
CoaCor: Code Annotation for Code Retrieval with
Reinforcement Learning

Ziyu Yao
The Ohio State University

yao.470@osu.edu

Jayavardhan Reddy Peddamail
The Ohio State University
peddamail.1@osu.edu

Huan Sun
The Ohio State University

sun.397@osu.edu

ABSTRACT

To accelerate software development, much research has been per-

formed to help people understand and reuse the huge amount of

available code resources. Two important tasks have been widely

studied: code retrieval, which aims to retrieve code snippets rele-

vant to a given natural language query from a code base, and code

annotation, where the goal is to annotate a code snippet with a

natural language description. Despite their advancement in recent

years, the two tasks are mostly explored separately. In this work, we

investigate a novel perspective of Code annotation for Code retrieval

(hence called łCoaCorž), where a code annotation model is trained

to generate a natural language annotation that can represent the

semantic meaning of a given code snippet and can be leveraged by

a code retrieval model to better distinguish relevant code snippets

from others. To this end, we propose an effective framework based

on reinforcement learning, which explicitly encourages the code

annotation model to generate annotations that can be used for the

retrieval task. Through extensive experiments, we show that code

annotations generated by our framework are much more detailed

and more useful for code retrieval, and they can further improve

the performance of existing code retrieval models significantly.1

CCS CONCEPTS

· Information systems → Novelty in information retrieval;

Summarization; · Software and its engineering; · Comput-

ing methodologies → Reinforcement learning; Markov decision

processes; Neural networks;

KEYWORDS

Code Annotation; Code Retrieval; Reinforcement Learning

ACM Reference Format:

Ziyu Yao, Jayavardhan Reddy Peddamail, and Huan Sun. 2019. CoaCor: Code

Annotation for Code Retrieval with Reinforcement Learning. In Proceedings

of the 2019 World Wide Web Conference (WWW ’19), May 13ś17, 2019, San

Francisco, CA, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.

1145/3308558.3313632

1 INTRODUCTION

Software engineering plays an important role in modern society.

Almost every aspect of human life, including health care, education,

1Code available at https://github.com/LittleYUYU/CoaCor.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.

WWW ’19, May 13ś17, 2019, San Francisco, CA, USA

© 2019 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-6674-8/19/05.
https://doi.org/10.1145/3308558.3313632

transportation and web security, depends on reliable software [1].

Unfortunately, developing and maintaining large code bases are

very costly. Understanding and reusing billions of lines of code

in online open-source repositories can significantly speed up the

software development process. Towards that, code retrieval (CR)

and code annotation (CA) are two important tasks that have been

widely studied in the past few years [1, 13, 19, 21, 58], where the

former aims to retrieve relevant code snippets based on a natural

language (NL) query while the latter is to generate natural language

descriptions to describe what a given code snippet does.

Most existing work [2, 13, 19, 22, 58, 60] study either code anno-

tation or code retrieval individually. Earlier approaches for code re-

trieval drew inspiration from the information retrieval field [14, 17,

23, 32] and suffered from surface form mismatches between natural

language queries and code snippets [6, 34]. More recently, advanced

deep learning approaches have been successfully applied to both

code retrieval and code annotation [1, 2, 9, 13, 19ś22, 31, 58, 60].

For example, the code retrieval model proposed by Gu et al. [13] uti-

lized two deep neural networks to learn the vector representation

of a natural language query and that of a code snippet respectively,

and adopted cosine similarity to measure their matching degree.

For code annotation, Iyer et al. [21] and Hu et al. [19] utilized

encoder-decoder models with an attention mechanism to generate

an NL annotation for a code snippet. They aim to generate annota-

tions similar to the human-provided ones, and therefore trained the

models using the standard maximum likelihood estimation (MLE)

objective. For the same purpose, Wan et al. [58] trained the code

annotation model in a reinforcement learning (RL) framework with

reward being the BLEU score [41], which measures n-gram match-

ing precision between the currently generated annotation and the

human-provided one.

In this work, we explore a novel perspective - code annotation

for code retrieval (CoaCor), which is to generate an NL annotation

for a code snippet so that the generated annotation can be used

for code retrieval (i.e., can represent the semantic meaning of a code

snippet and distinguish it from others w.r.t. a given NL query in the

code retrieval task). As exemplified by [56], such an annotation can

be taken as the representation of the corresponding code snippet,

based on which the aforementioned lexical mismatch issue in a

naive keyword-based search engine can be alleviated. A similar idea

of improving retrieval by adding extra annotations to items is also

explored in document retrieval [47] and image search [61]. However,

most of them rely on humans to provide the annotations. Intuitively,

our perspective can be interpreted as one type of machine-machine

collaboration: On the one hand, the NL annotation generated by the

code annotation model can serve as a second view of a code snippet

(in addition to its programming content) and can be utilized to

match with an NL query in code retrieval. On the other hand, with

Code
Annotation

(CA)

QC-based
Code Retrieval

(CR)
C

code base

negative
sampling

retrieval-based reward

Training Testing

Ensemble

score

{ C, C1, C2, ..., Ck }

Code
Annotation

(CA)

QC-based
Code Retrieval

(CR)

QN-based
Code Retrieval

(CR)

N

C NQ

Code snippet C:
(1) "fetch past records closest to given
date and sort"
(2) "select 200 most popular non-adult
links with date earlier than 2014/02/25"
(3) "mysql and php: select all fields from
the same date"

NL queries Qs for C: Generated code annotation N:

Method Generated N

 MLE mysql query to get the last record from a table

 RLBLEU how to select date in mysql sql query

 RLMRR
mysql order last date where day select maximum
datetime column in multiple dates sqlite sql limit
query result specific timestamp

Example

SELECT id, date, site, url FROM links
WHERE publish = "yes" AND date = (
 SELECT date FROM links
 WHERE date < '2014/02/25'
 ORDER BY date DESC LIMIT 1)
AND category!= 'Adult'
ORDER BY date DESC, clicks DESC
LIMIT 200

Figure 1: Our CoaCor framework: (1) Training phase. A code annotation model is trained via reinforcement learning to max-
imize retrieval-based rewards given by a QC-based code retrieval model (pre-trained using <NL query, code snippet> pairs).
(2) Testing phase. Each code snippet is first annotated by the trained CA model. For the code retrieval task, given query Q, a
code snippet gets two scores - one matching Q with its code content and the other matching Q with its code annotation N,
and is ranked by a simple ensemble strategy+. (3) Example. We show an example of a code snippet and its associated multiple

NL queries in our dataset. The code annotation generated by our framework (denoted as RLMRR) is much more detailed with
many keywords semantically aligned with Qs, when compared with CA models trained via MLE or RL with BLEU rewards

(RLBLEU). + We simply use a weighted combination of the two scores, and other ensemble strategies can also apply here.

a goal to facilitate code retrieval, the code annotation model can be

stimulated to produce rich and detailed annotations. Unlike existing

work [19ś21, 58], our goal is not to generate an NL annotation as

close as possible to a human-provided one; hence, theMLE objective

or the BLEU score as rewards for code annotation will not fit our

setting. Instead, we design a novel rewarding mechanism in an

RL framework, which guides the code annotation model directly

based on how effectively the currently generated code annotation

distinguishes the code snippet from a candidate set.

Leveraging collaborations and interactions amongmachine learn-

ing models to improve the task performance has been explored in

other scenarios. Goodfellow et al. [12] proposed the Generative Ad-

versarial Nets (GANs), where a generative model produces difficult

examples to fool a discriminative model and the latter is further

trained to conquer the challenge. He et al. [15] proposed another

framework called dual learning, which jointly learns two dual ma-

chine translation tasks (e.g., En -> Fr and Fr -> En). However, none

of the existing frameworks are directly applicable to accomplish

our goal (i.e., to train a code annotation model for generating anno-

tations that can be utilized for code retrieval).

