Modeling Sequential Online Interactive Behaviors with
Temporal Point Process

Rengqin Cai, Xueying Bai Zhenrui Wang Yuling Shi
University of Virginia WalmartLabs Wuhan University
Charlottesville, VA Sunnyvale, CA Wuhan, Hubei
{rc7ne,xbécf}@virginia.edu zwang@walmartlabs.com sylyjs@whu.edu.cn

Parikshit Sondhi
WalmartLabs
Sunnyvale, CA
sondhil.uiuc@gmail.com

ABSTRACT

The massively available data about user engagement with online
information service systems provides a gold mine about users’
latent intents. It calls for quantitative user behavior modeling. In
this paper, we study the problem by looking into users’ sequential
interactive behaviors. Inspired by the concepts of episodic memory
and semantic memory in cognitive psychology, which describe how
users’ behaviors are differently influenced by past experience, we
propose a Long- and Short-term Hawkes Process model. It models
the short-term dependency between users’ actions within a period
of time via a multi-dimensional Hawkes process and the long-term
dependency between actions across different periods of time via a
one dimensional Hawkes process. Experiments on two real-world
user activity log datasets (one from an e-commerce website and
one from a MOOC website) demonstrate the effectiveness of our
model in capturing the temporal dependency between actions in a
sequence of user behaviors. It directly leads to improved accuracy in
predicting the type and the time of the next action. Interestingly, the
inferred dependency between actions in a sequence sheds light on
the underlying user intent behind direct observations and provides
insights for downstream applications.

CCS CONCEPTS

+ Mathematics of computing — Time series analysis; Sto-
chastic processes; « Information systems — Task models;

KEYWORDS

Sequential data, interactive behaviors, Hawkes process

ACM Reference Format:

Rengin Cai, Xueying Bai, Zhenrui Wang, Yuling Shi, Parikshit Sondhi,
and Hongning Wang. 2018. Modeling Sequential Online Interactive Behav-
iors with Temporal Point Process. In The 27th ACM International Conference

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CIKM ’18, October 22-26, 2018, Torino, Italy

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6014-2/18/10...$15.00
https://doi.org/10.1145/3269206.3271782

Hongning Wang
University of Virginia
Charlottesville, VA
hw5x@virginia.edu

on Information and Knowledge Management (CIKM °18), October 22-26, 2018,
Torino, Italy. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3269206.3271782

1 INTRODUCTION

User behavior modeling is essential for understanding users’ diverse
preferences and intents, which in turn provide valuable insights for
online service systems to adaptively maximize their service utility
in a per-user basis. A rich body of research has been developed on
this topic [1, 3, 16, 25, 35]. For example, Anderson et al. [3] studied
students’ learning activity patterns recorded in a Massive Online
Open Courses (MOOCs) platform and developed a badge-based
incentive system to improve student engagements in MOOCs. Yu
et al. [35] investigated user content access patterns in a large online
video-on-demand system, which provide insights on better resource
allocation and performance optimization in such systems.

Most existing efforts focus on measurement studies of online user
interactive behaviors, such as extracting features or implicit feed-
back from user activity logs for supervised model training; however,
modeling of the underlying dynamics that govern the generation of
observed user behaviors is lacking. At a micro level, prior studies
show that time intervals between users’ sequential actions carry a
great deal of information about their underlying intents [7, 17, 30].
At a macro level, it has been independently observed in several
different application scenarios that a series of user actions burst in
a short period, referred as sessions [27] or tasks [13, 19, 31], and
a sequence of a user’s interactive behaviors is usually carried out
over several such periods. More importantly, quantitative analysis
suggests correlation of user behaviors both within and across those
short periods [12], and such correlation enables prediction of users’
future behaviors [2]. This clearly suggests that a user’s sequential
interactive behaviors are not a set of independent actions, but there
are internal dependency and structure that reflect and characterize
his/her underlying preference and intent.

Mainstream approaches for modeling sequential user behaviors
focus on fixed- or varying-order Markov models [5] or hidden
Markov models [26], which capture transitional patterns between
consecutive user actions in unit time steps. Semi-Markov models
are used to model continuous time-intervals between actions [11].
However, it is very expensive to use Markov models to capture long-
term dependency between actions, since the overall state-space


https://doi.org/10.1145/3269206.3271782
https://doi.org/10.1145/3269206.3271782
https://doi.org/10.1145/3269206.3271782

grows exponentially with respect to the order of dependency con-
sidered. Some recent works have explored temporal point process,
like Hawkes processes [9, 18], to capture long-term dependency
between user actions. But the dependency is simply modeled as
additive time decay, which cannot differentiate influence from pre-
vious actions bursting together in a short period of time versus
those happening across a long period.

The concepts of episodic memory and semantic memory in cogni-
tive psychology [23, 28] shed light on differentiating the long-term
and short-term dependencies among users’ sequential interactive
behaviors. These two types of memory are used to explain how peo-
ple’s past experience influences their current behavior differently.
On the one hand, episodic memory records events and context
surrounding them, so that context that colours the episode is ex-
perienced at the immediate moment. On the other hand, semantic
memory is a structured record of facts, concepts, and skills that
one has acquired in the past. It is simply memory recall and inde-
pendent of context. These two types of memory are not isolated.
Semantic memory is derived from accumulated episodic memory;
and episodic memory can be thought of as a “map” that ties to-
gether items in semantic memory. These two concepts motivate
us to model users’ sequential interactive behaviors over time as a
mixture of stochastic point processes, driven by different long-term
and short-term influence from past actions. To realize contextual
information in episodic memory, we employ a multi-dimensional
Hawkes process to model the action sequence, where the generation
of an action is influenced by other actions in a close temporal prox-
imity, e.g., within a session or task. To capture semantic memory, we
employ a one dimensional Hawkes process, in which only actions
of the same type from previous periods influence actions in the
current period. These two types of influence interleave with each
other and generate the observed user behavior sequence. We name
our resulting stochastic process model as Long- and Short-term
Hawkes Process, or LSHP in short.

In LSHP, the multi-dimensional Hawkes process captures the
“mutual-influence” of different actions within a period of time; and
the one dimensional Hawkes process captures the “self-influence”
of actions of the same type across different periods of time. Intu-
itively, mutual-influence reflects the transitional patterns among
different actions in a close temporal proximity, and self-influence
characterizes repetitive pattern of the same type of actions over a
longer period. Because the mixture of these two types of behavior
dynamics behind an observed action sequence is latent, we model
it in a probabilistic manner and estimate model parameters via a
maximum likelihood estimator (MLE). In practice, one can easily
expect a large number of action types in a user’s behavior sequence,
which quadratically increases the number of parameters needed
to estimate mutual influence among actions. To avoid overfitting,
we impose sparsity in the mutual-influence via L1 regularization.
We adopt alternating direction method of multipliers (ADMM) to
iteratively solve the resulting optimization problem.

