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Abstract
We study the A-optimal design problem where we are given
vectors v1,...,v, € R%, an integer k > d, and the goal is

to select a set S of k vectors that minimizes the trace of
(Ciesvivi') ~!. Traditionally, the problem is an instance of
optimal design of experiments in statistics [35] where each
vector corresponds to a linear measurement of an unknown
vector and the goal is to pick k of them that minimize the
average variance of the error in the maximum likelihood esti-
mate of the vector being measured. The problem also finds
applications in sensor placement in wireless networks [22],
sparse least squares regression [8], feature selection for k-
means clustering [9], and matrix approximation [13, 14, 5].
In this paper, we introduce proportional volume sampling
to obtain improved approximation algorithms for A-optimal
design.

Given a matrix, proportional volume sampling involves
picking a set of columns S of size k with probability pro-
portional to u(S) times det(}_,, g viv; ) for some measure
. Our main result is to show the approximability of the A-
optimal design problem can be reduced to approrimate inde-
pendence properties of the measure p. We appeal to hard-
core distributions as candidate distributions p that allow
us to obtain improved approximation algorithms for the A-
optimal design. Our results include a d-approximation when
k =d, an (1 + €)-approximation when k = Q (£ + % log 1)
and ﬁ—approxjmation when repetitions of vectors are al-
lowed in the solution. We also consider generalization of the
problem for k < d and obtain a k-approximation.

We also show that the proportional volume sampling
algorithm gives approximation algorithms for other optimal
design objectives (such as D-optimal design [36] and gen-
eralized ratio objective [27]) matching or improving previ-
ous best known results. Interestingly, we show that a sim-
ilar guarantee cannot be obtained for the E-optimal design
problem. We also show that the A-optimal design problem is
NP-hard to approximate within a fixed constant when k = d.
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1 Introduction

Given a collection of vectors, a common problem is to
select a subset of size k < n that represents the given
vectors. To quantify the representability of the chosen
set, typically one considers spectral properties of certain
natural matrices defined by the vectors. Such problems
arise as experimental design [18, 35] in statistics; feature
selection [9] and sensor placement problems [22] in
machine learning; matrix sparsification [6, 38] and
column subset selection [5] in numerical linear algebra.
In this work, we consider the optimization problem of
choosing the representative subset that aims to optimize
the A-optimality criterion in experimental design.

Experimental design is a classical problem in statis-
ties [35] with recent applications in machine learn-
ing [22, 43]. Here the goal is to estimate an unknown
vector w € R? via linear measurements of the form
Yi = U;'— w + 1; Where v; are possible experiments and
7); is assumed to be small i.i.d. unbiased Gaussian error
introduced in the measurement. Given a set S of lin-
ear measurements, the maximum likelihood estimate
of w can be obtained via a least squares computation.
The error vector w — has a Gaussian distribution with
mean 0 and covariance matrix (3,.gv:v; ) . In the
optimal experimental design problem the goal is to pick
a cardinality k set S out of the n vectors such that the
measurement error is minimized. Minimality is mea-
sured according to different criteria, which quantify the
“size” of the covariance matrix. In this paper, we study
the classical A-optimality criterion, which aims to min-
imize the average variance over directions, or equiva-
lently the trace of the covariance matrix, which is also
the expectation of the squared Euclidean norm of the
error vector w — 1.

We let V denote the d x n matrix whose columns
are the vectors vy, ...,v, and [n] = {1,...,n}. For any
set S C [n], we let Vg denote the d x |S| submatrix of
V' whose columns correspond to vectors indexed by S.
Formally, in the A-optimal design problem our aim is
to find a subset S of cardinality & that minimizes the

trace of (VsVg ) ™' = (X,eqviv; )_1. We also consider
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the A-optimal design problem with repetitions, where
the chosen S can be a multi-set, thus allowing a vector
to chosen more than once.

Apart from experimental design, the above formula-
tion finds application in other areas such as sensor place-
ment in wireless networks [22], sparse least squares re-
gression [8], feature selection for k-means clustering [9],
and matrix approximation [5]. For example, in matrix
approximation [13, 14, 5] given a d x n matrix V, one
aims to select a set S of k such that the Frobenius norm
of the Moore-Penrose pseudoinverse of the selected ma-
trix Vg is minimized. It is easy to observe that this
objective equals the A-optimality criterion for the vec-
tors given by the columns of V.

1.1 Owur Contributions and Results Our main
contribution is to introduce the preportional volume
sampling class of probability measures to obtain im-
proved approximation algorithms for the A-optimal de-
sign problem. We obtain improved algorithms for the
problem with and without repetitions in regimes where
k is close to d as well as in the asymptotic regime where
k > d. Let Uy denote the collection of subsets of [n] of
size exactly k£ and U<y denote the subsets of [n] of size
at most k. We will consider distributions on sets in Uy
as well as U<y and state the following definition more
generally.

DEeFINITION 1.1. Let p be probability measure on sets
in Uy (or U<y ). Then the proportional volume sampling
with measure p picks a set S € Uy (or U<k) with
probability proportional to p(S) det(VsVy ).

Observe that when p is the uniform distribution and
k < d then we obtain the standard volume sampling [17]
where one picks a set S proportional to det(VsVy ),
or, equivalently, to the volume of the parallelopiped
spanned by the vectors indexed by S. The volume
sampling measure has received much attention and
efficient algorithms are known for sampling from it [17,
21]. More recently, efficient algorithms were obtained
even when k > d [26, 36]. We discuss the computational
issues of sampling from proportional volume sampling
in Lemma 1.1 and Section 6.2.

Our first result shows that approximating the A-
optimal design problem can be reduced to finding dis-
tributions on U;, (or U<y) that are approzimately in-
dependent. First, we define the exact formulation of
approximate independence needed in our setting.

DEFINITION 1.2. Given integers d < k < n and a
vector x € [0,1]™ such that 1Tz = k, we call a measure
[ on sets in U (or U<r), a-approzimate (d — 1,d)-
wise independent with respect to x if for any subsets
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T,R C [n] with [T| =d—1 and |R| = d, we have

Prs~u[T C 8] _ amT
Prs~u[RCS] — =zF

where =¥ = [[,., x; for any L C [n]. We omit “with
respect to x” when the context is clear.

Observe that if the measure p corresponds to picking
each element 7 independently with probability z;, then
% = %; However, this distribution has
Support_on all sets and not just sets in Uy, or U<y, so it
is not allowed by the definition above.

Our first result reduces the search for approxima-
tion algorithms for A-optimal design to construction of
approximate (d — 1,d)-wise independent distributions.
This result generalizes the connection between volume
sampling and A-optimal design established in [5] to pro-
portional volume sampling, which allows us to exploit
the power of the convex relaxation and get a signifi-
cantly improved approximation.

THEOREM 1.1. Given integers d < k < n, suppose
that for any a vector x € [0,1]" such that 1Tz = k
there erxists a distribution p on sets in Uy (or U<y)
that is a-approzimate (d—1,d)-wise independent. Then
the proportional volume sampling with measure | gives
an a-approrimation algorithm for the A-optimal design
problem.

In the above theorem, we in fact only need an ap-
proximately independent distribution g for the opti-
mal solution = of the natural convex relaxation for the
problem, which is given in (2.1)—(2.3). The result also
bounds the integrality gap of the convex relaxation by
a. Theorem 1.1 is proved in Section 2.

Theorem 1.1 reduces our aim to constructing distri-
butions that have approximate (d — 1, d)-independence.
We focus our attention on the general class of hard-core
distributions. We call p a hard-core distribution with
parameter A € R7 if p(S) oc AS := [I;cs Ai for each set
in Uy, (or U<k). Convex duality implies that hard-core
distributions have the maximum entropy among all dis-
tributions which match the marginals of p [10]. Observe
that, while g places non-zero probability on exponen-
tially many sets, it is enough to specify p succinctly by
describing A. Hard-core distributions over various struc-
tures including spanning trees [20] or matchings [23, 24]
in a graph display approrimate independence and this
has found use in combinatorics as well as algorithm de-
sign. Following this theme, we show that certain hard
core distributions on Uy and U< exhibit approximate
(d — 1, d)-independence when k = d and in the asymp-
totic regime when k >> d.
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THEOREM 1.2. Given integers d < k < n and a vector
r € [0,1]" such that 1Tz = k, there erists a hard-
core distribution p on sets in Uy that is d-approrimate
(d — 1,d)-wise independent when k = d. Moreover,
for any € > 0, if k = Q(2+ Llogl), then there
is a hard-core distribution p on U<y that is (1 + €)-
approrimate (d—1, d)-wise independent. Thus we obtain
a d-approrimation algorithm for the A-optimal design
problem when k = d and (1+€)-approrimation algorithm
whenk:Q(g—l—fglog%).

