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Lifting line theory describes the cumulative e↵ect of shed vorticity from finite span lifting
surfaces. In this work, the theory is reformulated to improve the accuracy of the actuator
line model (ALM). This model is a computational tool used to represent lifting surfaces
such as wind turbine blades in computational fluid dynamics. In ALM, blade segments
are represented by means of a Gaussian body force distribution with a prescribed kernel
size. Prior analysis has shown that a representation of the blade using an optimal kernel
width ✏

opt of about 1/4 of the chord size results in accurate predictions of the velocity
field and loads along the blades. Also, simulations have shown that use of the optimal
kernel size yields accurate representation of the vortex size and the associated downwash
resulting in accurate predictions of the tip losses. In this work we address the issue of
how to represent the e↵ects of finite span wings and tip vortices when using Gaussian
body forces with kernel size larger than the optimal value. This question is relevant in the
context of coarse-scale Large Eddy Simulations (LES) that cannot a↵ord fine resolutions
required to resolve the optimal kernel size. For this purpose we present a filtered lifting
line theory for a Gaussian force distribution. Based on the streamwise component of
the vorticity transport equation we develop an analytical model for the induced velocity
resulting from the spanwise changes in lift force, for arbitrary kernel scale. The results are
used to derive a subfilter scale velocity model that is used to correct the velocity along
the blade when using kernel sizes larger than ✏

opt. Tests in LES of flow over fixed wings
with constant and elliptic chord distributions using various kernel sizes are performed.
Results show that by using the proposed subfilter velocity model, kernel-size independent
predictions of lift coefficient and total lift forces agree very well with those obtained with
the optimal kernel size.

Key words:

1. Introduction

The actuator line model (ALM) has become a prominent tool to represent lifting
surfaces such as wind turbine blades without having to resolve the entire flow field near
the blades (Sørensen & Shen 2002; Ivanell et al. 2007; Mikkelsen et al. 2007; Troldborg
et al. 2010; Porté-Agel et al. 2011; Churchfield et al. 2012; Jha et al. 2014; Mart́ınez-Tossas
et al. 2015; van Kuik 2018). ALM involves distributing actuator points on a line along the
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span of a blade, along which the lift force is evaluated from tabulated or otherwise known
lift and drag coefficients and the local incoming flow conditions. For implementation in
a computational simulation code such as in large eddy simulations (LES), the resulting
line force is filtered using a Gaussian kernel with characteristic length-scale ✏ representing
the spatial extent over which the force is spatially distributed. In recent work (Mart́ınez-
Tossas et al. 2017), an optimal smoothing length scale ✏

opt has been determined, which
minimizes the error between the actual velocity field and that modeled by ALM in two-
dimensional (ideal) flow over a lifting airfoil. Specifically, when using ✏

opt ⇡ 0.25c, where
c is the blade’s chord length, it was shown in Mart́ınez-Tossas et al. (2017) that the
flow field obtained by using the Gaussian body force provided good agreement with the
potential flow solution for flow over Joukowski airfoil. The latter was the flow solution
taken to be ground truth for the purpose of the comparison with the flow induced by the
Gaussian force. Numerical tests have obtained similar values for the optimal smoothing
length (Shives & Crawford 2013; Jha et al. 2014). Use of the optimal kernel scale was
tested in a three-dimensional simulation of a wind turbine using the ALM (Mart́ınez-
Tossas et al. 2016). Very good agreement was found between the simulation and blade
element momentum (BEM) theory with a tip loss correction (Hansen 2007) especially
near the tip. The good accuracy was attributed to the capability of the simulation with
✏
opt to generate shed vorticity and resulting tip vortices with a realistic core size.
As is known from classical lifting line theory (Prandtl & Tietjens 1957; Batchelor 2000;

Anderson Jr 2010), the down-wash associated with the tip vortex changes the local angle
of attack along the blade, thus a↵ecting the lift coefficient. In the ALM the body force
smoothes the vorticity generation encountered by the incoming flow, resulting in a vortex
with a finite core. The prior results (Mart́ınez-Tossas et al. 2016) show that if the kernel
size is chosen appropriately, good results may be obtained using the ALM without any
additional tip loss correction, owing to the fact that the tip vortex core induced by the
optimal Gaussian kernel size is realistic.

However, the optimal kernel size is rather small: 1/4 of chord is often considered too
expensive for practical applications of the ALM, and use of significantly larger kernel
sizes is often unavoidable in practice. Prior attempts of using coarse kernel sizes, e.g.
Stevens et al. (2018) have shown good results in terms of the downstream flow (wakes in
wind farm simulations), but the blade torque and power generation were generally too
high, sometimes even exceeding the Betz limit. The reason is that the use of ✏ > ✏

opt

leads to LES tip vortices that are too thick and too weak. Hence the downwash is under-
predicted, and the lift is over-predicted, especially near the blade tip or near regions in
the blade where the lift coefficient or chord (i.e. the circulation) vary significantly.

For LES using ✏ > ✏
opt, we therefore require a subfilter model for the local induced

velocity that mimics the e↵ect of a fully resolved tip vortex, as well as of any shed
vorticity along the span. Developing such a model is the main purpose of this paper. In
§2 we briefly review elements of classic lifting line theory and show that the Gaussian
filtering associated with the ALM leads to an unclosed subfilter modeling problem, even
if the problem appears at first sight to be a linear one. Therefore, a lifting line theory
must be derived for a Gaussian filtered lift force distribution, which is accomplished in §3.
It is shown in §4 that with certain simplification, a general semi-analytical solution can
be derived. Attention is placed in developing practically useful approximate calculation
methods to facilitate implementation in LES, as described in §5. In recent work, Dag
(2017); Dag & Sørensen (2018) have proposed a similar approach based on empirical
observations about velocity profiles in shed vortices with smoothed cores. As will be
shown, the present theory serves as formal proof that their approach can be derived from
first principles and as starting point for detailed analysis. Sample large eddy simulations
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of flow over three types of finite-length lifting surfaces are presented in §6, testing the
subfilter-scale velocity correction derived using the proposed theory. Conclusions are
presented in §7.