We performed extensive experiment comparisons between LSHP
and a rich set of baseline solutions for sequential user behavior
modeling, over the user activity logs collected from a MOOC course
and a major e-commerce website in the U.S. Our qualitative stud-
ies suggest that LSHP is able to differentiate the long-term and
short-term dependency in a user behavior sequence, which directly

leads to significantly improved accuracy in predicting a user’s fu-
ture action. A by-product of LSHP is the ability in “explaining” an
observed user behavior sequence: it decomposes the generation
of a current action as a combination of mutual-influence and self-
influence from past actions and a spontaneous impulse caused by
this action’s marginal popularity. This helps us better understand
users’ underlying intent behind the observed behavior sequence
and provides useful input for downstream applications, such as
item recommendation and online advertising.

2 RELATED WORK

Users’ interactive behavior recorded in online information service
systems is a gold mine to understand users’ underlying intents and
preferences. Considerable amount of effort has been made on this
direction [16, 29, 34], while most focuses on extracting task-specific
features to improve a particular application. For example, Lo et al.
[16] extracted a set of behavior features based on users’ interactive
behaviors in Pinterest, such as search, click and bookmark a page,
to classify time-variant user purchasing intent (e.g., when will a
user make the purchase). Such feature engineering effort helps
specific end tasks, but it can hardly unveil the underlying dynamics
of observed user behaviors. It is thus of limited generality.

Statistical models with Markov assumptions have been proposed
for sequential user behavior modeling [26, 32]. In a MOOC envi-
ronment, Shi et al. [26] combined non-parametric Bayesian with
hidden Markov models to cluster students through modeling their
sequential learning activities. But due to the exponential growth
of Markov state space with respect to the order of modeled de-
pendence, these Markov models can hardly capture any long-term
dependence between actions in a sequence. Another type of method
is based on recurrent neural networks (RNN). The success of RNN in
sequential data modeling inspired researchers to apply it to sequen-
tial behavior modeling [10, 15, 36]. Hidasi et al. [10] incorporated
rank loss functions into RNN for session-based recommendations
in user click sequence. Li et al. [15] applied attention based RNN to
session-based online shopping recommendations, where a user’s
shopping intent in a session is emphasized when predicting the
next action. However, such solutions do not differentiate the tem-
poral dependency between actions, e.g., actions of the same type
v.s., those of different types; and since they only focus on in-session
short-term dependencies, it is non-trivial to extend them to full
sequences for long-term dependencies modeling.

Hawkes process based models have been developed to model
long-term dependencies in sequential user behaviors [8, 22, 33, 37].
However, in a standard Hawkes process, temporal dependency
between actions are generally modeled as additive time decay from
previous actions to current ones, which cannot distinguish influence
from previous actions happening together in a short period of time
versus those taking place in a long period of time. Motivated by the
concepts of episodic memory and semantic memory in cognitive
psychology, we separate these two types of temporal dependencies
into two Hakwes processes: one focuses on mutual influence across
different types of actions in a close temporal proximity, and the
other focuses on self influence within the same type of actions in a
longer period of time. This provides the model with both flexibility
and constraint in modeling users’ sequential interactive behaviors.



3 METHODOLOGY

In this section, we first introduce the notations and problem setup
studied in this paper. Then we discuss some basics of Hawkes
process. Based on these, we describe in detail our solution, Long-
and Short-term Hawkes Process (LSHP), which differentiates short-
term and long-term influence among sequential user actions by
separating mutual-influence between actions of different types in
a close temporal proximity from self-influence between actions of
the same type in a longer temporal distance.

3.1 Notations and Problem Setup

To separate the long-term influence from short-term influence, we
appeal to the notion of session [4] to segment an input action
sequence. Our proposed solution can be easily adopted to different
definitions of session, e.g., time-based sessions [17]. Formally, we
denote an action as a tuple e; = (v, t;), where i is the index of this
action in a sequence, v; is its type and ¢; is the timestamp of this
action. Different actions may belong to the same type. We define
a session S as a series of M} actions observed in a chronological
order from a particular user, S = {e{C s e]’f/lk }, where k is the
index of this session in the user’s behavior sequence. A sequence
composed of K sessions and N actions can be represented as Q =
{S1,....5x} = {e%, .. .,e]lwl,. . .,ef, .. .,ef/[K}. We assume there
are in total V distinct types of actions in a corpus of C sequences.

Based on these notations, we formally define the problem of
modeling users’ sequential interactive behaviors as learning a map-
ping from an unknown probability space to a measurable space
of actions (e.g., counting based), such that the observed behavior
sequence reaches the highest likelihood in this measurable space.
The key in learning this probabilistic mapping is to properly specify
the possible dependencies among the actions in the input sequences
such that the structure of ground-truth mapping is reflected.

3.2 Hawkes Process

Before discussing details of our proposed model, we briefly intro-
duce Hawkes process [9]. Hawkes process is a type of temporal
point process, modeling sequences of timestamped actions, which
assumes historical actions would influence generating intensity of
future actions over a period of time [14]. It has been widely applied
to modeling sequences of events over time, such as earthquake
aftershocks [20]. In a Hawkes process, the conditional intensity
function is used to depict generating rate of current action given
historical actions and to capture the influence of historical actions
on current one. For example, in one dimensional Hawkes process
that models the generation of sequences with a single type of ac-
tions (e.g., type v), the conditional intensity function at time ¢ is
defined as,

An(t) = po + '/Ot ayk(t — s)dNy(s),

where 1, is the base intensity, representing the instantaneous gen-
eration rate of the action type v. The kernel function a,k(t — s)
describes the influence of past actions Ny(s) of type v on the
current action at time ¢ in this sequence. This reflects the “self-
exciting” property of Hawkes process. The parameter « represents
the strength of self-excitement, and k(¢ — s) characterizes the time

decay effect. Exponential kernel or power-law kernel is typically
chosen to describe this time decay effect. And because of time de-
cay, actions occurring temporally closer have stronger influence on
each other than those temporally further away.

While one dimensional Hawkes process only considers the in-
fluence from previous actions of the same type, multi-dimensional
Hawkes process can capture the dependence of different action
types, where the conditional intensity function of type v at time ¢
is,

14 t
K=o+ Y [ Auran(t = 9N ),
=10
where the parameter A,/,, represents the influence of type v’ on
type v, and v’ denotes the type associating with previous action
occurring at time s.

