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Convolutional Neural Networks have rapidly become the most successful machine-learning algorithm, en-

abling ubiquitous machine vision and intelligent decisions on even embedded computing systems. While the

underlying arithmetic is structurally simple, compute and memory requirements are challenging. One of the

promising opportunities is leveraging reduced-precision representations for inputs, activations, and model

parameters. The resulting scalability in performance, power efficiency, and storage footprint provides inter-

esting design compromises in exchange for a small reduction in accuracy. FPGAs are ideal for exploiting

low-precision inference engines leveraging custom precisions to achieve the required numerical accuracy for

a given application. In this article, we describe the second generation of the FINN framework, an end-to-end

tool that enables design-space exploration and automates the creation of fully customized inference engines

on FPGAs. Given a neural network description, the tool optimizes for given platforms, design targets, and a

specific precision. We introduce formalizations of resource cost functions and performance predictions and

elaborate on the optimization algorithms. Finally, we evaluate a selection of reduced precision neural net-

works ranging from CIFAR-10 classifiers to YOLO-based object detection on a range of platforms including

PYNQ and AWS F1, demonstrating new unprecedented measured throughput at 50 TOp/s on AWS F1 and

5 TOp/s on embedded devices.
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1 INTRODUCTION

Deep Neural Networks (DNNs) achieve impressive results in computer vision, speech recognition,
and many other applications. However, the enormous compute and storage requirements associ-
ated with their deployment encounter limitations in regards to cost, power budget, throughput,
and latency. Energy costs and data transmission overheads of offloading to the cloud are unsuitable
for low-latency, real-time, or safety-critical application requirements, such as speech recognition,
augmented reality, drone control, or autonomous driving. Also in the cloud computing context
itself, we face ever-increasing throughput requirements to process astronomical scales of data,
bringing additional challenges in energy efficiency to minimize operating expenses. While cloud
service latency is less critical compared to embedded scenarios, it still translates directly into cus-
tomer experience for interactive applications. For instance, Jouppi et al. [27] quote a response time
limit of 7ms for an interactive user experience in cloud-based services.
Neural networks using floating-point operations are the initial choice from the machine-

learning community, but trained parameters can contain a lot of redundant information [21]. This
can be exploited to reduce the computational cost of inference. Competitive levels of accuracy
have been demonstrated using sparsification [36], singular value decomposition [14], pruning [18,
21, 65], or a combination of techniques [22, 25]. Another promising key approach for exploiting
redundancy in neural networks is to use quantization. It has been demonstrated that moving from
floating-point arithmetic to low-precision integer arithmetic only impacts the network accuracy
lightly, especially if the network is retrained [57]. The quantization of neural networks down to
8-bit integers has beenwidely adopted and is well supported by designated and optimized software
libraries, such as gemmlowp [16] and the ARM Compute Library [35]. In this article, we are inter-
ested in even further reduced precisions all the way down to the extreme case of Binary Neural
Networks (BNNs) with binary representations for synapse weights, input and output activations,
as these precisions offer the lowest hardware cost. We also leverage pruning techniques to further-
more reduce the number of operations in several networks, while having little impact on accuracy.
The key computational advantages obtained by using quantized arithmetic in inference are

threefold: First, the quantized weights and activations have a significantly lower memory foot-
print and the working set of some quantized neural networks (QNNs) may entirely fit into on-chip
memory. Fewer off-chipmemory accesses alsomean orders ofmagnitude less energy consumption.
Furthermore, as on-chip memory can deliver much higher bandwidth, the utilization of the com-
pute resources is increased for a higher performance. For example, binarization reduces the model
size of VGG-16 [55] from 4.4Gbit to 138Mbit and that of YOLOv2 [53] from 1.6Gbit to 50Mbit.
Second, replacing floating-point with fixed-point representations inherently reduces processing
power by orders of magnitude [24]. While the reported study is for 45nm ASICs, FPGAs follow
similar general trends. Finally, the hardware resource cost of quantized operators is significantly
smaller than that of floating-point ones. This allows a much higher compute density with the
same amount of resources and thereby an easier performance scaling, as the key computation in
neural network inference is repeated multiply-accumulate (MAC) operations. As will be shown in
Section 3, hardware complexity of an integer MAC basically grows proportional to the bitwidths
of both factors.
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Fig. 1. AWS F1 Rooflines across a range of precisions.

Fig. 2. Accuracy over time for ImageNet classification.

We use a roofline model, as introduced by Williams et al. [62], to exemplify the computational
benefits of QNNs. Figure 1 shows the peak performance of an AWS F1 FPGA node for operations
at different precisions.1 The graphs illustrate that by going from half-precision floating point to
reduced-precision fixed point, the peak compute performance increases by 87×. We also show how
the accompanying reduction in model size enables staying in on-chip memory. This is illustrated
by the arithmetic intensity of three different neural network topologies, specifically ResNet-50,
ResNet-152, and Tiny YOLO, which are shown for the two cases of the half-precision floating-
point and 1-bit operation. The arithmetic intensity for the 1-bit variants is greatly increased, and
the implementation is no longer memory bound.
The reduction in precision has a slight impact on accuracy, which has been addressed by

quantization-aware training techniques, by innovative numerical representations (e.g., MS-FP8
by Microsoft Research [8]) and by new quantization schemes (e.g., Half-wave Gaussian [9]). This
is illustrated by Figure 2 showing the published top-5 error rate for the ImageNet classification by
32-bit floating-point networks [1] and corresponding reduced-precision networks [9, 21, 25, 50, 66,
72, 73].
The minimal reduction in accuracy combined with significant performance gains and power

savings provides highly interesting design trade-offs. Figure 3 illustrates achievable compromises
for the selection of CNNs given above, depicting the relationship between top-5 error rate and
hardware cost for ImageNet classification. For this, we assume a target frame rate of 10,000 frames
per second (fps), clock rate of 300MHz, and a hardware cost in lookup tables (LUTs) as derived by

1The following assumptions were applied: clock frequency: 400MHz, 90% DSP, and 70% LUT utilization; HLS overhead

included by hardware cost functions as derived later.
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Fig. 3. Accuracy vs. hardware cost with different precisions for ImageNet.

Fig. 4. FINN-R framework overview.

the microbenchmarks in Section 3 with HLS. The interesting points within this design spectrum
are the ones on the Pareto frontier. It is clear that, for example, for a maximum error of 10%, the
most cost-efficient implementation leverages a 2b/8b representation. Similarly, these graphs illus-
trate that Pareto optimal trade-offs are often reduced-precision networks, for instance when the
hardware cost or energy budgets are fixed. This is the case in many applications, be it a maximum
price target for an embedded device or the PCIe power budget of 75W.
The key question is, given a set of design constraints and a specific machine-learning task,

how the best possible trade-off within the vast design space can be identified. This question en-
tails two parts: One is concerned with deriving the most implementation-friendly neural network,
and the second part looks at the hardware implementation itself. Deriving systematic accuracy re-
sults is a time-intensive process given typical neural network training times. But even the potential
computational benefits cannot be easily understood, because hardware implementations are time-
intensive, the deployment space is complex, architectural choices are myriad and the prediction
of power, performance and latency is complex. To find an optimal implementation given a set of
design constraints requires a framework that provides insights and estimates given a set of design
choices and automates the customization of the hardware implementation.
To address this challenge, we implemented FINN-R, the second version of the original tool [58],

which supports more architectural choices as well as mixed and variable precisions beyond bi-
nary. FINN-R uses a quantization-aware intermediate representation to enable QNN-specific op-
timizations and has a modular frontend/transform/backend structure for flexibility as is shown in
Figure 4. The focus of this article is on the architecture of inference accelerators, their optimiza-
tion and automated generation towards different design targets.While we discuss some techniques
used towards the quantization of neural networks during training, this is currently still a highly
active research area and well beyond the scope of this article. Our contributions are as follows:

• Review and summary of the state of the art in reduced-precision neural networks, accuracy,
frameworks, and reconfigurable hardware accelerators.

