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Abstract

Constrained submodular function maximiza-
tion has been used in subset selection prob-
lems such as selection of most informative
sensor locations. While these models have
been quite popular, the solutions obtained via
this approach are unstable to perturbations
in data defining the submodular functions.
Robust submodular maximization has been
proposed as a richer model that aims to over-
come this discrepancy as well as increase the
modeling scope of submodular optimization.

In this work, we consider robust submodular
maximization with structured combinatorial
constraints and give efficient algorithms with
provable guarantees. Our approach is applica-
ble to constraints defined by single or multiple
matroids, knapsack as well as distributionally
robust criteria. We consider both the offline
setting where the data defining the problem
is known in advance as well as the online set-
ting where the input data is revealed over
time. For the offline setting, we give a nearly
optimal bi-criteria approximation algorithm
that relies on new extensions of the classi-
cal greedy algorithm. For the online version
of the problem, we give an algorithm that
returns a bi-criteria solution with sub-linear
regret.
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1 Introduction

Constrained submodular function maximization has
seen significant progress in recent years in the design
and analysis of new algorithms with guarantees (Cali-
nescu et al., 2011; Ene and Nguyen, 2016; Buchbinder
and Feldman, 2016; Sviridenko, 2004), as well as nu-
merous applications - especially in constrained sub-
set selection problems (Powers et al., 2016a; Lin and
Bilmes, 2009; Krause and Guestrin, 2005; Krause et al.,
2009, 2008a,b) and more broadly machine learning. A
typical example is the problem of picking a subset of
candidate sensor locations for spatial monitoring of
certain phenomena such as temperature, ph values, hu-
midity, etc. (see (Krause et al., 2008a)). Here the goal
is typically to find sensor locations that achieve the
most coverage or give the most information about the
observed phenomena. Submodularity naturally cap-
tures the decreasing marginal gain in the coverage, or
the information acquired about relevant phenomena
by using more sensors, (Das and Kempe, 2008). While
submodular optimization offers an attractive model for
such scenarios, there are a few key shortcomings, which
motivated robust submodular optimization (see (Krause
et al., 2008a)) in the cardinality case, so as to optimize
against several functions simultaneously :

1. The sensors are typically used to measure various
parameters at the same time. Observations for
these parameters need to be modeled via different
submodular functions.

2. Many of the phenomena being observed are non-
stationary and highly variable in certain locations.
To obtain a good solution, a common approach
is to use different submodular functions to model
different spatial regions.

3. The submodular functions are typically defined
using data obtained from observations, and impre-
cise information can lead to unstable optimization
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problems. Thus, there is a desire to compute
solutions that are robust to perturbations of the
submodular functions.

Our main contribution is the development of new al-
gorithms with provable guarantees for robust submod-
ular optimization under a large class of combinatorial
constraints. These include partition constraints, where
local cardinality constraints are placed on disjoint parts
of the ground set. More generally, we consider matroid
and knapsack constraints. We provide bi-criteria ap-
proximations that trade-off the approximation factor
with the “size” of the solution, measured by the number
` of feasible sets {Si}i2[`] whose union constitutes the
final solution S. While this might be nonintuitive at
first, it turns out that the union of feasible sets cor-
responds to an appropriate relaxation of the single
cardinality constraint. Some special cases of interest
are:

1. Partition constraints. Given a partition of the
candidate sensor locations, the feasible sets cor-
respond to subsets that satisfy a cardinality con-
straint on each part of the partition. The union
of feasible sets here corresponds to relaxing the
cardinality constraints separately for each part.
This results in a stronger guarantee than relaxing
the constraint globally as would be the case in the
single cardinality constraint case.

2. Gammoid. Given a directed graph and a subset of
nodes T , the feasible sets correspond to subsets S
that can reach T via disjoint paths in the graph.
Gammoids appear in flow based models, for exam-
ple in reliable routing. The union of feasible sets
now corresponds to sets S that can reach T via
paths such that each vertex appears in few paths.

We consider both offline and online versions of the
problem, where the data is either known a-priori or is
revealed over time, respectively. We give a simple and
efficient greedy-like algorithm for the offline version of
the problem. The analysis relies on new insights on
the performance of the classical greedy algorithm for
submodular maximization, when extended to produce
a solution comprising of a union of multiple feasible
sets. For the online case, we introduce new technical
ingredients that might be broadly applicable in online
robust optimization. Our work significantly expands
on previous works on robust submodular optimization
that focused on a single cardinality constraint (Krause
et al., 2008a).

