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Abstract

Residential buildings constitute roughly one-fourth of the total
energy use across the globe. Numerous studies have shown that
providing an energy breakdown increases residents’ awareness of en-
ergy use and can help save up to 15% energy. A significant amount
of prior work has looked into source-separation techniques collec-
tively called non-intrusive load monitoring (NILM), and most prior
NILM research has leveraged high-frequency household aggregate
data for energy breakdown. However, in practice most smart meters
only sample hourly or once every 15 minutes, and existing NILM
techniques show poor performance at such a low sampling rate.

In this paper, we propose a TreeCNN model for energy break-
down on low frequency data. There are three key insights behind
the design of our model: i) households consume energy with regular
temporal patterns, which can be well captured by filters learned in
CNNs; ii) tree structure isolates the pattern learning of each appli-
ance that helps avoid magnitude variance problem, while preserves
relationship among appliances; iii) tree structure enables the sepa-
ration of known appliance from unknown ones, which de-noises
the input time series for better appliance-level reconstruction. Our
TreeCNN model outperformed seven existing baselines on a public
benchmark dataset with lower estimation error and higher accuracy
on detecting the active states of appliances.
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1 Introduction

Residential buildings constitute roughly one-fourth of the total en-
ergy usage across the global [20]. Studies have shown that providing
an energy breakdown can motivate behavioral changes, potentially
reducing energy consumption by 15% [2].
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Various energy breakdown approaches have been proposed since
the pioneering work on non-intrusive load monitoring (NILM) [9].
NILM algorithms are designed for high-frequency data (sampling
frequencies > 1/60 Hz), and do not apply when dealing with low
sampling rates. However, high-frequency sensors are expensive;
and smart meter specifications [21] across the world suggest that
the largest proportion of smart meters sample at an hourly rate.
This urges the need to develop algorithms suited for time series data
with lower sampling rates. On the other end of the spectrum, there
are approaches providing energy breakdown at a monthly level, e.g.,
using monthly bills as aggregate energy consumption [4, 6, 7]. The
key idea is that common design patterns create a shared structure
in residential buildings and give rise to a sparse set of features
contributing to energy variations across homes. Matrix factorization
[7] and kernel density estimation [6] techniques are introduced to
exploit the sparsity structure. Nevertheless, such techniques cannot
be directly applied to higher sampling rates, which rapidly increase
the dimension of observations and model complexity.

Our extensive data analysis on a large public U.S. residential
energy dataset suggests that sparsity and temporal regularity also
exist in hourly appliance energy usage, such as the time of a day,
day of a week. This motivates us to view such time series data as
a high dimensional compound, rather than just a one-dimension
sequence. For example, time of a day might differentiate the use
pattern of microwaves from other appliances, while the day of a
week might indicate usage pattern of dryers. Each of such temporal
patterns creates a unique dimension to recognize a particular type
of appliance’s energy usage in the aggregate energy readings. But
it is clearly impossible to manually exhaust such temporal patterns
for each appliance beforehand. We appeal to a learning-based so-
lution to automatically extract such patterns from data. We view
each temporal pattern as a latent basis of the high dimensional com-
pound, and assume each appliance can be uniquely characterized by
a subset of them. The energy use of each appliance can be isolated
from the aggregate readings by applying its corresponding set of
bases. For example, at mealtime, the observed energy consumption
should more likely come from a microwave than a dryer.

In this paper, we perform household energy breakdown at an
hourly rate. We extract the temporal bases and predict the appliance
energy consumption from aggregate energy readings via a set of
convolutional neural networks (CNN) [15], which are organized
in a tree structure. Thus, we name the solution TreeCNN. At each
node, a CNN model is placed to reconstruct appliance energy. The
root node of the tree takes aggregate energy reading as input and
reconstructs its designated appliance’s reading as output. The resid-
ual, i.e., the difference between its input and output, is passed to
the child node as its input. The reconstruction is thus performed
by recursively traversing the tree. Such an iterative procedure iso-
lates the appliance model learning in each step while preserving
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all appliances as a whole. Thus, each appliance’s usage pattern is
modeled with “refined” aggregate energy consumption to avoid the
overshadow magnitude problem. Further, with such a tree structure,
the unknown consumption can be modeled as a special appliance
to further de-noise the aggregate readings. It is known that finding
the optimal tree structure is NP-complete, and thus we introduce a
greedy approach to find the tree structure.