2. Gaussian filtering and linearity

We begin by considering the case of an infinitely long (2D) lifting surface. In that case
the lift force (per unit fluid mass) as an actuator line may be thought of as distributed
over a (singular) line, according to

1

⇢
fy(x, y, z) = −Γ U1 δ(x)δ(y) = −1

2
cL c U

2
1 δ(x)δ(y). (2.1)

Here Γ is the circulation, U1 the inflow velocity, c the chord length, cL the lift coefficient,
and δ’s are delta-Dirac functions. Also, x is the coordinate in the direction of the incoming
flow, y is the direction of the lift force, and z is the coordinate along the blade span. We
consider the actuator line model using a 3-D Gaussian kernel as proposed in the original
introduction of the ALM by Sørensen & Shen (2002):

⌘✏(x, y, z) =
1

✏3⇡3/2
e
−(x2+y2+z2)/✏2

. (2.2)

For the case of an infinitely long blade, integration along the spanwise direction (from
z = −1 to z = 1) leads to the 2-D force distribution:

1

⇢

efy(x) =
Z

1

⇢
fy(x

0)⌘✏(x− x0)d3x0 = − 1

✏2⇡

1

2
cLcU

2
1e

−(x2+y2)/✏2
. (2.3)

As derived in Mart́ınez-Tossas et al. (2017), the curl of this force is a source in the trans-
port equation for z-component vorticity. The linearized z-component vorticity transport
equation (linearized in the sense that the advection velocity in the x-direction is set
to a constant velocity U1 everywhere) was integrated and the z-component vorticity
distribution derived. The result is a Gaussian distribution with width ✏ (see also Forsythe
et al. (2015)). Applying Biot-Savart then leads to the perturbation (tangential) velocity
distribution

eu0
✓ =

1

2
cLU1

c

r
(1− e

−r2/✏2), (2.4)

where r
2 = x

2 + y
2. This flow is a Lamb-Oseen vortex with core size ✏ representing the

bound vorticity resulting from the Gaussian filtered lifting surface.
It turns out that the same result is obtained if one simply applies the Gaussian filter

to an ideal vortex velocity distribution. That is to say, recall that if one uses Biot-
Savart on the initially unfiltered line vortex, one obtains the ideal bound vortex with
tangential perturbation velocity u

0
✓ = 1

2cLU1
c
r . When this velocity is filtered (in 2D)

using the kernel ⌘✏(x, y), the same Lamb-Oseen vortex with tangential velocity ũ
0
✓ and

core size ✏ as given in Eq. 2.4 is obtained. This equivalence occurs because the relationship
between perturbation velocity and applied force, under the assumption of linearized
perturbation vorticity transport, is linear. That is to say, we can write u0 = L(f) where
L represents linear operations (taking the curl of the force, integrating the linearized
vorticity transport equation, and applying Biot-Savart). Applying the Gaussian filter to

this expression leads to eu0 = gL(f) = L(ef) allowing us to obtain the result of Mart́ınez-
Tossas et al. (2017) by simply filtering the ideal vortex tangential velocity distribution.

Next, we consider the case of a finite length lifting surface represented as a singular
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Figure 1. (a) Sketch of finite lifting surface, where the origin of the coordinate system is placed
at the blade tip, where z = 0. (b) Illustration of the Gaussian filtered actuator line model with
a force distribution across the blade’s cross-section and z-dependent lift force (or circulation)
distribution. Also shown (in green) are some “thick” shed vortices and (in blue along the z-axis)
their induced velocity u0

y. The distribution of the total induced y-velocity as function of the
span is obtained by an integration over induced velocity from all the shed vorticity.

line as in Eq. 2.1 but with Γ (z) = 0 for z < 0. Figure 1(a) shows the coordinate system
for which z = 0 is at the tip of the blade and the blade extends towards z > 0.

In this case, classical lifting line theory states that since Γ in Eq. 2.1 depends on z,
vorticity is shed, generating an induced velocity at the blade that changes the angle of
attack and a↵ects the lift coefficient, and thus Γ itself. A self-consistency condition leads
to the classical integro-di↵erential equation for the circulation (Prandtl & Tietjens 1957)
along the blade:

Γ (z) =
1

2

✓
cLb +

dcLb

d↵

u
0
y(z)

U1

◆
c U1 =

1

2
cLb c U1 +

1

2

dcLb

d↵
c

LZ

0

Γ
0(z0)

4⇡(z0 − z)
dz

0 (2.5)

where cLb is the lift coefficient at the baseline angle of attack (i.e. corresponding to the
local free-stream velocity U1), dcLb

d↵ is the slope of the lift-versus angle of attack curve
(typically close to 2⇡) and u

0
y(z) is the induced downwash velocity at position z due to

changes in circulation everywhere on the blade of span L. The typical approach solves this
equation by expanding Γ (z) into a Fourier series, and using the condition that Γ (z) = 0
at the blade tips leads to the choice of a sine series. In general the Fourier coefficients
must be found numerically, even for the simple case of a constant chord and baseline lift
parameters cLb and dcLb

d↵ . Stewartson (1960) provides an analytical solution for the case
of a semi-infinity constant chord wing.
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At this stage consider the case when the corresponding lift force distribution

1

⇢
fy(x, y, z) = −Γ (z) U1 δ(x)δ(y)H(z) =

− 1

2

✓
cLb +

dcLb

d↵

u
0
y(x, y, z)

U1

◆
c U

2
1 δ(x)δ(y)H(z), (2.6)

is filtered with the Gaussian kernel ⌘✏ (H(z) is the Heaviside function since there is no
force at z < 0 even if u0

y is non-zero there). Even though in this case we can still write a
linear equation u0 = L(f) = L(fb + c1u

0), the spatially filtered velocity no longer solves
the same equation as the original lifting line theory:

eu0 = L(ef) = L(efb + gc1u0) 6= L(f̃b + c1
eu0).

The reason is that the prefactor c1 in this case contains the Heaviside function H(z),

and clearly ]Hu0
y 6= H eu0

y. Further, the velocity field induced by a force filtered at scale
✏ is given by

u0
✏ = L(ef) = L(efb + gc1u0

✏). (2.7)

Clearly, u0
✏ 6= eu0 since gc1u0 6= gc1eu0. As a result, we cannot simply use the solution of

the classical lifting line theory u0 for an ideal line force and spatially filter the velocity
to obtain the correct result corresponding to a filtered force distribution along a finite
length lifting blade. A full derivation is therefore needed to determine u0

✏ as solution to
Eq. 2.7, to which the next section is devoted.

3. Gaussian-filtered lifting line theory

For generality, we assume a span-dependent chord length c(z), inflow velocity U1(z),
and lift coefficient cL(z; ✏), and we note that the e↵ective lift coefficient depends upon
the kernel size ✏(z). We define cLb(z) to be the (known) lift coefficient at the baseline
angle of attack (i.e. corresponding the local free-stream velocity U1(z)). For simplicity
we assume that the chord and kernel size do not vary rapidly along the span, i.e. at
various stages we will assume dc/dz << 1 and d✏/dz << 1. Later, applications with
variable ✏(z) and c(z) will show that accurate results may be obtained also in such cases.

As in the prior section, we consider the unfiltered actuator line to be a lifting surface
represented as a ‘delta function’ distribution in the x− y plane and a z-dependent force
(per unit length) along a line, i.e. the z-dependent lift distribution is given by

1

⇢
fy(x, y, z) = −G(z) δ(x)δ(y), (3.1)

where

G(z) = Γ (z)U1(z) =
1

2
cL(z)c(z)U

2
1(z)H(z).