The above theorem relies on two natural hard-core
distributions. In the first one, we consider the hard-core
distribution with parameter A = x on sets in U and in
the second we consider the hard-core distribution with
parameter A = % (defined co-ordinate wise) on
sets in U<y We prove the theorem in Section 3.

Our techniques also apply to the A-optimal design
problem with repetitions where we obtain an even
stronger result, described below. The main idea is to
introduce multiple, possibly exponentially many, copies
of each vector, depending on the fractional solution, and
then apply proportional volume sampling to obtain the
following result.

THEOREM 1.3. Forallk > d and 0 < € <1, there is a
(,‘“‘_L{H1 + €)-approximation algorithm for the A-optimal
design problem with repetitions. In particular, there is
a (1 + €)-approzimation when k > d + <.

We remark that the integrality gap of the natural
convex relaxation is at least k_LdH (see Section 7.2)
and thus the above theorem results in an exact charac-
terization of the integrality gap of the convex program
(2.1)—(2.3), stated in the following corollary. The proof
of Theorem 1.3 appears in Section 6.3.

COROLLARY 1.1. For any integers k > d, the integral-
ity gap of the convex program (2.1)—(2.3) for the A-
optimal design with repetitions is exactly —dii-

We also show that A-optimal design is NP-hard for
k = d and moreover, hard to approximate within a
constant factor.

THEOREM 1.4. There erists a constant ¢ > 1 such
that the A-optimal design problem is NP-hard to c-
approrimate when k = d.

The k < d case. The A-optimal design problem
has a natural extension to choosing fewer than d vectors:
our objective in this case is to select a set S C [n] of
size k so that we minimize Zi.“:l A;l, where A, ..., A
are the k largest eigenvalues of the matrix VSV; .
‘While this problem no longer corresponds to minimizing
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the variance in an experimental design setting, we
will abuse terminology and still call it the A-optimal
design problem. This is a natural formulation of the
geometric problem of picking a set of vectors which
are as “spread out” as possible. If vy,...,v, are the
points in a dataset, we can see an optimal solution as a
maximally diverse representative sample of the dataset.
Similar problems, but with a determinant objective,
have been widely studied in computational geometry,
linear algebra, and machine learning: for example the
largest volume simplex problem, and the maximum
subdeterminant problem (see [29] for references to prior
work). [12] also studied an analogous problem with the
sum in the objective replaced by a maximum (which
extends E-optimal design).

While our rounding extends easily to the k¥ < d
regime, coming up with a convex relaxation becomes
less trivial. We do find such a relaxation and obtain the
following result whose proof appears in Section 5.1.

THEOREM 1.5. There erxists a poly(d,n)-time k-
approrimation algorithm for the A-optimal design
problem when k < d.

General Objectives. Experimental design prob-
lems come with many different objectives including A,
D, E, G, T, V, each corresponding to a different func-
tion of the covariance matrix of the error w—w. We note
that any algorithm that solves A-optimal objective can
solve V-optimal objective by prepossessing vectors with
a linear transformation. In addition, we show that the
proportional volume sampling algorithm gives approx-
imation algorithms for other optimal design objectives
(such as D-optimal design [36] and generalized ratio ob-
jective [27]) matching or improving previous best known
results. We refer the reader to Section 5.3 for details.

Integrality Gap and E-optimality. Given the
results mentioned above, a natural question is whether
all objectives for optimal design behave similarly in
terms of approximation algorithms. Indeed, recent
results of [2, 1] and [43] give the (1 + €)-approximation
algorithm in the asymptotic regime, &k > 2 (Edg') and

E>Q (%), for many of these variants. In contrast,

we show the optimal bounds that can be obtained via
the standard convex relaxation are different for different
objectives. We show that for the E-optimality criterion
(in which we minimize the largest eigenvalue of the
covariance matrix) getting a (1+ €)-approximation with
the natural convex relaxation requires k = Q(%), both
with and without repetitions. This is in sharp contrast
to results we obtain here for A, D-optimality and other
generalized ratio objectives. Thus, different criteria
behave differently in terms of approximability. Our
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proof of the integrality gap (in Section 7.1) builds on
a connection to spectral graph theory and in particular
on the Alon-Boppana bound [3, 34]. We prove an Alon-
Boppana style bound for the unnormalized Laplacian
of not necessarily regular graphs with a given average
degree.

Restricted Invertibility Principle for Har-
monic Mean. As an application of Theorem 1.5, we
prove a restricted invertibility principle (RIP) [7] for
the harmonic mean of singular values. The RIP is a
robust version of the elementary fact in linear algebra
that if V is a d x n rank r matrix, then it has an in-
vertible submatrix Vg for some S C [n] of size r. The
RIP shows that if V' has stable rank r, then it has a
well-invertible submatrix consisting of Q(r) columns.
Here the stable rank of V is the ratio (|[V|%s/IV?),
where || - |gs = /tr(VV'T) is the Hilbert-Schmidt, or
Frobenius, norm of V, and | - || is the operator norm.
The classical restricted invertibility principle [7, 42, 37]
shows that when the stable rank of V' is r, then there
exists a subset of its columns S of size k = Q(r) so that
the k-th singular value of Vg is Q(||V||as//m). [29]
showed there exists a submatrix Vs of k columns of V'
so that the geometric mean its top k singular values is
on the same order, even when k equals the stable rank.
We show an analogous result for the harmonic mean
when k is slightly less than r. While this is implied
by the classical restricted invertibility principle, the de-
pendence on parameters is better in our result for the
harmonic mean. For example, when k = (1 — €)r, the
harmonic mean of squared singular values of Vg can be
made at least Q (¢|V'||%g/m), while the tight restricted
invertibility principle of Spielman and Srivastava [38]
would only give €2 in the place of €. This restricted in-
vertibility principle can also be derived from the results
of [28], but their arguments, unlike ours, do not give an
efficient algorithm to compute the submatrix Vg. See
Section 5.2 for the precise formulation of our restricted
invertibility principle.

Computational Issues. While it is not clear
whether sampling from proportional volume sampling is
possible under general assumptions (for example given
a sampling oracle for ), we obtain an efficient sampling
algorithm when g is a hard-core distribution.

LEmMMA 1.1. There exists a poly(d,n)-time algorithm
that, given a matriz d x n matriz V, integer k < n,
and a hard-core distribution p on sets in Uy, (or U<y)
with parameter X, efficiently samples a set from the
proportional volume measure defined by p.

When k£ < d and p is a hard-core distribution, the pro-
portional volume sampling can be implemented by the
standard volume sampling after scaling the vectors ap-
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propriately. When k& > d, such a method does not suffice
and we appeal to properties of hard-core distributions
to obtain the result. We also present an efficient im-
plementation of Theorem 1.3 which runs in time poly-
nomial in log(1/¢). This requires more work since the
basic description of the algorithm involves implementing
proportional volume sampling on an exponentially-sized
ground set. This is done in Section 6.3.

We also outline efficient deterministic implementa-
tion of algorithms in Theorem 1.2 and 1.3 in Section 6.2
and 6.4.

1.2 Related Work Experimental design is the prob-
lem of maximizing information obtained from selecting
subsets of experiments to perform, which is equivalent
to minimizing the covariance matrix (3, gviv; )_1.
We focus on A-optimality, one of the criteria that has
been studied intensely. We restrict our attention to ap-
proximation algorithms for these problems and refer the
reader to [35] for a broad survey on experimental design.

[5] studied the A- and F-optimal design problems
and analyzed various combinatorial algorithms and al-
gorithms based on volume sampling, and achieved ap-
proximation ratio 2%{‘31’—{. [43] found connections be-
tween optimal design and matrix sparsification, and
used these connections to obtain a (1+¢)-approximation

when &k > %, and also approximation algorithms under
certain technical assumptions. More recently, [2, 1] ob-
tained a (1 + €)-approximation when k = Q (%) both
with and without repetitions. We remark that their
result also applies to other criteria such as F and D-
optimality that aim to maximize the minimum eigen-
value, and the geometric mean of the eigenvalues of
ZieS ’Ugb‘;r , Tespectively. More generally, their result
applies to any objective function that satisfies certain
regularity criteria.