We used the public Dataport [17] dataset for evaluation. We com-
pared TreeCNN against nine state-of-the-art baselines and found
TreeCNN provides the most promising performance. Our evalua-
tion shows that the tree structure suggested by our greedy approach
performs only 4% worse compared to the optimal order found via
an exhaustive search.

2 Related Work

The related work in energy breakdown can be broadly classified as:
event-based and total-load based learning approaches.
Event-based methods [8] find step changes in the power signal
and assign them to different appliances. Such methods are generally
used when high sampling frequency is available, as the events can-
not be recognized at low frequencies. Besides, they do not work well
when appliances change states simultaneously, nor for appliances
that have a highly variable power draw like electronics.
Total-load based methods model the aggregate consumption as a
sum of constituent loads, while estimating these constituent loads
at all sample points. Factorial Hidden Markov Model (FHMM) has
been successfully applied to this problem [14], where each appliance
is modelled as a Gaussian HMM. However, it only incorporates
Markovian-type relationships in power draw and is not suited for
capturing repeated patterns. There is a line of work for energy
breakdown at a monthly level. The key insight of such approaches
is that common design for buildings creates a sparse set of features
contributing to energy variation across homes. Matrix factorization
[7] and kernel density estimation [6] have been used to exploit such
sparsity. But such solutions cannot be directly applied to higher
sampling rate, as their model complexity increases exponentially
with the sampling frequency. Sparse coding based approaches [13]
have been proposed to address these techniques’ limitations on
hourly data. But all such solutions assume the aggregate equals to
the sum of the appliances and thus suffer under practical settings.
More recently, neural network based approaches for energy
breakdown have been proposed: [11, 12] applied recurrent neu-
ral networks (RNN) to capture the time-series dependency of the
energy signals sampled at a high frequency. However, a RNN model
captures the one-dimension relationships in power draw, but is
incompetent to capture other types of temporal dependencies. For
example, in the hourly sampled data, appliances like microwave
can be well recognized by the time-of-day pattern, while others like
dryer is easier to be modelled by day-of-week pattern. Our solution
considers time-series energy data as a high dimension compound of
various temporal bases, and learns the bases from data to recognize
different types of appliances from the aggregate readings.

3 Data Analysis of Appliance Usage Patterns
The goal of this section is to explore the temporal patterns of energy
consumption in residential buildings towards the development of
our proposed energy breakdown method.

Table 1: Energy statistics from Dataport dataset.

HVAC Fridge Dryer Dishwasher Microwave

a(min) 5 5 5 5 2
Sa 230 20 250 55 10
Active 73.9% 97.8% 4.9% 4.1% 11.3%
Max 5099.7 428.6 4364.1 1021.7 980.6
Mean 1162.7 88.6  1303.6 369.5 59.5
Std 800.2 40.2 756.2 206.5 53.1

In this work, we use the public Dataport [17] dataset, which is the
largest public residential home energy dataset. It contains power
readings logged at minute intervals from hundreds of homes in the
U.S.. We used 112 days worth data from 68 homes from mid-June
on-wards for the year 2015, as this period has the least amount of
data issues (missing or incorrectly collected data). We use the data
of household total consumption and five major appliances: i) air
conditioning system (HVAC); ii) fridge; iii) dryer; iv) dishwasher; v)
microwave. These appliances contribute significantly to the total
consumption. Besides, they also represent a diverse class of appli-
ances: background (fridge) v.s. interactive (microwave), weather
dependent (HVAC) v.s. time dependent (dryer, dishwasher).

Our focused appliances can generally be classified into two cate-
gories [3]: 1) appliances that are constantly ON, such as fridge; and
ii) ON/OFF appliances, such as washing machine. When dealing
with low sampling rates, ON/OFF appliances introduce additional
challenges - many of these appliances would only be used partially
within an hour, which is the main reason that existing NILM algo-
rithms fail at a low sampling rate. To understand the significance
of this phenomenon in our dataset, we studied the shortest active
time interval (@) of the 5 appliances (detailed results are in Table 1).

