A., Imaging Techniques for Harmonic and Multiphoton Absorption 

Fluorescence Microscopy. Rev. Sci. Instrum. 2009, 80, 081101. 

10. Denk, W.; Strickler, J.; Webb, W., Two-Photon Laser Scanning Fluorescence 

Microscopy. Science 1990, 248, 73-76. 

11. Diaspro, A.; Robello, M., Two-Photon Excitation of Fluorescence for Three-Dimensional 

Optical Imaging of Biological Structures. J. Photochem. Photobiol. B 2000, 55, 1-8. 

12. Kirejev, V.; Guldbrand, S.; Borglin, J.; Simonsson, C.; Ericson, M. B., Multiphoton 

Microscopy - A Powerful Tool in Skin Research and Topical Drug Delivery Science. J. Drug 

Deliv. Sci. Technol. 2012, 22, 250-259. 

13. Schrader, M.; Bahlmann, K.; Hell, S. W., Three-Photon-Excitation Microscopy: Theory, 

Experiment and Applications. Optik 1997, 104, 116-124. 

14. So, P. T. C.; Dong, C. Y.; Masters, B. R.; Berland, K. M., Two-Photon Excitation 

Fluorescence Microscopy. Annu. Rev. Biomed. Eng. 2000, 2, 399-429. 

15. Wang, B. G.; Konig, K.; Halbhuber, K. J., Two-Photon Microscopy of Deep Intravital 

Tissues and its Merits in Clinical Research. J. Microsc. 2010, 238, 1-20. 

16. LaFratta, C. N.; Fourkas, J. T.; Baldacchini, T.; Farrer, R. A., Multiphoton Fabrication. 

Angew. Chem. Int. Ed. 2007, 46, 6238-6258. 



22 

 

17. Stampfl, J.; Liska, R.; Ovsianikov, A., Multiphoton Lithography: Techniques, Materials 

and Applications. Wiley-VCH: Weinheim, 2017. 

18. Baldacchini, T., Three-Dimensional Microfabrication Using Two-Photon Polymerization. 

Elsevier: Amsterdam, 2016. 

19. Maruo, S.; Fourkas, J. T., Recent Progress in Multiphoton Microfabrication. Laser 

Photon. Rev. 2008, 2, 100-111. 

20. Yang, D.; Jhaveri, S. J.; Ober, C. K., Three-Dimensional Microfabrication by Two-

Photon Lithography. MRS Bull. 2005, 30, 976-982. 

21. Farsari, M.; Vamvakaki, M.; Chichkov, B. N., Multiphoton Polymerization of Hybrid 

Materials. J. Opt. 2010, 12. 

22. Sugioka, K.; Cheng, Y., Femtosecond Laser Three-Dimensional Micro- and 

Nanofabrication. Appl. Phys. Rev. 2014, 1, 041303. 

23. Iliopoulos, K.; Krupka, O.; Gindre, D.; Salle, M., Reversible Two-Photon Optical Data 

Storage in Coumarin-Based Copolymers. J. Amer. Chem. Soc. 2010, 132, 14343-5. 

24. Olson, C. E.; Previte, M. J.; Fourkas, J. T., Efficient and Robust Multiphoton Data 

Storage in Molecular Glasses and Highly Crosslinked Polymers. Nat. Mater. 2002, 1, 225-8. 

25. Parthenopoulos, D. A.; Rentzepis, P. M., Three-Dimensional Optical Storage Memory. 

Science 1989, 245, 843-5. 

26. Strickler, J. H.; Webb, W. W., 3-Dimensional Optical Data Storage in Refractive media 

by 2-Photon Point Excitation. Opt. Lett. 1991, 16, 1780-1782. 

27. Giuliano, C.; Hess, L., Nonlinear Absorption of Light: Optical Saturation of Electronic 

Transitions in Organic Molecules with High Intensity Laser Radiation. IEEE J. Quantum 

Electron. 1967, 3, 358-367. 