In order to explicitly take into account modifications of the local lift coefficient due to
changes in incident velocity direction, we recall that the e↵ective lift coefficient can be
written as

cL(z; ✏) = cLb(z) +
dcL

d↵
(z)

u
0
y(0, 0, z; ✏)

U1(z)
(3.2)

where u
0
y(0, 0, z; ✏) is the local perturbation velocity (evaluated at x = y = 0) due to

downwash from shed vorticity. For an ideal lifting surface one may use dcL/d↵ = 2⇡ but
in practice di↵erent values may be used.
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As described in the preceding section, in the actuator line model the actual force per
unit volume seen by the fluid is given by the convolution of the line strength with the
Gaussian kernel ⌘✏ according to

1

⇢

efy(x) =
Z

1

⇢
fy(x

0)⌘✏(x− x0)d3x0

= −
y 1

✏3⇡3/2
G(z0)δ(x0)δ(y0)e−[(x−x0)2+(y−y0)2+(z−z0)2]/✏2

dx
0
dy

0
dz

0
. (3.3)

Evaluating the xy integrals and changing variables to z
00 = z

0 − z, we obtain:

1

⇢

efy(x, y, z) =
1

⇢
fy(x, y, z; ✏) = − 1

✏3⇡3/2
e
−(x2+y2)/✏2

1Z

−1

G(z00 + z) e−z002/✏2
dz

00
, (3.4)

where from here on we omit tildes to denote filtered variables and indicate their depen-
dence on ✏ instead.

3.1. Distribution of shed vorticity

Next, we consider the steady-state vorticity transport equation for the streamwise
vorticity component in the presence of the Gaussian-filtered lift body force in ideal,
steady flow (neglecting viscosity and turbulence), also neglecting changes in advective
velocity due to the vorticity (linearization). The only term generating vorticity is the
curl of the Gaussian body force, whose streamwise component can be expressed in the
x-component vorticity transport equation as follows:

U1(z)
@!x

@x
=

1

⇢
(r⇥ f)x = −1

⇢

@fy

@z
=

e
−(x2+y2)/✏2

✏3⇡3/2

1Z

−1

d

dz
G(z00 + z)e−z002/✏2

dz
00
. (3.5)

Integrating in x between −1 and x, assuming that !x = 0 when x ! −1 and changing
variables back to z

0 = z
00 + z, yields the following streamwise vorticity distribution:

!x(x; ✏) =
1

2U1(z)✏2⇡
[erf(x/✏) + 1]e−(y/✏)2

1Z

−1

dG(z0)

dz0
e
−(z−z0)2/✏2

dz
0
. (3.6)

This !x(x; ✏) distribution arises from downstream transport of the fluid rotation
induced by the transverse variations of lift induced by the Gaussian-filtered ALM force.
Approaching the blade near the tip with the free-stream, the vorticity rises from zero
to its downstream value following the error function, it has a Gaussian profile in the
cross-stream y−direction, while the shape of the tip vortex in the spanwise direction is
non-trivial and involves the integrated e↵ects of possibly varying lift coefficient. If the
actual lift coefficient, chord and velocity were constant for z > 0 and zero otherwise (i.e.
G(z) = 1

2cL0cU
2
10H(z) so that G0(z) = 1

2cL0cU
2
10δ(z)) and if the lift did not change with

angle of attack (i.e. dcL/d↵ = 0, which is of course unphysical), Eq. 3.6 shows that the
tip vortex for x/✏ >> 1 is a Lamb-Oseen vortex with Gaussian vorticity distribution in
the zy plane whose core size is precisely ✏ (similarly to the bound vortex representing the
blade circulation in the xy plane analyzed in Mart́ınez-Tossas et al. (2017)). However, the
induced velocity changes the local lift coefficient and so we seek a more general solution
that takes this e↵ect into account.
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3.2. Induced velocity perturbation

In order to find the induced vertical velocity along the blade associated with this 3D
vorticity distribution, we use the Biot Savart equation:

u
0
y(0, 0, z; ✏) = − 1

4⇡

y
!x(x

00; ✏) (z − z
00)

(x002 + y002 + (z − z00)2)
3/2

d
3x00 = − 1

8⇡2✏2

1Z

−1

dG(z0)

dz0

y 1

U1(z00)

(z − z
00)[erf(x00

/✏) + 1]

[x002 + y002 + (z − z00)2]3/2
e
−(y002+(z00−z0)2)/✏2

dx
00
dy

00
dz

00
dz

0

(3.7)

To proceed it is useful to neglect the z
00 variations of U1(z00) in the denominator inside

the integral, and approximate U1(z00) ⇡ U1(z). This can be justified since the kernel
(z − z

00)/|x− x00|3 peaks at z00 = z. Furthermore, we recognize that the integrand in x
00

is even in the denominator while in the numerator the erf(..) term is odd. Hence we are
left with

u
0
y(0, 0, z; ✏) = − 1

8⇡2✏2U1(z)

1Z

−1

dG(z0)

dz0

y (z − z
00) e−(y002+(z00−z0)2)/✏2

[x002 + y002 + (z − z00)2]3/2
dx

00
dy

00
dz

00
dz

0
,

(3.8)
which with an additional change of variables ⇣ = z

00 − z
0 can be rewritten as

u
0
y(0, 0, z; ✏) = − 1

8⇡2✏U1(z)

1Z

−1

dG(z0)

dz0
F (z − z

0) dz0 (3.9)

where

F (z) =
1

✏

y (z − ⇣)

[x002 + y002 + (z − ⇣)2]3/2
e
−(y002+⇣2)/✏2

dx
00
dy

00
d⇣.

The integration yields (Mart́ınez-Tossas 2017)

F (z) =
2⇡✏

z

⇣
1− e

−(z/✏)2
⌘
.

Hence, we find that the velocity perturbation may be written as a superposition of shifted
Lamb-Oseen vortices, weighted by the gradient of the lift function G(z):

u
0
y(z; ✏) = − 1

U1(z)

1Z

−1

dG(z0)

dz0
1

4⇡(z − z0)
(1− e

−(z−z0)2/✏2) dz0, (3.10)

where u0
y(0, 0, z; ✏) on the x = y = 0 axis has been denoted as u0

y(z; ✏) also indicating that
the solution depends on the kernel width ✏. This is the Gaussian force field analogue of
lifting line theory in which the induced velocity from thin tip vortices may be expressed as
an integral of the spanwise derivative of circulation. Because of the Gaussian smoothing, a
Lamb-Oseen kernel arises in this expression, again with a core size exactly equal to ✏ used
in the Gaussian applied body force that represents the lifting surface. Note that the same
expression proposed by Dag (2017); Dag & Sørensen (2018) was based on observations
that smoothed tip vortices in ALM have the shape of Lamb-Oseen vortices. The result
in Eq. 3.10 serves as formal proof that their empirically motivated approach can also
be derived from first principles. It also enables further analysis and solution methods as
detailed below.

Since the e↵ective lift coefficient will vary due to the induced downwash, the strength
of the vortex spanwise change, dG(z0)/dz0 will be a↵ected by the downwash due to a
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modification of cL(z):

G(z) = Gb(z) +
1

2

dcL

d↵
(z)u0

y(z; ✏)U1(z)c(z), where

Gb(z) =
1

2
cLb(z) c(z) U

2
1(z)

(3.11)

corresponds to the “baseline” case, i.e. the lift coefficient appropriate for the undisturbed
inflow angle of attack, without downwash. Replacing in Eq. 3.10 we obtain

u
0
y(z; ✏)U1(z) =

1Z

−1

dGb(z
0)

dz0
g(z−z

0; ✏) dz0

+

1Z

−1

d

dz0


1

2

dcL

d↵
(z0)u0

y(z
0; ✏)U1(z0)c(z0)

�
g(z − z

0; ✏) dz0, (3.12)

where

g(z, ✏) = − 1

4⇡z
(1− e

−z2/✏2).