For hourly energy breakdown, the existence of short active in-
tervals begs the question - how much energy should an appliance
consume within an hour to be considered as “actively used”. On
consultation with domain experts, we set the active threshold §,
for each appliance a as:
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where H represents the number of homes, Ej, g , ; is the energy
consumed by appliance a on day d at hour ¢ for home h, and 4 is
the minimum active time for appliance a. As we know, for appli-
ance occasionally used, it is easy to get good overall performance
by giving all zero-predictions (e.g., microwave is OFF over 88% of
time). However, such false negative prediction violates the original
intention of energy breakdown, i.e., provide the opportunity of
energy saving by informing users of how much energy each appli-
ance consumes. With such an active threshold, we can recognize
different states of appliances and evaluate a model’s performance
in two classes, i.e., error in ON/OFF states.

The basic statistics about this dataset with the active thresh-
old are reported in Table 1. The constantly ON appliances, i.e.,
HVAC and fridge, are almost always on (active percentage: 73.9%
and 97.8%); but their energy consumption patterns are different:
fridge consumes roughly constant energy over time, while HVAC’s
consumption varies significantly (std = 800.2). For the ON/OFF ap-
pliances, such as dryer, it is seldom used, but once used, it consumes
almost the highest energy. This macro-level analysis suggests the
need of different temporal bases across appliances.
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Figure 1: Data analysis for residential home temporal energy consumption patterns.

Previous works [4, 7] show that the energy consumption pattern
is sparse owing to the common design of residential buildings. Our
data analysis suggests that due to the temporal human behavior
patterns, such sparsity also exists at an hourly and daily level. Figure
1a shows the aggregate and five appliances’ energy consumption
from two randomly sampled homes over 24 hours across 56 days.
We can recognize strong patterns within a day across these 56
days: i) both homes tend to consume more energy by HVAC in
the afternoon and less in the morning; ii) fridge constantly runs
with regular working peaks; and iii) dishwasher and microwave are
more likely to be used at the mealtime. Figure 1b, which presents
the probability of appliances being in active state during 24 hours,
further indicates the hourly patterns. Besides, Home 2 consumes
less HVAC energy in the morning and this pattern only appears
on the weekdays. Further, people tend to use dryer periodically
across days. Figure 1c shows the aggregated active hours across
homes in each day for the ON/OFF appliances. It shows that, for
dryer, the total number of active hours has a peak every week while
dishwasher and microwave are used on an everyday basis.

Besides, energy consumption is highly imbalanced among appli-
ances. “Minor” appliances are often a problem for many existing
NILM algorithms owing to their small magnitude of consumption.
A detailed comparison is shown in Figure 1d. We can notice that
throughout a day, most energy is consumed by HVAC. For those
ON/OFF appliances, such as microwave and dryer, when both are
on, the one with smaller energy consumption is overshadowed by
the larger one, which makes it even harder to differentiate their
uses, as “minor” appliances can be confused with “noise”. It should
be noted that despite low contribution, simply predicting zero use
is misleading, and detecting the energy use of these appliances has
been shown useful for applications such as elderly monitoring [1].

In addition to the known appliances, it is important to note that
the aggregate consumption is often not equal to the sum of the
considered individual appliances’ consumption. For example, the
aggregate consumption of Home 1 shows regular high consumption
in the early morning, which is not observed in the known appliances.
Such unknown consumption comes from various sources, such as
the living room usage, or electric cars. Figure 1e shows the energy
consumption proportion of different energy sources, where the

unknown consumption can take up 51.86% total energy in a home,
and the failure to model them leads an algorithm to classify them to
known appliances. To improve the accuracy of energy breakdown,
such unknown consumption has to be carefully handled.

4 Methodology

We study the problem of disaggregating the aggregate energy in a
single home to its constituent appliances at hourly intervals. Based
on previous discussions, the hourly sampled energy data has sev-
eral important properties, i) the existence of sparsity and regularity
in multiple temporal dimensions, ii) energy consumption magni-
tude varies significantly across appliances, and iii) the existence of
unknown consumption sources. We will discuss our solutions to
handle each of them in the following sections.