• Microbenchmarks demonstrating performance-cost tradeoffs of different compute architec-
tures and substrates for a broad range of precisions.

• Cost models for different architectures and precisions.
• A modular quantization-aware end-to-end framework for QNN exploration and

implementation.
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Table 1. Latest Accuracy of Several QNNs [4, 9, 73]

on ImageNet Dataset

Network Float top-1 (top-5) QNN top-1 (top-5)
GoogLeNet 71.4% (90.5%) 63.0% (84.9%)
VGG-like 69.8% (89.3%) 64.1% (85.6%)
ResNet-50 79.26 (94.75%) 64.6% (85.9%)

• Experimental results on four state-of-art QNN implementations on three different platforms
yielding unprecedented measured peak performance.

This article is structured as follows: Section 2 reviews the state of the art in reduced precision
neural networks. We describe the hardware architecture choices in greater detail in Section 3, in-
cluding the microbenchmark results, which are used to derive hardware cost estimation functions,
while Section 4 contains the details on the FINN-R framework. Section 5 presents experimental re-
sults, demonstrating the benefits of reduced precision and validating the FINN-Rworkflow and its
flexibility with results measured for a range of neural networks, platforms, and precisions. Finally,
Section 6 concludes the article and provides an outlook to future work.

2 BACKGROUND

QNN accuracy, hardware inference accelerators, and frameworks to automate the accelerator gen-
eration are fast-moving fields of research. The following sections capture the respective most re-
cent and relevant state of the art at the time of writing.

2.1 Quantized Deep Neural Networks—Accuracy

On smaller image classification benchmarks such as MNIST, SVHN, and CIFAR-10, QNNs have
been demonstrated [13, 72] to achieve nearly state-of-the-art accuracy. Kim and Smaragdis [29]
consider full binarization (where weights, inputs and outputs are binarized) with a predetermined
portion of the synapses having zero weight, and all other synapses with a weight of one. They
report 98.7% accuracy with fully connected networks on the MNIST dataset and observe that only
XNOR and bitcount operations are necessary for computing with such neural networks. XNOR-
Net by Rastegari et al. [50] applies convolutional BNNs on the ImageNet dataset with topologies
inspired by AlexNet, ResNet, and GoogLeNet, reporting top-1 accuracies of up to 51.2% for full
binarization and 65.5% for partial binarization (where only part of the components are binarized).
DoReFa-Net by Zhou et al. [72] explores reduced precision during the forward pass as well as the
backward pass. Their results include configurations with partial and full binarization on the SVHN
and ImageNet datasets, including best-case ImageNet top-1 accuracies of 43% for full and 53% for
partial binarization. For the more challenging ImageNet benchmark, there is a noticable accuracy
drop when using QNNs compared to their floating-point equivalents; however, there is significant
evidence that increasing network layer size can compensate for this drop in accuracy as shown by
by Fraser et al. [20], Sung et al. [57], Zagoruyko et al. [66], Mishra et al. [39], and Kim et al. [29].
Furthermore, new quantization schemes show promising results. For instance, Cai et al. [9] pro-

posed Half-wave Gaussian Quantization (HWGQ) to take advantage of the Gaussian-like distribu-
tion of batch-normalized activations, demonstrating QNNs with binary weights and 2-bit activa-
tions with less than 5% top-5 accuracy drop compared to floating-point DNNs on the challenging
ImageNet dataset, as summarized in Table 1. To the best of our knowledge, currently the lowest
error rates for ImageNet classification have been achieved using ternarization [4, 73].
While different numerical representations are worth investigation, our current focus is on

quantized values with fixed integer representations below 8 bits. We use integer to also refer to
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fixed-point numbers as we can absorb fixed-point scaling factors into thresholds. The following
notation W xAy is used across this article to represent a layer with x-bit weights and y-bit
activations. The QNN networks within this article have most layers heavily quantized but may
contain higher-precision or even floating-point layers. As pointed out before, the discussion on
how to train for reduced precision is referenced in the experimental section for each QNN.

2.2 Accelerators and Architectures

A great deal of prior work on mapping neural networks to hardware exists for both FPGAs and
ASICs. We refer the reader to the work by Misra and Saha [40] for a comprehensive survey. We
cover a recent and representative set of works here, roughly dividing them into three categories
based on their basic architecture: (1) a single processing engine [5, 11, 12, 27, 28, 34, 41, 46, 68],
usually in the form of a systolic array, which processes each layer sequentially; (2) a streaming
architecture [4, 49, 60], consisting of one processing engine per network layer where inputs are
streamed through the dataflow architecture and all layers are computed in parallel; (3) a vector
processor [17] with instructions specific to accelerating the primitive operations of convolutions.
Recent graphics processing units (GPUs) have been shown to deliver competitive results, as well
as neurosynaptic processors, which implement many digital neurons and their interconnecting
weights [15]. However, this study focuses on FPGA-based accelerators only. For a detailed perfor-
mance and efficiency comparison, we refer the reader to Section 5 and particularly Table 5.

Single Processing Engines: Zhang et al. [68] describe a systolic array style architecture, using the-
oretical rooflinemodels to design accelerators optimized for the execution of each layer. Ovtcharov
et al. [46] implement a similar style architecture achieving a 3× speedup. Eyeriss by Chen et al. [12]
use 16-bit fixed point rather than floating point, and combine several different data reuse strate-
gies, which provide 2.5× better energy efficiency over other methods. YodaNN by Andri et al. [5]
have a similar design as Zhang et al. [68] but explore binary weights for fixed sized windows.
Moss et al. [41] also implement a systolic array style processor, but specifically for BNNs, allowing
for very high throughput, up to 40.8 TOp/s. Some alternative approaches to single accelerator de-
signs are: Stripes [28], which implements a bit-serial processor capable of handling multiple preci-
sions on a single compute array. The authors experiment with precision from 3 to 13 bits. FP-BNN,
another implementation of a single processing engine for BNNs, utilizing an XNOR-popcount dat-
apath. Interestingly, the authors implement batch-normalization and scaling in floating point for
some networks, resulting in higher DSP usage than perhaps is required.
Streaming architectures: Venieris and Bouganis [60] proposed a synchronous dataflow (SDF)

model for mapping CNNs to FPGAs, which is a similar approach to our dataflow variant. Their
designs achieve up to 1.62× the performance density of hand tuned designs. Alemdar et al. [4]
implement fully connected ternary-weight neural networks with streaming and report up to 255K
frames per second on theMNIST dataset, but concentrate on the training aspect for those networks.
Baskin et al. [7] similarly map multibit CNNs in streaming fashion onto FPGAs and show superior
performance over GPUs. Prost et al. [49] design ternary networks in a dataflow, achieving notably
high accuracies and performance, likely due to ternarization and a hand optimized RTL design.
Vector processors: Farabet et al. [17] describe a programmable ConvNet Processor (CNP), which