Figure 1 shows our reinforcement learning-based CoaCor frame-

work. In the training phase, we first train a CR model based on

<natural language query, code snippet> (QC) pairs (referred to as

QC-based CR model). Then given a code snippet, the CA model

generates a sequence of NL tokens as its annotation and receives

a reward from the trained CR model, which measures how effec-

tively the generated annotation can distinguish the code snippet

from others. We formulate the annotation generation process as a

Markov Decision Process [5] and train the CA model to maximize

the received reward via an advanced reinforcement learning [53]

framework called Advantage Actor-Critic or A2C [36]. Once the CA

model is trained, we use it to generate an NL annotation N for each

code snippet C in the code base. Therefore, for each QC pair we

originally have, we can derive a QN pair. We utilize the generated

annotation as a second view of the code snippet to match with a

query and train another CR model based on the derived QN pairs

(referred to as QN-based CR model). In the testing phase, given an

NL query, we rank code snippets by combining their scores from

both the QC-based as well as QN-based CR models, which utilize

both the programming content as well as the NL annotation of a

code snippet.

On awidely used benchmark dataset [21] and a recently collected

large-scale dataset [63], we show that the automatically generated

annotation can significantly improve the retrieval performance.

More impressively, without looking at the code content, the QN-

based CR model trained on our generated code annotations obtains

a retrieval performance comparable to one of the state-of-the-art

QC-based CR models. It also surpasses other QN-based CR models

trained using code annotations generated by existing CA models.

To summarize, our major contributions are as follows:

• First, we explored a novel perspective of generating useful

code annotations for code retrieval. Unlike existing work

[19, 21, 58], we do not emphasize the n-gram overlap be-

tween the generated annotation and the human-provided

one. Instead, we examined the real usefulness of the gener-

ated annotations and developed a machine-machine collabo-

ration paradigm, where a code annotation model is trained

to generate annotations that can be used for code retrieval.

• Second, in order to accomplish our goal, we developed an

effective RL-based framework with a novel rewarding mech-

anism, in which a code retrieval model is directly used to

formulate rewards and guide the annotation generation.

• Last, we conducted extensive experiments by comparing our

framework with various baselines including state-of-the-art

models and variants of our framework. We showed signifi-

cant improvements of code retrieval performance on both

a widely used benchmark dataset and a recently collected

large-scale dataset.

The rest of this paper is organized as follows. Section 2 introduces

the background on code annotation and code retrieval tasks. Section

3 gives an overview of our proposed framework, with algorithm

details followed in Section 4. Experiments are shown in Section 5.

Finally, we discuss related work and conclude in Section 6 and 7.

2 BACKGROUND

We adopt the same definitions for code retrieval and code annota-

tion as previous work [9, 21]. Given a natural language queryQ and

a set of code snippet candidates C, code retrieval is to retrieve code

snippets C∗ ∈ C that can match with the query. On the other hand,

given a code snippet C , code annotation is to generate a natural

language (NL) annotation N ∗ which describes the code snippet

appropriately. In this work, we use code search and code retrieval in-

terchangeably (and same for code annotation/summary/description).

Formally, for a training corpus with <natural language query,

code snippet> pairs, e.g., those collected from Stack Overflow [51]

by [21, 63], we define the two tasks as:

Code Retrieval (CR): Given an NL Query Q , a model Fr will be

learnt to retrieve the highest scoring code snippet C∗ ∈ C.

C∗ = argmax
C ∈C

Fr (Q,C) (1)

Code Annotation (CA): For a given code snippetC , the goal is to

generate an NL annotation N ∗ that maximizes a scoring function

Fa :

N ∗ = argmax
N

Fa (C,N) (2)

Note that one can use the same scoring model for Fr and Fa as in

[9, 21], but for most of the prior work [13, 19, 20, 58], which consider

either code retrieval or code annotation, researchers usually develop

their own models and objective functions for Fr or Fa . In our work,

we choose two vanilla models as our base models for CR and CA,

but explore a novel perspective of how to train Fa so that it can

generate NL annotations that can be used for code retrieval. This

perspective is inspired by various machine-machine collaboration

mechanisms [15, 28, 55, 59] where one machine learning task can

help improve another.

3 FRAMEWORK OVERVIEW

In this section, we first introduce our intuition and give an overview

of the entire framework, before diving into more details.

3.1 Intuition behind CoaCor

To the best of our knowledge, previous code annotation work like

[19ś21, 58] focused on getting a large n-gram overlap between

generated and human-provided annotations. However, it is still

uncertain (and non-trivial to test) how helpful the generated an-

notations can be. Driven by this observation, we are the first to

examine the real usefulness of the generated code annotations and

how they can help a relevant task, of which we choose code retrieval

as an example.

Intuitively, CoaCor can be interpreted as a collaboration mecha-

nism between code annotation and code retrieval. On the one hand,

the annotation produced by the CA model provides a second view

of a code snippet (in addition to its programming content) to assist

code retrieval. On the other hand, when the CA model is trained to

be useful for the retrieval task, we expect it to produce richer and

more detailed annotations, which we verify in experiments later.

3.2 Overview

The main challenge to realize the above intuition lies in how to train

the CA model effectively. Our key idea to address the challenge is

shown in Figure 1.

We first train a base CR model on <natural language query, code

snippet> (QC) pairs. Intuitively, a QC-based CR model ranks a code

snippetC by measuring howwell it matches with the given queryQ

(in comparison with other code snippets in the code base). From an-

other point of view, a well-trained QC-based CR model can work as

a measurement on whether the query Q describes the code snippet

C precisely or not. Drawing inspiration from this view, we propose

using the trained QC-based CR model to determine whether an

annotation describes its code snippet precisely or not and thereby,

train the CA model to generate rich annotations to maximize the

retrieval-based reward from the CR model. Specifically, given a

code snippet C , the CA model generates a sequence of NL words

as its annotation N . At the end of the sequence, we let the trained

QC-based CR model use N to search for relevant code snippets

from the code base. IfC can be ranked at top places, the annotation

N is treated as well-written and gets a high reward; otherwise, a

low reward will be returned. We formulate this generation process

as the Markov Decision Process [5] and train the CA model with

reinforcement learning [53] (specifically, the Advantage Actor-Critic

algorithm [36]) to maximize the retrieval-based rewards it can re-

ceive from the QC-based CR model. We elaborate the CR and CA

model details as well as the RL algorithm for training the CA model

in Section 4.1 ∼ 4.3.

Once the CA model is trained, in the testing phase, it generates

an NL annotation N for each code snippet C in the code base. Now

for each <NL query, code snippet> pair originally in the datasets,

we derive an <NL query, code annotation> (QN) pair and train

Figure 2: The base code retrieval model encodes the in-

put code snippet C = (c1, c2, ..., c |C |) and NL query Q =

(w1,w2, ...,w |Q |) into a vector space and outputs a similarity

score.

another CR model based on such QN pairs. This QN-based CR

model complements the QC-based CR model, as they respectively

use the annotation and programming content of a code snippet

to match with the query. We finally combine the matching scores

from the two CR models to rank code snippets for a given query.

Note that we aim to outline a general paradigm to explore the

perspective of code annotation for code retrieval, where the specific

model structures for the two CR models and the CA model can be in-

stantiated in various ways. In this work, we choose one of the simplest

and most fundamental deep structures for each of them. Using more

complicated model structures will make the training more challenging

and we leave it as future work.

4 CODE ANNOTATION FOR CODE
RETRIEVAL

Now we introduce model and algorithm details in our framework.

4.1 Code Retrieval Model

Both QC-based and QN-based code retrieval models adopt the same

deep learning structure as the previous CR work [13]. Here for

simplicity, we only illustrate the QC-based CR model in detail, and

the QN-based model structure is the same except that we use the

generated annotation on the code snippet side.