1.1 Problem Formulation

As we describe below, we study offline and online vari-
ations of robust submodular maximization under struc-

tured combinatorial constraints. While our results holds
for more general constraints, we focus our attention
first on matroid constraints that generalize the par-
tition as well as the gammoid structural constraints
mentioned above. We discuss extensions to other class
of constraints in Appendix A.

Consider a non-negative set function f : 2V ! R+. We
denote the marginal value for any subset A ✓ V and
e 2 V by fA(e) := f(A + e) � f(A), where A + e :=
A [ {e}. Function f is submodular if and only if it
satisfies the diminishing returns property. Namely, for
any e 2 V and A ✓ B ✓ V \{e}, fA(e) � fB(e). We
say that f is monotone if for any A ✓ B ✓ V , we have
f(A)  f(B). Most of our results are concerned with
optimization of monotone submodular functions.

A natural class of constraints considered in submodular
optimization are matroid constraints. For a ground set
V and a family of sets I ✓ 2V , M = (V, I) is a matroid
if (1) for all A ⇢ B ✓ V , if B 2 I then A 2 I and (2)
for all A,B 2 I with |A| < |B|, there is e 2 B \A such
that A [ {e} 2 I. Sets in such a family I are called
independent sets, or simply put, feasible sets for the
purpose of optimization.

We consider the robust variation of submodular opti-
mization. That is, for a matroid M = (V, I), and a
given collection of k monotone submodular functions
fi : 2V ! R+ for i 2 [k], our goal is to select a set
S that maximizes mini2[k] fi(S). We define a (1� ✏)-
approximately optimal solution S as

min
i2[k]

fi(S) � (1� ✏)max
S2I

min
i2[k]

fi(S). (1)

We also consider the online variation of the above
optimization problem in presence of an adversary. In
this setting, we are given a fixed matroid M = (V, I).
At each time step t 2 [T ], we choose a set St. An adver-
sary then selects a collection of k monotone submodular
functions {f t

i }i2[k] : 2
V ! [0, 1]. We receive a reward

of mini2[k] E[f t
i (S

t)], where the expectation is taken
over any randomness in choosing St. We can then use
the knowledge of the adversary’s actions, i.e., oracle
access to {f t

i }i2[k], in our future decisions. We consider
non-adaptive adversaries whose choices {f t

i }i2[k] are
independent of S⌧ for ⌧ < t. In other words, an adver-
sarial sequence of functions {f1

i }i2[k], . . . , {fT
i }i2[k] is

chosen upfront without being revealed to the optimiza-
tion algorithm.

Our goal is to design an algorithm that maximizes the
total payoff

P
t2[T ] mini2[k] E[f t

i (S
t)]. Thus, we would

like to obtain a cumulative reward that competes with
that of the fixed set S 2 I we should have played had
we known all the functions f t

i in advance, i.e., compete
with maxS2I

P
t2[T ] mini2[k] f

t
i (S). As in the offline

optimization problem, we also consider competing with
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(1� ✏) fraction of the above benchmark. In this case,
Regret1�✏(T ) denotes how far we are from this goal.
That is,

Regret1�✏(T ) = (1� ✏) ·max
S2I

X

t2[T ]

min
i2[k]

f t
i (S)

�
X

t2[T ]

min
i2[k]

E
⇥
f t
i (S

t)
⇤
. (2)

We desire algorithms whose (1�✏)-regret is sublinear in
T . That is, we get arbitrarily close to a (1� ✏) fraction
of the benchmark as T ! 1.

The offline (Equation 1), or online (Equation 2) vari-
ations of robust monotone submodular functions, are
known to be NP-hard to approximate to any polyno-
mial factor when the algorithm’s choices are restricted
to the family of independent sets I (Krause et al.,
2008a). Therefore, to obtain any reasonable approx-
imation guarantee we need to relax the algorithm’s
constraint set. Such an approximation approach is
called a bi-criteria approximation scheme in which the
algorithm outputs a set with a nearly optimal objective
value, while ensuring that the set used is the union of
only a few independent sets in I. More formally, to get
a (1 � ✏)-approximate solutions, we may use a set S
where S = S1 [ · · ·[ S` such that S1, . . . , S` 2 I and `
is a function of 1

✏ and other parameters.

1.2 Our Results and Contributions

We present (nearly tight) bi-criteria approximation al-
gorithms for the offline and online variations of robust
monotone submodular optimization under matroid con-
straints. Throughout the paper, we assume that the
matroid is accessible via an independence oracle and
the submodular functions are accessible via a value
oracle. Moreover, we use log to denote logarithm with
base 2 and ln to denote the natural logarithm.