3.3 Long- and Short-Term Hawkes Process

Motivated by the cognitive psychology concepts of semantic mem-
ory and episodic memory, which describe how the past experience
or knowledge influences people’s present or future behaviors, we
model users’ sequential interactive behaviors as a mixture of two
different stochastic processes. Specifically, we consider the actions
happening in the same session of the current action as its context.
As studies in cognitive psychology suggest that episodic memory
would gradually lose its sensitivity in context over time, we assume
the context actions only generate their influence within the same
session. Hence, we adopt a multi-dimension Hawkes process to
realize the concept of episodic memory as the mutual influence of
past actions to this current action in this session. This forms the
first stochastic process in LSHP. On the other hand, Ryan et al. [23]
suggested that the semantic memory is memory recall, indepen-
dent of context. We regard the action repetition of the same type
in a sequence as a result of semantic memory. We employ a one
dimensional Hawkes process to realize the semantic memory as
self-influence driven action generation. Because semantic memory
is derived from accumulated episodic memory, we assume this one
dimensional Hawkes process is only influenced by actions of the
same type from preceding sessions to the current action. This forms
the second stochastic process in LSHP.

Using the language of Hawkes process, we incorporate these
two stochastic processes into one process: for the i-th action of type
v; appearing at time #; in an action sequence Q, the conditional
intensity specified by LSHP is as Eq. (1) shows, where Sy represents
the session containing action e and §(-) is an indicator function,

Xy (t) = o+ Y Avyoykmlti = 1)3(S] = Si) (1)
ty<t;
+ )" Boyxs(ti = 1)5(S; # S)d(v; = i)
tj<t;

There are three key components in LSHP. First, we introduce the
base intensity y, for each action type v; with y,,;, > 0, to capture
the instantaneous generation of different action types. For example,
if a particular type of action occurs at the beginning of a new session
and it is its first appearance in this sequence, we will accredit this
occurrence to its base intensity, since the user’s episodic memory
has not formed (as it is the first action in this session) and his/her



semantic memory does not include this type of action (as it is the
first time this action type appears in the sequence). In this work, we
assume the base intensity is static over time, and leave the dynamic
base intensity for our future work.

Second, to capture the dependence of current action on its pre-
ceding actions within the same session, a mutual influence ma-
trix A € RKXV over different types of actions is introduced in
LSHP. Each element A, specifies the influence from action type
vy to action type v;. We do not assume the mutual influence is
symmetric and leave it for the model to decide from data, as it is
possible in some applications, one type of actions is more likely
to lead to another type, rather than the other way around. To re-
alize the assumption that actions with closer temporal proximity
have larger influence on each other, we use an exponential kernel
Km(ti —t]) = exp ( — Pm(ti — tl)) to scale the mutual-influence, i.e.,
accounting for the time decay effect. We should notice this mutual
influence is limited to actions within the same session, to realize
the short-term temporal influence.

Third, LSHP models the repetition of the same type of actions
across sessions with a one dimensional Hawkes process, in which
By, represents the action type v;’s self-influence strength. Another
exponential kernel function ks (t; —tj) = exp (- fs(t;—t;)) is used to
account for time decay in self-influence. As mutual influence is used
to characterize actions’ in-session dependence and self influence
is for across session dependence, the distribution of time intervals
for these two types of dependence are intrinsically different. To
account for the difference, we use different decay coefficient, S
and fp,, in the corresponding kernel functions.

Comparing with standard Hawkes process used for user behavior
modeling [18, 33], our LSHP model defined in Eq. (1) differentiates
the long-term and short-term temporal dependency between ac-
tions. Instead of using a universal time decay function over all
historical actions, LSHP captures short-term mutual influence be-
tween actions of different types in the same session and long-term
self influence between actions of the same type across sessions.
These two types of dependency are integrated into one stochas-
tic process to account for the heterogeneity of users’ sequential
interactive behaviors, without increasing the model complexity.

3.4 Parameter Estimation

To apply LSHP, we need to estimate its model parameters, i.e.,
the base intensity vector y € RV the mutual influence matrix
A€ RVXV and the strength vector of self-excitement B € R
We treat time decay coefficients B, and fs as hyper- parameters
and appeal to the maximum likelihood estimator for parameter
estimation in LSHP.

Given a corpus of C sequences {Q1, ..., Qc}, assuming the time
span in a sequence Q. is T¢, the log likelihood of LSHP on this
corpus is computed as,

L(u, A, B) = ZZlog)L (1) ZZ / A(dt  (2)

c=1i=1 c=1v=1

Because the size of the mutual influence matrix A increases
quadratically with respect to the number of unique action types
in the corpus, we need to control the model complexity to avoid
overfitting. We assume the mutual influence between action types is

sparse in nature, and impose a L1 regularization on it. Consequently
the optimization objective function becomes Eq. (3), where n4 is a
trade-off coefficient,
o <L A B) + nallAll ©
Because of the introduction of L1 regularizer, the objective func-
tion is not differentiable, we appeal to the alternating direction
method of multipliers (ADMM) [6, 21] to solve the optimization
problem. To apply ADMM, we rewrite the objective function into
Eq. (4) by introducing auxiliary variable Z and dual variable U,
where p > 0 is a hyper-parameter. We solve the problem by iter-
atively updating p, A, B, Z, U with respect to the steps described
below.

F(u,A,B,Z,U) = min
1u>0,A>0,B>0,Z,U

+pTr(UT(A-2)) + §||A — 7|1

—L(p. A, B) + nallZllh (4

Step 1: Update p, A, B. The terms in Eq. (4) that are relevant to the
update of p, A, B, include,

F(p, A, B) = min

P 2
—L(p, A, B)+ pTr(UT(A-2))+ Z||A-Z
o (u )+ pTr(U”( N+l I

To solve the optimization problem defined in F(y, A, B), we adopt
the majorization-minimization algorithm, which optimizes the up-
per bound of F(y, A, B) by introducing a set of branching parameters
pii»pji and py;. One advantage of using majorization-minimization
to minimize the upper bound of this objective function is that we
can obtain closed form solutions for y, A, B independently; and in
the meanwhile, the non-negativity constraints are satisfied auto-
matically. Replacing Eq. (2) and Eq. (1) into F(y, A, B), we obtain,

F(u, A, B) =

C N
i log ( A ti— 1)8(S; = S;
y>0,§xlé%,B>0 ;,Z og | Ho; + ,lqu vlv,Km( i 16(S; = Si)
+ ) Boyrs(ti = 1)5(S; # S)8(0; = v1))
tj<t;
C
N

C

TC
[ s prrwa-z)+ Lia- zip)
0

DMz iD=

< vlvikm(ti - tl)
<= D3 (pritog 4 S prid(sy = i) log L
c=1i=1 Ppii ty<t; Pri
Ks(t; — tj
+ Y pjid(S; # $1)8(vj = v;)log M)
tj<t, Pji
C TC
+ZZ A;(t)dt+§(||A—z+U||2)

The branching parameter p;; = A*”_?t) can be considered as
v L

the probability that the i-th action is generated from the base in-
Ay v Km(ti—t1)0(S;=S;
tensity. And the branching parameter p;; = —1 £ /5* (t{; (5r=50)
vi 1

indicates the probability that the I-th action within this session

leads to the i-th action. Likewise, the branching parameter pj; =

By ks (ti—1;)5(S;#5:1)6(vj=v; o .
sl tjjl*(. (Jt;&) )0(o=0r) represents the probability that the j-

th action in previous sessions leads to the i-th action in current
session.