is a RISC vector processor with specific macro-instructions for CNNs including 2D convolutions,
2D spatial pooling, dot product and an elementwise non-linear mapping function. The authors
also created a tool to compile a network description into host code, which is used to call the CNP.
Accelerator frameworks:Numerous new frameworks, including the original FINN tool [58], have

been proposed that take a graph-based description of neural networks (such as Caffe’s prototxt for-
mat) to operational hardware implementations, whereby some of those leverage a fixed hardware
architecture, and others customize the hardware accelerator to achieve better throughput, latency
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or power reduction. To the best of our knowledge FINN-R is the only tool that supports arbitrary
precision in weights, input and output activations, plus the flexibility in the backend, which in-
cludes two hardware architectures to support a spectrum of design goals, as well as multiple target
platforms. DNNWeaver [54] is a tool that generates bitstream+host code implementing CNNs on
several FPGA platforms on the basis of a Caffe prototxt description. The generated coprocessor im-
plements multiple processing engines depending on available resources. External memory is used
for weights and for intermediate feature maps while the arithmetic supports 16-bit fixed or float-
ing point. Similarly, fpgaConvNet is not quantization-aware. It creates customized FPGA dataflow
architectures using reconfiguration when designs do not fit [60]. CaffePresso focuses on embed-
ded systems with 20W power budgets including the Xilinx ZC706 (FPGA), NVIDIA Jetson TX1
(GPU), TI Keystone II (DSP), and Adapteva Parallella (RISC+NoC). The tool is currently limited
to low-complexity classifiers that operate on small image maps and few class labels. Combining
auto-tuning of the implementation parameters, and platform-specific constraints deliver optimized
solutions for each input ConvNet specification.GUINNESS [43] is a GUI-based tool flow for training
BNNs on GPUs and deploying them using Xilinx devices through SDSoC. Similarly,HADDOC2 [3],
the synthesis tool described byWei et al. [61] and the compiler proposed byMa et al. [37] transform
CNN descriptions to synthesizable hardware. Finally, Minerva [51] proposed a five-stage SW-HW
co-design work flow of an inference engine, however, it is constrained to fully connected (FC) lay-
ers only. Unlike FINN-R, Minerva includes a training space exploration, which is used to explore
accuracy/resource trade-offs with a layer-wise direct quantization scheme, synapse pruning using
thresholding and SRAM fault mitigation.

3 INFERENCE ACCELERATOR ARCHITECTURE

In this section, we investigate the various possible architectural choices when mapping inference
onto programmable logic. The first subsection takes an in-depth look at reduced precision opera-
tional costs for both LUT- and DSP-based implementations. This includes systematic benchmark-
ing results for a broad choice of precisions, whichwe use as the basis for our operation cost function.
In the second subsection, we discuss the implementation of individual layers, including their re-
lated layer cost function. The third subsection elaborates on the supported choices for a complete
inference accelerator and their associated impact on the resource requirements yielding the accel-
erator cost function. The cost functions are essential to obtain the optimal levels of parallelism for
the architecture and performance predictions.

3.1 Microbenchmarks and Operation Cost Function

For a thorough understanding of the resource requirements of the omnipresent dot product com-
putation, we have designed and implemented a set of microbenchmarks that perform multiple
multiply-accumulate operations that can be customized in the bit widths of both operand vectors
and the number of products summed up in a single step. We have implemented these microbench-
marks both (a) in VHDL for traditional RTL synthesis and (b) in C++ targeting the HLS flow. For
FINN-R, we have chosen the latter for a number of reasons, namely design productivity, porta-
bility to different platforms, built-in optimizations for pipelining, design-space exploration and
automated flow control. However, this comes at the expense of some resource overhead. The RTL
results allow us to estimate the overhead for the higher-level design entry and establish a reference
for potential future gains.
Combinations of different dot product sizes, which is defined as the size of the input vectors,N ∈
{1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128} and operand bit widthsW ×A ∈ {1, 2, 3} × {1, 2, 3} were
measured, resulting in a three-dimensional parameter space. An elementary multiply decomposes
into (a) the generation of a skewed bit matrix produced fromW · A AND operations and (b) its
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Fig. 5. LUT costs of dot product computation.

summation to yield the value of the product. The structural combinational complexity of both
steps is determined by the number of bits produced and added up, respectively. The LUT cost can
thus be expected to grow proportionally to this product as well, give or take some jitter caused by
functional fragmentation due to the required mapping to physical 6-input LUTs.
Scaling the size N of the dot product to longer vectors can be expected to scale the structural

complexity of the computation accordingly. Note that N bit matrices of sizeW · A must be pro-
duced. The following summation would ideally operate on all the stacked and merged matrices
together without producing the individual partial results. This additive reduction would have
N ·W · A inputs suggesting a proportional structural complexity in terms of LUTs.
The described implementation of the multi-MAC operation is effectively enforced in our RTL

implementation by employing the generic matrix summation approach by Preußer [48]. The HLS
flow through Vivado HLS and Vivado implements a similar slightly less efficient adder tree after
the generation of the bit matrices. Both implementations can be expected to induce structural
LUT costs that are roughly proportional to the productC = N ·W · A, which we use to describe the
complexity of the dot product operation. The coefficients corresponding to the two implementation
choices can be determined empirically and is an immediate measure of their relative efficiencies.
The results of our microbenchmark experiments are shown in Figure 5. The anticipated linear

dependency on the complexitymeasured by the number of overall bit matrix elements is confirmed
to be extremely close for the RTL implementationwhile experiencing a somewhat greater variation
about the fitted center line for HLS synthesis. HLS typically but unnecessarily reduces the partial
products completely to a conventional binary number before feeding them into the adder tree. This
creates an overhead that grows with the size N of the dot product and accounts for the observed
variation. Comparing the measured coefficients, the HLS implementation is found to currently
induce a 45% resource overhead over the far more complex VHDL implementation.
The use of binary ({−1, 1}) and ternary ({−1, 0, 1}) weights is very popular for reduced-precision

neural networks. So, it is interesting how these specific range types behave in comparison to the
neighboring conventional 1-bit or 2-bit integer types when used in dot products with activations of
various precisions. Factoring outW from our previous complexity measure, we can predict linear
dependencies of the LUT costs on the remaining C ′ = N · A product. Using HLS only in these
experiments, we find the greatest cost increase going from conventional 1-bit weights, which are
rarely used, to binary weights. This is due to the fact that already the negative multiple of A now
required in the computationmandates the allocation of an extra sign bit. This can only bemitigated
in the trivial case of 1-bit activations using the approach practiced by XNOR-Net or traditional
binarized FINN [58]. Otherwise, an increase in LUT costs of 35% is experienced. The additional
increases of 20% for each further step going to ternary and 2-bit precisions are somewhat smaller.
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Fig. 6. Processing element (PE) as basic compute component.

Fig. 7. SWU and MVU block diagram.