This expression is an integro-di↵erential equation that also appears in the classical lifting
line theory. In prior applications (without the Gaussian filtering), such an equation (usu-
ally formulated for the circulation) is solved for each case using a sine series expansion.
Here we propose to first recast this expression as a proper Fredholm integral equation of
the second kind using integration by parts for the second term:

u
0
y(z; ✏)U1(z) =

1Z

−1

dGb(z
0)

dz0
g(z − z

0
, ✏) dz0+

1Z

−1

✓(z0)u0
y(z

0; ✏)U1(z0)c(z0)k(z − z
0; ✏) dz0,

(3.13)

where

k(z; ✏) = ⇡
d

dz


− 1

4⇡z
(1− e

−z2/✏2)

�
=

1

4z2
(1− e

−z2/✏2)− 1

2✏2
e
−z2/✏2

.

Note that we have also introduced a variable that describes possible deviations from the
idealized lift curve slope:

✓(z) =
1

2⇡

dcL

d↵
(z).

The equation is cast most naturally in terms of the unknown perturbation momentum
flux

M(z; ✏) = u
0
y(z; ✏)U1(z)c(z).

Multiplying Eq. 3.13 by c(z) yields

M(z; ✏) =

1Z

−1

dGb(z
0)

dz0
c(z)g(z − z

0; ✏) dz0 +

1Z

−1

✓(z0)M(z0; ✏)c(z)k(z − z
0; ✏) dz0. (3.14)

For general distributions of c(z), ✏(z) and ✓(z) along the blade, one must solve this
integral equation numerically for each individual case.
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4. Simplifications, Solutions, and Approximate Anaytical Fit

Next, we propose an approximate method which will be shown to be of sufficient
accuracy for many applications, and be helpful as reference solution of an interesting
special case. Specifically, we consider a lifting surface extending to lengths much larger
than the chord length. The blade tip is located at, say, z = 0. Also, we approximate ✓(z)
by its average distribution over the blade, ✓, i.e. ✓(z) ⇡ ✓H(z). Under these conditions
we may rewrite Eq. 3.14 as

M(z; ✏) =

1Z

−1

dGb(z
0)

dz0
c(z)g(z − z

0; ✏) dz0 + ✓

1Z

0

M(z0; ✏)c(z)k(z − z
0; ✏) dz0. (4.1)

A further simplification is proposed, namely we consider the special case when the ratio
✏(z)/c(z) is held constant. We thus define the z-independent dimensionless parameter

" ⌘ ✏(z)

c(z)✓
.

As mentioned before, the optimal kernel size requires ✏opt(z) ⇡ 0.25c(z), i.e. "opt✓ ⇡ 0.25
(constant). For ✏

les values typically used in coarse-scale LES, ✏les >> c(z) in which
case the solution to the integral equation is simple. As will be seen later, in the limit
✏les >> c(z) the second term on the right-hand-size of Eq. 4.1 can be neglected and the
induced velocity is proportional to g(z; ✏).

We now proceed assuming a constant ✏(z)/c(z). As shown in Appendix A, the solution
to the integral equation may be written in the form

M(z; ✏) =
1

"

1Z

−1

dGb(z
00)

dz00
S (⇠, ⇠00, ") dz

00
, with ⇠ =

z

✏(z)
, ⇠

00 =
z
00

✏(z)
, (4.2)

and where S(⇠, ⇠00, ") is the solution to what we term the canonical integral equation of
the Gaussian filtered lifting line theory:

S(⇠, ⇠00, ") = g⇤(⇠ − ⇠
00) +

1

"

1Z

0

S(⇠0, ⇠00; ") k⇤(⇠ − ⇠
0) d⇠0. (4.3)

The basic kernels are given by:

g⇤(⇠) = − 1

4⇡⇠
(1− e

−⇠2) and k⇤(⇠) =
1

4⇠2
(1− e

−⇠2)− 1

2
e
−⇠2

. (4.4)

Recalling the definition of M(z; ✏) and with Eq. 4.2, the perturbation velocity ratio is
given by

u
0
y(z; ✏)

U1(z)
=

1

✏(z)U2
1(z)

1Z

−1

dGb(z
00)

dz00
(z00) S

✓
z

✏(z)
,
z
00

✏(z)
; "

◆
dz

00
, (4.5)

We note from Eq. 4.3 that when " >> 1, the solution is simply S(⇠, ⇠00; ") = g⇤(⇠−⇠
00).

For finite " it is possible to solve Eq. 4.3 numerically, for various " and ⇠
00 as parameters.

An iterative algorithm is used with under-relaxation. Figures 2 show the solutions for
various " and ⇠

00 values. As can be seen, the solutions for ⇠
00 = 0 have the expected

downwash perturbation velocity but including a ‘regularized’ behavior near the tip (z =
0) where the perturbation velocity drops to zero at the ‘core’ of the tip vortex whose
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Figure 2. Solutions to the canonical filtered lifting line equation 4.3, for various " and ⇠00 values,
namely ⇠00 = 0 (a), ⇠00 = 1 (b), ⇠00 = 5 (c) and ⇠00 = 10 (d). Solid lines: S(⇠, ⇠00; ")/" obtained
from numerical solutions to Eq. 4.3. In each panel, the various curves shown are for " = 0.25
(black), 0.5 (green), 0.75 (blue), 1.0 (red), 2.0 (cyan), and 5.0 (magenta). The dot-dashed lines
correspond to the proposed empirical fit Sfit(⇠, ⇠00; ")/" given by Eq. 4.6 (same colors as the lines
for corresponding ").

thickness depends upon ✏. For ⇠00 > 0, we begin to see the other side of the shed vortex
with positive perturbation velocity but somewhat non-trivial shape towards the blade
tip. As ⇠00 grows, at distances large (compared to chord) from the tip and for large ✏/c,
the solution approaches a function proportional to the function g.