4.1 TreeCNN Model

The key intuition of TreeCNN lies in two aspects: i) the distinct
and multi-dimensional temporal patterns of appliance energy con-
stitute the sparsity and regularity in appliance energy use; ii) the
aggregate energy is a composition of various and complicated ap-
pliance energy, such that the decomposition should be performed
in a joint and recursive manner to avoid the errors introduced by
the magnitude problem and potential unknown consumption. We
now discuss each component of our proposed TreeCNN model.
e Convolutional Neural Network (CNN). Our analysis results
show that different appliances have distinct temporal patterns. But,
simply modeling the hourly time-series data as a one-dimension
sequence cannot fully describe appliances. For example, microwave
is more frequently used during the meal time (a hourly pattern),
while the dryer is easier to model across days for its periodical
usage (a daily pattern). Thus, this time-series data should be viewed
as a high dimensional compound of various temporal patterns.
Besides the patterns observed in the appliance usage data, there
might also exist other higher order temporal patterns that cannot be
simply exhausted manually. Thus, we turn to learning-based solu-
tions to automatically extract the latent bases from data. Inspired by
the successful applications of convolutional neural networks (CNN)
in image analysis [15], we appeal to CNN models to extract energy
usage basis. The key component of CNN model is the filters that
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Figure 2: Our tree-structured iterative energy breakdown ap-
proach shown for two appliances (HVAC and Dryer).

capture the spatial features of an image. In an analogy, the hourly
energy readings can also be viewed as a 2-D matrix (Figure 1a) and
thus can be well described by the spatial filters learned from CNNs.
With CNN model, distinguishable filters can be learned for appli-
ances with distinct temporal patterns. For example, filters learned
on microwave may emphasize more on the hour dimension, fil-
ters for dryer will emphasize on the day dimension, and the filters
for HVAC may be a compound of patterns on both dimensions.
With such filters, the aggregate readings can be projected into its
corresponding appliance usage. Figure 2 shows an example of a
CNN model which learns the mapping from aggregate readings to
HVAC consumption. In the convolution phase, CNN model takes
the aggregate as input and tries to reduce it to a much denser
representation. Due to the sparsity and granularity, the temporal
patterns can be extracted and the input will be represented as a
denser matrix with a lower dimensionality. In the deconvolution
phase, the decoder performs the opposite operations that reverse
the action of encoders.
o Tree Structure. The model complexity in energy breakdown
increases exponentially with the number of sources constituting
the aggregate. Further, the usage of some appliances can get over-
shadowed by others (Figure le) creating a “magnitude” problem.
Different from conventional techniques, which either estimate
appliance usage independently, or disaggregate the energy alto-
gether at once, we propose a tree-structured model to extract appli-
ance patterns in a “stage-wise manner”. With the tree structure, our
approach performs an iterative energy breakdown: at each iteration,
we subtract out a source from the aggregate and use it as input to
recognize the designated appliance. Figure 2 depicts an example
of our tree-structured model with HVAC and dryer. The root node
takes the aggregate readings as input and reconstructs the HVAC
consumption as its output. The difference between them will be
passed to the child node as refined input for the next appliance, e.g.,
dryer in the figure. The magnitude problem is thus eased for the
minor appliances, such as microwave, if we place them at the lower
end of the tree. In contrast, if we jointly decompose the aggregate
readings into appliances’ readings, the minor appliances will be
overshadowed by major appliances, and mostly given zero predic-
tions, which defeats the original intention of energy breakdown.
In our TreeCNN model, we effectively simplify the energy break-
down iteratively. In each node, the CNN model performs an end-
to-end learning for the target appliance, which isolates pattern
learning across appliances to avoid the overshadow problem while
preserving all appliances as a whole.

e Modeling Unknown Consumption. In addition to the magni-
tude problem caused by the various constitutes of aggregate, the
unknown consumption also introduces errors in energy breakdown.
From the previous analysis, the unknown energy consumption
comes from various sources and therefore is hard to specify before-
hand. To the best of our knowledge, no existing work models the
unknown consumption. In our tree-structured model, the unknown
consumption can be viewed as a special appliance which consists
of multi-dimension temporal patterns. Modeling the unknown con-
sumption makes it possible to remove such energy from the true
aggregate consumption, which leads to a more accurate estimation
of the observed appliances.

4.2 Tree Order

Given N appliances, we would have N! possible tree structures. For
a residential home at the U.S., one can usually expect 7-10 major
appliances in monitoring. For any larger values of N, exhaustively
finding the “optimal” tree order can be computationally expensive,
where “optimality” is defined as per given energy breakdown metric
M. Since the error of one decomposition will be propagated through
the tree structure, the tree order is essential to our model.