3.2 Layers

The prinicipal elements that compose a typical convolutional layer are thematrix-vector threshold

unit (MVU) and the sliding window unit (SWU). MVUs handle the compute aspects: For convolu-
tional layers, the convolutions themselves can be lowered to matrix-matrix multiplications, which
is well understood [10]. These can then be mapped in a streaming fashion onto the MVU. The
corresponding weights from the convolution filters are packed into a filter matrix, while a sliding
window is moved across input images to form an image matrix. These matrices are then multiplied
to generate the output images.
We refer to the principal compute component of convolutional or fully connected layers as a

processing element (PE). Its structure is illustrated in Figure 6. A PE performs Q parallel multi-
plications, which corresponds to the SIMD value. It then reduces them in an adder tree for their
subsequent accumulation towards the currently computed dot product. Finally, threshold compar-
isons are used to derive the output values from the accumulation results. An array of P parallel
PEs comprises a MVU. A third degree of concurrency is introduced that supports computation
of multiple output pixels sharing the same weights within the same channel in parallel, referred
to as M . This enables performance scaling with increased BRAM utilization. The choices of the
parameters P ,Q , andM determine the degree of a layer’s computational parallelism. They are the
key parameters for trading off resource versus performance of any layer’s computation.
The SWU is the unit that generates the image representation required for a convolution lowered

to a matrix multiplication (Figure 7(a)). It generates the same vectors as those in Reference [10]
but with interleaved channels [58] to simplify memory accesses and to avoid the need for trans-
position between layers. This exhibits significantly lower latency compared to full image buffers
and reduces buffer size requirements. Only as many consecutive rows as the height of the convo-
lutional kernel must be kept available. For elasticity reasons, an extra row is used to collect new
incoming image data.

3.2.1 Layer Cost Model. As can be seen from Figure 8, a layer is composed of different elements.
Convolutional layers are composed of SWU, MVU as well as weight and threshold memories (WM
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Fig. 8. Possible layer compositions.

Table 2. Layer Parameters

Fully Connected Layers D,D ′ input & output vector size
Convolutional Layers N ,C input feature map width and channels

K × K , S kernel dimension and stride
C ′ output feature map channels

MVU Dimensioning M parallel vectors processed by MVU
P ,Q number of output & input channels computed in parallel
A,W bit width (precision) of activations / weights

& TM). Maxpool layers contain a SWU and a maxpool unit, and fully connected layers require only
MVUs. Thus, the layer cost is a sum of the basic components as shown in Equation (1). Note that
the logic cost relating to WM (LUTWM) and the BRAM cost of MVUs (BRAMMVU) is neglible:

BRAMCNV = BRAMSWU + BRAMWM; LUTCNV = LUTSWU + LUTMVU; (1)

BRAMFC = BRAMWM; LUTFC = LUTMVU; (2)

BRAMMP = BRAMSWU + BRAMMP; LUTMP = LUTSWU + LUTMP. (3)

In the following paragraphs, we derive BRAM, LUT, and DSP costs for all components (SWU,
MVU, WM, MP) separately.

SWU Cost. The sliding window unit’s hardware cost is dominated by the BRAM requirements,
which can be directly derived from the implemented memory layout, as given by the parameters
in Table 2. The line buffer occupies as many BRAM modules as specified by Equation (4):

BRAMswu = M ·
(⌈K
S

⌉
+ 1
)
·
{⌈S · N

512

⌉
×
⌈C · A

36

⌉}
. (4)

The multi-vector count scales linearly at the highest level of the equation. Otherwise, independent
stripes of memory are used for each set of rows that can be released independently once the whole
width of a line has been processed. An additional memory stripe is used as assembly buffer for
the new image data coming in. This accounts for the first parenthesized factor. The remaining two
factors capture the depth and the width of the memory stripes, which are potentially fragmented
due to the depth and word width of the built-in BRAMmodules. There is also a constant overhead
in logic resources. This varies depending on the type of accelerator architecture. For a full feed-
forward dataflow, each SWU requires 426 LUTs and 0 DSPs as the exact dimensions are known at
compile-time and the parameters can be baked into the architecture. For a multilayer offload that
executes many different layers on top of the same hardware components, the parameterization
happens at run-time, therefore the overhead is larger with 1050 LUTs and 15 DSPs, respectively.

WMCost. For convolutional layers, Equation (5) captures the number of BRAMmodules needed
to implement the weight memory of a convolutional layer. Its overall size is determined by the
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Fig. 9. Empirical fit of the LUT cost model for the MVU.

product of the squared kernel dimension and the numbers of input as well as output feature map
channels. This memory volume is split into separate memories, one for each processing element.
The parallel access of Q weights determines the word width used by the implementation. Again,
memory depth and word size may be fragmented by the physical dimensions of the available
BRAM modules:

BRAMWM = P ·
{⌈ ω

512

⌉
×
⌈Q ·W

36

⌉}
with ω =

⎧⎪⎪⎨⎪⎪⎩
K 2 ·C ·C ′
Q ·P for convolutional layers

D ·D′
Q ·P for fully connected layers

. (5)

MVU Cost. The computational concurrency of a convolutional layer is controlled by (a) the num-
ber P of PEs concurrently working on distinct output channels, (b)Q , the SIMD of input channels
processed within one clock cycle, and (c) M , the multi-vector count capturing the concurrent du-
plication of this compute structure across multiple output pixels for convolutional layers. These
parameters allow to scale the performance of a layer implementation in a wide range but also
affect the hardware costs directly. Generating a network implementation, FINN-R must be aware
of these costs to be able to scale the individual layer implementations towards a balanced perfor-
mance within the resource limits of the targeted device.
The hardware cost of theMVU can bemodeled as an essentially constant control part and the dot

product arithmetic. The latter scales both with the duplication into parallel PEs and with parallel
multi-vector processing. The model for the internal costs of the individual arithmetic blocks can
be taken from the results of the microbenchmarks in Section 3.1. Combining both control and
arithmetic, we derive the following model: LUTs = c0 + c1 ·M · (P ·Q ) (W · A). Recall that M = 1
for fully connected layers as they cannot share weights across multiple kernel applications.
To determine the two parameters of this model and to validate its fitness, we again performed

HLS synthesis experiments with the parallelization parameters M = 1, P ∈ {2, 4, 8, 16, 32, 64} and
Q ∈ {2, 4, 8, 16, 32, 64}. The complete product scaled by c1 is taken as the single-figure complexity
measure. The obtained empirical fit of the LUT model against the synthesis results is depicted in
Figure 9. The anticipated behavior is confirmed; however, the prediction may be off by up to 30%
of the later synthesis result for individual experiments.
The cost of the threshold operations depends strongly on the precision of the output activation

function as the number of thresholds to be stored and comparedwith grows exponentiallywith this
precision. For small precisions like the ones FINN-R is targeting, these costs practically disappear
within the remainingMVU costs. Going for precisions significantly above 4 bits will quickly render
the associated costs expensive or simply make the thresholding approach infeasible altogether.
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Fig. 10. Possible backend architectures.

MP Cost. The BRAM and LUT requirements for the actual compute of the max pooling layers
is very little. The block is basically implementing C parallel comparators, one for each channel
whereby each sequentially compares two A-bit words holding onto the maximum of its pooling
window. The total computational LUT costs are roughly equivalent to the product of A and C .