Improved bounds for D-optimality were obtained
by [36] who give an e-approximation for all k£ and d,
and (1 + €)-approximation algorithm when k = Q(% +
fglog%), with a weaker condition of k& > QTd if repe-
titions are allowed. The D-optimality criterion when
k < d has also been extensively studied. It captures
maximum a-posteriori inference in constrained determi-
nantal point process models [25], and also the maximum
volume simplex problem. [29], improving on a long line
of work, gave a e-approximation. The problem has also
been studied under more general matroid constraints
rather than cardinality constraints [30, 4, 40].

[12] also studied several related problems in the
k < d regime, including D- and F-optimality. We are
not aware of any prior work on A-optimality in this
regime.

The criterion of E-optimality, whose objective is
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to maximize the minimum eigenvalue of 3, g viv]', is
closely related to the problem of matrix sparsification [6,
38] but incomparable. In matrix sparsification, we are
allowed to weigh the selected vectors, but need to bound
both the largest and the smallest eigenvalue of the
matrix we output.

The restricted invertibility principle was first proved
in the work of [7], and was later strengthened by [42],
[37], and [28]. Spielman and Srivastava gave a deter-
ministic algorithm to find the well-invertible submatrix
whose existence is guaranteed by the theorem. Be-
sides its numerous applications in geometry (see [42] and
[44]), the principle has also found applications to differ-
ential privacy [33], and to approximation algorithms for
discrepancy [32].

Volume sampling where a set S is sampled with
probability proportional to det(VgVy ) has been studied
extensively and efficient algorithms were given by [17]
and improved by [21]. The probability distribution
is also called a determinantal point process (DPP)
and finds many applications in machine learning [25].
Recently, fast algorithms for volume sampling have been
considered in [15, 16].

While NP-hardness is known for the D- and E-
optimality criteria [12], to the best of our knowledge
no NP-hardness for A-optimality was known prior to
our work. Proving such a hardness result was stated as
an open problem in [5].

2 Approximation via Near Independent
Distributions

In this section, we prove Theorem 1.1 and give an
a-approximation algorithm for the A-optimal design
problem given an a-approximate (d — 1, d)-independent
distribution p.

We first consider the convex relaxation for the
problem given below for the settings without and with
repetitions. This relaxation is classical, and already
appears in, e.g. [11]. It is easy to see that the objective
tr (X0, miviv, ) ~! is convex ([10], section 7.5). For this
section, we focus on the case when repetitions are not
allowed. The relaxation when repetitions are allowed is
by replacing constraints 0 < x; <1 by 0 < x;.

n -1
(2.1) min tr (Z iI!iU,;’U;r)
i=1

(2.2) st. Y zi=k
i=1
(2.3) 0<z; <1 Vie]n]

Let us denote the optimal value of (2.1)—(2.3) by
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CP. By plugging in the indicator vector of an optimal
integral solution for x, we see that CP < OPT, where
OPT denotes the value of the optimal solution.

2.1 Approximately Independent Distributions
Let us use the notation z°% = H@e g Ti, Vs a matrix of
column vectors v; € R? for i € S, and Vs(z) a matrix of
column vectors /Z;v; € R fori € S. Let ex(T1,...,Tn)
be the degree k elementary symmetric polynomial in the
variables T1,...,Zn, le. €r(T1,...,Zn) = Dogey, z5.
By convention, eg(z) = 1 for any z. For any positive
semidefinite n x n matrix M, we define E(M) to be
ex(A1,.-.,An), where A(M) = (Aq,...,An) is the vector
of eigenvalues of M. Notice that E,(M) = tr(M) and
E,.(M) =det(M).

To prove Theorem 1.1, we give Algorithm 1 which is
a general framework to sample S to solve the A-optimal
design problem.

Algorithm 1 The proportional volume sampling algo-
rithm

1: Given an input V = [vy,...,v,] where v; € R, k
a positive integer, and measure p on sets in Uy, (or
u<k).

2: Solve convex relaxation CP to get a fractional solu-
tion z € RY with -7 | =; = k.

3: Sample set S (from U<y, or Uy) where Pr[S = 5]
1(S) det(VsVy') for any S € Uy, (or U<y). > p(S)
may be defined using the solution =

4: Output S (If |S| < k, add k — |S| arbitrary vectors
to S first).

We first prove the following lemma which is needed
for proving Theorem 1.1.

LemMA 2.1. Let T C [n] be of size no more than d.
Then

det(Vy (z) Vi (z)) = 27 det(Vy Vi)

The proof is presented in the full version of the paper
[31].

We also need the following identity, which is well-
known and extends the Cauchy-Binet formula for the
determinant to the functions Ep.

(24)  E(VVT)=E(VTV) =" det(VJ Vs).
Seldy,

The identity (2.4) appeared in [27] and, specifically for

k=d—1, as Lemma 3.8 in [5]. Now we are ready to

prove Theorem 1.1.

Proof of Theorem 1.1: Let p’ denote the sam-
pling distribution over U, where U = U or Uy,

Co ﬂright © 2019 by SIAM
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with probability of sampling S € U proportional
-1

to u(S)det(VsVg ). Because tr (Z@e[n] :I:iv,;fu;r) =

CP < OPT, it is enough to show that

(2.5)

-1
T T
SEIN tr (Z v, ) < atr Z T;U;0;

ieS ig[n]

-1

Note that in case |S| < k, algorithm A adds k — |S]
arbitrary vector to &, which can only decrease the
objective value of the solution.

First, a simple but important observation ([5]): for
any d x d matrix M of rank d, we have
(2.6)

G 1 eai(AM)  Eaa(M)
trM :?Z:;A@(M): caOM) . detM

Therefore, we have

-1
«SE}M tr ( Vil )

ieES
=Y Pris=s]tr (VsVd) ™
Seud
p(S)det (VsVy')  Eis1(VsVy)
& > grew 1(S) det(Vs: V) det (VsVy )

_ ng,f ﬁ(S)Ed—l(VSVST)
ZSeu p(S) dEt(VSVST) )

We can now apply the Cauchy-Binet formula (2.4) for
E;_,, E4 = det, and the matrix Vg VST to the numerator
and denominator on the right hand side, and we get

—1
)

ics
_ 2seu 2orj=a—1,7cs M(S) det(VA Vr)
B > scu B(S) Z|R|:d?Rgs det(VgVR)
. Z|T|=d—1,Tg[n] det (V7 Vr) > seu,sor MS)
a > Rj=d,rci) det (VR VR) Xseu,sor #(S)
S it riay det (Vi V) PrS 21
Y |R—d.ncm det (VA VR) PriS 2 A

where we change the order of summation at the second
to last equality. Next, we apply (2.6) and the Cauchy-
Binet formula (2.4) in a similar way to the matrix
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V(z)V(z)":
-1 _ Ei 1 (V(2)V(z)T)
det(V(z)V(z)T)
2 |T)=d-1,TCln] det(Vr(z) " Vr(z))
> |R|=d,RC[n) 4et(VR(2) TVR(T))
_ 2T |=d—1,7C[n) det (V7 Vr) 2T
> |Rj=d,rC[n) det (Vg Vr) R
where we use the fact that det(Vg(z) Vg(z)) =
R det(Vy Vg) and det(Vr(z) "Vr(z)) = 2T det(Vy Vr)
in the last equality by Lemma 2.1.

Hence, the inequality (2.5) which we want to show
is equivalent to

Z|T|=d—1,:"g[n] det (VTTVT) F;r [S DT
ZIRI=d,Rg[ara.] det (Vg7 Vr) F;r [S D R]

2.7) < aZ|T|=d_1,Tg[n] det (V7 Vr) 2T
T XJ|R|=d,RC[n) det (Vg Vr) 2

which is equivalent to

tr (V(I)V(I)T)

> det (V7 Vr)det (Vg Vg) -z Pr(S 2T

IT|=d—1,|R|=d
(2.8)

|T|=d—1,|R|=d

Pr[SDT] -
By the assumption that m < azx for each subset
e

T,RC[n] with [T|=d—1and |R| =4,
det (Vi V) det (Vg Vi) -z - Pr[S D T]
In

2.9) < adet(Vy Vp)det (Vg Vg)-zL -Pr[SD R
T R =
I

Summing (2.9) over all T, R proves (2.8). O

3 Approximating Optimal Design without

Repetitions

In this section, we prove Theorem 1.2 by constructing
a-approximate (d — 1,d)-independent distributions for
appropriate values of . We first consider the case
when k& = d and then the asymptotic case when k =
Q (4 + Llogl). We also remark that the argument for
k = d can be generalized for all k£ < d, and we discuss
this generalization in Section 5.1.