For the offline setting of the problem we obtain the
following result:
Theorem 1. For the offline robust submodular
optimization problem (1), for any 0 < ✏ < 1,
there is a polynomial time algorithm that runs in
O
�
nr log

�
k
✏

�
log(n)min

�
nk
✏ , log1+✏(maxe,j fj(e))

 �

time and returns a set SALG, such that

min
i2[k]

fi(S
ALG) � (1� ✏) ·max

S2I
min
j2[k]

fj(S),

where SALG = S1 [ · · · [ S` with ` = O(log k
✏ ), and

S1, . . . , S` 2 I.

The algorithm that achieves this result is an extension
of the greedy algorithm. It reuses the standard greedy
algorithm of Fisher et al. (1978) in an iterative scheme,
so that it generates a small family of independent sets

whose union achieves the (1� ✏)-guarantee. The argu-
ment is reminiscent of a well-known fact for submodular
function maximization under cardinality constraints
using the greedy algorithm: letting the greedy algo-
rithm run longer results in better approximations at
the expense of violating the cardinality constraint. Our
extended greedy algorithm works in a similar spirit,
however it iteratively produces independent sets in the
matroid. We present the main results and the corre-
sponding proofs in Section 2. Additionally, we also
propose a second, randomized algorithm relying on
continuous extensions of submodular functions that
achieves tight bounds in line with the hardness result
in (Krause et al., 2008a) (see Appendix B). This algo-
rithm also forms the basis of the online algorithm that
we present later in Section 3. One might hope that
similar results can be obtained even when functions
are non-monotone (but still submodular). As we show
in Appendix B.3 this is not possible.

A natural question is whether our algorithm can be
carried over into the online setting, where functions are
revealed over time. For the online setting, we present
the first results for robust submodular optimization.
Theorem 2. For the online robust submodular opti-
mization problem, for any 0 < ✏ < 1, there is a ran-
domized polynomial time algorithm that returns a set
St for each stage t 2 [T ], we get

X

t2[T ]

min
i2[k]

E
⇥
f t
i (S

t)
⇤
�(1� ✏) ·max

S2I

X

t2[T ]

min
i2[k]

f t
i (S)

�O

✓
n

5
4

p
T ln

1

✏

◆
,

where St = St
1 [ · · · [ St

` with ` = O
�
ln 1

✏

�
, and

St
1, . . . , S

t
` 2 I.

We remark that the guarantee of Theorem 2 holds
with respect to the minimum of E[f t

i (S
t)], as opposed

to the guarantee of Theorem 1 that directly bounds
the minimum of fi(S). Therefore, the solution for the
online algorithm is a union of only O

�
ln 1

✏

�
independent

sets, in contrast to the offline solution which is the union
of O

�
log k

✏

�
independent sets.

The main challenge in the online algorithm is to deal
with non-convexity and non-smoothness due to sub-
modularity exacerbated by the robustness criteria. Our
approach to coping with the robustness criteria is to
use the soft-min function � 1

↵ ln
P

i2[k] e
�↵gi , defined

for a collection of smooth functions {gi}i2[k] and a suit-
able parameter ↵ > 0. While the choice of the specific
soft-min function is seemingly arbitrary, one feature
is crucial for us: its gradient is a convex combination
of the gradients of the gi’s. Using this observation,
we use parallel instances of the Follow-the-Perturbed-
Leader (FPL) algorithm, presented by Kalai and Vem-
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pala (2005), one for each discretization step in the
continuous greedy algorithm. We believe that the al-
gorithm might be of independent interest to perform
online learning over a minimum of many functions, a
common feature in robust optimization. The main
result and a summary of its proof appears in Section 3.

Our main results naturally extend to other types of
combinatorial constraints, such as knapsack constraints
or multiple matroids. We describe these extensions in
the Supplemental Material (Appendix A) due to space
restrictions.

1.3 Related Work

Building on the classical work of Nemhauser et al.
(1978), constrained submodular maximization prob-
lems have seen much progress recently (see for example
(Calinescu et al., 2011; Chekuri et al., 2010; Buchbinder
et al., 2014, 2016)). Robust submodular maximization
generalizes submodular function maximization under a
matroid constraint for which a (1� 1

e )-approximation is
known (Calinescu et al., 2011) and is optimal. The prob-
lem has been studied for constant k by Chekuri et al.
(2010) who give a (1� 1

e � ✏)-approximation algorithm
with running time O

⇣
n

k
✏

⌘
. Closely related to our prob-

lem is the submodular cover problem where we are given
a submodular function f , a target b 2 R+, and the
goal is to find a set S of minimum cardinality such that
f(S) � b. A simple reduction shows that robust sub-
modular maximization under a cardinality constraint
reduces to the submodular cover problem (Krause et al.,
2008a). Wolsey (1982) showed that the greedy algo-
rithm gives an O(ln n