3.3 Full Inference Accelerator Architecture: Dataflow and Multilayer Offload

FINN-R supports two key choices for the architecture of the accelerator. The first is a custom-
tailored strictly feed-forward dataflow implementation as described in the original FINN paper
[58] and illustrated in Figure 10(a). The second offloads a part of the dataflow pipeline, which
represents a significant proportion of the compute load and allows the feature maps to iterate over
it multiple times through a loopback path as is shown in Figure 10(b).
The customized Dataflow Architecture (DF) differentiates itself from many other accelerators

in that it is customized for a specific NN topology and for different precisions in activations and
weights for each individual layer avoiding “one-size-fits-all” inefficiencies and reap more of the
benefits of reconfigurable computing. One streaming compute engine is instantiated per layer,
with resources tailored to fit each layer’s compute requirements and the user-defined frame rate.
This is accomplished by adjusting their P , Q andM , as introduced in Section 3.2, according to the
algorithm in Section 4.4. As the datafow architecture is fully rate balanced, each layer produces
and consumes data in the same order with the aim of minimizing buffer requirements in between
layers and latency. An engine starts to compute as soon as the previous engine starts to produce
output and as such introduces another level of concurrency between layers.
TheMultilayer OffloadArchitecture (MO) is beneficial when theminimal footprint of the fully un-

rolled DF architecture exceeds the target device capabilities or when the fragmentation overhead
is unattractive. The main application context are large networks under hard resource constraints.
Comparing these two architectures, we observe the following: The cost of the DF implemen-

tation is the sum across all implemented layers, while the cost of the MO architecture is defined
by the maximum across the scheduled layers and provides as such better scalability towards re-
ally deep CNNs. From a throughput point of view, which is dominated by the total amount of
compute resources instantiated and their utilization, we expect both architectural choices to be
equivalent. For DF, we experience a certain amount of fragmentation as will be explained in the
next section, while for MO architectures, the utilization is determined by how well a layer can be
scheduled onto the offloaded compute resources. However, we expect that the reduction of buffer-
ing between layers should bring significant latency benefits for DF vs MO, but this still remains to
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be confirmed with experiments. Note that these two choices represent the two endpoints within
a large design space of potential architectures that could be worth a more thorough investigation.
For now, the chosen architectures provide the flexibility to build accelerators that scale both to
extreme performance and to minimal footprints, even for very large networks.

3.4 Full Accelerator Cost Model

The full accelerator cost encompasses a constant part given by the formal shell resource over-
head, and the dynamic aspect for the actual accelerator architecture, which is described above.
Depending on the chosen target platform, a different base infrastructure or shell is created, which
handles all memory interfaces, DMA engines, network connections and host interface. FINN-R cur-
rently supports a number of different platforms, whereby within the article we focus on PYNQ-Z1,
AWS F1, and a Zynq UltraScale+ platform, called Ultra96. More detailed platform descriptions will
be provided in Section 5. The shells are substantially different: Ultra96 and Pynq-Z1 move the im-
ages and the results through the coherently shared memory between ARM and FPGA fabric (PS
memory), and, as memory controllers are hardened inside the SOC, the corresponding soft logic
requirements are very small (8 BRAM18s, 2.6 kLUTs). For AWS F1, the SDK-based design entry
is chosen, which moves the data between host and FPGA card via FPGA-attached DRAM and re-
quires soft memory controllers as well as PCIe interface with DMA engine, all joined with an AXI
interconnect. The overall overhead amounts to 1090 BRAM18s and 297 kLUTs. The total hardware
cost for the different platforms can be computed as the sum of the specific shell overhead and the
chosen accelerator architecture.

4 FINN-R

FINN-R is trying to answer the following question: Given a set of design constraints and a spe-
cific neural network, what is the best possible hardware implementation that can be achieved? For
this, FINN-R provides insights and estimates and automates the customization of the hardware
implementation. The tool is to be used interactively to explore a given CNN in terms of high-
level concepts of the target platform, architecture, and precisions to achieve specific design goals
and satisfy given constraints. Given the choices, the tool then customizes the hardware accelera-
tor, either DF or MO style, to meet the constraints. We currently support resource footprint and
throughput constraints. Latency, power estimation, and automated design-space exploration are
left as future work.
The key functionality in the tool for the MO is the generation of the runtime schedule that se-

quences the compute onto the hardware engines, and for DF, the calculation of the folding factors
that generate a balanced dataflow, whereby the whole architecture gets incrementally unfolded
until design targets are met. As shown in Figure 4, FINN-R has a modular structure inspired by
LLVM compiler infrastructure, with frontends, passes, and backends, and a quantization-aware in-
termediate representation (IR) of QNNs. The frontend is responsible for interfacing with a selection
of training frameworks such as Caffe, DarkNet, and Tensorflow and translating trained QNNs into
the IR. The IR is used as the basis of the performance estimation tool. FINN-R supports a number
of transformations that help generate more efficient representations. Finally, the backend contains
a code generator that creates executable inference accelerators for a selection of platforms, includ-
ing PYNQ-Z1, Ultra96, and AWS F1. The accelerators are composed of components defined in the
QNN library. All of these components are described in further detail in the following subsections.

4.1 Frontends

The frontend stage is responsible for converting QNNs trained by a variety of frameworks to the
FINN-R intermediate representation. As each framework exposes their QNN topologies through
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custom formats, FINN-Rmust first perform a conversion to a common intermediate representation,
to process the network. Currently, we support frontends for BinaryNet [13], Darknet [52], and
Tensorpack [71]. In the case of BinaryNet or Tensorpack, FINN-R examines the dimensions of
these frameworks’ network data stored in .npy files. Finally, for Darknet, the network topology
is extracted from the configuration files (.cfg files) of the network. As FINN-R follows a modular
design, additional frontends supporting new QNN frameworks can be added as they emerge.
Once converted to the intermediate representation, FINN-R is aware of the network topology

and the precision of the data types within each layer. At this frontend stage, the representation
is device agnostic; however, we can provide useful statistics, such as the operation count and the
memory footprint of the weights and activations of each layer. In addition to loading topological
information, FINN-R may optionally load a set of trained weights. These weights are reordered
and forwarded to subsequent FINN-R stages for processing and inclusion in the final deployed
network.

4.2 The Intermediate Representation

As is common practice [2, 54, 60], FINN-R represents a QNN as a directed acyclic graph. Its nodes
represent layers and edges carry outputs from one layer to become inputs to another. The key
differentiator of FINN-R’s intermediate representation (IR) is its quantization-awareness. Each
node is tagged with the quantization of its inputs, parameters (weights), and outputs to enable
quantization-aware optimizations (such as the streamlining optimization described below) and the
mapping to backend primitives optimized for quantized computation. Internally, the IR differenti-
ates backend-neutral and backend-specific layers. When a QNN is initially imported into FINN-R,
its abstract computational structure is solely represented by backend-neutral layers. This repre-
sentation is made backend-specific for a hardware implementation by a series of transform and
analysis passes. In the derived graph, the network is decomposed into concrete hardware building
blocks, such as the SWU an the MVU.

FINN-R Transform and Analysis Passes. FINN-R employs passes, i.e., small subprograms that oper-
ate on the IR. Each pass consumes an IR graph andmay (a) transform the QNN to output a modified
graph or (b) analyze the QNN to produce metadata about its properties, or it may do both. A pass
may be composed of smaller passes to facilitate reuse and modularity. We highlight some of the
key passes implemented in FINN-R below.

Direct Quantization. The first and last layers of QNNs are often quantization-sensitive and left
using floating-point arithmetic [9, 50, 72]. However, a modest direct quantization as to 8-bit fixed-
point quantities has little or no impact on accuracy [27] but already leads to significant resource
savings. FINN-R’s direct quantization pass applies this transformation to non-quantized layers
converting its parameters to fixed-point values of the specified bit precision. For quantizations
below 8 bits, retraining is highly recommended but is not part of this pass.