3.1 d-approximation for k¥ = d We prove the
following lemma which, together with Theorem 1.1,
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implies the d-approximation for A-optimal design when
k=d.

LemMmA 3.1. Let k = d. The hard-core distribution
on Uy with parameter x is d-approrimate (d — 1,d)-
independent.

s

Proof. Observe that for any S € Uy, we have u(S) = %~

where Z =} g, 25" is the normalization factor. For
any T C [n] such that |T'| =d — 1, we have

S T T

T T T
PrisoTI= > =" > z|<d—.
S~ SE€U:SDT z Z i€[m\T z
where we use k = d and }_;c,\rZi < k = d. For any

R C [n] such that |R| = d, we have

PriSsoRl= Y T ="
S~ Seln:SOR
Thus for any T,R C [n] such that |T| = d — 1 and
|R| = d, we have

SF:L [S2T] zT

—  <d—.
Pr[SDR] ~ zRE
Srep

3.2 (1 + e)-approximation Now, we show that
there is a hard-core distribution p on Uc that is
(1 + €)-approximate (d — 1,d)-independent when k =
Q(f+zlogy).

LEMMA 3.2, Fiz some 0 < € < 2, and let k =
0 (§+ 1og£1;e) )

with parameter A\, defined by

The hard-core distribution p on Uz,

i)

\=— ot
T 1_’_%_1“%?

is (1 + €)-approrimate (d — 1, d)-wise independent.

Proof. For simplicity of notation, let us denote 8 =
1+ %, and §; = %L Observe that the probability mass
under p of any set S of size at most k is proportional to
(ITics &) (Hw;es (1- E,;)). Thus, p is equivalent to the
following distribution: sample a set B C [n] by including
every i € [n] in B independently with probability &;;
then we have p(S) = Pr[B = S | |B| < k] for every
S of size at most k. Let us fix for the rest of the proof
arbitrary sets T', R C [n] of size d—1 and d, respectively.
By the observation above, for § sampled according to
i, and B as above, we have
Pr[SDT] Pr[BDT and |B| <k
Prf[SDR] Pr[BD R and |B| < k]
Pr[BDT]
— Pr[B D R and |B| < k]
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We have Pr[B 2 T] = €7 = J=. To simplify the
probability in the denominator, let us introduce, for
each i € [n], the indicator random variable Y;, defined
to be 1 if i € B and 0 otherwise. By the choice of B, the
Y;’s are independent Bernoulli random variables with
mean &;, respectively. We can write

Pr[B 2 R and |B| < k]

=Pr

Vie R:Y; =1 and ZY,;gk—d]
igR

=PrVie R:Y; =1]Pr

ZY;;Sk—d],

igR

where the last equality follows by the independence of
the Y;. The first probability on the right hand side is
just 8 = E—i, and plugging into the inequality above,
we get

Pr[S D T) <8 T
PrSD R] = " zRPr[}, Vi <k—d

(3.10)

We claim that

Pr) Yi<k-d>1-7
igR

as long as k = Q (¢ + Llogl). The proof follows
from standard concentration of measure arguments. Let

Y = Z“ZR Y:, and observe that E[Y] = %(k — z(R)),

where z(R) is shorthand for ), pz;. By Chernoff’s
bound,

2
(3.11) PrlY >k —d] < e~ 5 (-—=(R)
where

_Bk-d ,_(B-1k+z(R)—pd
k— z(R) k — z(R) '

The exponent on the right hand side of (3.11) simplifies
to

8%(k = 2(R) _ (8= Vk+=(R) - Ba)*
36 38(k —2(R))
o (B=1)k—pay

= 35k

For the bound Pr[Y > k —d] < §, it suffices to have

(B~ 1k — Bd > \/3Blog(4/e)k.

Assuming that k& > &Oféy—el for a sufficiently big

constant C, the right hand side is at most %. So,
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as long as k > ,B—ﬁld—? the inequality is satisfied and

PrlY >k —d] < §, as we claimed.
The proof of the lemma now follows since for any
|T| =d—1 and |R| = d, we have

(3.12)
Pr[S D T] zT 1+ %27
< R
Pr[SOR] = zRPr[},gYi<k—d ~ 1- 5z

and

;Jr% <1+e
-1

The (1 + €)-approximation for large enough k in
Theorem 1.2 now follows directly from Lemma 3.2 and
Theorem 1.1.

Design  with

4 Approximately  Optimal

Repetitions

In this section, we consider the A-optimal design with-
out the bound =; <1 and prove Theorem 1.3. That is,
we allow the sample set S to be a multi-set. We obtain
a tight bound on the integrality gap in this case. In-
terestingly, we reduce the problem to a special case of
A-optimal design without repetitions that allows us to
obtained an improved approximation.

We first describe a sampling Algorithm 2 that
achieves a E(_ljﬁ—approximation for any € > 0. In the
algorithm, we introduce poly(n,1/¢) number of copies
of each vector to ensure that the fractional solution
assigns equal fractional value for each copy of each
vector. Then we use the proportional volume sampling
where the measure distribution g is defined on sets
of the new larger ground set U over copies of the
original input vectors. The distribution p is just the
uniform distribution over subsets of size k of U, and
we are effectively using traditional volume sampling
over U. Notice, however, that the distribution over
multisets of the original set of vectors is different. The
proportional volume sampling used in the algorithm can
be implemented in the same way as the one used for
without repetition setting, as described in Section 6.1,
which runs in poly(n,d, k, 1/€) time.

In Section 6.3, we describe a new implementation
of proportional volume sampling procedure which im-
proves the running time to poly(n,d, k,log(1/¢)). The
new algorithm is still efficient even when U has expo-
nential size by exploiting the facts that p is uniform and
that U has only at most n distinct vectors.

LEMMA 4.1. Algorithm 2, when given as input x € R}
sty x;=Fk 1>€>0, andv,,...,v,, outputs a
random X € Z7 with Y, X; = k such that

-1 —1
" k(1+€) -
T T
E |tr (; Xiv;v; ) < mtr (; TV;U; )
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Algorithm 2 Approximation Algorithm for A-optimal
design with repetitions

1: Given z € R with } ", z; = k, € > 0, and vectors
TyeeeylUp.

2: Let g = i—}: Set z} = k_—:ﬂﬂ:,; for each i, and round
each z} up to a multiple of 1/g.

3 IfY " 7} <k,add 1/q to any z} until )., =} = k.

4: Create gz copies of vector v; for each i € [n].
Denote W the set of size Y .-, gz} = gk of all those
copies of vectors. Denote U the new index set of
Wof size gk. © This implies that we can assume
that our new fractional solution y; = 1/q is equal
overalli e U

5: Sample a subset S of U of size k where Pr[§ = 5] «
det(WsWJ ) for each S C U of size k.

6: Set X; =3 cw, L(w is a copy of v;) for all i € [n]
> Get an integral solution X by counting numbers
of copies of v; in S.

7: Output X.

Proof. Define z},y, W,U,S, X as in the algorithm. We
will show that

n —1 n -1
k
T ’ T
E |tr (; Xiv;v; ) < mtr (; TV, )

-1
k(1+¢€) Zﬂ T
< - NN
St —dx1 tr (iZI T;ViV;

The second inequality is by observing that the

scaling z, = w:ﬁ multiplies the objective
_ —1

tr (", zwiv] )" by a factor of (k_—;:fq) =(1-

€/2)~1 < 1+¢, and that rounding z; up and adding 1/q

to any z; can only decrease the objective.

To show the first inequality, we first trans-
late the two key quantities tr (D> i, ziv;v; )_1 and
tr (3, Xiviv )_1 from the with-repetition setting
over V and [n] to the without-repetition setting
over W and U. . First, tr(0, Zjviw) ) =
tr (3, ey viwsw; '), where y; = 1 are all equal over all
i € U, and w; is the copied vector in W at index i € U.