Table 1: Statistics of two evaluation datasets.

#Clicks #Sessions #Clicks #Duration
Dataset #Sequences #Items . .
per sequence per sequence per session  per sequence (30 minutes)
e-commerce 7540 N/A 6.58+/-6.72 4602 N/A N/A
MOOC 4382 52.97+/-54.93 14.69+/-12.98 71 3.60+/-3.42 1992.69+/-1115.78

Setting the gradients of these parameters to zero, we obtain the
updating rule of y, A, B as follows:

212P115(Uz = U)
c= 1
LR g
1
, 2
Apy = Zp( X +4/X 4pY) )
C K Mg M

k
X = p(Upo = Zyor) + 6(v; = v) Km(t = tp)dt

c=1k=11=1 2

C N
Z Z Plia(Sl = Si)5(yl =0 = ,UI)
c=1i=1¢t<t;
C N
Z Z Z pji5(vi = Uj = 0)5(81 # Sz)
c=1i=1 tj<ti
o 7
Z Z Z 5(U]—U)ftMK Ks(t—t])dt
c=1k=1j=1

The updating rules of A suggest that the value Ay, corresponding
to the mutual influence between action type v and v’, correlates
with both frequency of action type v and v’ co-occurring in the
same session, and the time interval between actions of these two
types. The shorter time they are to each other, the stronger mutual
influence they would have on each other. Besides, the updating
rules for p and B suggest that not only the frequency of an action
type in a sequence but also the action’s relative temporal duration
in a sequence affect these intensities.

Step 2: Update Z. With the updated parameters 1, A, B, we update
Z through solving the following optimization problem,

Z = axgminnallZIl + pTr(U” (A= 2)) + (14~ 2I1%)
A

The updating rule depending on the magnitude of A + U is

(Aver + Uyor) = ’%‘, Avyr + Uy 2 %‘

A —na
Zyy = {(Ave + Uper) + %7 Apy + Uy < %
0, Ay + Uper| < ’]?A

As the equation suggests, the auxiliary variable Z is introduced to
handle the L1 regularizer on the mutual influence matrix A.

Step 3: Update U. Given the updated parameters p, A, B and aux-
iliary variable Z, we update the dual variable

Unew = Up1g + (Anew — Znew)

where Apew, Znew represent updated mutual-influence matrix and
auxiliary variable respectively.

4 EXPERIMENTS

In this section, we evaluate the proposed model for sequential user
behavior modeling. First, we describe the evaluation datasets and
preprocessing steps. Then we provide qualitative analysis of our
proposed model LSHP in identifying the underlying dynamics of
user behaviors. Lastly, we compare LSHP with other baselines in
the tasks of predicting the type and time of users’ future actions.

We collected two evaluation datasets, one contains users’ online
browsing activities in a major e-commerce website in the U.S. and
another contains students’ video watching behaviors in a MOOC
course. In the e-commerce dataset, we collected five months user
browsing logs under the cellphone category. We randomly selected
a subset of users who have made at least one purchase in this five-
month period. Each user is associated with a sequence of product
page browsing activities. And each action consists of the browsed
product ID and click timestamp. We filtered out sequences with
fewer than 5 actions and the products which appear fewer than 5
times in this collection. In the MOOC dataset, we collected students’
video watching activities from an edX course, i.e., “Statistical Learn-
ing” Winter 2015. Each action contains the name of the video and
watching timestamp. We filtered out sequences which have fewer
than 5 actions, and removed videos which appeared fewer than 5
times in total in this dataset. As sessions are typically defined by a
30-minute threshold of inactivity [4, 12], we adopt this strategy to
segment sequences into sessions. Based on the segmented sessions,
we linearly scaled the recorded timestamps by 30 minutes for nu-
merical purposes. For both datasets, we also filtered out sequences
which have fewer than 2 sessions. The statistics of the processed
datasets! are shown in Table 1.

4.1 Qualitative Analysis

We first perform several qualitative evaluations to study the depen-
dency structure identified by LSHP.

4.1.1 Dependence among different types of actions. To illustrate
the dependence among action types captured by LSHP, we visualize
its learned mutual influence matrix A. The mutual influence among
seven selected products from the e-commerce dataset is shown in
Figure 1, and it depicts the influence from products listed on the
vertical axis to those on the horizontal axis. From the figure, we
have the following observations: (1) The mutual influence matrix
is asymmetric. We could see that product 4320 has strong influence
on product 992, but the opposite direction does not exist. (2) The
mutual influence matrix is sparse. We could observe that some
products have no influence on others: for example, product 992 has
no influence on product 751. (3) Strong influence exists between
similar products, e.g., products only differ in color or with similar

1Due to business concerns, several fields of e-commerce dataset are filled in N/A



Product ID

590

592

Product ID description

751: Apple
(iPhone 7 32GB GSM 4G LTE Quad-Core Smartphone with 12MP Camera (Unlocked))

590: Apple
(iPhone 7 Plus 128GB GSM 4G LTE Quad-Core Smartphone with 12MP Camera (Unlocked))

592: Apple
(iPhone 7 128GB Prepaid Unlocked Smartphone, Rose Gold)

992: Indigi®
(Unlocked Indigi Curved 5.0" QuadCore 4G Android 6.0 SmartPhone + 32gb included)

4320: Indigi®
(Indigi 4G Unlocked 5" SmartPhone T-mobile & StraightTalk + Bluetooth Included)

3337: Samsung

2243 3337 4320 992

751 590 592 992 4320 3337 2243

(Galaxy s7 Edge Dual Sim G935F/DS GSM International Version - No Warranty (Unlocked), Gold)

2243: Samsung
(Galaxy s7 Edge Dual Sim G935F/DS GSM International Version - No Warranty (Unlocked), Silver)

Product ID

Figure 1: Visualization of mutual influence matrix over selected products from the e-commerce dataset. The left figure is the
mutual influence matrix A over seven products, where the product IDs are listed on the axes. The right figure is the seven
products’ descriptions with corresponding IDs. The text in bold are products’ brands and the text in parentheses are products’

feature descriptions.