✏ )-approximation, where the out-
put set S satisfies f(S) � (1�✏)b. Krause et al. (2008a)
use this approximation to build a bi-criteria algorithm
which achieves tight bounds. However, this approach
falls short of achieving a tight bi-criteria approximation
when the problem is defined over a matroid. Powers
et al. (2016b) considers the same robust problem with
matroid constraints. However, they take a different
approach by presenting a bi-criteria algorithm that
outputs a feasible set that is good only for a fraction
of the k monotone submodular functions. A deletion-
robust submodular optimization model is presented in
(Krause et al., 2008a), which is later studied by Orlin
et al. (2016); Bogunovic et al. (2017); Kazemi et al.
(2018). Influence maximization (Kempe et al., 2003)
in a network has been a successful application of sub-
modular maximization and recently, He and Kempe
(2016) and Chen et al. (2016) study the robust in-
fluence maximization problem. Robust optimization
for non-convex objectives (including submodular func-
tions) has been also considered by Chen et al. (2017),
however with weaker guarantees than ours due to the
extended generality. Specifically, their algorithm out-

puts r log k
✏2 OPT feasible sets whose union achieves a factor

of (1�1/e�✏). Finally, Wilder (2017) studies a similar
problem in which the set of feasible solutions is the set
of all distributions over independent sets of a matroid.
In particular, for our setting Wilder (2017) gives an al-
gorithm that outputs O( log k

✏3 ) feasible sets whose union
obtains (1�1/e)2 fraction of the optimal solution. Our
results are stronger than the ones obtained by Chen
et al. (2017) and Wilder (2017), since we provide the
same guarantees using the union of fewer feasible sets.
Other variants of the robust submodular maximization
problem are studied by Mitrovic et al. (2018); Staib
et al. (2018).

There has been some prior work on online submodu-
lar function maximization that we briefly review here.
Streeter and Golovin (2008) study the budgeted maxi-
mum submodular coverage problem and consider several
feedback cases (denote B a integral bound for the bud-
get): in the full information case, a (1� 1

e )-expected
regret of O(

p
BT lnn) is achieved, but the algorithm

uses B experts which may be very large. In a follow-up
work, Golovin et al. (2014) study the online submodular
maximization problem under partition constraints, and
then they generalize it to general matroid constraints.
For the latter one, the authors present an online version
of the continuous greedy algorithm, which relies on the
Follow-the-Perturbed-Leader algorithm of Kalai and
Vempala (2005) and obtain a (1� 1

e )-expected regret of
O(

p
T ). Similar to this approach, our bi-criteria online

algorithm will also use the Follow-the-Perturbed-Leader
algorithm as a subroutine.

2 The Offline Case

In this section, we consider offline robust optimization
(Equation 1) under matroid constraints.

2.1 Offline Algorithm and Analysis

In this section, we present a procedure that achieves a
(nearly) tight bi-criteria approximation for the problem
of interest and prove Theorem 1. First, we extend
the standard greedy algorithm for maximizing a single
submodular function under matroid constraint to the
bi-criteria setting and prove Theorem 3.

Observe that Algorithm 1 with ` = 1 is just the greedy
algorithm presented by Fisher et al. (1978), which gives
a 1

2 -approximation. Extending the standard algorithm
gives us the following result.
Theorem 3. For any ` � 1 and monotone submodular
function f : 2V ! R+ with f(;) = 0, the extended
greedy Algorithm 1 returns sets S1, . . . , S` such that

f
�
[`
⌧=1S⌧

�
�
✓
1� 1

2`

◆
max
S2I

f(S).
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Algorithm 1 Extended Greedy Algorithm for Sub-
modular Optimization
Input: ` � 1, monotone submodular function f : 2

V !
R+, Matroid M = (V, I).

Output: sets S1, . . . , S` 2 I.
1: for ⌧ = 1, . . . , ` do
2: S⌧  ;
3: while S⌧ is not a basis of M do
4: Compute

e⇤ = argmaxS⌧+e2I f([⌧
j=1Sj + e).

5: Update S⌧  S⌧ + e⇤.

Proof. We use the following stronger statement that
for any monotone non-negative submodular func-
tion (Fisher et al., 1978), the greedy algorithm when
run for a single iteration returns a set S1 2 I such that
f(S1)�f(;) �

�
1� 1

2

�
maxS2I {f(S)� f(;)}. We use

the above statement to prove our theorem by induction.
For ⌧ = 1, the claim follows directly. Consider any
` � 2. Observe that the algorithm in iteration ⌧ = `,
is exactly the greedy algorithm run on submodular
function f 0 : 2V ! R+ where f 0(S) := f(S

S
[`�1
⌧=1S⌧ ).