23 

 

28. Sutherland, R. L.; Brant, M. C.; Heinrichs, J.; Rogers, J. E.; Slagle, J. E.; McLean, D. G.; 

Fleitz, P. A., Excited-State Characterization and Effective Three-Photon Absorption Model of 

Two-Photon-Induced Excited-State Absorption in Organic Push-Pull Charge-Transfer 

Chromophores. J. Opt. Soc. Amer. B 2005, 22, 1939-1948. 

29. Zou, X.; Izumitani, T., Spectroscopic Properties and Mechanisms of Excited State 

Absorption and Energy Transfer Upconversion for Er3+-Doped Glasses. J. Non-Cryst. Solids 

1993, 162, 68-80. 

30. Bechtel, J. H.; Smith, W. L., Two-Photon Absorption in Semiconductors with Picosecond 

Laser Pulses. Phys. Rev. B 1976, 13, 3515-3522. 

31. Ehrlich, J. E.; Wu, X. L.; Lee, I. Y. S.; Hu, Z. Y.; Röckel, H.; Marder, S. R.; Perry, J. W., 

Two-Photon Absorption and Broadband Optical Limiting with bis-Donor Stilbenes. Opt. Lett. 

1997, 22, 1843-1845. 

32. Tian, P.; Warren, W. S., Ultrafast Measurement of Two-Photon Absorption by Loss 

Modulation. Opt. Lett. 2002, 27, 1634-1636. 

33. Xu, C.; Webb, W. W., Measurement of Two-Photon Excitation Cross Sections of 

Molecular Fluorophores with Data from 690 to 1050 nm. J. Opt. Soc. Amer. B 1996, 13, 481-

491. 

34. Xu, C.; Williams, R. M.; Zipfel, W.; Webb, W. W., Multiphoton Excitation Cross-

Sections of Molecular Fluorophores. Bioimaging 1996, 4, 198-207. 

35. Twarowski, A. J.; Kliger, D. S., Multiphoton Absorption Spectra using Thermal 

Blooming. Chem. Phys. 1977, 20, 253-258. 



24 

 

36. White, W. T.; Henesian, M. A.; Weber, M. J., Photothermal-Lensing Measurements of 

Two-Photon Absorption and Two-Photon-Induced Color Centers in Borosilicate Glasses at 532 

nm. J. Opt. Soc. Amer. B 1985, 2, 1402-1408. 

37. Fang, H. L.; Gustafson, T. L.; Swofford, R. L., Two-Photon Absorption Photothermal 

Spectroscopy using a Synchronously Pumped Picosecond Dye Laser. Thermal Lensing Spectra 

of Naphthalene and Diphenylbutadiene. J. Chem. Phys. 1983, 78, 1663-1669. 

38. Streltsov, A. M.; Moll, K. D.; Gaeta, A. L.; Kung, P.; Walker, D.; Razeghi, M., Pulse 

Autocorrelation Measurements Based on Two- and Three-Photon Conductivity in a GaN 

Photodiode. Appl. Phys. Lett. 1999, 75, 3778-3780. 

39. Fischer, J.; Mueller, J. B.; Kaschke, J.; Wolf, T. J.; Unterreiner, A. N.; Wegener, M., 

Three-Dimensional Multi-Photon Direct Laser Writing with Variable Repetition Rate. Opt. 

Express 2013, 21, 26244-60. 

40. Mueller, J. B.; Fischer, J.; Mayer, F.; Kadic, M.; Wegener, M., Polymerization Kinetics 

in Three-Dimensional Direct Laser Writing. Adv. Mater. 2014, 26, 6566-71. 

41. Clauset, A.; Shalizi, C. R.; Newman, M. E. J., Power-Law Distributions in Empirical 

Data. SIAM Rev. 2009, 51, 661-703. 

42. Sheik-Bahae, M.; Said, A. A.; Wei, T. H.; Hagan, D. J.; Van Stryland, E. W., Sensitive 

Measurement of Optical Nonlinearities using a Single Beam. IEEE J. Quantum Electron. 1990, 

26, 760-769. 

43. Ma, H.; Gomes, A. S. L.; de Araujo, C. B., Measurements of Nondegenerate Optical 

Nonlinearity using a Two-Color Single Beam Method. Appl. Phys. Lett. 1991, 59, 2666-2668. 