Session 0 Session 1
D e L P P PP PP PP PP »>
0 0 1 2 3 4 5
1
)
T 0.75
g o
8 os
c
S
2 025
£
0

596 751 590 751 592 561 751
Product ID

590

Session 2

Action Index

Base Intensity Session 0_0
B Session1_0 Session 1_1
M Session1_2 ¥ Session1_3
H Session1_4 Session 1_5
H Session2 0 [ Session2_1
Session 2_2

1137 750 592

Figure 2: Visualization of inferred dependence between actions in a sequence selected from the e-commerce dataset. Eleven
actions over three sessions are included. Action index represents the index of an action in a session. Components of the
vertical bars represent the ratio between base intensity of the target action and influence from previous actions respectively.
The selected product IDs are the same as those in Figure 1, and the legend provides the detailed map of colors to actions or

base intensity.

specifications under the same brand. We should note that such
features are not provided to LSHP for mutual influence learning, but
the model identifies the pattern from the logged users’ interactive
behaviors. This indirectly supports LSHP’s ability in recognizing
the temporal dependency among user actions, and also suggests
such domain specific features can be introduced to further improve
LSHP’s modeling quality.

4.1.2  Dependence among actions in the same sequence. To illustrate
the dependence of an action on previous actions in the same se-
quence captured by LSHP, we select a sequence of product browsing
actions from the e-commerce dataset as an example. This sequence
contains 11 actions over three sessions. For each action, we com-
pute its conditional intensity according to Eq. (1) and use a vertical
bar to visualize the ratio of base intensity and influence from previ-
ous actions normalized by the conditional intensity of the action.
In Figure 2, the height of each segment in a bar denotes the ra-
tio. The observations are: (1) Actions at the beginning of a session
are usually introduced by either base intensity or self-influence
from actions of the same type in previous sessions. This reflects

the people’s semantic memory over time. (2) At the later stage
of a session, most actions are generated by the mutual influence
between actions in the same session, like the last few actions in
session 1 and 2 in Figure 2. This reflects people’s episodic memory.
More importantly, such a decomposition of temporal influence can
serve as a form of explanation of users’ underlying intent of their
sequential behaviors. For example, for the last action in session 2,
we can understand its appearance is caused by all previous actions
in the same session, which are products with very similar specifica-
tions (in this case they are all iPhone 7). This may indicate the user
is comparing those products for making a purchase decision. Such
important insight benefits many downstream applications, such as
item recommendation and sponsored advertising. Arguably it is
impossible to obtain such an in-depth understanding of user intent
even with manual inspection. This further demonstrates the value
of sequential behavior modeling provided by our LSHP model.

4.2 Action Type Prediction

To verify the effectiveness of our model on capturing the depen-
dence of an action on previous actions in a sequence, we compare



0.450 0.340 0.50 1 0.39
0.445 0.335 0.49 0.38
0.440 0.330 0.484 0.37
o — 0.325 o, 0474 — 0.36
= 0.435 S = o
= #0320 = 0.46 1 2035
0430 0.315 0.45 0.34
0.425 0.310 0.444 0.33
0.420 0.305 0.43 0.32
0 2 ] 10 0 2 10 0.0 05 1.0 1.5 2.0 2.5 3.0 3.5 40 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

4 6 8 4 6 8
B, when 85 = 2.0 B, when B = 2.0

(b)

S, when 3, = 3.0 Bs, when 8, = 3.0

(© (@

@
Figure 3: MAP and P@1 for LSHP with different settings of hyper-parameter 3, and s on e-commerce dataset.

our model with a set of baselines in predicting the type of future
actions. The task is defined as follows: given the first n actions in
a sequence Q = {ej, ..., en }, we are interested in predicting what
type of action the user will take next. After making a prediction
of action e, 41, we include the ground-truth action ey into the
sequence and move onto the prediction of next action, until the end
of this input sequence. On the MOOC dataset, we compare models
in predicting which video the student would watch next. On the
e-commerce dataset, we compare models in predicting which cell-
phone the user would browse next. Presumably, a model that better
identifies the dependence of next action on previous actions can
provide more accurate prediction of the user’s next action.

4.2.1 Hyper-parameter tuning. Before comparing LSHP with
any baselines, we first investigate how LSHP’s performance is af-
fected by the time decay hyper-parameters f,, and fs, which are
manually specified in LSHP. We calculate the conditional intensity
of all possible action types according to Eq. (1) and rank them in a
descending order. We measure MAP and P@1 of LSHP in predicting
the type of next action with different settings of these two hyper-
parameters. For both e-commerce dataset and MOOC dataset, we
use 80% of sequences for training, and the rest for testing. When
evaluating LSHP on testing sequences, we assume each sequence in
testing dataset has the first y portion of actions given to initiate the
prediction, and we evaluate MAP and P@1 on the rest of actions.
Setting y = 80%, the MAP and P@1 of LSHP with different
settings of B, and s on the e-commerce dataset are reported in
Figure 3. We have performed the same analysis on the MOOC
dataset and very similar findings were obtained on it. But due to the
space limit, we only report the analysis on the e-commerce dataset
here. From Figure 3 (a) and (b), we observe that when fs = 2.0,
MAP and P@1 improve with an increasing S, till f, = 3.0, and
they gradually become worse with a further increasing f,,. When
Pm is small, such as 0.1, the kernel function exp(—f,A;) cannot
sufficiently reduce the mutual influence among actions within the
same session and thus actions in the session have similar influence
on the next action regardless of their different temporal proximity to
it. The resulting poor MAP and P@1 suggest that it is important to
account for the temporal information when evaluating the influence
of previous actions within the session towards the next action.
When f; is large, like 10.0, the kernel function almost turns off
mutual-influence of previous actions within a session which occur
further away to the next action. The poor MAP and P@1 suggest
that the occurrence of the next action does depend on actions
occurring long before the current one. To summarize, the settings

of B suggest that the type of the next action not only depends
on actions temporally close within a session, but also on previous
actions temporally away within the session. What is more, the
dependence should be weighted by their temporal proximity to
differentiate their impact.

As Figure 3 (c) and (d) show, when f,,, = 3.0, MAP and P@1
improve with an increasing f; till f; = 0.01, and gradually MAP
and P@1 become worse with a further increasing f. This suggests
that the type of the next action depends on the historical actions
of the same type across sessions, and the dependence is influenced
by the temporal distance. We can also notice that because the time
intervals between two actions within a session are much shorter
than those between two actions across sessions, the optimal value
of i, is much larger than fs.