This procedure returns S` such that f 0(S`)� f 0(;) ��
1� 1

2

�
maxS2I (f 0(S)� f 0(;)) , which implies that

f
�
[`
⌧=1S⌧

�
� f

�
[`�1
⌧=1S⌧

�
�

✓
1� 1

2

◆✓
max
S2I

f(S)� f
�
[`�1
⌧=1S⌧

�◆
.

By induction we know f
�
[`�1
⌧=1S⌧

�
��

1� 1
2`�1

�
maxS2I f(S). Thus we obtain

f
�
[`
⌧=1S⌧

�
� 1

2
max
S2I

f(S) +
1

2
f
�
[`�1
⌧=1S⌧

�

�
✓
1� 1

2`

◆
max
S2I

f(S).

We now apply Theorem 3 for the robust submodular
problem, in which we are given monotone submodular
functions fi : 2V ! R+ for i 2 [k]. First, given pa-
rameter ✏ > 0, we obtain an estimate � on the value
of the optimal solution OPT := maxS2I mini2[k] fi(S)
via a binary search with a relative error of 1� ✏

2 , i.e.,�
1� ✏

2

�
OPT  �  OPT . As in (Krause et al., 2008a),

let g : 2V ! R+ be defined for any S ✓ V as follows

g(S) :=
1

k

X

i2[k]

min{fi(S), �}. (3)

Observe that maxS2I g(S) = � whenever �  OPT.
Moreover, note that g is also a monotone submodular
function.

Proof of Theorem 1. Consider the family of monotone
submodular functions {fi}i2[k] and define g as in equa-
tion (3) considering parameter � with relative error of
1� ✏

2 . If we run the extended greedy algorithm 1 on
g with ` � dlog 2k

✏ e, we get a set SALG = S1 [ · · · [ S`,
where Sj 2 I for all j 2 [`]. Moreover, Theorem 3
implies that

g(SALG) �
✓
1� 1

2`

◆
max
S2I

g(S) �
⇣
1� ✏

2k

⌘
�.

Now, we will prove that fi(SALG) �
�
1� ✏

2

�
�, for all

i 2 [k]. Assume by contradiction that there exists an
index i⇤ 2 [k] such that fi⇤(SALG) <

�
1� ✏

2

�
�. Since,

we know that min{fi(SALG), �}  � for all i 2 [k],
then

g(SALG)  1

k
fi⇤(S

ALG) +
k � 1

k
�

<
1� ✏/2

k
� +

k � 1

k
� =

⇣
1� ✏

2k

⌘
�,

contradicting g(SALG) �
�
1� ✏

2k

�
�. Therefore, we

obtain fi(SALG) �
�
1� ✏

2

�
� � (1 � ✏)OPT, for all

i 2 [k] as claimed.

Running time analysis. In this section, we study
the running time of the bi-criteria algorithm we just
presented. To show that a set of polynomial size
of values for � exists such that one of them sat-
isfies (1 � ✏/2)OPT  �  OPT, we simply try
� = nfi(e)(1 � ✏/2)j for all i 2 [k], e 2 V , and
j = 0, . . . , dln1�✏/2(1/n)e. Note that there exists
an index i⇤ 2 [k] and a set S⇤ 2 I such that
OPT = fi⇤(S⇤). Now let e⇤ = argmaxe2S⇤ fi⇤(e).
Because of submodularity and monotonicity we have
1

|S⇤|fi⇤(S
⇤)  fi⇤(e⇤)  fi⇤(S⇤). So, we can conclude

that 1 � OPT /nfi⇤(e⇤) � 1/n, which implies that
j = dln1�✏/2(OPT /nfi⇤(e⇤))e is in the correct interval,
obtaining

(1� ✏/2)OPT  nfi⇤(e
⇤)(1� ✏/2)j  OPT .

We remark that the dependency of the running time on
✏ can be made logarithmic by running a binary search
on j as opposed to trying all j = 0, . . . , dln1�✏/2(1/n)e.
This would take at most nk

✏ log n iterations. We could
also say that doing a binary search to get a value up to a
relative error of 1�✏/2 of OPT would take log1+✏ OPT.
So, we consider the minimum of those two quantities
min{nk

✏ log n, log1+✏ OPT}. Given that the extended
greedy algorithm runs in O(nr`) time, where r is the
rank of the matroid and ` = O(log k

✏ ) is the number of
rounds, we conclude that the bi-criteria algorithm runs
in nr log k

✏ min{nk
✏ log n, log1+✏ OPT}.
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Continuous offline algorithm. As a final remark,
we give a randomized version of the extended greedy
based on the continuous extensions of submodular func-
tions. This algorithm outputs a random set SALG

which is the union of O(ln k
✏ ) independent sets and

such that with constant probability has value close to
the true optimum. The number of independent sets
required for obtaining this result is smaller up to a
constant than the number of sets obtained by the ex-
tended greedy and optimal given the hardness results.
The design of the continuous offline algorithm and its
analysis are in Appendix B.

