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ABSTRACT

There is a growing need to provide intermediate programming
classes to STEM students early in their undergraduate careers.
These efforts face significant challenges due to the varied
computing skill-sets of learners, requirements of degree programs,
and the absence of a common programming standard. Instructional
scaffolding and active learning methods that use Python offer
avenues to support students with varied learning needs. Here, we
report on quantitative and qualitative outcomes from three distinct
models of programming education that (i) connect coding to hands-
on “maker” activities; (ii) incremental learning of computational
thinking elements through guided exercises that use Jupyter
Notebooks; and (iii) problem-based learning with step-wise code
fragments leading to algorithmic implementation. Performance in
class activities, capstone projects, in-person interviews, and
participant surveys informed us about the effectiveness of these
approaches on student learning. We find that students with previous
coding experience were able to rely on broader skills and grasp
concepts faster than students who recently attended an introductory
programming session. We find that, while makerspace activities
were engaging and explained basic programming concepts, they
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lost their appeal in complex programming scenarios. Students
grasped coding concepts fastest using the Jupyter notebooks, while
the problem-based learning approach was best at having students
understand the core problem and create inventive means to address
them.
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1. INTRODUCTION

Offering incoming (freshman) undergraduates opportunities to
learn basic computing skills is an idea that is rapidly gaining
popularity in higher education. Due to the rapid proliferation of
computing in science, technology, engineering, and mathematics
(STEM) disciplines, these efforts need to be supplemented with
intermediate level student training programs as well [6, 7]. Such
intermediate programming experiences need to provide a solid skill
foundation in order to help early undergraduates develop
complexity in programming skills. Proficiency in computer science
widely differs from student to student, depending on their previous
experiences with computing. In this paper, we investigate how
important previous exposure to computing concepts is to
computing education. While a wide range of programming
constructs are considered introductory activities, a defined standard
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for intermediate- level proficiency is currently lacking. The Python
programming language helps address some of these concerns. The
language has an easy-to-comprehend syntax and can grow in
complexity to support analysis in numerous STEM disciplines. In
addition, inexpensive computers, like the Raspberry Pi, open
possibilities for educators to couple makerspace activities with
Python programming in the classroom to serve as a scalable
platform on which students can develop an intermediate-level skill
set in computing. Informal efforts that use well-reviewed
pedagogical approaches to education have been found to encourage
participation in and adoption of computational thinking [3, 13, 23,
24]. Previous studies have shown that projects connected to greater
societal impact or include elements of physical creativity are more
likely to appeal to a broader audience [14, 16]. Using participatory
technologies such as visualization, modeling, and robotics provide
a number of opportunities in this space. By combining increasingly
easy-to-access computing resources with a scaffolded teaching
approach [10], the barrier to entry can be reduced [4, 20]. Reducing
this barrier to entry is particularly relevant for informal efforts
hosted by high performance computing (HPC) centers that support
users who have a diverse range of research needs and computing
prowess.

In this study, we explore different pedagogical approaches that
utilize these technologies to introduce learners to complex
programming scenarios suitable for the intermediate level [2, 17,
19]. In the subsequent sections of this paper, we present the
conceptual framework of our program, and describe the methods
used to evaluate three learning approaches. The paper next
describes our efforts toward assessing the success and pitfalls of
these approaches using capstone exercises, interviews and
evaluations. We finally discuss the lessons learned over the
previous year and summarize our findings in conclusion.

2. EXPERIMENTAL DESIGN

Instructing groups of students on coding practices who have a
diverse range of skill sets and educational backgrounds remains a
challenge in computing education. Scaffolded instruction methods
offer avenues to support students with varied skill sets [10]. Active
learning has been shown among high-ability trainees to produce
significantly higher levels of metacognitive activity than
procedural training. Here, we compare and contrast the benefits of
well-reviewed approaches to scaffolded instruction and innovative
active learning exercises in the context of Python programming
over a week-long training session. The program’s goals are to (a)
increase participant engagement (b) develop a participant’s
understanding of complex computing concepts, and (c) pro- vide
participants with a learning environment that employs hands-on
exercises.