4.1. Empirical fits

For practical applications one may wish to avoid having to solve numerically the
canonical lifting line equation. Then it is useful to provide a functional form for the
solution S(⇠, ⇠00; "), even if approximate. After some experimentation, we have found
that the following expression represents the numerical solution with very good accuracy
for " > 0.25:

S
fit(⇠, ⇠00, ") = −sgn(⇠ − ⇠

00)
h
1− 0.25e−"(1− e

−0.2|⇠00|)
i
f(⇠ − ⇠

00; ") (4.6)
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Figure 3. Solutions to the canonical filtered lifting line equation for ⇠00 = 0 plotted as function
of z/c = ⇠". Solid lines: S(⇠, ⇠00 = 0; ")/" obtained from numerical solutions to Eq. 4.3 for
various " values. The curves shown are for " = 0.10 (blue), " = 0.25 (black), " = 0.5 (green),
0.75 (blue), 1.0 (red), 2.0 (cyan), and 5.0 (magenta). The dashed line is the ideal lifting line
solution (Stewartson 1960) for a semi-infinite singular line (see Appendix B). The dot-dashed
lines correspond to the proposed empirical fit given by Eq. 4.6 for the " > 0.25 cases.

where

f(⇠; ") =


1

4⇡|⇠|

⇣
1− e

−⇠2
⌘
− 0.029 "

−2/3

⇠2

⇣
1− e

−0.357|⇠|3
⌘�

. (4.7)

The dot-dashed lines in Figs. 2 show the proposed fitted functional form S
fit(⇠, ⇠00; ")

compared to the accurate full numerical solution (solid lines). As can be seen, for " >
0.25, the agreement is quite good, with a root mean square error between the fit and
the numerical integration over the shown range of parameter values (0.25 6 " 6 5,
0 6 ⇠

00 6 10, 0 6 ⇠ 6 16) of 0.0023, i.e. less than 2% of the peak value of |S| shown. The
maximum di↵erence found over this range is 0.029 which can still be considered small
for practical applications. For smaller values of " (" < 0.25) the comparison (not shown)
begins to deteriorate and Eq. 4.6 should not be used.

In Fig. 2, the solutions have been plotted as function of the variable ⇠, i.e. z scaled with
the filter width ✏. To provide additional insights, the results can be plotted as function of
z/c, for di↵erent ✏, as presented in Fig. 3. This also enables us to compare with classical
lifting line theory which is the expected behavior of the filtered lifting line solution when
✏ ! 0. Note that this could not be displayed as function of ⇠ since the limit ✏ ! 0 is
singular for our filtered line theory. The result from classical lifting line theory for a semi-
infinite wing of constant chord is shown as dashed black line, for which we have used the
solution provided by Stewartson (1960), summarized in Appendix B. As expected, the
solution to the filtered lifting line theory tends to the classical result in the limit " ! 0.

For practical implementations, a discrete version of Eq. 4.5 can be written onN discrete
element points zi = (i−1)L/(N−1) covering a span of length L and where z1 and zN are
the two ends of the blade. However, recall that the canonical case considered, as well as
the approximated fit, were derived is for a semi-infinite blade. We thus approximate the
real case as a superposition of the solutions of two semi-infinite blades. The summation is
divided into two parts, from one tip to the middle of the span, and another covering the
other half of the span to the other tip. That is to say, we approximate the contributions
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from half of the span as coming from a semi-infinite blade with one tip at z = z1 = 0
and similarly the other side starting from the other side with the tip at z = L = zN .
We thus write

u
0
y(zi; ✏)

U1(zi)
=

1

✏(zi)U2
1(zi)

2

4
N/2X

j=1

∆Gb(zj) S

✓
zi

✏(zi)
,

zj

✏(zi)
; "

◆

−
NX

j=N/2+1

∆Gb(zj) S

✓
L− zi

✏(zi)
,
L− zj

✏(zi)
; "

◆3

5 ,

(4.8)

where ∆Gb(zj) =
1

2
[Gb(zj+1)−Gb(zj−1)] , for j = 2, 3..., N − 1,

and where it is understood that ∆Gb(z1) = Gb(z1) since Gb(z0) = 0 as z0 falls outside
the blade. At the other end, for zN , the same holds but now ∆Gb(zN ) = −Gb(zN ) since
Gb(zN+1) = 0 as zN+1 falls outside the blade.

4.2. Numerical tests and examples

In order to test the proposed approximation of Eq. 4.6 and to illustrate some sample
solutions to the filtered lifting line equation 3.14, we compare the predicted velocity
perturbation as obtained by numerical integration of the Fredholm integral equation
3.14 with the approximate solution using Eq. 4.8 and the fitted function. Di↵erent cases
to be tested can be characterized by various baseline lift coefficient distributions cLb(z),
blade chord distributions, c(z), and free-stream velocity, U1(z).

The first case tested is for a constant chord wing of length L, with chord c(z) = c0,
L/c0 = 20, and with a constant lift coefficient cLb(z) = 1 and constant lift slope (✓(z) = 1)
along the span. U1 is constant as well. Three cases are compared: ✏/c0 = " = 0.25, 0.5
and 1.5. In all cases, numerical integration of the integral equation is done on a sufficiently
fine grid for fully converged results. The approximated discrete sum in Eq. 3.14 involves
N = 101 points over the same length L (i.e. ∆z/c0 = 0.2 is used). Results are shown
in Fig. 4. As can be seen the agreement is very good. This same case will be considered
later using an implementation of a constant chord, finite airfoil in LES.

The second case tested is again for a constant chord c(z) = c0, but with three sections
with di↵erent lift coefficients along the span. Specifically cLb = 1 for 0 6 z/c0 < 2.5,
cLb = 1.5 for 2.5 6 z/c0 < 5 and cLb = 0.5 for z/c0 > 5 up to z = L = 20c0. U1 is
constant as well, and the case ✏/c0 = " = 0.5 is used. Similar numerical implementations
as in the prior example are used. Results are shown in Fig. 5. As can be seen the agreement
between full numerical solution and the approximation is very good, even for cases of
variable cLb.
The last test case is a wing with a chord distribution reminiscent of a wind turbine

blade, with three distinct linear segments as shown with the bottom dot-dashed line in
Fig. 6. The tip is at z = 0 and the root of the blade at z = L. We use a varying sectional
lift coefficient along the span, with cLb = 1.5 between 0 6 z/c0 < 16, cLb = 0.5 between
16 6 z/c0 < 18, and cLb = 0 between 18 6 z/c0 6 20 mimicking the non-lifting, typically
cylindrical, portion near the nacelle. Also, in this case we vary U1(z) as if it was the
relative velocity of a blade operating at a tip speed ratio of U1−tip/Uaxial = 5, namely

U1(z) = U1−tip

rh
5
⇣
1− z

L

⌘i2
+ 12.

In this case we use a constant kernel size, namely ✏/c0 = 0.25 (black line and squares in
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Figure 4. Comparisons of full numerical solution of filtered lifting line theory (lines) (Eq. 3.14)
applied to a constant chord c blade of constant lift coefficient cLb = 1 and finite length L/c = 20
with discrete superposition (4.8) of fitted solution to the canonical filtered lifting line solution
(symbols). U1 is constant. Black line and squares: " = 0.25, blue line and circles: " = 0.5. Red
line and triangles: " = 1.5.
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Figure 5. Comparison of numerical solution of filtered lifting line theory (line) (Eq. 3.14)
applied to a constant chord c = c0 wing of variable lift coefficient (cLb = 1 for 0 < z/c0 < 2.5,
cLb = 1.5 for 2.5 < z/c0 < 5 and cLb = 0.5 for z/c0 > 5) and finite length L/c0 = 20 with
discrete superposition (Eq. 4.8) of fitted solution to the canonical filtered lifting line solution
(symbols), using " = 0.75. U1 is constant.

Fig. 6) and ✏/c0 = 2.0 (blue line and circles). The comparison in Fig. 6 shows that the
approximate method gives very good result except for small ✏ in the near-hub region,
where the accuracy of the approximate method is less critical since there cLb is very small
and the impact on actual lift forces would be small.