1 —1
Second, tr (31, Xjviv ) =tr (Zieng w,;wi—r)
Let p’ be the distribution over subsets S of U of

size k defined by p/(S) oc det(WsWg4 ). It is, therefore,
sufficient to show that the sampling distribution g’
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satisfies

-1

E |tr E wiw,;T
Srop! .
ieSCU

-1
k T

4.13 < ———t Wi W;

(4.13) S k—d+1 I(gyww )

Observe that u' is the same as sampling a set
S C U of size k with probability proportional to
p(S) det(WsWJ ) where p is uniform. Hence, by Theo-
rem 1.1, it is enough to show that for all T, R C U with
T =d—-1,|R| =4,

Pr[S D T] . .
m
. < —
(4.14) Pr[SQR]_(k—d—i—l)yR
m

With p being uniform and y; being all equal to 1/g, the
calculation is straightforward:

T ey V¢ B R G
R G R U YO M e
T
y _1_
‘.UR Ui 1

Therefore, (4.14) holds because
PrIS2T] i\ gk—d+1 1
Pr[SDR] \y®  k—d+1 ¢
m

qk 1 k

4.16 <« 1__F
(4.16) “k—-d+1 q k-d+1

REMARK 4.1. The approximation ratio for A-
optimality with repetitions for k > d is tight, since
it matches the integrality gap lower bound stated in
Theorem 7.3.

5 Generalizations

In this section we show that our arguments extend to
the regime k < d and give a k-approximation (without
repetitions), which matches the integrality gap of our
convex relaxation. We also derive a restricted invert-
ibility principle for the harmonic mean of eigenvalues.
The proofs in this section are in the full version of the
paper [31].

5.1 k-Approximation Algorithm for k¥ < d Recall
that our aim is to select a set S C [n] of size k < d

that minimizes ch:l /\;1, where Aq,..., A are the k
largest eigenvalues of the matrix VSVST . We need to
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reformulate our convex relaxation since when k < d,
the inverse of M(S) = ), gwvw, for |S| = k is no
longer well-defined. We write a new convex program:

Bpy (i, ziviv')

517 i

(547 B (T, o))
s.t.

(5.18) Y zi=k
i=1

(5.19) 0<z;<1 Vie|[n]

Once again we denote the optimal value of (5.17)-
(5.19) by CP. While the proof that this relaxes the
original problem is easy, the convexity is non-trivial.
Fortunately, ratios of symmetric polynomials are known
to be convex.

LemMA 5.1. The optimization problem (5.17)—(5.19) is
a conver relaxation of the A-optimal design problem
when k < d.

We shall use the natural analog of proportional
volume sampling: given a measure p on subsets of size
k, we sample a set S with probability proportional
to u(S)ER(M(S)). In fact, we will only take u(S)
proportional to =%, so this reduces to sampling S with
probability proportional to Ex( ;cs x;v;v;"), which is
the standard volume sampling with vectors scaled by
/i, and can be implemented efficiently using, e.g. the
algorithm of [17].

The following version of Theorem 1.1 still holds with
this modified proportional volume sampling. The proof
is exactly the same, except for mechanically replacing
every instance of determinant by Ey, of Eg_1 by Ex_1,
and in general of d by k.

THEOREM 5.1. Given integers k < d < n and a vector
x € [0,1]" such that 1"z = k, suppose there exists a
measure p on Uy, that is a-approrimate (k — 1, k)-wise
independent. Then for x the optimal solution of (5.17)—
(5.19), proportional volume sampling with measure p
gives a polynomial time a-approximation algorithm for
the A-optimal design problem.

We can now give the main approximation guarantee
we have for k£ < d.

THEOREM 5.2. For any k < d, proportional volume
sampling with the hard-core measure p on Uy with
parameter x equal to the optimal solution of (5.17)-
(5.19) gives a k-approrimation to the A-optimal design
problem.
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The algorithm can be derandomized using the
method of conditional expectations analogously to the
case of kK = d that we will show in Theorem 6.2.

The k-approximation also matches the integral-
ity gap of (5.17)—(5.19). Indeed, we can take a k-
dimensional integrality gap instance v, ..., v,, and em-
bed it in R? for any d > k by padding each vector with
0’s. On such an instance, the convex program (5.17)-
(5.19) is equivalent to the convex program (2.1)—(2.3).
Thus the integrality gap that we will show in Theo-
rem 7.3 implies an integrality gap of k for all d > k.

5.2 Restricted Invertibility Principle for Har-
monic Mean Next we state and prove our restricted
invertibility principle for harmonic mean in a general
form.

THEOREM 5.3. Let vy,...,vp € R?, and c1,...,cq €
R, and define M = Z;L]civ,;v;r. For any k < r =
tl—i%ll, there erists a subset S C [n] of size k such
that the k largest eigenvalues Aq1,...,Ar of the matriz

S ics viv; satisfy

k -1
k im1 )u.i r Zi:l C;
Moreover, such a set S can be computed in deterministic
polynomial time.

We note that Theorem 5.3 also follows from
Lemma 18 and and equation (12) of [28]. However, their
proof of their Lemma 18 does not yield an efficient al-
gorithm to compute the set S, as it relies on a volume
maximization argument.

5.3 The Generalized Ratio Objective In A-
optimal design, given V = [v; ... v,] € R¥*" we state
the objective as minimizing

-1
Eq_1(VsVgd
EalV&V3)
over subsets S C [n] of size k. In this section, for any
given pair of integers 0 < I’ < 1 < d, we consider the

following generalized ratio problem:
1
, TV =77
(5.20) i (E051))
SCnl.IS|I=k \ Er(VsVg )

The above problem naturally interpolates between A-
optimality and D-optimality. This follows since for
[ =d and I’ = 0, the objective reduces to

1 d
5.21 i _— .
(5.21) Sg[$,1|%|=k (det(VSVST) )
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A closely related generalization between A- and D-
criteria was considered in [27]. Indeed, their general-
ization corresponds to the case when [ = d and [’ takes
any value from 0 and d — 1.

In this section, we show that our results extend to
solving generalized ratio problem. We begin by describ-
ing a convex program for the generalized ratio prob-
lem. We then generalize the proportional volume sam-
pling algorithm to proportional l-volume sampling. Fol-
lowing the same plan as in the proof of A-optimality,
we then reduce the approximation guarantee to near-
independence properties of certain distribution. Here
again, we appeal to the same product measure and ob-
tain identical bounds on the performance of the algo-
rithm. The efficient implementations of approximation
algorithms for generalized ratio problem are described
in Section 6.5.

5.3.1 Convex Relaxation As in solving A-
optimality, we may define a relaxation for without
repetitions as (5.22)-(5.24). We replace 0 < z; < 1 by
0 < x; when repetitions are allowed.

min (Ev (V@VE)) ) e

(5.22) E(V@)V(@))
(5.23) s.t. ii‘ﬁ =k
(5.24) 0 g; <1 Vien]

re-

_1
Eu(V(z)V(z)") Y
E(V(z)V(z)T)

We have that the objective (
mains convex in z.

LEMMA 5.2. Let d be a positive integer. For any given
pair 0 < I’ <1 < d, the function

E:f(M))ﬁ
Ei(M)

is convex over d x d positive semidefinite matriz M.

(5.25) featan) = (

5.3.2 Approximation via (I',1)-Wise Indepen-
dent Distribution Let 0 < I < [ < d and
U € {Ur,U<r}. We first show connection of approx-

: . s Eu(VsVg )\ =0
imation guarantees on objectives ”(45§r—) and
E(VsVyd)

Ey(VsVy) _
VsV Suppose we already solve the convex relax

ation of generalized ratio problem (5.22)-(5.24) and get
a fractional solution = € R™. Suppose that a random-
ized algorithm .A, upon receiving input V € R¥*™ and
z € R™, outputs S € U such that

Eu(VsVg )]

[ JEv(V(@)V(x)T)
Sra A E{ (VS VST )

=Y EBVEVE@T)

(5.26)
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for some constant o’ > 0. By the convexity of the
function f(z) = 2!~ over positive reals z, we have

19101
Ezw(M)} (Ev(M))m’
5.27 E >E
(5.27) [E:(M )1 Ey(M)
for any semi-positive definite matrix M. Combining

(5.26) and (5.27) gives
(5.28)

g [(Br VDN - (B V@V @)\ ="
—_—= @

s~a |\ Ei(VsVy) - E(V(z)V(z)T)

where a = (a’)ﬁ’. Therefore, it is sufficient for an

algorithm to satisfy (5.26) and give a bound on &' in

order to solve the generalized ratio problem up to factor
.

To show (5.26), we first define the proportional I-
volume sampling and a-approximate (I’,1)-wise inde-
pendent distribution.

DEFINITION 5.1. Let p be probability measure on sets
in Uy (or U<k). Then the proportional l-volume sam-
pling with measure p picks a set of vectors indered
by S € Ur (or U<k) with probability proportional to
W(S)E(VsVy ).