2.2 Experimental results

In this section, we provide a simple computational
experiment to exemplify our theoretical guarantees.
Moreover, it illustrates that our algorithm performs
much better on practical instances, in both the running
time as well as degree of the violation of the constraints
as compared to the worst-case guarantees given by
Theorem 1.

We consider the movie recommendation problem, in
which there is a ground set of n movies V and a set of
users U . Each user u 2 U rate a group of movies, by as-
signing a value re,u 2 {1, . . . , 5}, or zero, if that user did
not rate the movie. Our interest is to select a subset of
the movies that are the most representative of all users’
ratings. To approach this idea, we consider a facility-
location function, i.e., f(A) := 1

5|U |
P

u2U maxe2A re,u.
Observe that we scale by the maximum rating and the
number of users. From this, we consider a collection of
monotone submodular functions that are perturbed ver-
sions of the facility-location objective, i.e., problem (1)
corresponds to maxA2I mini2[k]{f(A) +

P
e2A\⇤i

⇠e},
where f is the function defined above, ⇤i is a random set
of fixed size different for each i 2 [k], and ⇠ ⇠ [0, 1]V is
an error vector. For experiments, we consider partition
constraints. Formally, there is a partition {P1, . . . , Pq}
of the movies and I = {S : |S \ Pj |  b, 8j 2 [q]}
(same budget b for each part). We run the bi-criteria
algorithm with the following parameters: number of
rounds for the Extended Greedy ` = dlog 2k

✏ e, and
approximation 1� ✏ = 0.99.

We used the MovieLens dataset of Harper and Konstan
(2016) with n = 1, 000 movies and |U | = 1, 000 users.
We consider k = 20 objective functions, where the
random sets are of size |⇤i| = 100. We fixed the
number of parts to be q = 10 (but not the composition)
and the budget b = 5. We created 20 random instances
in total, where each instance corresponds to a different
composition {P1, . . . , Pq}.

An optimal solution to this problem has size q · b = 50,
and Theorem 1 shows that the bi-criteria algorithm

Figure 1: In this figure we report CPU time in seconds (red)
and number of function calls (blue) per instance (x-axis)

outputs a set that contains at most b · dlog 2k
✏ e = 60

movies in each part (instead of 5), which leads to select-
ing 600 movies in total. However, in our experimental
results we get a much smaller set that on the average
has 14.90 movies per part (with a standard deviation
of 0.22). We also report results in terms of CPU time
and number of function calls in Figure 1. The average
CPU time is 21.67 seconds with a standard deviation
of 5.22. The average number of function evaluations is
42.79 · 104 with a standard deviation of 7.07 · 104.

3 The Online Case

In this section, we consider the online robust opti-
mization problem (Equation 2) under matroid con-
straints. We introduce an online bi-criteria algorithm
that achieves a sublinear (1� ✏)-regret while using solu-
tion St at time t that is a union of O(ln 1

✏ ) independent
sets from I. To start, let us first present definitions
and known results that play a key role in this online
optimization problem.

3.1 Background

For a set function f , its multilinear extension F :
[0, 1]V ! R+ is defined for any y 2 [0, 1]V as the ex-
pected value of f(Sy), where Sy is the random set gen-
erated by drawing independently each element e 2 V
with probability ye. Formally,

F (y) = ES⇠y[f(S)] =
X

S✓V

f(S)
Y

e2S

ye
Y

e/2S

(1� ye).

(4)
Note that F is an extension of f , since for any subset
S ✓ V , we have f(S) = F (1S), where 1S(e) = 1 if
e 2 S and zero otherwise. For all e 2 V let

�eF (y) := ES⇠y[f(S + e)� f(S)] = (1� ye)reF (y).
(5)
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We use �F (y) to denote the vector whose eth-
coordinate is �eF (y) as defined above. Furthermore,
for a matroid M, we denote by P(M) = conv{1I |
I 2 I} its matroid polytope. For any ⌧ > 0 we denote
by ⌧ · P(M) = conv{⌧ · 1I | I 2 I} the scaling of the
matroid polytope.