A test case for an elliptical wing yielded less precise agreement between theory and
numerical integrations because for such distributions the simplifying assumptions used
in this section (e.g. small variations of ✏ along z) are violated especially near the tip.
However, as will be seen below, a fully explicit numerical approach applicable in LES
yields excellent results also for such cases.
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Figure 6. Numerical solution (lines) of filtered lifting line theory (Eq. 3.14) applied to a case
with a wind-turbine blade like chord distribution, compared to the discrete superposition (Eq.
4.8) of the fitted solution (symbols). Black line and squares: ✏/c0 = 0.25, blue line and circles:
✏ = 2.0. Note that in this case " = ✏/c(z) varies as function of z, causing possible di↵erences
with the approximate solution that assumes that " is constant (and also that d✏/dz << 1).
The dot-dashed line at the bottom (right y-axis) displays the chord distribution c(z)/c0 where
c0 = L/20 is a reference scale, and in this case c0 = ctip.

5. Velocity Correction as a Subfilter Model for LES

In the ALM we sample the fluid velocity eu(xi) at the i-th actuator point xi =
(xi, yi, zi), and this velocity is used to evaluate the local ALM force, typically using
tabulated lift and drag coefficients. Both the magnitude and direction of the local velocity
matter. As has been argued in Mart́ınez-Tossas et al. (2017) the bound vorticity resulting
from the application of ALM forces does not a↵ect the sampled velocity at the actuator
point itself, for an infinite span wing and when the e↵ects of drag on the local velocity may
be neglected. For a finite wing span, however, the local velocity is a↵ected by the induced
velocity uy(zi; ✏

LES) (henceforth we omit the prime in denoting the perturbation velocity).
Thus, an approximation to the unperturbed incoming velocity U1(xi) (excluding the
e↵ects of the velocity perturbation caused by shed vorticity) is given by

U1(xi) = eu(xi)− uy(zi; ✏
LES) j (5.1)

where it is understood that the i, k, and j are unit vectors in the directions ofU1(xi), the
blade span, and the direction perpendicular to both (in the lift direction), respectively.

The real blade, however, of size typically much smaller than the filter/kernel scale ✏LES,
will induce more concentrated shed vortices and induced velocity corrections, especially
near regions of rapidly changing circulation (e.g near the tip). As has been determined
in Mart́ınez-Tossas et al. (2017), a good representation of the flow for a real airfoil can
be obtained using an optimal filter/kernel size ✏

opt ⇡ 0.25c. Therefore, we seek the
velocity (denoted as bu(xi)) that would have occurred had we used, in the LES, a kernel
scale ✏

opt. This velocity can be obtained by adding to U1(xi) the velocity perturbation
corresponding to ✏

opt, i.e.

bu(xi) = eu(xi) +
⇥
uy(zi; ✏

opt)− uy(zi; ✏
LES)

⇤
j. (5.2)

Thus the di↵erence ∆uy = uy(zi; ✏
opt) − uy(zi; ✏

LES) can be considered as the sub-filter
velocity model to be added to the LES-sampled velocity. The corrected velocity bu(xi) (its
magnitude and importantly its direction with modified angle of attack) can then be used
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in the determination of lift and drag coefficients, as well as the direction of the applied
ALM forces. The lift is applied perpendicular to bu(xi), while the drag force is parallel.

5.1. Numerical Implementation of SFS velocity model

Here, we describe the procedure for implementing the subgrid scale velocity correc-
tion in the actuator line model. There are two approaches to determining the velocity
correction ∆uy from the velocity perturbations evaluated at the two (LES and optimal)
✏ values. A first approach is to utilize Eq. 4.8 using the empirical fit function for the
solution to the canonical filtered lifting line equation. A second approach is to implement
a direct numerical solution to the original expression in Eq. 3.10 using a fully explicit
approach to solve the integral equation via successive substitution and under-relaxation.
In practical applications, we prefer this implementation because it has similar numerical
costs and requires less assumptions (e.g. d✏(z)/dz << 1 is not required). The method
consists of the following steps, where we assume time step is denoted by superscripts n
(present) and n− 1 (prior past timestep):

(i) In order to compute ∆u
n
y (zi), the (new) velocity correction at the ALM point zi,

determine the distribution of G(z) = 1
2cL(z)c(z)U

2
1(z) at all other N ALM points on

the blade, i.e. evaluate G
n−1(zj) from the previous time-step according to,

G
n−1(zj) =

1

2
c(zj)U

2
1(zj)cL(zj). (5.3)

(ii) In order to evaluate numerically the integral of Eq. 3.10, compute the finite
di↵erence of Gn−1(z):

∆G
n−1(zj) =

1

2

⇥
G

n−1(zj+1)−G
n−1(zj−1)

⇤
, for j = 2, 3..., N − 1, (5.4)

where the first and last points are,

∆G
n−1(z1) = G

n−1(z1) and ∆G
n−1(zN ) = −G

n−1(zN ).

(iii) Compute numerically the new (not yet relaxed) induced perturbation velocities
(superscript *) for both ✏i = ✏

opt
i and ✏i = ✏

LES
i .

u
n⇤
y (zi; ✏i) = − 1

U1(zi)

1Z

−1

dG
n−1(z0)

dz0
1

4⇡(zi − z0)
(1− e

−(zi−z0)2/✏2i ) dz0 (5.5)

⇡ − 1

U1(zi)

NX

j=1

∆G
n−1(zj)

1

4⇡(zi − zj)
(1− e

−(zi−zj)
2/✏2i ), (5.6)

Note that the perturbation velocities are perpendicular to the velocity U1(xi).
(iv) Compute the updated di↵erence between induced velocities for ✏LES

i and ✏
opt
i , and

apply under-relaxation:

∆u
n
y (zi) = fu

⇥
u
n⇤
y (zi; ✏

opt
i )− u

n⇤
y (zi; ✏

LES
i ]

�

+(1− fu)
⇥
u
n−1
y (zi; ✏

opt
i )− u

n−1
y (zi; ✏

LES
i )

⇤
.

(5.7)

The under-relaxation factor fu 6 1 is used to ensure numerical convergence of this
successive substitution algorithm that can be implemented in an explicit LES code. A
factor fu = 0.1 has been found to lead to rapidly converging and stable results, and is
thus recommended.
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(v) When sampling the LES velocity at the actuator point i for time n add the velocity
component subgrid scale velocity to the sampled velocity.

bu(xi) = eu(xi) +∆u
n
y (zi)j (5.8)

Now with this new sampled velocity the actuator line model can compute all the
forces and apply them to the flow field accordingly. The correction is computed at every
time-step. (Note that the operation count for the velocity correction is of order N

2

since convolutions are performed directly. If N is large, FFT-based approaches could
be developed but in our applications, N has been sufficiently small that such further
optimizations were not found to be necessary.)

