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ABSTRACT

Uncertainty and physiological variability are ubiquitous in cardiac electrical signaling. It is important to

address the uncertainty and variability in cardiac modeling to provide reliable and realistic predictions of

heart function, thus ensuring trustworthy computer-aided medical decision-making and treatment planning.

Statistical techniques such as Monte Carlo (MC) simulations have been applied to uncertainty quantification

and propagation in cardiac modeling. However, MC simulation-based methods are computationally prohibi-

tive for complex cardiac models with a great number of parameters and governing equations. In this paper, we

propose to use the Generalized Polynomial Chaos (gPC) expansion in combination with Galerkin projection to

analytically quantify parametric uncertainty in ion channel models of mouse ventricular cell, and further

propagate the uncertainty across different organizational levels of cell and tissue. To identify the most sig-

nificant parametric uncertainty in cardiac ion channel and cell models, variance decomposition-based sensi-

tivity analysis wasfirst performed. Following this, gPC was integrated with deterministic cardiac models to

propagate uncertainty through ion current, ventricular cell, 1D cable, and 2D tissue to account for the sto-

chasticity and cell-to-cell variability. As compared to MC, the gPC in this work shows the superior performance

in terms of computational efficiency. In addition, the gPC models can provide a measure of confidence in

model predictions, which can improve the reliability of computer simulations of cardiac electrophysiology for

clinical applications.

1. Introduction

Mathematical models of cardiac electrophysiology have been widely

used to advance the fundamental understanding of etiology and pa-

thophysiology of cardiac diseases, aid clinical diagnosis and prognosis,

and assist therapeutic design and treatment development. Since Noble's

first attempt to study the electrophysiology of a single cell with the

Hodgkin-Huxley model [1,2], cardiac models have become more de-

tailed due to the increased knowledge of ion channel gating and cardiac

electrical signaling. Current models of cardiac electrophysiology are

multiscale and highly complex, which integrate models across different

organizational levels of ion channel, cell, tissue, and the organ [3].

These models have been used to examine cardiac disease mechanisms,

optimize treatment and surgical planning. For example, the whole-heart

model has been applied in clinical settings to localize ablation therapy

[4], terminate cardiac arrhythmias [5], and design cardiac re-

synchronization therapy [6].

While cardiac models have shown the potentials, applications such as

model-based diagnosis and therapeutic design are still limited due to the

incapability of accounting for uncertainty and variability among in-

dividuals [7]. Uncertainty may originate from model assumptions, cali-

bration of model parameters using noisy data, intrinsic time varying

phenomena, and extrinsic cell-to-cell variability [8,9]. For example,

physiological variability constantly presents in ion channel gating, car-

diac electrical signaling, and electrical propagation in cardiac tissue, due

to the stochastic nature of ion channel gating [10]andthenonlinear

dynamics of alternans in cardiac action potential duration (APD) [8]. In

addition, Action Potential (AP) may change from cell to cell due to

quantities that genuinely vary among cells, e.g., cell size and ion channel

expression [11]. However, most of the available cardiac models are de-

terministic withfixed model parameters, which cannot account for un-

certainty. If the uncertainty in the cardiac models is not appropriately

addressed, computer experiments may fail to provide reliable predictions

and lead to false conclusions, thus misleading medical decisions [7].
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To improve the credibility and reliability of cardiac models, it is

necessary to quantify and propagate the uncertainty to obtain confident

model predictions (outputs). Uncertainty quantification and propaga-

tion techniques have been well developed in engineering and science

domains [12]. Computer models are often developed and calibrated

with data corrupted by various sources of uncertainty, which in turn

may introduce uncertainty in model parameters. Uncertainty quantifi-

cation and propagation typically assign probability distributions to

model parameters to represent parametric uncertainty, which can

subsequently be propagated onto model outputs to obtain a measure of

confidence in model predictions. Uncertainty quantification in cardiac

models has been previously studied [7,11–14]. For example, Romero

et al. investigated the effect of variability in ionic current on AP in

human ventricular myocytes [15]. Pathmanathan et al. [7] quantified

the variability in the steady-state inactivation of fast sodium current

amongcanine epiandendocardialcells, and further propagated the

uncertainty onto higher organizational levels to study the stochasticity

in upstroke velocity in AP and spiral wave dynamics in 2D tissue. Al-

though different uncertainty quantification methods were reported,

efficient algorithms that can be used to propagate parametric un-

certainty onto higher organizational scales in cardiac models have not

been extensively investigated [7,16].