Multilinear extension plays a crucial role in design-
ing approximation algorithms for various constrained
submodular optimization problems (see Appendix B.1
for a list of its useful properties). Notably, Vondrák
(2008) introduced the discretized continuous greedy al-
gorithm that achieves a 1� 1/e approximate solution
for maximizing a single submodular function under
matroid constraints (see (Feldman et al., 2011) for the
variant of the continuous greedy that we use). At a
high level, this algorithm discretizes interval [0, 1] into
points {0, �, 2�, . . . , 1}. Starting at y0 = 0, for each
⌧ 2 {�, 2�, . . . , 1} the algorithm uses an LP to compute
the direction z⌧ = argmaxz2P(M) �F (y⌧��) · z. Then
the algorithm takes a step in the direction of z⌧ by
setting y⌧,e  y⌧��,e + �z⌧,e(1� y⌧��,e) for all e 2 V .
Finally, it outputs a set S by rounding the fractional
solution y1. We will use this discretized version of the
continuous greedy to construct our online algorithm in
the following section.

3.2 Online Algorithm and Analysis

In Appendix B we provide a continuous randomized
algorithm for the offline problem. Broadly speaking,
at every step, this algorithm finds a feasible direction
that improves all k functions and moves in that direc-
tion. We use an LP to find this direction similar to
the approach of Vondrák (2008) for the case of k = 1.
However, for the online robust optimization problem,
we immediately face with two challenges. First, it is not
clear how to find a feasible direction zt (as was found
via an LP for the offline problem) that is good for all
k submodular functions. To resolve this issue, we use
a soft-min function that converts robust optimization
over k functions into optimizing of a single function.
Secondly, robust optimization leads to non-convex and
non-smooth optimization combined with online arrival
of such submodular functions. To deal with this, we
use the Follow-the-Perturbed-Leader (FPL) online al-
gorithm introduced by Kalai and Vempala (2005).

For any collection of monotone submodular functions
{f t

i }i2[k] played by the adversary, we define the soft-min
function with respect to the corresponding multilinear
extensions {F t

i }i2[k] as

Ht(y) := � 1

↵
ln
X

i2[k]

e�↵F t
i (y),

where ↵ > 0 is a suitable parameter. Recall we as-

sume functions f t
i taking values in [0, 1], then their

multilinear extensions F t
i also take values in [0, 1]. The

following properties of the soft-min function as defined
above are easy to verify and crucial for our result.

1. Approximation:

min
i2[k]

F t
i (y)�

ln k

↵
 Ht(y)  min

i2[k]
F t
i (y). (6)

2. Gradient:

rHt(y) =
X

i2[k]

pti(y)rF t
i (y),

where pti(y) / e�↵F t
i (y) for all i 2 [k].

Note that as ↵ increases, the soft-min function Ht

becomes a better approximation of mini2[k]{F t
i }i2[k],

however, its smoothness degrades (see Property (17) in
Appendix C.1). On the other hand, the second prop-
erty shows that the gradient of the soft-min function
is a convex combination of the gradients of the multi-
linear extensions, which allows us to optimize all the
functions at the same time. Indeed, define �eHt(y) :=P

i2[k] p
t
i(y)�eF t

i (y) = (1�ye)reHt(y). At each stage
t 2 [T ], we use the information from the gradients pre-
viously observed, in particular, {�H1, · · · ,�Ht�1} to
decide the set St. To deal with adversarial input func-
tions, we use the FPL algorithm (Kalai and Vempala,
2005) and the following guarantee about the algorithm.
Theorem 4 ((Kalai and Vempala, 2005)). Let
s1, . . . , sT 2 S be a sequence of rewards. The FPL
algorithm 4 (see Appendix C.3) with parameter ⌘  1
outputs decisions d1, . . . , dT with regret

max
d2D

X

t2[T ]

st · d�E

2

4
X

t2[T ]

st · dt

3

5

 O

✓
poly(n)

✓
⌘T +

1

T⌘

◆◆
.

For completeness, we include the original setup and
the algorithm in Appendix C.3.

Our online algorithm works as follows: first, given
0 < ✏ < 1 we denote ` := dln 1

✏ e. We consider the
following discretization indexed by ⌧ 2 {0, �, 2�, . . . , `}
and construct fractional solutions yt⌧ for each iteration
t and discretization index ⌧ . At each iteration t, ide-
ally we would like to construct {yt⌧}`⌧=0 by running
the continuous greedy algorithm using the soft-min
function Ht and then play St using these fractional
solutions. But in the online model, function Ht is re-
vealed only after playing set St. To remedy this, we aim
to construct yt⌧ using FPL algorithm based on gradients



Structured Robust Submodular Maximization

{rHj}t�1
j=1 obtained from previous iterations. Thus we

have multiple FPL instances, one for each discretiza-
tion parameter, being run by the algorithm. Finally,
at the end of iteration t, we have a fractional vector yt`
which belongs to ` · P(M) \ [0, 1]V and therefore can
be written, fractionally, as a union of ` independent
sets using the matroid union theorem (Schrijver, 2003).