DEFINITION 5.2. Given integers d, k,n, a pair of inte-
gers 0 < I’ <1< d, and a vector z € [0,1]" such that
1Tz = k, we call a measure p on sets in Uy (or U<y),
a-approximate (I',1)-wise independent with respect to
if for any subsets T', T C [n] with |T'| =1' and |T| =1,
we have ,

Prs.u[T" C S] <ol i

Prsu[T CS] ~ xT

where =% =[], zi for any L C [n]. We omit “with

respect to ©” when the context is clear.

The following theorem reduces the approximation guar-
antee in (5.26) to a-approximate (I’,l)-wise indepen-
dence properties of a certain distribution p by utilizing
proportional [-volume sampling.

THEOREM 5.4. Given integers d,k,n, V = [v1...v,] €
RI¥*™ and a vector x € [0,1]" such that 1"z = k,
suppose there erists a distribution p on sets in Uy (or
U<r) and is a-approzimate (I',1)-wise independent for
some 0 < I' <l < d. Then the proportional l-volume
sampling with measure p gives an al—appmrimatz’on

. L Eu(VsVd )\ T==7
algorithm for minimizing | 7 51 over subsets
1(VsVg)

S C [n] of size k.

The following subsections generalize algorithms and
proofs for with and without repetitions. The algorithm

for generalized ratio problem can be summarized in
Algorithm 3. Note that efficient implementation of the
sampling is described in Section 6.5.

Algorithm 3 Generalized ratio approximation algo-
rithm

1: Given an input V = [vy,...,v,] where v; € R?, k a
positive integer, and a pair of integers 0 < I’ <1 <
d.

2: Solve the convex relaxation

Ev (V(z)V(z)") =
E(V(z)V(z)T)

T = argming g jn. 1 To—g (

where J = [0, 1] if without repetitions or R if with
repetitions.
3: if k=1 then
. Sample p'(S) x 25E; (VsVy ) for each S € Uy
5: else if without repetition setting and k& >
Q (g + %ﬁ) then

6:  Sample p/(S) ox A9E; (VsVg ) for each S € U<k
where A; := %

7: else if with repetition setting then

8: Run Algorithm 2, except modifying the sam-
pling step to sample a subset S of U of size k with
Pr[S = S] o Ey(WsW4 ).

9: Output S (If |S| < k, add k — |S| arbitrary vectors
to S first).

5.3.3 Approximation Guarantee for General-
ized Ratio Problem without Repetitions We
prove the following theorem which generalizes Lemmas
3.1 and 3.2. The a-approximate (I’,l)-wise indepen-
dence property, together with Theorem 5.4, implies an
approximation guarantee for generalized ratio problem
without repetitions for £ = [ and asymptotically for
k=0 (t+ Llogl).

THEOREM 5.5. Given integers d, k,n, a pair of integers
0 <l <1<d, and a vector x € [0,1]" such that
172 = k, the hard-core distribution p on sets in Uy, with
parameter x is a-approrimate (I',1)-wise independent
when k =1 for

(5.20) a=1-[1-U)] 7 <

-

Moreover, for any 0 < € < 2 when £k =
Q (%—l— Llogl), the hard-core distribution p on U<y
with parameter X\, defined by

I
Aj=—"7——,
Pl S
Co ﬂright © 2019 by SIAM
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is (1 + €)-approrimate (I',1)-wise independent.
Thus for minimizing the generalized Tatio problem
(EV(VSVST )
Ey(VsVyg)
obtain

)H! over subsets S C [n] of size k, we

. (affl, )-approzimation algorithm when k =1, and

e (1 + ¢)-approrimation algorithm when k =
Qe+ zlog )

5.3.4 Approximation Guarantee for General-
ized Ratio Problem with Repetitions We now con-
sider the generalized ratio problem with repetitions. The
following statement is a generalization of Lemma 4.1.

THEOREM 5.6. Given V = [v; va...v,] where v; € RY,

a pair of integers 0 < I’ <1 < d, an integer k > 1,

and 1 > € > 0, there is an a-approximation algorithm
L E,(VsVs) =

for minimizing (WST)_) over subsets S C [n] of

size k with repetitions for

< E(1+e¢)

5.30
( ) T k-1+1

We note that the [-proportional volume sampling in
the proof of Theorem 5.6 can be implemented efficiently,
and the proof is outlined in Section 6.5.

5.3.5 Integrality Gap Finally, we state an inte-
grality gap for minimizing generalized ratio objective
1

Ep(VsVJ )\ -7 -
(W:T_)) over subsets S C [n] of size k. The
integrality gap matches our approximation ratio of our

algorithm with repetitions when k is large.

THEOREM 5.7. For any given positive integers k,d and
a pair of integers 0 < I' <1 < d with k > l', there erists
an instance V = [vy,...,v,] € R¥*™ to the problem of

o Eu(VsVd) =7 .
minimizing ( E‘:((VSSV: ))) over subsets S C [n] of size

k such that
OPT > k 6] -CP
—\k-U

for all § > 0, where OPT denotes the value of the
optimal integral solution and CP denotes the value of
the convex program.

This implies that the integrality gap is at least ﬁ

s o (B (VsVd )
for minimizin, ( L 5
S\ Evsv)

size k. The theorem applies to both with and without
repetitions.

1
" over subsets S C [n] of
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6 Efficient Algorithms

In this section, we outline efficient sampling algorithms,
as well as deterministic implementations of our round-
ing algorithms, both for with and without repetition
settings. The proofs in this section are in the full ver-
sion of the paper [31].

6.1 Efficient Randomized Proportional Volume
Given a vector A € R, we show that proportional
volume sampling with u(S) oc A° for S € U, where
U € {Ur,U<} can be done in time polynomial in the
size n of the ground set. We start by stating a lemma
which is very useful both for the sampling algorithms
and the deterministic implementations.

LEMMA 6.1. Let A € R}, v1,...,00, € RY, and V =
[v1,.-.,v,]. Let I,J C [n] be disjoint. Let 1 < k <
n,0 < dy < d. Consider the following function
F(tl,tg, 33) =

det (In + tydiag(y) + tltgdiag(y)lﬂVVTdiag(y)1/2)

where t1,t2,t3 € R are indeterminate, I, is the n x n
identity matriz, and y € R™ with

Aits, ifiel
y; =4 0, ifield
A, otherwise

Then F(t1,t2,t3) is a polynomial and the quantity

(6.31) > AS N det(V4 Vr)
|S|=k,ICS,JNS=0  |T|=do,TCS
is the coefficient of the monomial t"ftg%lafl.

Moreover, this quantity can be computed in
O (n®dok|I| - log(dok|I|)) number of arithmetic op-
erations.

Using the above lemma, we now prove the following
theorem that will directly imply Lemma 1.1.

THEOREM 6.1. Let A € R}, vy,...,v, € RL,1 <k <n,
U e {Uy, U<y}, and V = [vq,...,v,]. Then there is a
randomized algorithm A which outputs S € U such that

s T
SPE&[S _ S] _ Z A iif(;‘fSVS ) — —- 'U,!(S)
~ s'cld et(VSrVS,)
That is, the algorithm correctly implements proportional
volume sampling p' with hard-core measure p on U
with parameter A. Moreover, the algorithm runs in
O (n*dk?log(dk)) number of arithmetic operations.
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OBSERVATION 6.1. [{3] shows that we may assume
that the support of an extreme fractional solution
of convexr relaration has size at most k + dZ.
Thus, the runtime of proportional volume sampling is
O ((k + d?)*dk?log(dk)). While the degrees in d,k are
not small, this runtime is independent of n.

OBSERVATION 6.2. It is true in theory and observed in
practice that solving the continuous relaxation rather
than the rounding algorithm is a bottleneck in compu-
tation time, as discussed in [2]. In particular, solv-
ing the continuous relaxation of A-optimal design takes
O (n?*%logn) number of iterations by standard ellip-
soid method and O ((n + d*)3®) number of iterations by
SDP, where O(n“) denotes the runtime of n x n ma-
triz multiplication. In most applications where n >> k,
these running times dominates one of proportional vol-

ume sampling.

6.2 Efficient Deterministic Proportional Vol-
ume We show that for hard-core measures there is a
deterministic algorithm that achieves the same objec-
tive value as the expected objective value achieved by
proportional volume sampling. The basic idea is to use
the method of conditional expectations.