Complex coding projects can overwhelm the new or intermediate
learner. Such learning is best facilitated in a tiered format where
information is provided, comprehended, analyzed and employed
before moving to the next step. Traditional approaches utilize
handouts for students, presenting the code on the screen, and
perhaps provide prepared versions of the code. Jupyter Notebooks
provide interesting avenues in this space, because they provide a
number of useful features [8]. Unlike traditional applications, these
notebooks run as interactive web-browser applications that allows
users to write Python code in cells. The output from the cells is easy
to access and visualize because of its closeness to the Python code.
Students can see the output from each portion of code as they are
writing it. This allows the instructor to keep students engaged
through exercises that focus on smaller pieces of a complex code
and demonstrate how the output from each cell combines to form
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the larger program structure. The last advantage of Jupyter
Notebooks is that, as a web-based effort, these notebooks are
platform agnostic and can be run on any computer! This attribute
makes them tremendously portable. A notebook that runs on a
Raspberry Pi can be ported to run on a supercomputing cluster with
graphical processing units [15].

There is a significant body of work describing the importance of
makerspace activities and problem-solving approaches in informal
education [22]. Specifically, here we explore three different
approaches that use Raspberry Pi microcontrollers. We specifically
report on the following qualitative and quantitative outcomes,
(1) connecting coding to sensing and control of the real world
through hands-on maker activities [14, 16]; (2) incremental
learning of computational thinking elements [3, 13, 17, 23, 24]
through guided exercises using Jupyter Notebooks [8]; and
(3) problem-based learning with step-wise code fragments leading
to a complete implementation of an algorithm in which students are
presented a “narrative” program and goal, and work through
converting specific objectives into code to write the program and
achieve the goal.

To help ensure student engagement, these approaches used
exercises in game design using the Raspberry Pi Hardware
Attached on Top (HAT) sensor platform, image recognition using
machine learning (ML) [11], and sharing secret messages using
cryptography respectively. All three approaches included
structured and unstructured components, handouts for students, and
a number of advisors (1:4 ratio) available to assist if needed. In
order to effectively judge the efficacy of each approach, we ensured
that the exercises in these approaches did not build on each other.
To avoid biases due to familiarity with an instructor, each approach
was taught on a separate day by a different instructor (2 males and
1 female). Participants were informed of the nature of activities and
approaches only on the day of the activity. This ensured that the
participants were exposed to these learning activities for the first
time on the day of the camp, and helped reduce artifacts arising
from the participants having previous knowledge of these activities.

In order to create an early undergraduate environment that
comprises of intermediate-level learners, we recruited a cohort of
23 participants who had recently graduated from high school or
would do so in the near future. 7 of these 23 students were female.
In all, 13 of these 23 students be- longed to groups that are
traditionally underrepresented in computing. Recruiting was
performed using social media, emails to listservers, our website and
contacts at local school districts. Participant applications were
managed via our website. As part of their applications, applicants
were asked to completed a pre-training evaluation in the form of
Likert Scale and open-ended questions. These questions helped
establish the participant’s familiarity with Python, programming,
Linux and Raspberry Pi computers. Thanks to the exciting nature
of offered projects, we received a number of applications from
well-qualified participants. Selection to the training program was
merit-based. All participants had basic Python programming skills
defined by the ability to write scripts that employed loop constructs,
had earned a GPA of above 3.5, and were interested in attending
college. The participants also had some experience with the Linux
operating system and text editors. The students belonged to two
distinct learning groups. The first group of 12 students were self-
identified intermediate-level Python learners. The second group
included 11 learners who had participated in our introductory
Python programming course 2 months prior to this exercise. For the
purpose of brevity, these cohorts of participants are henceforth
referred to as Group 1 and Group 2, respectively, in the remainder
of this manuscript.
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3. PEDAGOGICAL APPROACHES

Each participant received a Raspberry Pi that was preloaded with
the Raspbian operating system, a Debian-based distribution of
Linux. To ensure that all participants had a set of common Python
programming skills, they were provided with the training material
from our introductory programming camp. These materials
contained information about introductory Python programming
practices, the Linux operating system, GitHub, and the Gedit text
editor. Trainees who had previously participated in our
introductory camp program were taught using this material.
Introductory computing skills were reviewed on the first day of the
camp. Each slide in the lesson contained a small activity to allow
for immediate application of the respective topic. To synthesize
knowledge gained in the lesson, the students were tasked with their
first maker activity; they performed variable assignments, basic
arithmetic operations, and console output. The students created
both string and integer variables to store numerical values. The
purpose of these tasks was to teach students to explore through
individual trial and error what actions could be executed on which
data type. On completion of the first day, all students were able to
successfully demonstrate the use of algorithms and loops in a
review exercise. Surveys and in-person interviews further
supported that all students were at a similar learning level after the
first day’s reviews. A brief description of the activities during the
training exercises are provided in the Reproducibility Appendix in
the order in which they were taught. Owing to the complexity of
the topics covered, measures were taken to reduce the complexity
of the problem set. Sessions included the use of PowerPoint slides
for instruction and students received handouts containing pertinent
information and review exercises. Instructors and their assistants
were provided with handouts that included more details about the
exercises along with possible solution sets.