4.2.2 Baselines for comparison. We compare LSHP with the
following baselines in predicting the type of the next action.

¢ Global Popularity (globalPop). Rank action types according
to their frequency in the training dataset in a descending order.

e Sequence Popularity (seqPop). Rank action types according to
the frequency of action types in the target sequence. The frequency
of action types is updated as more observations in the sequence
become available. We use global popularity to break the tie.

e First Order Markov Model (FOT). We estimate the first order
transition probability between action types on the training dataset,
and rank action types according to the transition probability with
respect to the last observed action.

e Standard Multi-dimension Hawkes Process (standardHP).
Following [18, 33], the intensity function is defined as A3, (t;) =
Ho; + 2t <t; Avjo; K(ti —t7), which assumes the next action depends
on all preceding actions in a sequence.

e Sparse Hawkes Process (sparseHP). This is an extension of
standard Multi-dimension Hawkes Process. The matrix A captur-
ing mutual influence is constrained to be sparse by imposing a L1
regularization over A.

e Session-based Hawkes Process (sessionHP). To verify whether
considering actions across session is beneficial to predict the type of
the next action, we developed this variant of LSHP as a baseline. The
intensity function is defined as A3, (£;) = po; + X4, <1, Avjv; K(ti =
t1)8(S; = Si), where the indicator function §(S; = S;) includes only
influence of actions belonging to the same session.

e Recurrent Temporal Point Process (RTPP). Du et al. [7] pro-
pose a recurrent marked temporal point process to model both the
type and time of an action, where LSTM is used as the recurrent
layer. On two datasets, the embedding dimension of action type is



=== seqPop === FOT = M standard HP =@ = sparseHP mefes ¢ sessionHP == [SHP = == RTPP === NARM

0.50 0.40
0.451 0.351
0.401 0.301
[al} —
< @]
= [al)
0.351 0.25
0.301 0.201
0.25+— : : : : 0.15 +— : : : :
0.1 0.3 0.5 0.6 0.8 0.1 0.3 0.5 0.6 0.8
Portion 7 of actions given before the prediction Portion 7 of actions given before the prediction

Figure 4: MAP and P@1 for models with different ratios of given actions in a testing sequence on the e-commerce dataset.

=== seqPop === FOT = M standard HP =@ = sparseHP mfe = sessionHP == [SHP = == RTPP =P = NARM

0.70
06g] He——" ' 0.500 | - Wi e
0.66 1 0.475 1
0.641 0.450 1
%&62‘ F—"“.:tr::-:*.— _—:—: ;7‘0'4254 T i g e —
= | LT . — © — - =
= 0.601 o > —>-—> > S| * - —
® CO=—C0——0 h-.—...’.._.._"—’-—--—-b
0.58 0.375 1
0561 #mmm—gp————— ’ 0.3501 g:g.—m-’-H
'-—-—..-...,..,...=..—.—_-_':—‘ B e =B
0.54 0.325 1
0.521— - - - - 0.300 +— - - - -
0.1 0.3 0.5 0.6 0.8 0.1 0.3 0.5 0.6 0.8
Portion 7 of actions given before the prediction Portion +y of actions given before the prediction

Figure 5: MAP and P@1 for models with different ratios of given actions in a testing sequence on the MOOC dataset.

50 and hidden dimension of LSTM is 300. On MOOC dataset, the MAP and P@1 over the two datasets are reported in Figure
embedding dimension is 30 and the hidden dimension is 200. 4 and Figure 5. Without modeling self-influence across sessions,
e Neural Attentive Recommendation Machine (NARM). Li sessionHP cannot capture the influence of previous actions of the
et al. [15] propose a Neural Attentive Recommendation Machine same type outside its current session, which means the long-term
(NARM) model to capture the short-term dependency among ac- dependence is missing, and consequently it performs worse than
tions within the same session, which ignores the temporal infor- LSHP. Although seqPop makes use of dependence between the
mation. We used LSTM as the recurrent layer; and on e-commerce next action and previous actions of the same type across sessions,
dataset, the embedding dimension is 64 and the hidden dimension ignoring the dependence between actions of different types within
of LSTM is 512. On MOOC dataset, the embedding dimension is 32 a session leads to its worse performance. StandardHP and sparseHP
and the hidden dimension is 256. do not differentiate temporal dependence within nor across sessions,

For all methods, we utilize 80% of sequences for model training and use a universal time decay to model the temporal influence,
and the rest for testing. And also a portion of actions in a testing which leads to their less accurate modeling of dependency, and
sequence is provided to the algorithms to initiate subsequent predic- thus worse performance in predicting the type of the next action.
tions. To reduce potential bias introduced by the number of actions FOT only considers the influence of the last action and ignores the
used to initiate the prediction, and to study how different models influence of any other preceding actions, so that it only achieves
perform with only a few actions available for initialization, we limited prediction accuracy. As globalPop does not consider the
compared these models with different portions of actions provided dependence of the next action on previous actions, its MAP and
initially in a testing sequence. For LSHP, standardHP, sparseHP P@1 are much worse than all other algorithms and we do not
and sessionHP, we rank action types according to their estimated include them in the results. RNN-based models including RTPP

intensities in a descending order. and NARM do not differentiate the dependence between actions of



EEl LSHP B standardHP [ sparseHP Hl sparseSessionHP
0.45
0.44 I _
0.42( 1 0.44

0.40 1
0.43
0.38} 1

RMSE

0.36| 1 0.42

0.34} 1
0.41

0.32} 1

0.30 0.40

MOOC
Figure 6: Performance on the time of next action prediction
on e-commerce and MOOC datasets.

e-commerce

the same type from those of different types effectively. RTPP does
not explicitly separate actions within a session from those across
sessions. NARM does not model either the temporal information or
actions across sessions. In conclusion, because LSHP separates the
temporal influence of actions of different types in the same session
from those of the same type cross sessions on the next action, it can
better capture both long-term and short-term dependence among
actions and thus predict the type of the next action more accurately.

Among different ratios of actions used to initiate the prediction,
LSHP outperforms the baselines in all settings. In addition, we
could observe that when the number of actions used to initiate the
prediction in a testing sequence is limited, i.e., around 10%, LSHP
could still outperform all baselines.