6. Applications in LES

We now test the proposed subfilter scale velocity model in large eddy simulations
of flow over several finite wings with uniform, non-turbulent inflow. Simulations are
performed using LESGO, an LES code (Calaf et al. 2010; Graham & Meneveau 2012;
Mart́ınez-Tossas et al. 2018) that uses pseudo-spectral discretization in the spanwise
and streamwise directions and second order finite di↵erence in the vertical direction.
A fringe region is used to drive the flow to desired inflow conditions (uniform in the
present application) once it reaches the end (or inflow due to periodicity) of the domain
(Stevens et al. 2014). Time integration is done using a second order Adams-Bashforth
scheme. The code uses a scale-dependent dynamic eddy-viscosity subgrid-scale model
with Lagrangian averaging (Bou-Zeid et al. 2005) although in the present application
of uniform inflow with emphasis on the aerodynamic forces induced on the blades, the
e↵ects of the subgrid model are not crucial. An eddy-viscosity model is included only to
avoid numerical instabilities.

The simulations use a range of kernel sizes, from ✏
LES

/c = 0.25 to ✏
LES

/c = 4. The
length of the blades is denoted by S (as opposed to L used in prior sections to avoid
confusion with the domain lengths). The simulation domain is Lx/S = 2.5 in streamwise
length, Ly/S = 2.5 in vertical length, and Lz/S = 2.5 as well along the span. Figure 7
(a) shows a sketch of the simulation domain. In order to mitigate any possible numerical
e↵ects, a very fine grid resolution is employed for all simulations, namely ∆/c = 0.0195,
equal in all directions. The range of resolutions with respect to ✏ range from ✏/∆ ⇡ 13
for the case with ✏/c = 0.25, to ✏/∆ ⇡ 103 for the ✏/c = 2 case. The length of the blade
is S/c = 12.5. The blade has a NACA64A17 section (the same one used in the outer part
of the NREL 5MW Reference turbine blade (Jonkman et al. 2009)), placed at a 6o angle
of attack so that the baseline lift coefficient is CLb = 1.103. The drag coefficient is set to
zero for the test cases presented.

The simulations were run with very high resolutions to avoid any e↵ects of numerical
grid resolution. However, we have verified that even much coarser resolutions (✏/∆x ⇡
2.8) provide essentially the same results.

When simulating a fixed wing, tip vortices are formed on both sides of the blades.
Figure 1 (b) shows a volume rendering of the resulting vorticity magnitude. The vorticity
field is reasonably uniform along the z-direction along the blade until it reaches the tip.
While some vorticity is shed along the way it is difficult to visualize in such a plot. At the
tip, the vorticity takes a 90o turn and travels downstream. Next, the down-wash created
by the shed vorticity is compared to the analytical solutions found for di↵erent cases.

First, we examine the induced velocity from LES along the blade caused by the shed
vorticity in Figure 8. The LES results at the various kernel sizes are shown as symbols
(note that here we also include the ✏

LES
/c = 4 case). The analytical expression (Eq. 4.8,
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Figure 7. Sketch of the computational domain used for simulation of finite length, constant
chord wing. (b) Volume rendering of non-dimensional vorticity magnitude for a simulation of a
stationary constant chord wing using the actuator line model.
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Figure 8. Induced velocity along the blade for large eddy simulations of a fixed wing under
uniform inflow and angle of attack of 6o. Note that here r denotes the distance from the center
of the blade of length S. Symbols denote the LES results while the solid lines are the theory
and fit from Eqs. 4.5 and 4.6.

with the function S(..) evaluated using the fit of Eq. 4.6) is plotted as solid lines. There
is excellent agreement between the theory and the LES results.

Next, we compare the perturbation velocity uy obtained from LES before applying
the subfilter-scale velocity correction to the velocity after applying the correction. The
proposed correction adds a subgrid scale velocity along the actuator line perpendicular
to the inflow velocity sampled at every actuator point. The desired behavior is that the
perturbation velocity after applying the correction should be independent of ✏LES. As can
be seen in Fig. 9(a), the desired behavior is indeed followed very accurately in the LES.
Concomitant to the ✏

LES-independent velocity perturbation, the lift coefficient obtained
from the corrected velocity (Fig. 9(b)) is also ✏

LES-independent, whereas without the
correction (dashed lines) strong dependence on ✏

LES is observed.

Next, a similar application and analysis are performed on an elliptic wing under
uniform inflow, also at an angle of attack of 6o. The chord distribution along the blade
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Figure 9. Simulation results from a constant chord fixed wing under uniform inflow at an angle
of attack of 6o. Induced velocity (a) and lift coefficient (b) along the blade for cases with and
without the correction using di↵erent ✏.

span is given by

c(r) = c0

p
1− (2r/S)2 (6.1)

where c0 is the largest chord in the middle of the blade, r is the coordinate along the span
centered at 0, and S is the total blade span. Results for the corrected and uncorrected
velocities and angles of attack are shown in Fig. 10. Again, we observe that the curves
for all the cases with the proposed correction collapse. Also note that the correction
predicts a constant induced velocity throughout most of the blade, as expected for an
elliptic wing. We note that near the tips the deviations from a constant induced velocity
are also as expected, due to di↵erences between the Gaussian filtered and ideal lifting
line theories. Only in the limit of ✏ ! 0 would one expect constant induced velocity all
the way to the (singular) tip. The remarkable result is that the subfilter model correctly
enables us to correct the induced velocities and angle of attack shown by the dashed lines
to the ✏-independent solid lines that all coincide across the span of the blade.

We can evaluate integrated quantities such as the total lift and induced drag force on
the blades as function of ✏LES. Figure 11 shows the total lift and induced drag forces
on the blade from LES of the constant and elliptic chord wings, both with and without
applying the subfilter-scale velocity correction. We see that the correction eliminates the
✏-dependence of predicted aerodynamic forces. Without the correction, these practically
very important integral quantities could di↵er by as much as 5− 10%.

7. Conclusions

A new formulation for a filtered lifting line theory has been proposed. The main
di↵erence with Prandtl’s original lifting line theory is that there is now a length scale ✏

for each blade section which establishes the width over which vorticy is distributed, as
opposed to an infinitesimally small vorticity source. It has been found in prior work that
this thickness is related to the blade chord and a value of ✏/c ⇡ 0.25 provides optimal
results. In the limit of ✏ going to zero, the filtered formulation yields the original lifting
line theory.

The filtered lifting line theory can be used to formulate a subfilter-scale velocity
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Figure 10. Simulation results from an elliptic wing under uniform inflow at a nominal angle of
attack of 6o. Induced velocity (left) and angle of attack (right) along the blade for cases without
(dashed lines) and with (solid lines) the correction for di↵erent ✏/c.
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Figure 11. Total lift (left) and induced drag (right) for simulation of a constant chord
wing. Squares show results without using the subfilter scale velocity correction, circles use
the correction. Forces are non-dimensionalized by the blade span S, width `, density ⇢ and
free-stream velocity.
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Figure 12. Total lift (left) and induced drag (right) for simulation of a constant chord wing
(top) and one with elliptic chord-distribbution (bottom). Squares show results without using
the subfilter scale velocity correction, circles use the correction.