We propose a greedy algorithm to find a suitable tree order to
mitigate error and reduce the search space. The key operation is to
estimate the overall performance with partial information via the
inverse propensity weighting scheme [16, 22]. Assume we have N
appliances and metric M(E(a;), E(a;)) is used to compute the error
for appliance a; where E(a;) and E(a;) denote the estimation and
the ground-truth of appliance a;. In the first iteration, we will create
N candidate splits. Among these N models, we select k models with
the smallest estimated energy breakdown error (EEBECR) on the
validation set. Next, (N — 1) sub-trees are created for each selected
k parent tree. The selection repeats until we have constructed the
whole tree. In particular, local metric EEBECR is used to estimate
the overall energy breakdown error, before the whole tree has
been constructed. This metric calculates the ratio between a chosen
metric for an appliance and the proportion of energy consumed by
this appliance:

M(E(a;), E(a;))

2 2d X E(h,ai,d,t)
2h 2ia 2d 2 E(h,a,d,t)

EEBECR(q;) = )

The rationale behind EEBECR is that it assumes if an appliance
has an error e and contributes x proportion to aggregate, then the
aggregate would have an expected error of £ from this appliance.
Thus, we can estimate the final error by estimating the prediction
error of each appliance during the tree construction. In such way,
we get the error of the entire tree before it is constructed, which
makes the sequential decisions of tree order possible.

5 Empirical Evaluation
In this section, we evaluate the our model on the hourly data col-
lected from 68 homes over 112 days in the Dataport dataset.

5.1 Experimental settings

5.1.1 Baselines. We first describe the baselines
e Mean Energy: This baseline computes the predicted energy of
an appliance as its mean energy in the training set.



o Factorial Hidden Markov Model (FHMM): FHMMs [14] model
each appliance as a Gaussian hidden Markov model and couple the

individual appliance HMM in a factorial structure.

o Tensor Factorization: Canonical polyadic (CP) decomposition [4]
is used to factorize the energy tensor into latent matrices. They

proposed a modified CP (MCP) to mitigate the scaling problem.

o Sparse Coding;: Sparse coding [13] model approximates the bases

and activations for each appliance with sparsity constraints. The

authors also proposed a structured prediction based method called

discriminative sparse coding (DSC).

o Recurrent Neural Networks (RNN): We performed the decom-
position with individual RNN model and TreeRNN model, which

captures the time-series dependency of the energy signals.

e Convolutional Neural Networks (CNN): We use individual

CNNs and JointCNN. Individual CNNs estimates appliances’ energy

separately, and JointCNN estimates them all together at once.

5.1.2  Approach settings. Among all methods, we used 5-fold cross-
validation in the experiments. The final 20% of the train set is set
for validation purpose. For each algorithm, the optimal parameters
are learned via grid search. The optimal parameters that give the
best performance on the validation set are used for testing. For
FHMM model, we vary the number of states per appliance from
2 to 5 [5, 23]. CP and MCP are optimized with Adagrad [4], and
we vary the rank of latent factors from 1 to 12. For sparse coding
models, we vary the rank of latent factors from 1 to 50.

We implemented all neural network models with PyTorch [19].
For RNN models, we have the following parameters: cell type: {GRU,
LSTM, RNN}; number of hidden units: {20, 50}; number of layers: {1,
2, 3}; number of iterations: {1000, 2000, 3000}. For CNN models, com-
plex network will easily cause overfitting due to the limited train-
ing data. Thus, we have the encoders consist of two convolutional
layers and two deconvolutional layers with normalization [10] to
accelerate the training process, and ReLU activation function to
introduce non-linearity. We choose the learning rate from {0.01,
0.1, 1} and the number of iterations from {1000, 2000, 3000}. For
tree-structured models, we perform both exhaustive and greedy
search. We use top-k = 3 results at each stage of greedy search. We
use the L1-loss as the objective function. For neural network based
methods, we clamp the estimated consumption to a maximum of the
observed aggregate energy. Our entire codebase, baselines, analysis
and experiments can be found on Github !.