4.3 Time Prediction

Modeling time as a random variable enables Hawkes process based
solutions to predict the time of the next action. Presumably a model
which can more accurately recognize the temporal dependence
among actions in a sequence can better predict the arrival time
of the next action. The task of predicting the time of next action
is defined as: given n actions in a sequence Q = {eq,...,en}, we
are interested in predicting time t,4+1 of the next action e,4+1. With
the intensity function A7, _ (t), the probability of the next action
occurring at time ¢ is defined as:

) t
F) =25 (texp (- [ . (od) ®)

We estimate the time of the (n + 1)-th action via the expectation of
its predicted time, as Eq. (9) shows. Since the integral in Eq. (8) does
not have an analytic solution, we employ a numerical integration
method Simpson’s rule [24] to approximate the expectation,

tn+1 = Ep(p)lt] )

We follow the same setting as that for evaluating next action type
prediction in Section 4.2. For Hawkes process models, we plug their
conditional intensity functions into Eq. (8) and Eq. (9) to obtain
the corresponding predicted time of the next action. As sessionHP
only considers actions within a session, it cannot predict timestamp
of the next action at the beginning of a session. As a result, we
decompose the comparison of time prediction into two parts: First,
we compare models in predicting the time of the next action within
a session. Second, we compare models excluding sessionHP in
predicting the time of the next action at the beginning of a session.

Table 2: Precision of next action prediction across sessions
on e-commerce and MOOC datasets.

Dataset Model One day Two days
standardHP 0.8988 0.9572
e-commerce  sparseHP 0.8980 0.9541
LSHP 0.9142 0.9710
standardHP ~ 0.7975 0.8714
MOOC sparseHP 0.7966 0.8708
LSHP 0.8353 0.9128

Time prediction within a session. For actions occurring within a
session, the time intervals between two consecutive actions will be
smaller than the predefined time threshold, like 30 minutes, so that
we compare models in predicting the exact time of the next action.
RMSE between the predicted time and ground-truth is used as the
performance metric. The comparison results are reported in Figure
6. As standardHP and sparseHP do not consider the difference
between dependence structure on actions within a session and
that across sessions, they underperforms LSHP, which explicitly
differentiates these two kinds of dependence. In addition, due to its
inability of capturing dependence of the next action on previous
actions across session, sessionHP underperforms LSHP.

Time prediction across sessions. After a user finishes a session
of actions, it would be more meaningful to predict whether the user
would come back in future. If a user returns one week later, this
observation would greatly bias a RMSE-based metric, as scale of
the predicted time interval is quite different from actions taken in
a closer time proximity. Therefore, we compare LSHP with stan-
dardHP and sessionHP on predicting whether the user would return
in the next one or two days after finishing a session. We compute
the probability of the next action occurring in the next one or two
days via Eq. (8) and if the probability is larger than 0.5, we consider
the user will return. We use prediction precision as the metric and
report the results in Table 2. LSHP provided a more accurate user
return prediction especially on the MOOC dataset. This is particu-
larly important in applications of user engagement optimization,
as LSHP can suggest whether the user would return to the system;
when it predicts the user might not come back, it can also explain
why (e.g., by its inferred temporal influence of historical actions).

5 CONCLUSION

In this paper, inspired by the concepts of episodic memory and
semantic memory in cognitive psychology, we proposed a Long-
and Shot-term Hawkes Process model to capture users’ sequential
interactive behaviors. To model the contextual dependence depicted
in episodic memory, LSHP employs a multi-dimensional Hawkes
process to model influence among actions occurring in the same
session. And to realize the memory recall described in semantic
memory, LSHP utilizes a one-dimensional Hawkes process to model
influence among actions of the same type happening in different
sessions. In this way, the long-term and short-term dependence are
explicitly captured by LSHP as a mixture of stochastic processes. By
adopting ADMM algorithm, we maximize the data likelihood to es-
timate the parameters of LSHP. Extensive experiment comparisons
between LSHP and several other state-of-the-art baselines prove



the effectiveness of LSHP on modeling the temporal dependence
among users’ sequential interactive behaviors.

Identifying the underlying dependence structure among sequen-
tial interactive behaviors is crucial in user modeling and understand-
ing. In this work, we utilize LSHP to bridge the gap between the
studies in cognitive psychology of user behaviors and the compu-
tational modeling of user behaviors. This opens several important
future directions. First, external features can be incorporated into
LSHP to improve its temporal dependence modeling. For example,
the similarity between actions based on external taxonomy. Second,
we currently assume all users share the same set of model param-
eters. It would be beneficial to relax this constraint and estimate
individualized models for different (groups) of users. Third, we have
assumed static base intensities among different action types. But in
practice they might also change over time, reflecting the dynamics
of their global popularity. Another layer of stochastic process can
be introduced to model this level of temporal dynamics.

6 ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful comments.
This paper is based upon work supported by the National Science
Foundation under grant IIS-1718216 and IIS-1553568.

REFERENCES

[1] Eugene Agichtein, Eric Brill, and Susan Dumais. 2006. Improving web search rank-
ing by incorporating user behavior information. In Proceedings of the 29th annual
international ACM SIGIR conference on Research and development in information
retrieval. ACM, 19-26.

[2] Eugene Agichtein, Ryen W White, Susan T Dumais, and Paul N Bennet. 2012.
Search, interrupted: understanding and predicting search task continuation. In
Proceedings of the 35th international ACM SIGIR conference on Research and devel-
opment in information retrieval. ACM, 315-324.

[3] Ashton Anderson, Daniel Huttenlocher, Jon Kleinberg, and Jure Leskovec. 2014.
Engaging with massive online courses. In Proceedings of the 23rd international
conference on World wide web. ACM, 687-698.

[4] Martin Arlitt. 2000. Characterizing web user sessions. ACM SIGMETRICS Perfor-
mance Evaluation Review 28, 2 (2000), 50-63.

[5] Ron Begleiter, Ran El-Yaniv, and Golan Yona. 2004. On prediction using variable
order Markov models. Journal of Artificial Intelligence Research 22 (2004), 385—
421.

[6] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. 2011.
Distributed optimization and statistical learning via the alternating direction
method of multipliers. Foundations and Trends® in Machine Learning 3, 1 (2011),
1-122.

[7] Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-
Rodriguez, and Le Song. 2016. Recurrent marked temporal point processes:
Embedding event history to vector. In Proceedings of the 22nd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining. ACM, 1555-1564.

[8] Mehrdad Farajtabar, Yichen Wang, Manuel Gomez Rodriguez, Shuang Li,
Hongyuan Zha, and Le Song. 2015. Coevolve: A joint point process model for in-
formation diffusion and network co-evolution. In Advances in Neural Information
Processing Systems. 1954-1962.

[9] Alan G Hawkes. 1971. Spectra of some self-exciting and mutually exciting point
processes. Biometrika 58, 1 (1971), 83-90.

[10] Balazs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2015. Session-based recommendations with recurrent neural networks. arXiv
preprint arXiv:1511.06939 (2015).

[11] Jacques Janssen and Nikolaos Limnios. 2013. Semi-Markov models and applications.
Springer Science & Business Media.