Streamlining. The original FINN paper described how batch normalization parameters can be
absorbed into thresholds via simple mathematical manipulation. This can be further generalized
into a streamlining pass that absorbs floating-point scaling factors into multi-level thresholds as
explored by Umuroglu and Jahre [59]. This is done by collapsing scaling layers in front of a quan-
tization layer into a single linear transform that is then merged entirely into the quantization by
updating its thresholds. The mathematically equivalent output QNN eliminates the storage and
compute overhead of the subsumed floating-point scaling factors. Finally, as the maximum oper-
ator commutes with monotone functions such as the quantization used in QNNs, maxpool layers
may be moved behind a quantization layer. This decreases the required precision of the compara-
tors in the maxpool layer, resulting in further resource savings.
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FPGA Resource Analysis. Chooses and scales hardware operators to optimize the network per-
formance within a given resource budget. The corresponding algorithm is detailed in Section 4.4,
and is integrated into FINN-R as an analysis pass.

FPGA Dataflow Architecture Generation. Generates a synthesizable DF implementation from the
IR after the concurrency annotation by the resource analysis pass. Each layer is converted to an
equivalent FPGA layer representing a building block of the QNN library parametrized to the de-
termined parallelism. Finally, the corresponding HLS code is generated.

FPGAMultilayer Offload Schedule Generation. Generates an execution schedule targeting a given
MO implementation, which is the sequence of layers as specified in the IR graph.

4.3 Backends

Backends are responsible for consuming the IR graph and backend-specific information to create a
deployment package, and/or providing performance/resource estimates for two previously intro-
duced hardware architectures (DF and MO). The deployment package consists of parameter data
for the QNNmodel, and the backend-specific code that executes the model, consisting of both run-
time environment as well as an executable hardware design for targeting dataflow and multilayer
offload architectures, as well as a selection of predefined platforms.

4.4 Controlling Performance and Resource Utilization

FINN-R exploits the concurrency potential in a given QNN to generate a solution, which is scaled
to utilize the committed resources optimally by tuning the previously introduced concurrency pa-
rameters P (PE duplication), Q (SIMD scaling), and M (multi-vector parallelization). All of them
allow us to accelerate the computation of the respective layer whose throughput grows propor-
tionally. For a feasible schedule, we chooseQ as a factor ofC , P as a factor ofC ′, andM as a factor
of N ′. Finally,A represents the compute complexity of each layer andM its cumulative parallelism.

ALGORITHM 1: Data Flow Balancing by FINN-R

Input: A[0..L-1]

Data: M[0..L-1]

candidate := MO; /* default to a multilayer offload */

M[0..L-1] := 1 ; /* minimal dataflow compute */

/* Adopt dataflow with greater compute parallelism as long as feasible. */

while feasible(M) do

candidate := { DF, M };

idx := max_index { A[.]/M[.] };

M[idx] := next greater factor of C[i] ·C ′[i] · N ′[i];
end

return candidate;

The minimal DF implementation chooses a scaling of 1 for all parameters and all layers. Its fea-
sibility within the committed resources as determined by the cost functions of Section 3 decides
whether a retreat to an MO architecture is necessary or the DF performance scaling can be pur-
sued. The balanced scaling of the layers in a DF pipeline is the key capability of FINN-R. Having
determined the compute requirements of all the layers, it systematically widens the most pressing
bottlenecks as shown by Algorithm 1 until the resources are exhausted. The cumulative scaling
factor determined for each layer is used to tile its computation into corresponding factors Q , P ,
andM .
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Table 3. Platform Summary

Platform Part # Node DDR kLUTs BRAMs

AWS F1 XCVU9P-FLGB2104-2-I 16nm 64GB 1,180 4,320
Ultra96 XCZU3EG-SBVA484-1 16nm 2GB 71 432
PYNQ-Z1 [63] XC7Z020-1CLG400C 28nm 512MB 53.2 280

FINN-R estimates the performance of its generated implementation based on the chosen par-
allelism and the reported initialization interval of the building blocks. The layer compute time is
evaluated as the quotient of its compute requirements and the attained concurrency. A throughput
characterization is also performed for the other building blocks (SWU, MP) to identify when they
become the bottleneck within the pipeline.

5 EVALUATION

We present and evaluate FINN-R on a range of platforms, with a selection of neural networks, for
both dataflow and multilayer offload architectures, and compare it with state of the art.

5.1 Experimental Setup

A broad range of platforms have been targeted from embedded to datacenter scale. Their details are
summarized in Table 3. PYNQ-Z1 is an open-source board and easily available, Ultra96 is a board
based on the ultra96.org hardware specification using the newer Zynq Ultrascale+ architecture,
and AWS F1 is a FaaS node in the public AWS cloud infrastructure. We considered four different
types of neural network topologies to evaluate how well the performance prediction works for
different computing patterns. The exact specifications can be found at GitHub [32] and descriptions
are given in the following paragraphs.

MLP-4, CNV-6. These two topologies are identical to the ones used in FINN [58]. One is a clas-
sifying multilayer perceptron built from four large fully connected layers, and the other one im-
plements a CIFAR-10, GTSRB, or SVHN classifier and is inspired by BinaryNet [13] and VGG-16
[55]. Tincy YOLO is a quantized adaptation of Tiny YOLO, which itself is a stripped-down version
of YOLO directly provided by its authors [53]. Tiny YOLO is described completely in darknet [52].
Specifically, the differences between Tincy YOLO and Tiny YOLO are as follows: (1) the first and
last convolution layers are converted to use 8-bit weights; (2) the other convolutional layers are
converted to use 1-bit weights, 3-bit activations; (3) the activation function is removed from the
last convolutional layer; (4) all other activation functions converted from leaky-ReLU to ReLU;
(5) increase the size of the number of OFMs in the 2nd convolutional layer from 32 to 64; (6) a de-
crease in the number of OFMs of the 7th and 8th convolutional layers from 1024 to 512; (7) removal
of the first maxpool layer; and (8) an increase of stride in the first convolutional layer from 1 to
2. The end result of these topological changes is a reduction in operations of 36%, while reducing
the mean average precision (mAP) accuracy from 57.1% to 50.1%.

DoReFa-Net/PF. The DoReFa-Net/PF topology is based off the DoReFa-Net topology described by
Zhou et al. [72]. DoReFa-Net itself, is a variant of AlexNet [30] with 1-bit weights, 2-bit activations
used in all layers except the first and last, where floating-point weights are used.We furthermodify
DoReFa-Net as follows: (1) the first and last layer are converted from floating-point weights to 8-
bit weights; and (2) the first three layers are pruned by 30%, specifically, decreasing the number
of OFMs in these layers from 96, 128 and 384 to 68, 90 and 272, respectively. The end result of
the these topological changes is a reduction in operations of 56%, while improving the overall
accuracy (Top-1) by 0.2%. For completeness, the Top-5 accuracies we were able to achieve with
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Table 4. Dot-Product Workloads and Network Accuracies

Bin. Ops/Frame High Precision Ops/Frame Total Ops/Frame Parameters Accuracy Dataset

MLP-4 6.0 M [W 1A1 ] – 6.0 M 2.9 M 97.69 (Top-1 (%)) MNIST

MLP-4 – 6.0 M [W FPAFP ] 6.0 M 2.9 M 98.74 (Top-1 (%)) MNIST

CNV-6 115.8 M [W 1A1 ] 3.1 M [W 1A8 ] 118.9 M 1.4 M 80.10 (Top-1 (%)) CIFAR-10

CNV-6 115.8 M [W 1A1 ] 3.1 M [W 1A8 ] 118.9 M 1.4 M 98.08 (Top-1 (%)) GTSRB

CNV-6 115.8 M [W 1A1 ] 3.1 M [W 1A8 ] 118.9 M 1.4 M 94.90 (Top-1 (%)) SVHN

Tincy YOLO 4385.9 M [W 1A3 ] 59.0 M [W 8A8 ] 4444.9 M 6.4 M 50.1 (mAP (%)) VOC 2007