20 L.A. Mart́ınez-Tossas & C. Meneveau

correction. This correction is intended for simulations which cannot a↵ord to resolve
the recommended resolution associated with the optimal length scale ✏/c ⇡ 0.25. The
correction provides the subrid scale velocities one would obtain by running a simulation
with the optimal ✏ while using much coarser resolutions. It is worthwhile to recall that
the filtered lifting line theory developed here relies on a number of crucial assumptions
and simplifications, notably the neglect of viscous and turbulence e↵ects. As justification,
we note that the lift force on the wing depends mostly upon the pressure distribution,
which is known to be relatively insensitive to viscous and turbulence e↵ects. Even if close
to stall conditions where turbulence in the wake may become substantial, we expect the
model to yield accurate results, if one is using realistic tabulated lift and drag coefficients
appropriate for local flow conditions (e.g. near stall).

The correction has been tested in large-eddy simulations of flow over a finite wing
with constant chord and with an elliptic chord distribution. There is excellent agreement
between using di↵erent ✏ when invoking the proposed subfilter-scale velocity correction.

Further work should focus on applications of the subfilter velocity model on wind
turbine simulations including blade rotation. Initial tests, to be presented elsewhere,
yield promising results. Moreover, tests on coarse-resolution LES of entire wind farms
with turbulent inflow conditions (Calaf et al. 2010; Stevens et al. 2018), etc. are required
to explore the performance of the model in the context of more practical applications.
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Porté-Agel, F., Wu, Y. T., Lu, H. & Conzemius, R. J. 2011 Large-eddy simulation of
atmospheric boundary layer flow through wind turbines and wind farms. Journal of Wind

Engineering and Industrial Aerodynamics 99 (4), 154–168.

Prandtl, Ludwig & Tietjens, Oskar Karl Gustav 1957 Applied hydro-and aeromechanics.
Dover Publications.

Shives, Michael & Crawford, Curran 2013 Mesh and load distribution requirements for
actuator line cfd simulations. Wind Energy 16 (8), 1183–1196.

Sørensen, J. N. & Shen, W. Z. 2002 Numerical Modeling of Wind Turbine Wakes. Journal
of Fluids Engineering 124 (2), 393–399.

Stevens, RJAM, Graham, J & Meneveau, C 2014 A concurrent precursor inflow method
for large eddy simulations and applications to finite length wind farms. Renewable energy

68, 46–50.

Stevens, Richard JAM, Mart́ınez-Tossas, Luis A & Meneveau, Charles 2018
Comparison of wind farm large eddy simulations using actuator disk and actuator line
models with wind tunnel experiments. Renewable Energy 116, 470–478.

Stewartson, K 1960 A note on lifting line theory. The Quarterly Journal of Mechanics and

Applied Mathematics 13 (1), 49–56.

Troldborg, N., Sørensen, J. N. & Mikkelsen, R. 2010 Numerical simulations of wake
characteristics of a wind turbine in uniform inflow. Wind Energy 13 (1), 86–99.



22 L.A. Mart́ınez-Tossas & C. Meneveau

Appendix A: Canonical Gaussian filtered lifting line equation

We begin with the dimensional equation for the perturbation momentum flux M(z, ✏)
from Eq. 4.1, written for the constant filter width case, d✏/dz = 0:

M(z; ✏) =

1Z

−1

dGb(z
0)

dz0
c(z)

−1

4⇡(z − z0)
(1− e

−(z−z0)2/✏2) dz0+

✓

1Z

0

M(z0; ✏)c(z)


1

4(z − z0)2
(1− e

−(z−z0)2/✏2)− 1

2✏2
e
−(z−z0)2/✏2

�
dz

0
. (7.1)

We introduce the change of variables ⇠ = z/✏(z), ⇠0 = z
0
/✏(z), and " = ✏(z)/[c(z)✓],

where we assume " is constant. The integral equation can then be written as

M(⇠; ") =
1

"

1Z

−1

dGb(⇠
00)

d⇠00
g⇤(⇠ − ⇠

00) d⇠00 +
1

"

1Z

0

M(⇠0; ")k⇤(⇠ − ⇠
0) d⇠0, (7.2)

where Gb(⇠
00) ⌘ Gb[z

00 = ⇠
00
✏(z)], M(⇠) ⌘ M [z = ⇠✏(z)], and

g⇤(⇠) = − 1

4⇡⇠
(1− e

−⇠2), (7.3)

and

k⇤(⇠) =
1

4⇠2
(1− e

−⇠2)− 1

2
e
−⇠2

. (7.4)

The condition that the parameter " = ✏(z)/[c(z)✓] be a constant arises from a desire to
treat it as a parameter in this equation rather than as a function of ⇠ or z. Since Eq. 7.2
is linear we anticipate a solution of the form:

M(⇠; ") =
1

"

1Z

0

dGb(⇠
00)

d⇠00
S (⇠, ⇠00; ") d⇠

00
, (7.5)

where S (⇠, ⇠00; ") remains to be found. Replacing into Eq. 7.2 and regrouping yields
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5 d⇠
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Since we wish Eq. 7.6 to be true for arbitrary distributions Gb(z
00), the unknown

function S(⇠, ⇠00; ") must be such that:

S(⇠, ⇠00; ") = g⇤(⇠ − ⇠
00) +

1

"

1Z

1

S(⇠0, ⇠00; ")k⇤(⇠ − ⇠
0)d⇠0. (7.7)

This is the ‘canonical Gaussian filtered lifting line equation’. Now Eq. 7.5 may be
rewritten in dimensional form by changing the variables back to z and z

0, and we obtain
Eq. 4.2 quoted in the main text.

Appendix B: Stewartson’s closed form solution

In most applications, equation 2.5 from classic lifting line theory is solved using Fourier
series. For the special case of a semi-infinite blade of constant properties, Stewartson
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(1960) provides a convenient closed form solution, summarized below. Specializing to the
case dcL/d↵ = 2⇡ and defining a function fS(x) according to

Γ (z) =
1

2
cLb c U1[1− fS(x)], where x =

4

⇡

z

c
, (7.1)

it can be shown that Eq. 2.5 reduces to:

fS(x) =
1

⇡

1Z

0

f
0(x0)

x0 − x
dx

0 (x > 0). (7.2)

In Stewartson (1960), based on the Fourier transformation of an extended integral
equation and inverse Fourier transforming it using complex plane contour integration,
the following closed form solution for fS(x) is arrived at:

fS(x) =
1

⇡

1Z
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e
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exp

✓
− 1
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Z t
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Based on this expression, fS(x) can be evaluated numerically using double integration
with Matlab’s numerical ‘integrate’ functionality. Some limiting behaviors of fS(x) itself
are useful to recall Stewartson (1960). At large x, we have fS(x) ! (⇡x)−1 (equivalent
to the u

0
y = 1

2cLbU1/(4⇡z) decay far from the tip). At small x, the leading behavior is

fS(x) ⇡ 1− 2(x/⇡)1/2. Furthermore, one can show that the induced velocity equals

1
1
2cLb

u
0
y(z)

U1
= − 1

⇡
fS(x = 4z/⇡c), (7.4)

which is the curve shown in Fig. 2 as dash-dotted line in the main text. It provides the
desired limiting case for ⇠00 = 0, when ✏ ! 0.