25 

 

44. Sheik-Bahae, M.; Wang, J.; DeSalvo, R.; Hagan, D. J.; Van Stryland, E. W., 

Measurement of Nondegenerate Nonlinearities using a Two-Color Z Scan. Opt. Lett. 1992, 17, 

258-260. 

45. Balu, M.; Hales, J.; Hagan, D. J.; Van Stryland, E. W., White-Light Continuum Z-Scan 

Technique for Nonlinear Materials Characterization. Opt. Express 2004, 12, 3820-3826. 

46. Xia, T.; Hagan, D. J.; Sheik-Bahae, M.; Van Stryland, E. W., Eclipsing Z-Scan 

Measurement of λ/104 Wave-Front Distortion. Opt. Lett. 1994, 19, 317-319. 

47. Petrov, D. V., Reflection Z-Scan Technique for the Study of Nonlinear Refraction and 

Absorption of a Single Interface and Thin Film. J. Opt. Soc. Amer. B 1996, 13, 1491-1498. 

48. Petrov, D. V.; Gomes, A. S. L.; de Araújo, C. B., Reflection Z‐Scan Technique for 

Measurements of Optical Properties of Surfaces. Appl. Phys. Lett. 1994, 65, 1067-1069. 

49. Sengupta, P.; Balaji, J.; Banerjee, S.; Philip, R.; Kumar, G. R.; Maiti, S., Sensitive 

Measurement of Absolute Two-Photon Absorption Cross Sections. J. Chem. Phys. 2000, 112, 

9201-9205. 

50. Castro, H. P. S.; Pereira, M. K.; Ferreira, V. C.; Hickmann, J. M.; Correia, R. R. B., 

Optical Characterization of Carbon Quantum Dots in Colloidal Suspensions. Opt. Mater. Express 

2017, 7, 401-408. 

51. He, J.; Qu, Y.; Li, H.; Mi, J.; Ji, W., Three-Photon Absorption in ZnO and ZnS Crystals. 

Opt. Express 2005, 13, 9235-9247. 

52. Corrêa, D. S.; De Boni, L.; Misoguti, L.; Cohanoschi, I.; Hernandez, F. E.; Mendonça, C. 

R., Z-Scan Theoretical Analysis for Three-, Four- and Five-Photon Absorption. Opt. Commun. 

2007, 277, 440-445. 



26 

 

53. Tomova, Z.; Liaros, N.; Gutierrez Razo, S. A.; Wolf, S. M.; Fourkas, J. T., In Situ 

Measurement of the Effective Nonlinear Absorption Order in Multiphoton Photoresists. Laser 

Photon. Rev. 2016, 10, 849-854. 

54. Liaros, N.; Cohen, S. R.; Fourkas, J. T., Determination of the Contributions of Two 

Simultaneous Absorption Orders using 2-Beam Action Spectroscopy. Opt. Express 2018, 26, 

9492-9501. 

55. Liaros, N.; Razo, S. A. G.; Fourkas, J. T., Probing Multiphoton Photophysics Using Two-

Beam Action Spectroscopy. J. Phys. Chem. A 2018, 122, 6643-6653. 

56. Zandrini, T.; Liaros, N.; Jiang, L. J.; Lu, Y. F.; Fourkas, J. T.; Osellame, R.; Baldacchini, 

T., Effect of the Resin Viscosity on the Writing Properties of Two-Photon Polymerization. Opt. 

Mater. Express 2019, 9, 2601-2616. 

 

  



27 

 

 

 

TOC graphic 

 


	Introduction
	Theory
	The concept of 2-BA spectroscopy is illustrated in Figure 1A. Two temporally interleaved pulse trains are incident upon the sample of interest at irradiances far below the saturation regime, generating an observable signal. If the delay time between t...
	Results and Discussion
	Conclusions
	Associated content
	AUTHOR INFORMATION
	Corresponding author
	Notes
	These authors declare no competing financial interest.
	ACKNOWLEDGMENTS
	References
	TOC graphic