As shown in Figure 2, given an NL queryQ = w1.. |Q | and a code

snippet C = c1.. |C | , we first embed the tokens of both code and NL

query into vectors through a randomly initialized word embedding

matrix, which will be learned during model training. We then use a

bidirectional Long Short-Term Memory (LSTM)-based Recurrent

Neural Network (RNN) [10, 11, 18, 35, 48, 64] to learn the token

representation by summarizing the contextual information from

both directions. The LSTM unit is composed of three multiplicative

gates. At every time step t , it tracks the state of sequences by con-

trolling howmuch information is updated into the new hidden state

ht and memory cell дt from the previous state ht−1, the previous

memory cell дt−1 and the current input xt . On the code side, xt
is the embedding vector for ct , and on the NL query side, it is the

embedding vector for wt . At every time step t , the LSTM hidden

state is updated as:

i = σ (Wiht−1 + Uixt + bi)

f = σ (Wf ht−1 + Uf xt + bf)

o = σ (Woht−1 + Uoxt + bo)

д = tanh(Wдht−1 + Uдxt + bд)

дt = f ⊙ дt−1 + i ⊙ д

ht = o ⊙ tanh(дt)

where σ is the element-wise sigmoid function and ⊙ is the element-

wise product.Ui ,Uf ,Uд ,Uo denote the weight matrices of different

gates for input xt and Wi , Wf , Wд , Wo are the weight matrices

for hidden state ht , while bi , bf , bд , bo denote the bias vectors. For

simplicity, we denote the above calculation as below (the memory

cell vector дt−1 is omitted):

ht = LSTM(xt ,ht−1) (3)

The vanilla LSTM’s hidden state ht takes information from the

past, knowing nothing about the future. Our CR model instead

incorporates a bidirectional LSTM [48] (i.e., Bi-LSTM in Figure 2),

which contains a forward LSTM reading a sequence X from start

to end and a backward LSTM which reads from end to start. The

basic idea of using two directions is to capture past and future

information at each step. Then the two hidden states at each time

step t are concatenated to form the final hidden state ht .

→
ht = LSTM(xt ,

→
ht−1)

←
ht = LSTM(xt ,

←
ht+1)

ht = [
→
ht ,
←
ht]

Finally, we adopt the commonly used max pooling strategy [24]

followed by a tanh layer to get the embedding vector for a sequence

of length T .

v = tanh(maxpooling([h1,h2, ...,hT])) (4)

By applying the above encoding algorithm, we encode the code

snippet C and the NL query Q into vc and vq , respectively. Similar

to Gu et al. [13], to measure the relevance between the code snippet

and the query, we use cosine similarity denoted as cos(vq ,vc). The

higher the similarity, the more related the code is to the query.

Training. The CR model is trained by minimizing a ranking loss

similar to [13]. Specifically, for each queryQ in the training corpus,

we prepare a triple of <Q,C,C−> as a training instance, where C is

the correct code snippet that answers Q and C− is a negative code

snippet that does not answer Q (which is randomly sampled from

the entire code base). The ranking loss is defined as:

L(θ) =
∑

<Q,C,C−>

max(0, ϵ − cos(vq ,vc) + cos(vq ,vc−)) (5)

where θ denotes the model parameters, ϵ is a constant margin, and

vq , vc and vc− are the encoded vectors ofQ ,C andC− respectively.

Essentially, the ranking loss is a kind of hinge loss [46] that pro-

motes the cosine similarity between Q and C to be greater than

that between Q and C− by at least a margin ϵ . The training leads

the model to project relevant queries and code snippets to be close

in the vector space.

4.2 Code Annotation Model

Formally, given a code snippet C , the CA model computes the

probability of generating a sequence of NL tokens n1.. |N | = (n1,

n2, ..., n |N |) as its annotation N by:

P(N |C) = P(n1 |n0,C)

|N |
∏

t=2

P(nt |n1..t−1,C) (6)

where n0 is a special token "<START>" indicating the start of the

annotation generation, n1..t−1 = (n1, ...,nt−1) is the partially gen-

erated annotation till time step t-1, and P(nt |n1..t−1,C) is the prob-

ability of producing nt as the next word given the code snippet

C and the generated n1..t−1. The generation stops once a special

token "<EOS>" is observed.

In this work, we choose the popular sequence-to-sequence model

[52] as our CA model structure, which is composed of an encoder

and a decoder. We employ the aforementioned bidirectional LSTM-

based RNN structure as the encoder for code snippet C , and use

another LSTM-based RNN as the decoder to compute Eqn. (6):

hdect = LSTM(nt−1,h
dec
t−1),∀t = 1, ..., |N |

wherehdect is the decoder hidden state at step t , andhdec0 is initialized

by concatenating the last hidden states of the code snippet encoder

in both directions. In addition, a standard global attention layer

[33] is applied in the decoder, in order to attend to important code

tokens in C:

h̃dect = tanh(Wα [vattn,h
dec
t])

vattn =

|C |
∑

t ′=1

αt ′ h
enc
t ′

αt ′ = softmax((henct ′)
Thdect)

where αt ′ is the attention weight on the t ′-th code token when

generating the t-th word in the annotation, and Wα is a learnable

weight matrix. Finally, the t-th word is selected based on:

P(nt |n0..t−1,C) = softmax(Wh̃dect + b) (7)

whereW ∈ R |Vn |×d ,b ∈ R |Vn | project the d-dim hidden state h̃dect
to the NL vocabulary of size |Vn |.

4.3 Training Code Annotation via RL

4.3.1 Code Annotation as Markov Decision Process. Most previ-

ous work [9, 19, 21] trained the CA model by maximizing the log-

likelihood of generating human annotations, which suffers from

two drawbacks: (1) The exposure bias issue [4, 44, 45]. That is, during

training, the model predicts the next word given the ground-truth

annotation prefix, while at testing time, it generates the next word

based on previous words generated by itself. This mismatch be-

tween training and testing may result in error accumulation in

testing phase. (2) More importantly, maximizing the likelihood is

not aligned with our goal to produce annotations that can be useful

for code retrieval.

To address the above issues, we propose to formulate code anno-

tation with the reinforcement learning (RL) framework [53]. Specif-

ically, the annotation generation process is viewed as a Markov

Decision Process (MDP) [5] consisting of four main components:

State. At step t during decoding, a state st maintains the source

code snippet and the previously generated words n1..t−1, i.e., st =

{C,n1..t−1}. In particular, the initial decoding state s0 = {C} only

contains the given code snippetC . In this work, we take the hidden

state vector h̃dect as the vector representation of state st , and the

MDP is thus processing on a continuous and infinite state space.

Action. The CA model decides the next word (or action) nt ∈

Vn , where Vn is the NL vocabulary. Thus, the action space in our

formulation is the NL vocabulary.

Reward. As introduced in Section 3, to encourage it to generate

words useful for the code retrieval task, the CA model is rewarded

by a well-trained QC-based CR model based on whether the code

snippet C can be ranked at the top positions if using the generated

complete annotation N as a query. Therefore, we define the reward

at each step t as:

r (st ,nt) =

{

RetrievalReward(C,n1..t) if nt = <EOS>

0 otherwise

where we use the popular ranking metric Mean Reciprocal Rank

[57] (defined in Section 5.2) as the RetrievalReward(C,N) value.

Note that, in this work, we let the CRmodel give a valid reward only

when the annotation generation stops, and assign a zero reward to

intermediate steps. However, other designs such as giving rewards

to a partial generation with the reward shaping technique [4] can

be reasonable and explored in the future.

Policy. The policy function P(nt |st) takes as input the current state

st and outputs the probability of generating nt as the next word.

Given our definition about state st and Eqn. (7),

P(nt |st) = P(nt |n1..t−1,C) = softmax(Wh̃dect + b) (8)

Here, the policy function is stochastic in that the next word can

be sampled according to the probability distribution, which allows

action space exploration and can be optimized using policy gradient

methods [53].

The objective of the CAmodel training is to find a policy function

P(N |C) that maximizes the expected accumulative future reward:

max
ϕ
L(ϕ) = max

ϕ
EN∼P (· |C ;ϕ)[R(C,N)] (9)

where ϕ is the parameter of P and R(C,N) =
∑ |N |
t=1 r (st ,nt) is the

accumulative future reward (called łreturnž).

The gradient of the above objective is derived as below.