THEOREM 6.2. Let A € R%,vy,...,v, € R4, 1<k <n,
U € {Up, U<}, and V = [v1,...,vn]. Then there is a
deterministic algorithm A’ which outputs S* C [n] of
size k such that

tr(Vs-Vge) " >E [tr (VSV‘J)_I}
uf

where p' is the probability distribution defined by
p'(S) oc AS det(VgVy ) for all S € U. Moreover, the al-
gorithm runs in O (n*dk? log(dk)) number of arithmetic
operations.

Again, with the assumption that n < k + d? (Obser-
vation 6.1), the runtime for deterministic proportional
volume sampling is O ((k + d?)*dk? log(dk)).

6.3 Efficient Randomized Implementation of
k_Ld_H-Approximation Algorithm With Repeti-
tions First, we need to state several Lemmas needed
to compute particular sums. The main motivation that
we need a different method from Section 6.1 and 6.2
to compute a similar sum is that we want to allow the
ground set U of indices of all copies of vectors to have
an exponential size. This makes Lemma 6.1 not useful,
as the matrix needed to be computed has dimension
|[U| x |U|. The main difference, however, is that the pa-
rameter A is now a constant, allowing us to obtain sums
by computing a more compact d x d matrix.
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LEMMA 6.2. LetV = [vq,...,vn] be a matriz of vectors
v; € R? with n > d distinct vectors. Let F C [m] and
let 0 <r <dand 0 < dy < d be integers. Then the
quantity ) p\_do. | FAR|=r det(V{ Vi) is the coefficient of
t{dogdo=Ter in

(6.32)

f(t1,t2,t3) = det (hfd-l-ztsvﬁv;r +Zt2wb‘;r)

icF i¢F

where t1,ty,t3 € R are indeterminate and I; is the
d x d identity matriz. Furthermore, this quantity can
be computed in O (n(d — do + 1)d2d?logd) number of
arithmetic operations.

LEMMA 6.3. Let V = [v1,...,0m] be a matriz of vec-
tors v; € R with n > d distinct vectors. Let F C [m]
and let 0 <r <d and 0 < dy < d be integers. There is
an algorithm to compute Z|S|=k,SDF E4,(VsVg ) with
O (n(d — do + 1)d2d? log d) number of arithmetic oper-
ations.

‘We now present an efficient sampling procedure for
Algorithm 2. We want to sample S proportional to
det(WsW{ ). The set S is a subset of all copies of at
most n distinct vectors, and there can be exponentially
many copies. However, the key is that the quantity
f(t1,ta,t3) in (6.32) is still efficiently computable be-
cause exponentially many of these copies of vectors are
the same.

THEOREM 6.3. Given inputs n,d,k,e,x € R} with
Z:;lmi = k, and wvectors vy,...,v, to Algorithm
2 we define q,U,W as in Algorithm 2. Then, there
ezists an implementation A that samples S from the
distribution p' over all subsets S C U of size k, where
p is defined by Prs.,.[S = S] o< det(WsW{ ) for each
S C U,|S| = k. Moreover, A runs in O (n?d*klogd)
number of arithmetic operations.

Theorem 6.3 says that steps (4)-(5) in Algorithm 2 can
be efficiently implemented. Other steps except (4)-(5)
obviously use O (n?d*klogd) number of arithmetic op-
erations, so the above statement implies that Algorithm
2 runs in O (n?d*klogd) number of arithmetic opera-
tions. Again, by Observation 6.1, the number of arith-
metic operations is in fact O ((k + d?)?d*klogd).

REMARK 6.1. Although Theorem 6.3 and Observation
6.1 imply that randomized rounding for A-optimal de-
sign with repetition takes O ((k + d*)*d*klog d) number
of arithmetic operations, this does not take into account
the size of numbers used in the computation which may
scale with input €. After taking this into account in
the proofs in Lemma 6.2 and Lemma 6.3, the runtime
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of randomized rounding for A-optimal design with repe-
tition becomes O ((k +d?)%d*k? log dlog(#))). The
proof is presented in the full version of the paper [31].

6.4 Efficient Deterministic Implementation of
k_Ld_H-Approximation Algorithm With Repeti-
tions We show a deterministic implementation of
proportional volume sampling used for the k_LdH—
approximation algorithm with repetitions. In partic-
ular, we derandomized the efficient implementation of
steps (4)-(5) of Algorithm 2, and show that the running
time of deterministic version is the same as that of the
randomized one.

THEOREM 6.4. Guwen inputs n,d,k,e,x € R’ with
Z:;l x; = k, and vectors vy,...,v, to Algorithm 2,
we define q, U, W as in Algorithm 2. Then, there exists
a deterministic algorithm A’ that outputs S* C U of

size k such that

tr(We- W) > E i (WsWd) ]
N”,’

where p' is a distribution over all subsets S C U of size
k defined by p'(S) oc det(WsWg ) for each set S C U
of size k. Moreover, A’ runs in O (n?d*klogd) number
of arithmetic operations.

Again, together with Observation 6.1 and Remark 6.1,
Theorem 6.4 implies that the k_—:LLl—approximation
algorithm for A-optimal design with repetitions can be
implemented deterministically in O ((k + d2)?d*klog d)
number of arithmetic operations and, after taking into
account the size of numbers in the computation, in

0 ((k + d2)2d*K2log dlog(#)) time.

6.5 Efficient Implementations for the General-
ized Ratio Objective In Section 6.1-6.2 we obtain
efficient randomized and deterministic implementations
of proportional volume sampling with measure ;¢ when p
is a hard-core distribution over all subsets S € U (where
U € {Ur, U<y }) with any given parameter A € R”. Both
implementations run in O (n*dk?log(dk)) number of
arithmetic operations. In Section 6.3-6.4, we obtain effi-
cient randomized and deterministic implementations of
proportional volume sampling over exponentially-sized
matrix W = [w; ;] of m vectors containing n distinct
vectors in O (n2d*klogd) number of arithmetic oper-
ations. In this section, we show that the results from
Section 6.1-6.4 generalize to proportional [-volume sam-
pling for generalized ratio problem.

THEOREM 6.5. Let n,d, k be positive integers, A € R,
U € {Up,U<k}, V = [v1,...,0,] ER*™ and 0 <1’ <
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I < d be a pair of integers. Let u' be the l-proportional
volume sampling distribution over U with hard-core
measure 1 of parameter A, i.e. p'(S) oc NSE; (VsVy')
for all S € U. There are

e an implementation to sample from u' that runs in
O (n*lk?log(lk)) number of arithmetic operations,
and

e a deterministic algorithm that outputs a set S* € U
of size k such that
(6.33)

(E;;(VStV‘;))ﬁ .- (Ep (stg))ﬁ
E; (VSt V‘;) T St E;(VSV‘,;I—)

that runs in O (n*lk?®log(lk)) number of arithmetic
operations.

Moreover, let W = [w; ;] be a matriz of m vectors where
w; j = v; for alli € [n] and j. Denote U the indez set of
W. Letu' be the l-proportional volume sampling over all
subsets S C U of size k with measure p that is uniform,
i.e. p'(S) oc By (WsW4) for all S CU,|S| = k. There
are

e an implementation to sample from p' that runs in
O (n*(d — 1 + 1)I?d*klogd) number of arithmetic
operations, and

e a deterministic algorithm that outputs a set S* € U
of size k such that

(6.34)
1 1
(Ep(Ws.WST,))W _— (E;;(WSWST))H’
E;(Wsx W;—,) T Sep! E (WSW‘;)

that runs in
O (n® ((d=U+ 1"+ (d—1+1)*) d’klogd)
number of arithmetic operations.

As in Observation 6.1, note that we can replace
n = k + d? in all running times in Theorem 6.5
so that running times of all variants of proportional
volume sampling are independent of n. We also note,
as in Remark 6.1, that running times of [-proportional
volume sampling over m vectors with n distinct vectors
has an extra factor of klogm after taking into account
the size of numbers in computation, allowing us to do
sampling over exponential-sized ground set [m].

7 Integrality Gaps

7.1 Integrality Gap for E-Optimality Here we
consider another objective for optimal design of exper-
iments, the F-optimal design objective, and show that
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our results in the asymptotic regime do not extend to it.
Once again, the input is a set of vectors vy, ... ,v, € R4,
and our goal is to select a set S C [n] of size k, but
this time we minimize the objective ||(3;c5vivy' )7,
where || - || is the operator norm, i.e. the largest singu-
lar value. By taking the inverse of the objective, this is
equivalent to maximizing A1 (3 ;. viv; ), where ;(M)
denotes the ith smallest eigenvalue of M. This problem
also has a natural convex relaxation, analogous to the
one we use for the A objective:

(7.35) max Aq (Z :rivifug—)
i=1

s.t.
(7.36) Y zi=k
i=1
(7.37) 0<z; <1 Vie|[n]

We prove the following integrality gap result for (7.35)—
(7.37).