3.1 Maker Spaces With Raspberry Pi HATs
Raspberry Pi computers have been successfully coupled with
sensors to create a wide range of makerspace activities. While a
wide variety of inexpensive discrete sensors and actuators, such as
sound-buzzers, LEDs, and touch sensors are available, the
integrated Raspberry Pi HAT sensor platform was used for these
activities. The Pi HAT combines discrete components nicely into a
portable and usable package. This platform provided participants
with numerous common utilities including an LED display. The
maker activities in this section had the trainees explore
cybersecurity and gaming scenarios that used the Pi HAT to present
a visual output on the LED display. The lesson began with an
introduction to basic programming concepts, such as variable
nomenclature, basic operators, and basic data types. The intention
was to develop an intuition for translating common language
commands into Python. The next segment began with an
introduction to the Python list, list operations, comparison
operators, user input, classes, and scripts. Students employed Git
repositories to exercise version control during these activities. It
followed the structure of the previous segment, with miniature
activities on each slide and a maker activity recursively
consolidating the segment information. Students were provided
with a slide showing parts of the program. New concepts were
highlighted as they were discussed during the session. The lesson
continued as such, with each segment scaling up in difficulty and
building on previously-learned concepts, as per a scaffolded
instruction approach.

The students completed two key activities during this session. In
the first exercise, they sequentially controlled the light pat- tern on
an RGB LED. For the second exercise, the students created a Pi-
stacking game on the Pi HAT that required players to stack colored
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tiles on top of each other. Student’s engagement with maker
activities throughout the lesson pro- vided opportunities for the
instructor to manage the varied skill levels with extra focus given
when needed. Successful completion of the coding exercises was
used as a metric of student success.

3.2 Jupyter Notebooks in Machine Learning

During this session, we described a series of hands-on activities that
introduced the participants to aspects of machine learning on the
widely-used Keras and TensorFlow software [1, 5]. Participants
were provided with an install script that automated most of the
process to reduce the complications arising from having to install
these software and their associated libraries. Students were first
introduced to concepts in machine learning. They were taught how
machine learning uses labels to categorize the subjects in images
and how it predicts the subject in an image file based on what it
learns from a training data set. Topics covered during this session
included the need for training using established and respected data
sets, emphasizing the need for higher levels of accuracy in terms of
training and complexity of models, and finally envisioning
scenarios where machine learning will make incorrect predictions.
The introductory session was followed by interactive hands-on
activities that introduced these learners to various aspects of ML.
These included (i) using a training database to teach ML systems to
recognize hand-drawn numbers in an image, (ii) accurately
predicting the kind of flower seen in an image, (iii) improving the
predictive ability of exercise by using convoluted neural networks,
and (iv) identifying the objects in a given image downloaded from
the internet [9]. As students worked through these exercises, they
employed the popular MNIST and ImageNet data sets to explore
logical regression models, transfer learning, Python imaging
libraries and the scikit learning libraries [12, 18]. Hand-drawn
images for these activities were created using the GIMP software.
On completion of these activities, students were able to leverage
existing modules to solve a real-world machine learning problem
with a small training data set and computing constraints. Once
again, student success was evaluated based on their ability to
complete the session’s hands-on activities. As a capstone, each
student created two trained platforms. The first platform identified
hand-drawn numbers in the range of 0 to 9, and the second platform
classified images. Since Jupyter Notebooks were used, additional,
more periodic metrics could be used to evaluate student
performance. These metrics include qualitative evaluations of the
student’s use of programming concepts to manipulate training data
sets and images. In our exercises, students came up with different
ways to confuse the algorithm. One case was of particular interest:
a trainee from Group 2 drew upon concepts from programming
sessions to create an image distorted with static to understand how
the ML programs would react to this data.

3.3 Real World Problem Solving Exercises in
Cryptography

During the cryptography session, the instructor first presented the
importance of cryptography in computer security. During this
session, the emphasis was placed on discussing a relevant real-
world problem and identifying approaches to solve it. Unlike the
previous activities, these problems could be solved by
implementing a number of different approaches. Much time was
spent discussing the fundamentals of modern cryptography:
modular arithmetic and one-way functions. Computationally
difficult functions such as discrete logarithms and the prime
factorization problem are not typically covered in introductory
courses, so these concepts are worth spending more time on to
ensure the students have a strong understanding of the underlying
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complexity of cryptography. Additionally, the session on
cryptography provides an opportunity to talk about how brute force
solutions to problems are often computation- ally infeasible and
require the problem set be compressed, a common issue in high
performance computing. To apply the material, the instructor
presented the Diffie-Hellman Key Exchange algorithm, an
accessible example of cryptographic concepts. As part of
evaluating the effectiveness of this approach, three exercises were
completed during this activity. Each progressive exercise would
have more possible solutions. The trainees perform an encryption
exercise followed by a decryption exercise.