[12] Rosie Jones and Kristina Lisa Klinkner. 2008. Beyond the session timeout: auto-

matic hierarchical segmentation of search topics in query logs. In Proceedings

of the 17th ACM conference on Information and knowledge management. ACM,

699-708.

Alexander Kotov, Paul N Bennett, Ryen W White, Susan T Dumais, and Jaime

Teevan. 2011. Modeling and analysis of cross-session search tasks. In Proceedings

of the 34th international ACM SIGIR conference on Research and development in

Information Retrieval. ACM, 5-14.

[13

[14] Patrick J Laub, Thomas Taimre, and Philip K Pollett. 2015. Hawkes processes.
arXiv preprint arXiv:1507.02822 (2015).

[15] Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tao Lian, and Jun Ma. 2017.

Neural Attentive Session-based Recommendation. In Proceedings of the 2017 ACM

on Conference on Information and Knowledge Management. ACM, 1419-1428.

Caroline Lo, Dan Frankowski, and Jure Leskovec. 2016. Understanding behaviors

that lead to purchasing: A case study of pinterest. In Proceedings of the 22nd ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM,

531-540.

Claudio Lucchese, Salvatore Orlando, Raffaele Perego, Fabrizio Silvestri, and

Gabriele Tolomei. 2011. Identifying task-based sessions in search engine query

logs. In Proceedings of the fourth ACM international conference on Web search and

data mining. ACM, 277-286.

[18] Dixin Luo, Hongteng Xu, Yi Zhen, Xia Ning, Hongyuan Zha, Xiaokang Yang,

and Wenjun Zhang. 2015. Multi-Task Multi-Dimensional Hawkes Processes for

Modeling Event Sequences.. In IJCAL 3685-3691.

Wendy W Moe. 2003. Buying, searching, or browsing: Differentiating between

online shoppers using in-store navigational clickstream. Journal of consumer

psychology 13, 1-2 (2003), 29-39.

Yosihiko Ogata. 1988. Statistical models for earthquake occurrences and residual

analysis for point processes. Journal of the American Statistical association 83,

401 (1988), 9-27.

Hua Ouyang, Niao He, Long Tran, and Alexander Gray. 2013. Stochastic alter-

nating direction method of multipliers. In International Conference on Machine

Learning. 80-88.

Marian-Andrei Rizoiu, Swapnil Mishra, Quyu Kong, Mark Carman, and Lexing

Xie. 2018. SIR-Hawkes: Linking Epidemic Models and Hawkes Processes to

Model Diffusions in Finite Populations. In Proceedings of the 2018 World Wide

Web Conference on World Wide Web. International World Wide Web Conferences

Steering Committee, 419-428.

Lee Ryan, Christine Cox, Scott M Hayes, and Lynn Nadel. 2008. Hippocampal

activation during episodic and semantic memory retrieval: Comparing category

production and category cued recall. Neuropsychologia 46, 8 (2008), 2109-2121.

Mary C Seiler and Fritz A Seiler. 1989. Numerical recipes in C: the art of scientific

computing. Risk Analysis 9, 3 (1989), 415-416.

Xuehua Shen, Bin Tan, and ChengXiang Zhai. 2005. Implicit user modeling for

personalized search. In Proceedings of the 14th ACM CIKM. ACM, 824-831.

[26] Yuling Shi, Zhiyong Peng, and Hongning Wang. 2017. Modeling Student Learning

Styles in MOOC:s. In Proceedings of the 2017 ACM on Conference on Information

and Knowledge Management. ACM, 979-988.

Amanda Spink, Minsoo Park, Bernard J Jansen, and Jan Pedersen. 2006. Multi-

tasking during Web search sessions. Information Processing & Management 42, 1

(2006), 264-275.

Endel Tulving et al. 1972. Episodic and semantic memory. Organization of

memory 1(1972), 381-403.

Mengting Wan, Di Wang, Matt Goldman, Matt Taddy, Justin Rao, Jie Liu, Dimitrios

Lymberopoulos, and Julian McAuley. 2017. Modeling consumer preferences

and price sensitivities from large-scale grocery shopping transaction logs. In

Proceedings of the 26th International Conference on World Wide Web. International

World Wide Web Conferences Steering Committee, 1103-1112.

Hongning Wang, Yang Song, Ming-Wei Chang, Xiaodong He, Ahmed Hassan,

and Ryen W White. 2014. Modeling action-level satisfaction for search task satis-

faction prediction. In Proceedings of the 37th international ACM SIGIR conference

on Research & development in information retrieval. ACM, 123-132.

Hongning Wang, Yang Song, Ming-Wei Chang, Xiaodong He, Ryen W White,

and Wei Chu. 2013. Learning to extract cross-session search tasks. In Proceedings

of the 22nd international conference on World Wide Web. ACM, 1353-1364.

Yi Xie and Shun-Zheng Yu. 2009. A large-scale hidden semi-Markov model

for anomaly detection on user browsing behaviors. IEEE/ACM Transactions on

Networking (TON) 17, 1 (2009), 54-65.

Hongteng Xu and Hongyuan Zha. 2017. A Dirichlet Mixture Model of Hawkes

Processes for Event Sequence Clustering. In Advances in Neural Information

Processing Systems. 1354-1363.

[34] Jinyoung Yeo, Sungchul Kim, Eunyee Koh, Seung-won Hwang, and Nedim Lipka.
2017. Predicting Online Purchase Conversion for Retargeting. In Proceedings of
the Tenth ACM International Conference on Web Search and Data Mining. ACM,
591-600.

[35] Hongliang Yu, Dongdong Zheng, Ben Y Zhao, and Weimin Zheng. 2006. Under-
standing user behavior in large-scale video-on-demand systems. In ACM SIGOPS
Operating Systems Review, Vol. 40. ACM, 333-344.

[36] Yuyu Zhang, Hanjun Dai, Chang Xu, Jun Feng, Taifeng Wang, Jiang Bian, Bin

Wang, and Tie-Yan Liu. 2014. Sequential Click Prediction for Sponsored Search

with Recurrent Neural Networks.. In AAAIL Vol. 14. 1369-1375.

Ke Zhou, Hongyuan Zha, and Le Song. 2013. Learning social infectivity in

sparse low-rank networks using multi-dimensional hawkes processes. In Artificial

Intelligence and Statistics. 641-649.

[16

(17

[19

[20

[21

~
&,

[23

[24

[25

~
=

[28

[29

[30

w
—

[32

[33

[37



	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Notations and Problem Setup
	3.2 Hawkes Process
	3.3 Long- and Short-Term Hawkes Process
	3.4 Parameter Estimation

	4 Experiments
	4.1 Qualitative Analysis
	4.2 Action Type Prediction
	4.3 Time Prediction

	5 Conclusion
	6 Acknowledgments
	References