5.1.3 Metric.Based on prior literature [4, 7], we evaluate the per-
formance with mean absolute error (MAE). Denote the ground-
truth and estimation for home h, appliance g, day d and hour ¢ as
E(h,a,d,t) and E(h, a,d, t), for appliance a, MAE is computed as:

ShYa e |Eh a,d,t) = E(h, a, d,t)]
HXxDXT

MAE(a) = 3

where H, D, T indicate the number of homes and days, and hours
in a day. We use the average MAE across appliances to measure the
model accuracy. Lower mean MAE indicates better performance.
As shown before, in some ON/OFF appliances, the active time is
generally low. The MAE alone cannot fully reflect the performance,
as zero predictions can also give a good MAE. Thus, we separate
MAE into two parts, corresponding to the active and inactive states
based on the ground-truth (threshold is reported in Table 1).

!https://github.com/yilingjia/TreeCNN-for-Energy-Breakdown.git
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5.2 Experiment Results

In the following sections, we first test the energy breakdown ca-
pabilities in an ideal case, where the aggregate energy equals the
sum of selected appliances, and then perform the same experiments
on the true aggregate dataset where the unknown consumption
is included. Further, we compare the baselines and our TreeCNN
model with and without modeling the unknown consumption to
study the effectiveness of unknown consumption modeling. Last,
we report the results of greedy algorithm on tree order estimation.

—=—Individual CNN
64 —e—TreeCNN
—+—JOintCNN

meanMAE

—a—individual CNN
—e—TreeCNN
—4—JointCNN

56

4 6 8 10 12 4 6 8 10 12 14

(a) Filter size: 7 x X (b) Filter size: X X 7
Figure 4: Effect of filter size tuning on CNN models.

5.2.1 Filter size in CNN models.In CNN-based models, filter size
plays an important role in capturing the temporal patterns. We
explored the effect of different filter sizes in the first layer of CNN
models. From Figure 4, we can observe that the performance of
CNN models is quite sensitive with the filter sizes. When the size
equals to 7 X 7, most models achieve the best performance, as such
filters can well capture the patterns across hours and days. With
small sized filters, the model might miss some periodical patterns
across multiple dimensions; and with large sized filters, it will fail
to capture the local features and generate redundant information.
In the following experiments, the filters of each layer are set to 7 x7
and 2 X 2. And the decoder is a mirrored version of the encoders
with two deconvolutional layers.

5.2.2 Ideal case.Like previous studies [13, 23], we simulate the
ideal case by manually setting the artificial aggregate. Shown in
Table 2, TreeCNN algorithm outperforms all the baselines (p-value
is calculated between the predictions of TreeCNN and the second
best model). Figure 3 shows the energy estimation from a set of
baselines of a randomly chosen day of one randomly selected home.



Table 2: MAE on artificial aggregate and true aggregate dataset.

FHMM CP MCP SC

DSC Mean RNN  TreeRNN CNN  Joint-CNN TreeCNN

MAE 11499 106.19 103.46 172.95 100.34 67.34 64.26 56.96 57.90 51.64*

Artificial Aggregate | MAE on Active 360.76  390.39 390.90 411.93 388.29 404.03 388.90 383.84 310.51 332.45 261.30"
MAE on Inactive ~ 80.34 96.11 96.93 15.03  49.13  37.87 36.79 41.53 42.07 40.05

MAE 134.99 12390 12530 245.70 218.43 126.86 97.8 94.52 89.15 91.35 86.94"

True Aggregate MAE on Active 400.76  414.01 41233 515.54 521.35 421.50 43538 433.01 417.85 429.87 391.50*
MAE on Inactive ~ 82.94  103.10 107.81 21557 190.84 102.22 60.32 54.85 68.28 69.26 61.69

* p—value < 0.05

Table 3: Effect of UC modelling. (UC: Unknown Consump-
tion, DW: Dishwasher, MW: Microwave)

HVAC Fridge Dryer DW MW Average

TreeRNN w.o. UC 351.83 29.88 66.93 1545 8.53 94.52
TreeRNN w. UC 337.69 30.02 67.16 1543 843 9175
TreeCNN w.o. UC  306.38 33.74 70.09 1549 9.00 86.94
TreeCNN w. UC 296.11 3334  69.01 1545 883 84.55