∇ϕL(ϕ) = EN∼P (· |C ;ϕ)[R(C,N)∇ϕ log P(N |C;ϕ)]

= En1. . |N |∼P (· |C ;ϕ)[

|N |
∑

t=1

Rt (st ,nt)∇ϕ log P(nt |n1..t−1,C;ϕ)]
(10)

where Rt (st ,nt) =
∑

t ′≥t r (st ′ ,nt ′) is the return for generating

word nt given state st .

4.3.2 Advantage Actor-Critic for Code Annotation. Given the gra-

dient in Eqn. (10), the objective in Eqn. (9) can be optimized by

policy gradient approaches such as REINFORCE [62] and Q-value

Actor-Critic algorithm [4, 54]. However, such methods may yield

very high variance when the action space (i.e., the NL vocabulary)

is large and suffer from biases when estimating the return of rarely

taken actions [39], leading to unstable training. To tackle the chal-

lenge, we resort to the more advanced Advantage Actor-Critic or

A2C algorithm [36], which has been adopted in other sequence

generation tasks [39, 58]. Specifically, the gradient function in Eqn.

(10) is replaced by an advantage function:

∇ϕL(ϕ) = E[

|N |
∑

t=1

At∇ϕ log P(nt |n1..t−1,C;ϕ)] (11)

At = Rt (st ,nt) −V (st)

V (st) = En̂t∼P (· |n1. .t−1,C)[Rt (st , n̂t)]

where V (st) is the state value function that estimates the future

reward given the current state st . Intuitively, V (st) works as a

baseline function [62] to help the model assess its action nt more

precisely: When advantageAt is greater than zero, it means that the

return for taking action nt is better than the łaveragež return over

all possible actions, given state st ; otherwise, action nt performs

worse than the average.

Following previous work [36, 39, 58], we approximate V (st) by

learning another model V (st ; ρ) parameterized by ρ, and the RL

framework thus contains two components: the policy function

P(N |C;ϕ) that generates the annotation (called łActorž), and the

state value function V (st ; ρ) that approximates the return under

state st (called łCriticž). Similar to the actor model (i.e., the CA

model in Section 4.2), we train a separate attention-based sequence-

to-sequence model as the critic network. The critic value is finally

computed by:

V (st ; ρ) = w
T
ρ (h̃

dec
t)cr t + bρ (12)

where (h̃dect)cr t ∈ R
d is the critic decoder hidden state at step t ,

and wρ ∈ Rd , bρ ∈ R are trainable parameters that project the

hidden state to a scalar value (i.e., the estimated state value).

The critic network is trained to minimize the Mean Square Error

between its estimation and the true state value:

min
ρ
L(ρ) = min

ρ
EN∼P (· |C)[

|N |
∑

t=1

(V (st ; ρ) − R(C,N))
2] (13)

The entire training procedure of CoaCor is shown in Algorithm 1.

4.4 Generated Annotations for Code Retrieval

As previously shown in Figure 1, in the testing phase, we utilize

the generated annotations to assist the code retrieval task. Now

we detail the procedure in Algorithm 2. Specifically, for each <NL

query, code snippet> pair (i.e., QC pair) in the dataset, we first

derive an <NL query, code annotation> pair (i.e., QN pair) using the

code annotation model. We then build another code retrieval (CR)

model based on the QN pairs in our training corpus. In this work,

for simplicity, we choose the same structure as the QC-based CR

model (Section 4.1) to match QN pairs. However, more advanced

methods for modeling the semantic similarity between two NL

Algorithm 1 : Training Procedure for CoaCor.

Input: <NL query, code snippet> (QC) pairs in training set, number

of iterations E.

1: Train a base code retrieval model based on QC pairs, according

to Eqn. (5).

2: Initialize a base code annotation model (ϕ) and pretrain it via

MLE according to Eqn. (7), using Q as the desired N for C .

3: Pretrain a critic network (ρ) according to Eqn. (13).

4: for iteration = 1 to E do

5: Receive a code snippet C .

6: Sample an annotation N ∼ P(·|C;ϕ) according to Eqn. (8).

7: Receive the final reward R(C,N).

8: Update the code annotation model (ϕ) using Eqn. (11).

9: Update the critic network (ρ) using Eqn. (13).

10: end for

Algorithm 2 : Generated Annotations for Code Retrieval.

Input: NL query Q , code snippet candidate C .

Output: The matching score, score(Q,C).

1: Receive score1(Q,C) = cos(vq ,vc) from a QC-based code re-

trieval model.

2: Generate a code annotation N ∼ P(·|C;ϕ) via greedy search,

according to Eqn. (8).

3: Receive score2(Q,C) = cos(vq ,vn) from a QN-based code re-

trieval model.

4: Calculate score(Q,C) according to Eqn. (14).

sentences (e.g., previous work on NL paraphase detection [16, 26])

are applicable and can be explored as future work.

The final matching score between query Q and code snippet C

combines those from the QN-based and QC-based CR model:

score(Q,C) = λ ∗ cos(vq ,vn) + (1 − λ) ∗ cos(vq ,vc) (14)

where vq ,vc ,vn are the encoded vectors of Q , C , and the code

annotation N respectively. λ ∈ [0, 1] is a weighting factor for the

two scores to be tuned on the validation set.

5 EXPERIMENTS

In this section, we conduct extensive experiments and compare our

framework with various models to show its effectiveness.

5.1 Experimental Setup

Dataset. (1)We experimented with the StaQC dataset presented

by Yao et al. [63]. The dataset contains 119,519 SQL <question title,

code snippet> pairs mined from Stack Overflow [51], making itself

the largest-to-date in SQL domain. In our code retrieval task, the

question title is considered as the NL query Q , which is paired

with the code snippetC to form the QC pair. We randomly selected

75% of the pairs for training, 10% for validation (containing 11,900

pairs), and the left 15% for testing (containing 17,850 pairs). As

mentioned in [63], the dataset may contain multiple code snippets

for the same NL query. We examine the dataset split to ensure that

alternative relevant code snippets for the same query would not

be sampled as negative code snippets when training the CR model.

For pretraining the CA model, we consider the question title as a

code annotation N and form NC pairs accordingly. (2) Iyer et al.

[21] collected two small sets of SQL code snippets (called łDEVž

and łEVALž respectively) from Stack Overflow for validation and

testing. In addition to the originally paired question title, each code

snippet is manually annotated by two different NL descriptions.

Therefore, in total, each set contains around 100 code snippets with

three NL descriptions (resulting in around 300 QC pairs). We use

them as additional datasets for model comparison.2 Following [21],

QC pairs occuring in DEV and EVAL set or being used as negative

code snippets by them are removed from the StaQC training set.

Data Preprocessing. We followed [21] to perform code tokeniza-

tion, which replaced table/column names with placeholder tokens

and numbered them to preserve their dependencies. For text tok-

enization, we utilized the "word_tokenize" tool in the NLTK toolkit

[7]. All code tokens and NL tokens with a frequency of less than 2

were replaced with an <UNK> token, resulting in totally 7726 code

tokens and 7775 word tokens in the vocabulary. The average lengths

of the NL query and the code snippet are 9 and 60 respectively.

5.2 Evaluation

We evaluate a model’s retrieval performance on four datasets: the

validation (denoted as łStaQC-valž) and test set (denoted as łStaQC-

testž) from StaQC [63], and the DEV and EVAL set from [21]. For

each <NL queryQ , code snippetC> pair (or QC pair) in a dataset, we

take C as a positive code snippet and randomly sample K negative

code snippets from all others exceptC in the dataset,3 and calculate

the rank of C among the K + 1 candidates. We follow [9, 21, 63] to

set K = 49. The retrieval performance of a model is then assessed

by the Mean Reciprocal Rank (MRR) metric [57] over the entire set

D = {(Q1,C1), (Q2,C2), ..., (Q |D | ,C |D |)}:

MRR =
1

|D|

|D |
∑

i=1

1

Ranki

where Ranki is the rank of Ci for query Qi . The higher the MRR

value, the better the code retrieval performance.

5.3 Methods to Compare

In order to test the effectiveness of our CoaCor framework, we

compare it with both existing baselines and our proposed variants.

Existing Baselines. We choose the following state-of-the-art code

retrieval models, which are based on QC pairs, for comparison.