Tiny YOLO 6780.5 M [W 1A3 ] 194.9 M [W 8A8 ] 6975.3 M 15.9 M 48.7 (mAP (%)) VOC 2007

Tiny YOLO – 6975.3 M [W FPAFP ] 6975.3 M 15.9 M 57.1 (mAP (%)) VOC 2007

DoReFa-Net/PF 2009.7 M [W 1A2 ] 171.3 M [W 8A8 ] 2181.0 M 60.2 M 50.3 (Top-1 (%)) ImageNet

DoReFa-Net 3626.3 M [W 1A2 ] 250.1 M [W FPAFP ] 3876.3 M 61.0 M 50.1 (Top-1 (%)) ImageNet

DoReFa-Net – 3876.3 M [W FPAFP ] 3876.3 M 61.0 M 55.9 (Top-1 (%)) ImageNet

DoReFa-Net/PF, DoReFa-Net [W 1A2 ], and DoReFa-Net [W F PAF P ] were 74.0%, 73.1%, and 77.4%,
respectively.
In terms of training, a combination of the following techniques were used to train the networks

described in Table 4: (1) the MLP-4 and CNV-6 networks were trained using the techniques de-
scribed by Courbariaux et al. [13]; (2) DoReFa-Net/PF was trained using the techniques described
by Zhou et al. [72], with the exception of theW 8A8 layers, which are trained using the techniques
described by Su et al. [56]; (3) the YOLO networks were trained using the methods described by
Rastegari et al. [50] for the network weights, Zhou et al. [72] for the activations, and Su et al. [56]
for theW 8A8 layers. The pruning methods applied to realise Tincy YOLO and DoReFa-Net/PF are
described by Faraone et al. [19].
The computational workloads of all these four QNN variants are indicated by Table 4. The stated

figures sum up all the additions and multiplications within the dot products computed as an in-
dividual input frames passes through the convolutional layers and perceptrons of a topology. The
very small MLP-4 network already asks for 6 million operations for each image. Being used for a
digit recognition, which is purely based on shape, it is also the only network implementation that
has been fully binarized starting from the very input.
All the other topologies feature layers of a higher 8-bit precision, particularly to interface natu-

rally with their application scenarios. This precision allows to easily convey the color information
of their visual inputs into their first layers. It is also the natural choice for reporting confidence
levels of complex classification tasks. While the input and output layers, thus, pose intrinsic quan-
tization bounds, the hidden layers can often be quantized significantly while practically maintain-
ing accuracy. As shown in Table 4, the amount of computation that could be reduced this way is
enormous and accounts for the vast majority of the compute in these networks.
For reference, we’ve also provided the accuracy and workloads of unpruned and/or unquantized

versions of these networks if they are available. No floating-point results are provided for the
CNV-6 topology, as this network was designed specifically as a BNN by Umuroglu et al. [58].
With regard to accuracy, we note that the difference in accuracy between MLP-6, Tincy YOLO and
DoReFa-Net/PF and their unquantized, unpruned equivalents is 1.05%, 7.0%, and 5.6%, respectively.
Whether these accuracies are still acceptable is dependent on the target application.

5.2 Measured Results and Evaluation

Concrete implementations of the four described networks on the introduced platforms were di-
mensioned, synthesized and measured. All results are summarized in Table 5 together with prior
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Table 5. FINN-R Implementations and Prior Work

CNN Platform Clock BRAM18 LUTs Perf. (predicted) (Power) Efficiency Precision

(MHz) (GOp/s)(%) (W) (GOp/s/W) (%)

FINN-R Results

FINN-R MLP-4 AWS F1 (DF) 232.9 1,652 337,753 50,776 (79%) - - W 1A1

FINN-R MLP-4 Ultra96 (DF) 300 417 38,205 5,110 (75%) 11.8 433 W 1A1

FINN-R MLP-4 PYNQ-Z1 (DF) 100 220 25,358 974 (99%) 2.5 390 W 1A1

FINN-R CNV-6 AWS F1 (DF) 237 1,888 332,637 12,109 (98%) - - W 1A1

FINN-R CNV-6 Ultra96 (DF) 300 283 41,733 2,318 (99%) 10.7 217 W 1A1

FINN-R CNV-6 PYNQ-Z1 (DF) 100 242 25,770 341 (99%) 2.25 152 W 1A1

FINN-R Tincy YOLO AWS F1 (DF) 249.8 2,638 242,457 5,271 (93%) - - W 1A3

FINN-R Tincy YOLO Ultra96 (MO) 220 316 40,808 288 (68%) 9.7 30 W 1A3

FINN-R Tincy YOLO PYNQ-Z1 (MO) 100 280 46,507 133 (66%) 2.5 53 W 1A3

FINN-R DoReFa-Net/PF AWS F1 (DF) 155.8 1,332 476,970 11,431 (92%) - - W 1A2

FINN-R DoReFa-Net/PF Ultra96 (MO) 220 432 36,249 400 (70%) 10.2 39 W 1A2

FINN-R DoReFa-Net/PF PYNQ-Z1 (MO) 100 278 35,657 129 (48%) 2.5 51 W 1A2

Related Work - Reduced Precision

FINN MLP-4 [58] ZC706 200 396 82,988 9,086(-) 22.6 402 W 1A1

FINN CNV-6 [58] ZC706 200 186 46,253 2,466(-) 11.7 210 W 1A1

FINN CNV-6 ADM-PCIE-8K5 125 1,659 365,963 14,814(-) ∼41 361 W 1A1

Alemdar et al. [4] CNV-X Kintex-7 160T - - - ∼878(-) - - W 2A2

Prost-Boucle et al. [49] CNV-6 VC709 ∼3, 029(-) 6.64∗ - W 2A2

Park and Sung [47] MLP-X ZC706 172 - - ∼210(-) ∼5 42 W 3A8

Nakahara et al. [42] CNV-X Zedboard 144 32† 18,325† 329(-) 2.3 143 W 1A1

Yonekawa et al. [64] CNV-X ZCU102 150 1,367† ∼22, 095† 461(-) 22 21 W 1A1

Zhao et al. [70] CNV-X Zedboard 143 94† ∼46, 900† 207.8(-) 4.7 44 W 1A1

Jiao et al. [26] DoReFa-Net Zynq 7020 200 106† ∼44, 000† 410.2(-) 2.3 182 W 1A2

Liang et al. [34] CNV-X MPC-X2000 DFE 150 - - 9,396(-) 26.2 359 W 1−8A1−8

Related Work - Higher Precision ∗ no full board power, only as measured by PMBUS available rails; † includes shell overhead