The session was followed by a capstone exercise where students
were challenged to decrypt the communications of others in the
class. To demonstrate how it is critical to encrypt secure
communications over non-secure lines, all messages, including key
exchange negotiations, were broadcasted to the entire room. The
students were given examples of the Diffie-Hellman algorithm
implemented in Python. The intended recipient should be able to
successfully decrypt the message, while unintended recipients will
find it computation- ally infeasible. After this exercise, the students
were able to describe the need for cryptography and apply their
knowledge of modular arithmetic to computing problems.

4. EVALUATIONS, SURVEYS AND
ASSESSMENTS

The program and the activities in the program were evaluated using
a variety of approaches. Data collected as part of the registration
process helped identify the participant’s base line skills. As
described in previous sections, development of competencies is
gauged by the student’s ability to complete in-class exercises and
activities. To test competency on a topic, students were asked to
complete in-class exercises. As described in the previous section,
each of the three Python sessions included capstone projects that
required the students to apply the knowledge gained from the
session. Finally, surveys were completed by students at the end of
the camp. These surveys asked questions about the activities taught
during the camp. The survey consisted of questions that asked
students to rate activities based on a Likert scale. The survey also
included a number of open- ended questions that gave participants
an opportunity to include additional details about the exercises. To
compensate for the limited size of the sample group, surveys were
augmented with data from in-person interviews and student
performance in activities. Some of the open-ended questions in our
post-program survey were:

1. How did you learn about this camp?

Why did you register for this camp?

What are the difficulties that you faced in this camp?

What do you think are the strengths of this camp?

What specific content/concepts in the camp were particularly

challenging for you?

6. What specific content/concepts in the camp were particularly
easy for you?

7. How do you plan on using what you learn in this camp?

8. Who would you recommend the camp to?

kv

Essay-style questions that allowed campers to explain their
perceptions of the camp sessions were:

Please add any additional comments and details about topics that
you felt were easy or difficult to learn. What was the most enjoyable
aspect of a given session? What else you would like to have learned
during these sessions?

(a) Linux review session

(b) Python review session

64 ISSN 2153-4136

Journal of Computational Science Education

(c) Coding Games

(d) Artificial Intelligence activities

(e) Secret sharing activities

(f) Virtual Reality activities

The Likert Scale (1-5 scale) questions were:
1. How easy was the course for you?

2. How satisfied are you with the camp?

3. Please rate your proficiency in Python before attending the
Intermediate camp.

4. Please rate your proficiency in Python after the Intermediate
camp.

5. How likely are you to recommend the camp to others?

6. Please rate how likely you are to tell your teachers about this
camp.

7. Please rate how likely you are to participate in conferences,
science fairs, or other STEM programs in the coming school
year?

These surveys provide us a rationale for why people are attending
our classes and help with the recruiting efforts. Post-program
surveys will be administered at the 6-month and I-year
anniversaries of the program. We will use these data to build a
quantitative model that includes a longitudinal aspect. We are
particularly interested in understanding how the participants used
these skills in future efforts. We hope to develop a profile of the
kind of students or groups that are most likely to participate in
intermediate programing efforts. In the future, we will partner with
research groups on campus for an Internal Review Board (IRB)
approved study to investigate whether participants in these
programs are able to meet the stated learning objectives as well.

S. RESULTS AND CONCLUSIONS

All participants completed the week-long program. An important
consideration while evaluating these data is that these students had
self-selected themselves to participate in intermediate computing
exercises. Our data indicates that the choice of instructors did not
impact student learning in the three models. Each approach and the
associated exercises were appropriate for an intermediate program
(90%), and were found to be equally engaging (80% or higher).
Based on the performance of capstone (and review) exercises, we
find that students who had been exposed to computing a year or
more ago (Group 1) were better prepared for the program as
compared to students who had recently participated in an
introductory-level programming camp (Group 2). There was no
discernible difference in the academic prowess of these two groups
of participants. We assume that students who have had previous
exposure to computational thinking would have had more time to
synthesize new ideas and develop an understanding of the concepts.
Another possible rationale for this observation is that, as self-
described learners, Group 1 participants have learnt additional
coding and computing concepts that were not taught to Group 2
participants during the introductory camp. Some of the major
finding from these the approaches are:

Maker Spaces With Raspberry Pi HATs. While these activities
scored highly in terms of processing ideas and taking ownership of
ideas, the activities required the students to demonstrate Python
programming skills. Students who had not previously developed
these skills struggled in exercises that applied them to specific
problems (30%).
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Jupyter Notebooks in Machine Learning. Participating students
were successfully able to manipulate the Jupyter Note- books to
change training sets (100%), images (100%), and the number of
epochs (100%). While all students could per- form the exercises,
the conceptual underpinnings on ML were unclear to some (40%).
Understanding of ML concepts was demonstrated by students
working to confuse the model by finding images outside of the
training data set (30%).

Problem Solving Exercises in Cryptography. Students appreciated
that this approach connected to real world problems. The
interactive nature of this session provided students opportunities to
develop hypotheses to solve problems, and validate them (100%).
In these exercises, students had the freedom to select one of many
approaches to solve the problem at hand. Instructors were available
to provide assistance, but did not direct the students. The data
shows that the trainees found this approach to be more challenging
in scenarios where there were a large number of possible solutions
to solving a problem (80%). As such, this approach is perhaps better
suited where students can directly apply the gained knowledge to
solving a problem. Throughout this experience, we have found that
teaching students new computing concepts, such as navigating a
Linux environment, using the command line, and writing code, is
more productive when done through an interactive format rather
than using a lecture format that is interspersed with a few activities.
With an interactive format, students are more motivated to follow
along with the instructor and other students by participating in the
activities. The various ways in which the problem could be solved
increased the complexity of this approach for a number of students
(80%). In agreement with existing literature, our data indicate that
students with varying degrees of programming are best suited with
scaffolded learning approaches like Jupyter Notebooks for
application specific training. A problem-solving approach, though
slower, encourages greater interactions and deeper learning of the
subject matter. The makerspace activities provided the least amount
of scaffolding and were less successful than their counterparts at
incorporating increased levels of complexity in programming.
Throughout the exercise, we find that, while the scaffolded
elements allowed students to complete exercises, the lower learning
gains indicate that it is best suited for complex topics where a single
approach is attempted. The strategies described in this work were
found to be effective for a group of intermediate learners and can
be adopted in undergraduate curricula. Taken together, these
strategies can help attract students to become the next generation of
computer scientists, especially from groups that are currently
underrepresented in the field.

6. SUSTAINABILITY & LESSONS
LEARNED

The training program was designed with sustainability in mind.
Student training in computing is a critical area where demand
currently outweighs supply. Post-training surveys indicate that the
program’s format was well received by the community of students.
Data from this training pro- gram shows that intermediate-level
coding can be effectively combined with a number of fun activities
that engage early undergraduate students and encourage them to
participate in computer science. The largest challenges lie in
presenting programming concepts at a level that can be
comprehended and learnt by a diverse set of students. While
certificates of attendance were provided to the participants, we are
looking into making these efforts “transcriptable” so that employers
can recognize them. While pre-training assessments were per-
formed, in future iterations, we hope to assess student skills and
competencies both pre- and post-program using evaluation scheme
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in the style of Student Assessment of Learning Gains (SALG) [21].
Representative samples of students and their parents will be
interviewed. Some of the topics will include their experience in the
camp, motivation to pursue careers in computing, STEM, and
cybersecurity and ways to refine the offerings. The seemingly vast
availability of Python teaching tools and the low cost of computing
plat- forms makes the effort inherently sustainable. An abundance
of free tutorials, educational makerspace coding activities, and
intuitive Python interpreters have helped reduce the amount of
programming that a user had to know prior to using large-scale
computing or HPC resources. These approaches present exciting
opportunities to engage students in programming, a critical step, to
get them to learn and contribute to computing efforts.

7. SUPPORTING INFORMATION

All training materials developed by Texas A&M High Performance
Research Computing (HPRC) are available for download free-of-
charge on the Texas A&M HPRC website. Future adoptees can
access the material at https:/hprc.tamu.edu/training. Surveys,
machine learning installation scripts, and a Linux review exercise
are included as part of the Reproducibility Appendix. Agendas,
registrations forms, sample announcements, templates to track
participants, Trello event-boards and other such materials will be
made available by the authors upon request. Please send us
feedback about your adoption experience to help@hprc.tamu.edu.
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