FHMM assumes the appliances can be modeled with a Gauss-
ian HMM using discrete states, which considers the transition and
emission probabilities between states. But it is not well suited to
sparsely used appliances. MCP and DSC algorithms are both of a
similar vein focusing on learning various “basis” of energy con-
sumption. Both algorithms performed reasonably well in general.
However, they are not well-tuned for the instances when energy
consumption patterns differ from the average patterns. And they
are poor at capturing the active states of the ON/OFF appliances.
From Table 2, we can observe that for MAE on Inactive, SC and DSC
have better performance. This is because the design of their two-
stage decomposition adds the equality constraint between the sum
of appliances and aggregate readings. The mean baseline, though
simple, performs reasonably well. However, it does so as it models
the appliances to be mostly off and thus a low MAE for the inactive
cases, but high MAE for the active cases.

Compared with the non-neural network baselines, the MAE
is largely reduced by RNN and CNN based models. Between the
individual neural network models, CNN outperforms RNN. The
main reason is with the learned filters, CNN can capture the multi-
dimensional usage patterns, e.g., hourly pattern and daily pattern
in our dataset, while RNN treats the energy readings as a one-
dimension time-series ignoring the periodical patterns. For example,
in Figure 3 with CNN models, the active states of the ON/OFF
appliances, such as dryer, is well detected, while RNN gives zero
predictions. From Table 2 and Figure 3, the performance of neural
network models are both improved with the tree structure. Though
JointCNN also encodes the relationship among appliances, direct
decomposition could not overcome the magnitude problem, which
generates significant larger error in MAE on Active as the “minor”
appliances are easily overshadowed.

5.2.3 Real-world case. Now, we evaluate the models on the true ag-
gregate dataset. From Table 2, we can see that with true aggregate,
TreeCNN model still outperforms the other baselines. Comparing
the results from these two settings, we can notice that all algo-
rithms show poorer performance with true aggregate. As discussed
before, this can be explained by the high amount and variety of
unknown consumption. In our TreeCNN, the complex latent bases
of unknown consumption can be captured via filters. Table 3 shows
the improvement when we consider the unknown consumption in
the model. Paired t-test shows almost all the estimations signifi-
cantly improve except for the dryer. In this work, we only set one

Table 4: TreeCNN performance under different tree or-
ders. (UC: Unknown Consumption, agg: aggregate)

Worst Average Greedy Best

Artificial agg 84.42 68.72 54.21 51.64
True agg w.o. UC  105.60 96.54 88.38  86.94
True agg w. UC 110.75 98.64 87.21 84.55

model for the unknown consumption, while it might come from a
combination of various sources, which we defer to future work.

5.24 TreeCNN with greedy v/s exhaustive tree orders. Table 4 com-
pares the mean MAE performance of TreeCNN model with the best
and worst tree orders found by exhaustive search and the order
found with greedy search. We also report average MAE over all
tree orders explored in the exhaustive search. It shows that our
greedy algorithm performs substantially better than the average
and is only about 4% worse than the best order found via exhaus-
tive enumeration. The learned tree order also discloses interesting
property of this problem: placing HVAC in the first few levels in
the tree leads to poorer performance, as the HVAC energy is easily
to be over-estimated to “eat” up the energy of other appliances.

6 Conclusions

In this paper, we presented a new approach for hourly energy
breakdown. Our data analysis revealed that hourly energy data has
notable high-dimensional sparsity and temporal regularity, which
can be exploited for energy breakdown by learning their temporal
bases. We introduced a tree-structured CNN model to estimate such
temporal patterns and handle some of the shortcomings of existing
methods. Empirical evaluation on a real-world household energy
data set confirmed the effectiveness of our solution. With the vast
amount of hourly smart meter data, we believe our approach has
the scope to be scaled to millions of homes.

We would like to explore a few future extensions. First, TreeCNN
currently treats the residual as one dummy appliance. However,
residual could be a compound of various sources of energy consump-
tion. We can introduce several residual models, or using prior mod-
els [18] to first extract latent appliances and generate a combined
residual estimation. Second, our current approach does not fully
incorporate the dependencies that might exist between different
appliances (e.g., correlation between dryer and washing machine).
We can incorporate such dependencies by creating additional links
between different appliances, giving us a more general graph.
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