We round the fractional solution yt` using the random-
ized swap rounding proposed by Chekuri et al. (2010)
for matroid M` to obtain the set St to be played at
time t. The following theorem from (Chekuri et al.,
2010) gives the necessary property of the randomized
swap rounding that we use.
Theorem 5 (Theorem II.1, (Chekuri et al., 2010)).
Let f be a monotone submodular function and F be
its multilinear extension. Let x 2 P(M0) be a point in
the polytope of matroid M0 and S0 a random indepen-
dent set obtained from it by randomized swap rounding.
Then, E[f(S0)] � F (x).

Below, we formalize the details in Algorithm 2 (observe
that `/� 2 Z+). Now, we provide a summary of the
proof of Theorem 2, for a complete version we refer to
Appendix C.2.

Algorithm 2 OnlineSoftMin algorithm
Input: learning parameter ⌘ > 0, ✏ > 0, ↵ = n2T 2, dis-

cretization � = n�6T�3, and ` = dln 1
✏ e.

Output: sequence of sets S1, . . . , ST .
1: Sample q ⇠ [0, 1/⌘]V

2: for t = 1 to T do
3: yt

0 = 0

4: for ⌧ 2 {�, 2�, . . . , `} do
5: Compute

zt⌧ = argmaxz2P(M)

"
t�1X

j=1

�Hj
(yj

⌧��) + q

#
· z.

6: Update For each e 2 V ,

yt⌧,e = yt
⌧��,e + �(1� yt⌧��,e)z

t
⌧,e.

7: Play St  SwapRounding
�
yt`
�
. Receive and

observe new collection {f t
i }i2[k].

Proof of Theorem 2, summary. By applying a simple
Taylor approximation and using the update rule, for
any ⌧ 2 {�, . . . , `} we have

X

t2[T ]

Ht(yt⌧ )�Ht(yt⌧��) � �
X

t2[T ]

�Ht(yt⌧��) · zt⌧

�O(Tn3�2↵). (7)

Observe in Algorithm 2 that a different FPL is imple-
mented for each ⌧ 2 {�, . . . , `}, so we can state a regret

bound for each ⌧ by using Theorem 4. Specifically,

E

2

4
X

t2[T ]

�Ht(yt⌧��) · zt⌧

3

5

� max
z2P(M)

E

2

4
X

t2[T ]

�Ht(yt⌧��) · z

3

5� R⌘,

where R⌘ is the regret guarantee for a given learning
parameter ⌘ > 0. By taking expectation in (7) and
using the regret bound we just mentioned, we obtain

E

"
X

t2[T ]

Ht(yt⌧ )�Ht(yt⌧��)

#

� �

0

@ max
z2P(M)

E

2

4
X

t2[T ]

�Ht(yt⌧��) · z

3

5

1

A

� �R⌘ �O(Tn3�2↵). (8)

After using submodularity and monotonicity of each f t
i

(specifically Fact 1 in Appendix B.1), and properties
of the soft-min function, we arrive to the following
recurrence for each ⌧ 2 {�, . . . , `}

E

2

4
X

t2[T ]

Ht(yt⌧ )

3

5� E

2

4
X

t2[T ]

Ht(yt⌧��)

3

5

� �

0

@
X

t2[T ]

Ht(x⇤)� E

2

4
X

t2[T ]

Ht(yt⌧��)

3

5

1

A� 2�R⌘,

where x⇤ is the optimal solution of
maxx2P(M)

P
t2[T ] mini2[k] F

t
i (x). This recurrence is

similar to the one shown in (Vondrák, 2008) for the
discretized continuous greedy. Then, by iterating `

�
times in ⌧ , we get

E

2

4
X

t2[T ]

Ht(yt`)

3

5� E

2

4
X

t2[T ]

Ht(yt0)

3

5

� (1� ✏)
X

t2[T ]

Ht(x⇤)�O

✓
R⌘ ln

1

✏

◆
,

The term E
hP

t2[T ] H
t(yt0)

i
is small, so it is bounded

by O
�
R⌘ ln

1
✏

�
. Since ↵ is sufficiently large, we can

apply property (6) of the soft-min to obtain

E

2

4
X

t2[T ]

min
i2[k]

F t
i

�
yt`
�
3

5

� (1� ✏) ·
X

t2[T ]

min
i2[k]

F t
i (x

⇤)�O

✓
R⌘ ln

1

✏

◆
.

Finally, by doing swap rounding on each yt`, and apply-
ing Theorem 5, we get the desired result.
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