• Deep Code Search (DCS) [13]. The original DCS model [13]

adopts a similar structure as Figure 2 for CR in Java domain.

To learn the vector representations for code snippets, in ad-

dition to code tokens, it also considers features like function

names and API sequences, all of which are combined into a

fully connected layer. In our dataset, we do not have these

features, and thus slightly modify their original model to be

the same as our QC-based CR model (Figure 2).

• CODE-NN [21]. CODE-NN is one of the state-of-the-artmod-

els for both code retrieval and code annotation. Its core com-

ponent is an LSTM-based RNNwith an attention mechanism,

2Previous work [9, 21] used only one of the three descriptions while we utilize all of
them to enrich and enlarge the datasets for a more reliable evaluation.
3For DEV and EVAL, we use the same negative examples as [21].

which models the probability of generating an NL sentence

conditioned on a given code snippet. For code retrieval, given

an NL query, CODE-NN computes the likelihood of gener-

ating the query as an annotation for each code snippet and

ranks code snippets based on the likelihood.

QN-based CR Variants. As discussed in Section 4.4, a trained CA

model is used to annotate each code snippet C in our datasets with

an annotation N . The resulting <NL query Q , code annotation N>

pairs can be used to train a QN-based CR model. Depending on

how we train the CA model, we have the following variants:

• QN-MLE. Similar to most previous work [9, 19, 21], we sim-

ply train the CA model in the standard MLE manner, i.e., by

maximizing the likelihood of a human-provided annotation.

• QN-RLBLEU. As introduced in Section 1, Wan et al. [58] pro-

posed to train the CA model via reinforcement learning with

BLEU scores [41] as rewards. We compare this variant with

our rewarding mechanism.

• QN-RLMRR. In our CoaCor framework, we propose to train

the CA model using retrieval rewards from a QC-based CR

model (see Section 3). Here we use the MRR score as the

retrieval reward.

Since CODE-NN [21] can be used for code annotation as well, we

also use its generated code annotations to train a QN-based CR

model, denoted as łQN-CodeNNž.4

Ensemble CR Variants. As introduced in Section 4.4, we tried

ensembling the QC-based CR model and the QN-based CR model to

improve the retrieval performance. We choose the DCS structure as

the QC-based CR model as mentioned in Section 4.1. Since different

QN-based CR models can be applied, we present the following 4

variants: (1) QN-MLE + DCS, (2) QN-RLBLEU + DCS, (3) QN-RLMRR

+ DCS, and (4) QN-CodeNN + DCS, where QN-MLE, QN-RLBLEU,

QN-RLMRR, and QN-CodeNN have been introduced.

5.4 Implementation Details

Our implementation is based on Pytorch [42]. For CR models, we

set the embedding size of words and code tokens to 200, and chose

batch size in {128, 256, 512}, LSTM unit size in {100, 200, 400} and

dropout rate [50] in {0.1, 0.35, 0.5}. A small, fixed ϵ value of 0.05

is used in all the experiments. Hyper-parameters for each model

were chosen based on the DEV set. For CODE-NN baseline, we

followed Yao et al. [63] to use the same model hyper-parameters as

the original paper, except that the dropout rate is tuned in {0.5, 0.7}.

The StaQC-val set was used to decay the learning rate and the best

model parameters were decided based on the retrieval performance

on the DEV set.

For CAmodels, the embedding size of words and code tokens and

the LSTM unit size were selected from {256, 512}. The dropout rate

is selected from {0.1, 0.3, 0.5} and the batch size is 64. We updated

model parameters using the Adam optimizer [25] with learning rate

0.001 for MLE training and 0.0001 for RL training. The maximum

length of the generated annotation is set to 20. For CodeNN, MLE-

based and RLBLEU-based CA models, the best model parameters

4There is another recent code annotation method named DeepCom [19]. We did not
include it as baseline, since it achieved a similar performance as our MLE-based CA
model (see Table 3) when evaluated with the standard BLEU script by [21].

Model DEV EVAL StaQC-val StaQC-test

Existing (QC-based) CR Baselines

DCS [13] 0.566 0.555 0.534 0.529

CODE-NN [21] 0.530 0.514 0.526 0.522

QN-based CR Variants

QN-CodeNN 0.369 0.360 0.336 0.333

QN-MLE 0.429 0.411 0.427 0.424

QN-RLBLEU 0.426 0.402 0.386 0.381

QN-RLMRR (ours) 0.534 0.512 0.516 0.523

Ensemble CR Variants

QN-CodeNN + DCS 0.566 0.555 0.534 0.529

QN-MLE + DCS 0.571 0.561 0.543 0.537

QN-RLBLEU + DCS 0.570 0.559 0.541 0.534

QN-RLMRR + DCS (ours) 0.582∗ 0.572∗ 0.558∗ 0.559∗

QN-RLMRR + CODE-NN (ours) 0.586∗ 0.571∗ 0.575∗ 0.576∗

Table 1: The main code retrieval results (MRR). * denotes significantly different from DCS [13] in one-tailed t-test (p < 0.01).

were picked based on the model’s BLEU score on DEV, while for

RLMRR-based CA model, we chose the best model according to

its MRR reward on StaQC-val. For RL models, after pretraining

the actor network via MLE, we first pretrain the critic network

for 10 epochs, then jointly train the two networks for 40 epochs.

Finally, for ensemble variants, the ensemble weight λ in all variants

is selected from 0.0 ∼ 1.0 based on its performance on DEV.

5.5 Results

To understand our CoaCor framework, we first show several con-

crete examples to understand the differences between annotations

generated by our model and by baseline/variant models, and then

focus on two research questions (RQs):

• RQ1 (CR improves CA): Is the proposed retrieval reward-

driven CAmodel capable of generating rich code annotations

that can be used for code retrieval (i.e., can represent the

code snippet and distinguish it from others)?

• RQ2 (CA improves CR): Can the generated annotations

further improve existing QC-based code retrieval models?

5.5.1 Qualitative Analysis. Table 2 presents two examples of anno-

tations generated by each CA model. Note that we do not target at

human language-like annotations; rather, we focus on annotations

that can describe/capture the functionality of a code snippet. In com-

parison with baseline CA models, our proposed RLMRR-based CA

model can produce more concrete and precise descriptions for cor-

responding code snippets. As shown in Example 1, the annotation

generated by RLMRR covers more conceptual keywords semanti-

cally aligned with the three NL queries (e.g., łaveragež, łdifferencež,

łgroupž), while the baseline CODE-NN and the variants generate

short descriptions covering a very limited amount of conceptual

keywords (e.g., without mentioning the concept łsubtractingž).

We also notice that our CA model can generate different forms

of a stem word (e.g., łaveragež, łavgž in Example 1), partly because

the retrieval-based reward tends to make the generated annotation

semantically aligned with the code snippet and these diverse forms

of words can help strengthen such semantic alignment and benefit

the code retrieval task when there are various ways to express user

search intent.

5.5.2 Code Retrieval Performance Evaluation. Table 1 shows the

code retrieval evaluation results, based on which we discuss RQ1

and RQ2 as below:

RQ1: To examine whether or not the code annotations generated

by a CA model can represent the corresponding code snippet in

the code retrieval task, we analyze its corresponding QN-based CR

model, which retrieves relevant code snippets by matching the NL

query Q with the code annotation N generated by this CA model.

Across all of the four datasets, our proposed QN-RLMRR model,

which is based on a retrieval reward-driven CA model, achieves the

best results and outperforms other QN-based CR models by a wide

margin of around 0.1 ∼ 0.2 absolute MRR. More impressively, its

performance is already on a par with the CODE-NN model, which

is one of the state-of-the-art models for the code retrieval task, even

though it understands a code snippet solely based on its annotation

and without looking at the code content. This demonstrates that

the code annotation generated by our proposed framework can

reflect the semantic meaning of each code snippet more precisely.