THEOREM T7.1. There ezxists a constant ¢ > 0 such that
the following holds. For any small enough € > 0,
and all integers d > dy(e), if k < %g, then there
erists an instance vy,...v, € R? of the E-optimal
design problem, for which the value CP of (7.35)—(7.37)
satisfies

CP>(14+€OPT=(1+¢ max A vv;
( ) ( )Sg[n]:|3|=k ! (EZS )

Recall that for the A-objective we achieve a (1+¢€)-

approximation for k = Q(% + h—gg&) Theorem 7.1
shows that such a result is impossible for the E-
objective, for which the results in [1] cannot be im-
proved.

Our integrality gap instance comes from a natu-
ral connection to spectral graph theory. Let us first
describe the instance for any given d. We first define
n= (d“;) vectors in R%+!, one for each unordered pair
(i,4) € ([d;”). The vector corresponding to (4,7), i < 7,
is u;; and has value 1 in the i-th coordinate, —1 in the
j-th coordinate, and 0 everywhere else. In other words,
the u;; vectors are the columns of the vertex by edge
incidence matrix U of the complete graph K4.1, and
UUT = (d+1)I441 — Jgy is the (unnormalized) Lapla-
cian of K4, 1. (We use I, for the m x m identity matrix,
and Jp, for the mxm all-ones matrix.) All the u;; are or-
thogonal to the all-ones vector 1; we define our instance
by writing u;; in an orthonormal basis of this subspace:
pick any orthonormal basis bq,...,bq of the subspace
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of R%*! orthogonal to 1, and define vi; = BTu;; for
B = (b;),. Thus

d+1 d+1
M= 3" v =(d+1)la
i=1 j=i+1
We consider the fractional solution =z = F%ljl,
2

i.e. each coordinate of z is k/(?5'). Then M(z) =

d+1 x—d+1 T 2k .-
im1 2oj—iy1 LijVijVs; = <7 1a, and the objective value

of the solution is %.

Consider now any integral solution § C ([d“;l]) of
the F-optimal design problem. We can treat S as the
edges of a graph G = (|d + 1],5), and the Laplacian
Le of this graph is Le = ) (; jjes uijuy;. If the
objective value of S is at most (1 + €)CP, then the
smallest eigenvalue of M (S) = >_; jes 50, 1s at least
d(f—ie) >(1- e)%. Since M(S) = B" LgB, this means
that the second smallest eigenvalue of Lg is at least

(1-— e)%. The average degree A of G is %. So, we
have a graph G on d + 1 vertices with average degree A

for which the second smallest eigenvalue of its Laplacian
is at least (1 —€)(1 — z5)A > (1 — 2€)A, where the
inequality holds for d large enough. The classical Alon-
Boppana bound ([3, 34]) shows that, up to lower order
terms, the second smallest eigenvalue of the Laplacian
of a A-regular graph is at most A — 2y/A. If our graph
G were regular, this would imply that %“1 =A> Elg
In order to prove Theorem 7.1, we extend the Alon-
Boppana bound to not necessarily regular graphs, but
with worse constants. There is an extensive body of
work on extending the Alon-Boppana bound to non-
regular graphs: see the recent preprint [39] for an
overview of prior work on this subject. However, most
of the work focuses either on the normalized Laplacian
or the adjacency matrix of G, and we were unable to
find the statement below in the literature.

THEOREM 7.2. Let G = (V, E) be a graph with average
degree A = %%l, and let Lo be its unnormalized
Laplacian matriz. Then, as long as A is large enough,

and |V| is large enough with respect to A,

Xa(Lg) < A —eVA,

where Aa(L¢) is the second smallest eigenvalue of La,
and ¢ > 0 is an absolute constant.

The proof is presented in the full version of the paper
[31].

To finish the proof of Theorem 7.1, recall that the
existence of a (1 + €)-approximate solution S to our
instance implies that, for all large enough d, the graph
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G = ([d + 1], S) with average degree A = % satisfies

Aa(Lg) > (1 — 26)A. By Theorem 7.2, A(Lg) <
A — ev/A for large enough d with respect to A. We
have A > f:g, and re-arranging the terms proves the
theorem.

Note that the proof of Theorem 7.2 does not require
the graph G to be simple, i.e. parallel edges are allowed.
This means that the integrality gap in Theorem 7.1
holds for the E-optimal design problem with repetitions
as well.

7.2 Integrality Gap for A-optimality

THEOREM 7.3. For any given positive integers k,d,
there exists an instance V = [vy,...,v,] € R¥*™ to the
A-optimal design problem such that

k
OPT>(—"——5).CP
> (e=av10)

for all § > 0, where OPT denotes the value of the
optimal integral solution and CP denotes the value of
the convex program.

This implies that the gap is at least k+i+1' The theorem
statement applies to both with and without repetitions.
The proof is presented in the full version of the

paper [31].

8 Hardness of Approximation

In this section we show that the A-optimal design
problem is NP-hard to approximate within a fixed
constant when k = d. To the best of our knowledge,
no hardness results for this problem were previously
known. Our reduction is inspired by the hardness
of approximation for D-optimal design proved in [41].
The hard problem we reduce from is an approximation
version of Partition into Triangles.

Before we prove our main hardness result, Theo-
rem 1.4, we describe the class of instances we consider,
and prove some basic properties. Given a graph G =
([d], E), we define a vector v, for each edge e = (i, j) so
that its i-th and j-th coordinates are equal to 1, and all
its other coordinates are equal to 0. Then the matrix
V' = (ve)eck is the undirected vertex by edge incidence
matrix of G. The main technical lemma needed for our
reduction follows.

LEMMA 8.1. Let V be the vertex by edge incidence
matriz of a graph G = ([d], E), as described above. Let
S C FE be a set of d edges of G so that the submatrix
Vs is invertible. Then each connected component of the
subgraph H = ([d], S) is the disjoint union of a spanning
tree and an edge. Moreover, if t of the connected
components of H are triangles, then
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o fort=24, tr((VsVq )™ ') =34;
e for any t, tr((VsVy )~!) > d— 3L

The proof is presented in the full version of the
paper [31].

Recall that in the Partition into Triangles problem
we are given a graph G = (W, E), and need to de-
cide if W can be partitioned into @ vertex-disjoint
triangles. This problem is NP-complete ([19] present
a proof in Chapter 3 and cite personal communication
with Schaeffer), and this, together with Lemma 8.1, suf-
fice to show that the A-optimal design problem is NP-
hard when k = d. To prove hardness of approximation,
we prove hardness of a gap version of Partition into
Triangles. In fact, we just observe that the reduction
from 3-Dimensional Matching to Partition into Trian-
gles in [19] and known hardness of approximation of
3-Dimensional Matching give the result we need.

LEmMMA 8.2. Given a graph G = (W, E), it is NP-hard
to distinguish the two cases:

1. W can be partitioned into |—T vertex-disjoint tri-

angles;

2. every set of verter-disjoint triangles in G has car-

o W]
dinality at most a5,

where o € (0,1) is an absolute constant.

The proof is presented in the full version of the
paper [31].

‘We now have everything in place to finish the proof
of our main hardness result.

Proof of Theorem 1.4: We use a reduction from
(the gap version of) Partition into Triangles to the
A-optimal design problem. In fact the reduction was
already described in the beginning of the section: given
a graph G = ([d], E), it outputs the columns v, of the
vertex by edge incidence matrix V of G.

Consider the case in which the vertices of G can be
partitioned into vertex-disjoint triangles. Let S be the
union of the edges of the triangles. Then, by Lemma 8.1,
tr((VsVg)™!) = 4.

Next, consider the case in which every set of vertex-
disjoint triangles in G has cardinality at most a%. Let
S be any set of d edges in E such that Vg is invertible.
The subgraph H = ([d],S) of G can have at most
ag connected components that are triangles, because
any two triangles in distinct connected components are
necessarily vertex-disjoint. Therefore, by Lemma 8.1,
tr((VsVd)—t) > L2,

It follows that a c-approximation algorithm for

1—ox

the A-optimal design problem, for any ¢ < ===,
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can

be used to distinguish between the two cases

of Lemma 8.2, and, therefore, the A-optimal design
problem is NP-hard to c-approximate. O
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