Wei et al. [61] AlexNet AWS F1 230 1,682 545,000 1,884.2(-) - - W 8A16

Wei et al. [61] VGG16 AWS F1 240 1,690 504,000 2,260.9(-) - - W 8A16

Wei et al. [61] ResNet AWS F1 230 1,644 496,000 1,875.3(-) - - W 8A16

Zhang et al. [67] VGG16 VC709 150 - - 354(-) 26 14 W 16A16

Aydonat et al. [6] AlexNet GX1150 303 - - 1,382(-) ∼45 31 W HPAHP

Zhang et al. [69] VGG16 GX1150 385 - - 1,790(-) ∼37.46 48 W 16A16

Hedge et al. [23] Caltech101 ZC706 180 - - 11.5(-) 19 <1 W 16A16

Ma et al. [38] VGG16 GX1150 150 - - 645.25(-) - - W 8A16

Ma et al. [37] NiN GX1150 200 - - 588(-) - - W 16A16

Ma et al. [37] VGG-16 GX1150 200 - - 720(-) - - W 16A16

Ma et al. [37] ResNet-50 GX1150 200 - - 619(-) - - W 16A16

Ma et al. [37] ResNet-152 GX1150 200 - - 710(-) - - W 16A16

Metrics not reported by prior work are indicated by -. Estimated values are denoted as ~.

art. The datapoints targeting PYNQ-Z1 can be reproduced by using the open-source releases [31,
33].We constrain our comparison to onlymeasured results and exclude extrapolated numbers ([39,
41, 44, 45]). For undisclosed CNN and MLP topologies in related work, we use the term CNV-X
and MLP-X, respectively. Power and efficiency are measured in respect to board power. HP and FP
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stand for 16-bit and 32-bit (half precision and full precision) floating point, respectively. Resources
are only given for BRAM18s and LUTs on Xilinx devices where available. URAM is excluded as
many of the utilized devices do not support them, and optimal selection of LUTRAM, BRAM, and
URAM through the tool flow is not yet controlled. DSP counts are not relevant for the extreme
QNNs apart from the 8 bit precision layers. All implementations are compared in regards to per-
formance, power, efficiency (=performance/power) for a specific network on a specific platform.
Where possible, we provide details on resource usage, and data types used.
There are a number of key observations that can be taken from the table: First, as expected,

there is a direct correlation between precision and achievable peak performance and energy effi-
ciency, clearly demonstrating the value of QNNs. Wei et al. [61] and a recent Xilinx demonstration
at SC’2017 clearly show close to possible peak performance for higher precision implementations
on AWS F1. These solutions are bottlenecked by DSP availability. We show here that QNNs can
provide further performance scalability by leveraging the vast amount of LUTs. This can be eas-
ily seen when comparing peak performance and efficiency on the same platform as for example
AWS F1 across a spectrum of precisions. Second, CNNs compared to MLPs achieve on the same
platform lower peak performance. This is because the actual compute in form of multiply accumu-
late has a lower percentage. As shown with the cost functions, CNNs contain also SWUs and MPs
and the overhead has clearly an impact on overall performance. Compared to the original FINN,
we demonstrate that the performance can scale with the size of the FPGA. Many new network
topologies and platforms and different precision implementations were added.
The best performance numbers are achieved for a fully binarized MLP on AWS F1, at currently

50TOp/s and 12TOp/s for a CNN. Note that these are initial results with much yet to gain by in-
vesting into timing closure for instance. The best efficiency can only be reported for the embedded
platforms as for other platforms board-level power measurements are not available. The highest
value was achieved for FINN-R on the MLP on the Ultra96 platform with 433GOp/s/W.
While DorefaNet is no longer state-of-the art in regards to accuracy, the network is still rep-

resentative and its implementation demonstrates that image classification with large networks
on large input sizes can be highly performant on FPGA-based implementations leveraging re-
duced precision. The implementation defaulted to 155.8MHz and achieved with that a measured
11.43 TOp/s performance. Timing closure at 300MHz would immediately translate into a perfor-
mance of 22 TOp/s as the implementation is not memory bound. Furthermore, there is still scope
to scale spatially.
Compared to other reduced precision implementations on Virtex and Kintex platforms, we are

higher performing on the same network compared to Prost et al. [49] on larger platforms (effi-
ciency cannot be compared as not the full board power is taken into consideration).We outperform
Alemdar et al. [4] by over an order of magnitude. Another highlight amongst relatedwork is shown
by the FP-BNN project from Liang et al. [34], which reports up to 9.4 TOp/s overall performance on
a server class platform across a selection of networks with mixed precision. In regards to ZC706,
our solution provides a speed-up of 10× and higher on the basis of dataflow-based architectures.
ZedBoard data points are best compared to Pynq-Z1, as they feature the same device. In compar-
ison to our dataflow architecture, Nakahara et al. [42] and Zhao et al. [70] are up to 2× slower.
The binary network accelerator by Yonekawa et al. [64] is hard to compare as it was done on a
ZCU102, where the FPGA device is around 4× larger than the same device on the Ultra96. Even
with the significantly smaller device, the CNV-based FINN-R implementation is 4× faster. Finally,
Jiao et al. [26] report excellent performance for a large network on a small device with 410.2GOp/s.
Due to the large size of this network, FINN-R cannot use a DF design, and MO achieves 129GOp/s.
Overall, we believe that FINN-R delivers highly competitive performance and efficiency, with room
for further improvements.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 11, No. 3, Article 16. Pub. date: December 2018.



16:20 M. Blott et al.

In regards to the framework, the broad spectrum of networks, platforms and implementations
demonstrates the flexibility that the tool can provide through automated scaling. Furthermore, the
performance estimations for DF are 75%–99% accurate and as such a good indication of achiev-
able performance without having to go through a full implementation flow. Also note that the
prediction is around the 50% mark of the original AWS F1 roofline, and as such more accurate.
The performance estimations for the MO still differ from actual implementations. This is due to
the more complex nature of the system, which involves significantly more external memory trans-
fers for pulling weights and FM, which latencies are currently estimated using a peak-bandwidth
model. In the case of DoReFa-Net with MO on PYNQ-Z1, the measured performances are largerly
lower than expected (48%). This is due to memory re-organization performed in the host when-
ever a split layer is present to concatenate feature maps for the following layer. The execution time
scales with number of available threads on the host. This non-ideal behaviour is overcome in the
Ultra96 case, which features four cores against the two available on PYNQ-Z1.

6 CONCLUSIONS AND OUTLOOK

Quantization and reduced precision representations for inputs, activations, and weights provide
a promising approach to scalability in performance, power efficiency, and storage footprint for
CNNs. They create interesting design trade-offs in exchange for a small reduction in accuracy.
Especially in conjunction with FPGAs, a broad spectrum of architectures for inference engines can
be explored whereby the minimal precision to achieve precisely the numerical accuracy required
for a particular application can be exploited.
In this article, we described FINN-R, an end-to-end framework that automates the exploration

of customized hardware accelerators. FINN-R is the second generation of the FINN tool, extend-
ing the original with support for arbitrary precision and more flexibility in the end architecture
and target platforms, including hardware cost estimatation for given devices. We evaluated the
generated architectures on four different reduced precision neural networks, from small CIFAR-10
classifiers to a YOLO-based object detection on PASCAL VOC datasets on a range of platforms
including PYNQ and AWS F1. The generated design end-points showcase the promise of QNNs,
demonstrating 5TOp/s on embedded platforms as well as 50TOp/s on datacenter platforms. The
broad selection of measured results validates the workflow and the flexibility of the framework.
The spectrum of possible design-space tradeoffs is vast, and while we hope to shed some light

on what is possible, many variants remain unexplored. We are currently in the process of open-
sourcing the framework, such that the broader community can help investigate the design space.
The networks themselves as well as a subset of implementations can already be found on github
[32]. From a research point of view, we are focusing on tightening up the performance and re-
source predictions, adding support for more networks, such as the promising residual networks
and LSTM, and providing more automation within the framework itself, while a separate strand of
research is working on improving accuracy through novel training techniques and quantization
methods with different numerical representations.
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