To further understand whether or not the retrieval-based reward

can serve as a better reward metric than BLEU (in terms of stimu-

lating a CA model to generate useful annotations), we present the

BLEU score of each CA model in Table 3.5 When connecting this

table with Table 1, we observe an inverse trend: For the RLBLEU

model which is trained for a higher BLEU score, although it can

improve the MLE-based CA model by more than 2% absolute BLEU

on three sets, it harms the latter’s ability on producing useful code

annotations (as revealed by the performance of QN-RLBLEU in Table

1, which is worse than QN-MLE by around 0.04 absolute MRR on

StaQC-val and StaQC-test). In contrast, our proposed RLMRR model,

despite getting the lowest BLEU score, is capable of generating an-

notations useful for the retrieval task. This is mainly because that

5BLEU is evaluated with the script provided by Iyer et al. [21]: https://github.com/
sriniiyer/codenn/blob/master/src/utils/bleu.py.

Model Annotation

Example 1 from EVAL set

SQL Code SELECT col3, Format(Avg([col2]-[col1]),"hh:mm:ss")

AS TimeDiff FROM Table1

GROUP BY col3;

Human pro-

vided

(1) find the average time in hours , mins and seconds

between 2 values and show them in groups of another

column

(2) group rows of a table and find average difference

between them as a formatted date

(3) ms access average after subtracting

CODE-NN how do i get the average of a column in sql?

MLE how to get average of the average of a column in sql

RLBLEU how to average in sql query

RLMRR average avg calculating difference day in access select

distinct column value sql group by month mysql for-

mat date function?

Example 2 from StaQC-test set

SQL Code SELECT Group_concat(DISTINCT(p.products_id))

AS comma_separated,

COUNT(DISTINCT p.products_id) AS product_count

FROM ...

Human pro-

vided

how to count how many comma separated values in

a group_concat

CODE-NN how do i get the count of distinct rows?

MLE mysql query to get count of distinct values in a column

RLBLEU how to count in mysql sql query

RLMRR group_concat count concatenate distinct comma

group mysql concat column in one row rows select

multiple columns of same id result

Table 2: Two examples of code snippets, as well as their an-

notations generated by different CA models. łHuman pro-

videdž refers to (multiple) human-provided NL annotations

or queries. Words semantically aligned between the gener-

ated and the human-provided annotations are highlighted.

BLEU score calculates surface form overlaps while the retrieval-

based reward measures the semantically aligned correspondences.

These observations imply an interesting conclusion: Compared

with BLEU, a (task-oriented) semantic measuring reward, such as

our retrieval-based MRR score, can better stimulate the model to

produce detailed and useful generations. This is in line with the recent

discussions on whether the automatic BLEU score is an appropriate

evaluation metric for generation tasks or not [30, 40]. In our work,

we study the potential to use the performance of a relevant model to

guide the learning of the target model, which can be generalized to

many other scenarios, e.g., conversation generation [27], machine

translation [4, 44], etc.

RQ2: We first inspect whether the generated code annotations can

assist the base code retrieval model (i.e., DCS) or not by comparing

several ensemble CR variants. It is shown that, by simply combining

the matching scores from QN-RLMRR and DCS with a weighting

factor, our proposed model is able to significantly outperform the

DCS model by 0.01 ∼ 0.03 and the CODE-NN baseline by 0.03

Model DEV EVAL StaQC-val StaQC-test

CODE-NN [21] 17.43 16.73 8.89 8.96

MLE 18.99 19.87 10.52 10.55

RLBLEU 21.12 18.52 12.72 12.78

RLMRR 8.09 8.52 5.56 5.60

Table 3: The BLEU score of each code annotation model.

∼ 0.06 consistently across all datasets, showing the advantage of

utilizing code annotations for code retrieval. Particularly, the best

performance is achieved when the ensemble weight λ = 0.4 (i.e.,

0.4 weight on the QN-based CR score and 0.6 on the QC-based CR

score), meaning that themodel relies heavily on the code annotation

to achieve better performance.

In contrast, QN-CodeNN, QN-MLE and QN-RLBLEU can hardly

improve the base DCS model, and their best performances are all

achieved when the ensemble weight λ = 0.0 ∼ 0.2, indicating little

help from annotations generated by CODE-NN, MLE-based and

BLEU-rewarded CA. This is consistent with our conclusions to RQ1.

We also investigate the benefit of our generated annotations to

other code retrieval models (besides DCS) by examining a baseline

łQN-RLMRR + CODE-NNž, which combines QN-RLMRR and CODE-

NN (as a QC-based CR model) to score a code snippet candidate. As

mentioned in Section 5.3, CODE-NN scores a code snippet by the

likelihood of generating the given NL query when taking this code

snippet as the input. Since the score is in a different range from the

cosine similarity given by QN-RLMRR, we first rescale it by taking

its log value and dividing it by the largest absolute log score among

all code candidates. The rescaled score is then combined with the

cosine similarity score from QN-RLMRR following Eqn. (14). The

result is shown in the last row of Table 1. It is very impressive that,

with the help of QN-RLMRR, the CODE-NN model can be improved

by ≥ 0.05 absolute MRR value across all test sets.

In summary, through extensive experiments, we show that our

proposed framework can generate code annotations that are much

more useful for building effective code retrieval models, in compar-

ison with existing CA models or those trained by MLE or BLEU-

based RL. Additionally, the generated code annotations can further

improve the retrieval performance, when combined with existing

CR models like DCS and CODE-NN.

6 DISCUSSION

In this work, we propose a novel perspective of using a relevant

downstream task (i.e., code retrieval) to guide the learning of a

target task (i.e., code annotation), illustrating a novel machine-

machine collaboration paradigm. It is shown that the annotations

generated by the RLMRR CA model (trained with rewards from the

DCS model) can boost the performance of the CODE-NN model,

which was not involved in any stage of the training process. It is

interesting to explore more about machine-machine collaboration

mechanisms, where multiple models for either the same task or

relevant tasks can be utilized in tandem to provide different views

or effective rewards to improve the final performance.

In terms of training, we also experimented with directly using a

QN-based CR model or an ensemble CR model for rewarding the

CA model. However, these approaches do not work well, since we

do not have a rich set of QN pairs as training data in the beginning.

Collecting paraphrases of queries to form QN pairs is non-trivial,

which we leave to the future.

Finally, our CoaCor framework is applicable to other program-

ming languages, such as Python and C#, extension to which is

interesting to study as future work.

7 RELATED WORK

Code Retrieval. As introduced in Section 1, code retrieval has

been studied widely with information retrieval methods [14, 17,

23, 32, 56] and recent deep learning models [3, 13, 21]. Particu-

larly, Keivanloo et al. [23] extracted abstract programming patterns

and their associated NL keywords from code snippets in a code

base, with which a given NL query can be projected to a set of

associated programming patterns facilitating code content-based

search. Similarly, Vinayakarao et al. [56] built an entity discovery

system to mine NL phrases and their associated syntactic patterns,

based on which they annotated each line of code snippets with NL

phrases. Such annotations were utilized to improve NL keyword-

based search engines. Different from these work, we construct a

neural network-based code annotation model to describe the func-

tionality of an entire code snippet. Our code annotation model is

explicitly trained to produce meaningful words that can be used for

code search. In our framework, the code retrieval model adopts a

similar deep structure as the Deep Code Search model proposed by

Gu et al. [13], which projects a NL query and a code snippet into a

vector space and measures the cosine similarity between them.

Code Annotation. Code annotation/summarization has drawn a

lot of attention in recent years. Earlier works tackled the problem

using template-based approaches [37, 49] and topic n-grams models

[38] while the recent techniques [2, 19ś22, 31] are mostly built upon

deep neural networks. Specifically, Sridhara et al. [49] developed

a software word usage model to identify action, theme and other

arguments from a given code snippet, and generated code com-

ments with templates. Allamanis et al. [2] employed convolution

on the input tokens to detect local time-invariant and long-range

topical attention features to summarize a code snippet into a short,

descriptive function name-like summary. Most related to our work

are [19] and [58], which utilized sequence-to-sequence networks

with attention over code tokens to generate natural language anno-

tations. They aimed to generate NL annotations as close as possible

to human-provided annotations for human readability, and hence

adopted the Maximum Likelihood Estimation (MLE) or BLEU score

optimization as the objective. However, our goal is to generate code

annotations which can be used for code retrieval, and therefore we

design a retrieval-based reward to drive our training.

Deep Reinforcement Learning for Sequence Generation. Re-

inforcement learning (RL) [53] has shown great success in various

tasks where an agent has to perform multiple actions before ob-

taining a reward or when the metric to optimize is not differen-

tiable. The sequence generation tasks, such as machine translation

[4, 39, 44], image captioning [45], dialogue generation [27] and

text summarization [43], have all benefitted from RL to address the

exposure bias issue [4, 44, 45] and to directly optimize the model

towards a certain metric (e.g., BLEU). Particularly, Ranzato et al.

[44] were among the first to successfully apply the REINFORCE

algorithm [62] to train RNNmodels for several sequence generation

tasks, indicating that directly optimizing the metric used at test time

can lead to significantly better models than those trained via MLE.

Bahdanau et al. [4] additionally learned a critic network to better

estimate the return (i.e., future rewards) of taking a certain action

under a specific state, and trained the entire generation model via

the Actor-Critic algorithm [54]. We follow Nguyen et al. [39] and

Wan et al. [58] to further introduce an advantage function and train

the code annotation model via the Advantage Actor-Critic algo-

rithm [36], which is helpful for reducing biases from rarely taken

actions. However, unlike their work, the reward in our framework

is based on the performance on a different yet relevant task (i.e.,

code retrieval), rather than the BLEU metric.

Machine-Machine Collaboration via Adversarial Training

and Dual/Joint Learning. Various kinds of machine-machine

collaboration mechanisms have been studied in many scenarios

[12, 15, 28, 55, 59]. For example, Goodfellow et al. [12] proposed the

Generative Adversarial Nets (GANs) framework, where a genera-

tive model generates images to fool a discriminative classifier, and

the latter is further improved to distinguish the generated from the

real ones. He et al. [15] proposed the dual learning framework and

jointly optimized the machine translation from English to French

and from French to English. Li et al. [29] trained a paraphrase gener-

ator by rewards from a paraphrase evaluator model. In the context

of code retrieval and annotation, Chen and Zhou [9] and Iyer et al.

[21] showed that their models can be used directly or with slight

modification for both tasks, but their training objective only con-

sidered one of the two tasks. All these frameworks are not directly

applicable to achieve our goal, i.e., training a code annotation model

to generate rich NL annotations that can be used for code search.

8 CONCLUSION

This paper explored a novel perspective of generating code anno-

tations for code retrieval. To this end, we proposed a reinforce-

ment learning-based framework (named łCoaCorž) to maximize a

retrieval-based reward. Through comprehensive experiments, we

demonstrated that the annotation generated by our framework is

more detailed to represent the semantic meaning of a code snippet.

Such annotations can also improve the existing code content-based

retrieval models significantly. In the future, we will explore other

usages of the generated code annotations, as well as generalizing

our framework to other tasks such as machine translation.

ACKNOWLEDGMENTS

This research was sponsored in part by the Army Research Of-

fice under cooperative agreements W911NF-17-1-0412, NSF Grant

IIS1815674, Fujitsu gift grant, and Ohio Supercomputer Center [8].

The views and conclusions contained herein are those of the authors

and should not be interpreted as representing the official policies,

either expressed or implied, of the Army Research Office or the U.S.

Government. The U.S. Government is authorized to reproduce and

distribute reprints for Government purposes notwithstanding any

copyright notice herein.

REFERENCES
[1] Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles Sutton. 2018.

A survey of machine learning for big code and naturalness. ACM Computing
Surveys (CSUR) 51, 4 (2018), 81.

[2] Miltiadis Allamanis, Hao Peng, and Charles Sutton. 2016. A convolutional at-
tention network for extreme summarization of source code. In International
Conference on Machine Learning. 2091ś2100.

[3] Miltos Allamanis, Daniel Tarlow, Andrew Gordon, and Yi Wei. 2015. Bimodal
modelling of source code and natural language. In International Conference on
Machine Learning. 2123ś2132.

[4] Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu, Anirudh Goyal, Ryan Lowe,
Joelle Pineau, AaronCourville, and Yoshua Bengio. 2016. An actor-critic algorithm
for sequence prediction. arXiv preprint arXiv:1607.07086 (2016).

[5] Richard Bellman. 1957. A Markovian decision process. Journal of Mathematics
and Mechanics (1957), 679ś684.

[6] Ted J Biggerstaff, Bharat G Mitbander, and Dallas E Webster. 1994. Program
understanding and the concept assignment problem. Commun. ACM 37, 5 (1994),
72ś82.

[7] Steven Bird and Edward Loper. 2004. NLTK: the natural language toolkit. In
Proceedings of the ACL 2004 on Interactive poster and demonstration sessions.
Association for Computational Linguistics, 31.

[8] Ohio Supercomputer Center. 1987. Ohio Supercomputer Center. http://osc.edu/
ark:/19495/f5s1ph73.

[9] Qingying Chen and Minghui Zhou. 2018. A neural framework for retrieval and
summarization of source code. In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering. ACM, 826ś831.

[10] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. 1999. Learning to forget:
Continual prediction with LSTM. (1999).

[11] Christoph Goller and Andreas Kuchler. 1996. Learning task-dependent distributed
representations by backpropagation through structure. In Neural Networks, 1996.,
IEEE International Conference on, Vol. 1. IEEE, 347ś352.

[12] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. In Advances in neural information processing systems. 2672ś2680.

[13] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018. Deep code search. In
Proceedings of the 40th International Conference on Software Engineering. ACM,
933ś944.

[14] Sonia Haiduc, Gabriele Bavota, Andrian Marcus, Rocco Oliveto, Andrea De Lucia,
and Tim Menzies. 2013. Automatic query reformulations for text retrieval in
software engineering. In Proceedings of the 2013 International Conference on
Software Engineering. IEEE Press, 842ś851.

[15] Di He, Yingce Xia, Tao Qin, Liwei Wang, Nenghai Yu, Tieyan Liu, and Wei-
Ying Ma. 2016. Dual learning for machine translation. In Advances in Neural
Information Processing Systems. 820ś828.

[16] Hua He and Jimmy Lin. 2016. Pairwise word interaction modeling with deep
neural networks for semantic similarity measurement. In Proceedings of the 2016
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies. 937ś948.

[17] Emily Hill, Manuel Roldan-Vega, Jerry Alan Fails, and Greg Mallet. 2014. NL-
based query refinement and contextualized code search results: A user study.
In Software Maintenance, Reengineering and Reverse Engineering (CSMR-WCRE),
2014 Software Evolution Week-IEEE Conference on. IEEE, 34ś43.

[18] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735ś1780.

[19] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Deep Code Comment
Generation. In Proceedings of the 2017 26th IEEE/ACM International Conference on
Program Comprehension. ACM.

[20] Xing Hu, Ge Li, Xin Xia, David Lo, Shuai Lu, and Zhi Jin. 2018. Summarizing
Source Code with Transferred API Knowledge. In Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelligence, IJCAI-18. Inter-
national Joint Conferences on Artificial Intelligence Organization, 2269ś2275.
https://doi.org/10.24963/ijcai.2018/314

[21] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2016.
Summarizing source code using a neural attention model. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), Vol. 1. 2073ś2083.

[22] Siyuan Jiang, Ameer Armaly, and Collin McMillan. 2017. Automatically generat-
ing commit messages from diffs using neural machine translation. In Proceedings
of the 32nd IEEE/ACM International Conference on Automated Software Engineering.
IEEE Press, 135ś146.

[23] Iman Keivanloo, Juergen Rilling, and Ying Zou. 2014. Spotting working code ex-
amples. In Proceedings of the 36th International Conference on Software Engineering.
ACM, 664ś675.

[24] Yoon Kim. 2014. Convolutional neural networks for sentence classification. arXiv
preprint arXiv:1408.5882 (2014).

[25] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[26] Wuwei Lan and Wei Xu. 2018. Neural Network Models for Paraphrase Identifi-
cation, Semantic Textual Similarity, Natural Language Inference, and Question
Answering. arXiv preprint arXiv:1806.04330 (2018).

[27] Jiwei Li, Will Monroe, Alan Ritter, Michel Galley, Jianfeng Gao, and Dan Jurafsky.
2016. Deep reinforcement learning for dialogue generation. arXiv preprint
arXiv:1606.01541 (2016).

[28] Yikang Li, Nan Duan, Bolei Zhou, Xiao Chu, Wanli Ouyang, Xiaogang Wang,
and Ming Zhou. 2018. Visual question generation as dual task of visual question
answering. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 6116ś6124.

[29] Zichao Li, Xin Jiang, Lifeng Shang, and Hang Li. 2018. Paraphrase Generation
with Deep Reinforcement Learning. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing. Association for Computational
Linguistics, 3865ś3878.

[30] Chia-Wei Liu, Ryan Lowe, Iulian V Serban, Michael Noseworthy, Laurent Charlin,
and Joelle Pineau. 2016. How not to evaluate your dialogue system: An empirical
study of unsupervised evaluation metrics for dialogue response generation. arXiv
preprint arXiv:1603.08023 (2016).

[31] Pablo Loyola, Edison Marrese-Taylor, and Yutaka Matsuo. 2017. A neural archi-
tecture for generating natural language descriptions from source code changes.
arXiv preprint arXiv:1704.04856 (2017).

[32] Meili Lu, Xiaobing Sun, Shaowei Wang, David Lo, and Yucong Duan. 2015. Query
expansion via wordnet for effective code search. In Software Analysis, Evolution
and Reengineering (SANER), 2015 IEEE 22nd International Conference on. IEEE,
545ś549.

[33] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. 2015. Effec-
tive approaches to attention-based neural machine translation. arXiv preprint
arXiv:1508.04025 (2015).

[34] Collin McMillan, Mark Grechanik, Denys Poshyvanyk, Chen Fu, and Qing Xie.
2012. Exemplar: A source code search engine for finding highly relevant applica-
tions. IEEE Transactions on Software Engineering 38, 5 (2012), 1069ś1087.

[35] Larry Medsker and Lakhmi C Jain. 1999. Recurrent neural networks: design and
applications. CRC press.

[36] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Tim-
othy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asyn-
chronous methods for deep reinforcement learning. In International conference
on machine learning. 1928ś1937.

[37] Laura Moreno, Jairo Aponte, Giriprasad Sridhara, Andrian Marcus, Lori Pollock,
and K Vijay-Shanker. 2013. Automatic generation of natural language summaries
for java classes. In Program Comprehension (ICPC), 2013 IEEE 21st International
Conference on. IEEE, 23ś32.

[38] Dana Movshovitz-Attias and William W Cohen. 2013. Natural language models
for predicting programming comments. In Proceedings of the 51st Annual Meeting
of the Association for Computational Linguistics (Volume 2: Short Papers), Vol. 2.
35ś40.

[39] Khanh Nguyen, Hal Daumé III, and Jordan Boyd-Graber. 2017. Reinforcement
Learning for Bandit NeuralMachine Translationwith SimulatedHuman Feedback.
In Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing. 1464ś1474.

[40] Jekaterina Novikova, Ondřej Dušek, Amanda Cercas Curry, and Verena Rieser.
2017. Why we need new evaluation metrics for nlg. arXiv preprint
arXiv:1707.06875 (2017).

[41] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: a
method for automatic evaluation of machine translation. In Proceedings of the
40th annual meeting on association for computational linguistics. Association for
Computational Linguistics, 311ś318.

[42] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in PyTorch. (2017).

[43] Romain Paulus, Caiming Xiong, and Richard Socher. 2017. A deep reinforced
model for abstractive summarization. arXiv preprint arXiv:1705.04304 (2017).

[44] Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba.
2015. Sequence level training with recurrent neural networks. arXiv preprint
arXiv:1511.06732 (2015).

[45] Steven J Rennie, Etienne Marcheret, Youssef Mroueh, Jarret Ross, and Vaibhava
Goel. 2017. Self-critical sequence training for image captioning. In CVPR, Vol. 1.
3.

[46] Lorenzo Rosasco, Ernesto De Vito, Andrea Caponnetto, Michele Piana, and
Alessandro Verri. 2004. Are loss functions all the same? Neural Computation 16,
5 (2004), 1063ś1076.

[47] Falk Scholer, Hugh E Williams, and Andrew Turpin. 2004. Query association
surrogates for web search. Journal of the American Society for Information Science
and Technology 55, 7 (2004), 637ś650.

[48] Mike Schuster and Kuldip K Paliwal. 1997. Bidirectional recurrent neural net-
works. IEEE Transactions on Signal Processing 45, 11 (1997), 2673ś2681.

[49] Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori Pollock, and K Vijay-
Shanker. 2010. Towards automatically generating summary comments for java
methods. In Proceedings of the IEEE/ACM international conference on Automated

software engineering. ACM, 43ś52.
[50] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. 2014. Dropout: A simple way to prevent neural networks from
overfitting. The Journal of Machine Learning Research 15, 1 (2014), 1929ś1958.

[51] Stack Overflow. 2018. Stack Overflow. https://stackoverflow.com/.
[52] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning

with neural networks. In Advances in neural information processing systems. 3104ś
3112.

[53] Richard S Sutton and AndrewG Barto. 1998. Introduction to reinforcement learning.
Vol. 135. MIT press Cambridge.

[54] Richard S Sutton, David AMcAllester, Satinder P Singh, and YishayMansour. 2000.
Policy gradient methods for reinforcement learning with function approximation.
In Advances in neural information processing systems. 1057ś1063.

[55] Duyu Tang, Nan Duan, Tao Qin, Zhao Yan, and Ming Zhou. 2017. Question
answering and question generation as dual tasks. arXiv preprint arXiv:1706.02027
(2017).

[56] Venkatesh Vinayakarao, Anita Sarma, Rahul Purandare, Shuktika Jain, and
Saumya Jain. 2017. ANNE: Improving Source Code Search Using Entity Re-
trieval Approach. In Proceedings of the Tenth ACM International Conference on
Web Search and Data Mining (WSDM ’17). ACM, New York, NY, USA, 211ś220.
https://doi.org/10.1145/3018661.3018691

[57] Ellen M Voorhees et al. 1999. The TREC-8 Question Answering Track Report.. In
Trec, Vol. 99. 77ś82.

[58] Yao Wan, Zhou Zhao, Min Yang, Guandong Xu, Haochao Ying, Jian Wu, and
Philip S Yu. 2018. Improving automatic source code summarization via deep rein-
forcement learning. In Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering. ACM, 397ś407.

[59] Jun Wang, Lantao Yu, Weinan Zhang, Yu Gong, Yinghui Xu, Benyou Wang, Peng
Zhang, and Dell Zhang. 2017. Irgan: A minimax game for unifying generative
and discriminative information retrieval models. In Proceedings of the 40th In-
ternational ACM SIGIR conference on Research and Development in Information
Retrieval. ACM, 515ś524.

[60] Xiaoran Wang, Yifan Peng, and Benwen Zhang. 2018. Comment Generation
for Source Code: State of the Art, Challenges and Opportunities. arXiv preprint
arXiv:1802.02971 (2018).

[61] Wikipedia contributors. 2019. Google Image Labeler ÐWikipedia, The Free Ency-
clopedia. https://en.wikipedia.org/w/index.php?title=Google_Image_Labeler&
oldid=881738511 [Online; accessed 4-February-2019].

[62] Ronald J Williams. 1992. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine learning 8, 3-4 (1992), 229ś256.

[63] Ziyu Yao, Daniel S Weld, Wei-Peng Chen, and Huan Sun. 2018. StaQC: A Sys-
tematically Mined Question-Code Dataset from Stack Overflow. In Proceedings of
the 2018 World Wide Web Conference on World Wide Web. International World
Wide Web Conferences Steering Committee, 1693ś1703.

[64] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. 2014. Recurrent neural
network regularization. arXiv preprint arXiv:1409.2329 (2014).