Sampling-based techniques such as Monte Carlo (MC) simulations

are one of the most popular methods to propagate parametric un-

certainty onto model outputs [17]. For MC, samples are randomly

generated from the distribution of model parameters, simulations are

then performed with each sample. Based on the simulation results, the

variability in model outputs is approximated from a collection of the

simulated outputs. It should be noted that MC may require a large

number of simulations to ensure the convergence of the model pre-

dictions [18], which can be computationally prohibitive for complex

and nonlinear cardiac models. To reduce the computational burden and

improve the accuracy of uncertainty propagation, this work presents a

non-sampling based uncertainty analysis technique, i.e., generalized

polynomial chaos (gPC) expansion [19]. The gPC generally approx-

imates the distribution of parametric uncertainty with orthogonal

polynomial basis functions and propagates the uncertainty onto model

predictions (outputs) throughfirst-principles models. One advantage of

the gPC is that it can provide analytical expressions of the statistical

moments of model predictions. As compared to MC, uncertainty pro-

pagation with gPC has been proved to be more efficient in terms of

computational time in different modeling, control, and optimization

problems [18,20–24]. Geneser et al. [16] introduced uncertainty in rate

coefficients ofion channel model, and applied gPC for uncertainty

propagation in ion channel gating. However, uncertainty was randomly

assigned to model parameters and the quantification of uncertainty was

only studied at the ion channel level, which cannot provide the in-

formation about the effect of uncertainty on higher organizational le-

vels such as cell and tissue. Using gPC, our previous work successfully

propagated parametric uncertainty onto K+ channel models [25].

However, the uncertainty propagation in higher organizational levels

was not studied.

Uncertainty propagation in cardiac models is challenging, since

models of cardiac electrophysiology are inherently multiscale and in-

volve a great level of complexity. These models generally integrate

cellular activities with tissue functions, where cellular activities are

regulated by the orchestrated function of transmembrane currents and

tissue functions are modeled as spatial-temporal propagation of elec-

trical waves. The cellular models often include numerous differential

equations coupled with over a hundred supporting equations. Further,

the cellular models can serve as sub-models of the tissue models, which

describe the electrical propagation in 2D/3D cardiac muscles using

partial differential equations (PDEs) andfinite elements meshes. The

complexity of cardiac models poses great challenges on the gPC-based

uncertainty propagation as the coupled differential equations and

supporting equations can make it difficult to quantify uncertainty in

model outputs resulting from parametric uncertainty. The objective in

this work is to: (i) investigate the feasibility of the gPC-based un-

certainty propagation in multiscale cardiac models across different or-

ganizational levels of ion channel, cell, and tissue, and (ii) quantify the

effect of parametric uncertainty on model predictions in each organi-

zational level in a computationally efficient manner.

Cardiac models are described by many equations involving hun-

dreds of parameters. It is possible but not practical to consider un-

certainty in all model parameters. To improve efficiency, we propose to

identify the most sensitive parametric uncertainty. To identify the most

significant uncertainty, sensitivity analysis techniques can be used. For

example, Du et al. [3] used fractional factorial design tofind sensitive

parameters under different response functions for model calibration,

and Johnstone et al. [8] used Gaussian process tofind parametric un-

certainty in cardiac models. However, these techniques concentrate on

the sensitivity in the vicinity of the mean value of parameter and may

fail to identify the most significant uncertainty. To overcome this issue,

the variance decomposition-based sensitivity analysis method is used in

this work to identify the parametric uncertainty that has the most sig-

nificant impact on the variability in the outputs of ion channel models

and the cardiac cell model. Based on the sensitivity analysis results,a

priorknown distribution will be assigned to the significant parameters

to approximate uncertainty, which will be further propagated onto ion

currents, cardiac cell, and tissue. Specifically, different characteristics,

e.g., Steady State Activation (SSA) and Inactivation (SSI) in ion channel,

APDs in cardiac cell, and spiral wave propagation in tissue, are quan-

tified in order to visualize the effect of parametric uncertainty on model

outputs. Additionally, the efficiency and accuracy of gPC are in-

vestigated and verified with MC simulations. Note that for algorithm

clarification theBondarenko's mouse ventricular model [26] is used in

this work for propagating parametric uncertainty onto higher organi-

zational levels of heart through multiscale cardiac models. We delib-

erately chose this model since it can provide detailed gating kinetics in

ion channels, and it is considered sufficiently complicated to illustrate

the computational efficiency of gPC.

The rest of this paper is organized as follows. Section2presents the

research methodologies followed by design of computer experiments in

Section3. Simulation results and discussion are provided in Sections4

and 5, which is followed by conclusions in Section6.

2. Background and methodologies

2.1. Generalized polynomial chaos expansion

The generalized polynomial chaos (gPC) expansion approximates

uncertainty as a function of another random variable based on a pre-

scribed distribution from Askey-Wiener scheme [19]. Suppose a cardiac

model can be defined with a nonlinear ordinary differential equation

(ODE) as:

= ≤ ≤ =σ θ
dy

dt
gt  y t  T y  y(, , , ), 0  ,  (0) 0 (1)

wheregis a nonlinear function of cardiac model, e.g., the ion channel

model, andyis a gating variable (i.e., output), e.g., the gating variable

of activation or inactivation, with initial conditiony0over afinite time

domain [0,T],θandσare model parameters. In this current work,θ

denotes a vector of parametric uncertainties (i.e. input uncertainty)

whileσis a vector of deterministic parameters defined withfixed va-

lues. Note that each parametric uncertainty inθwill be described with a

probability density function (PDF) around a particular mean value and

specific variance in this work. The uncertainty in each parameter ofθ

may originate from time-varying phenomena such as stochasticity in
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channel gating or may result from extrinsic cell-to-cell variability. It

should be noted that, when experimental data are available, the PDF of

each parameter can be calibrated with experimental data using offline

parameter estimation techniques such as the least squaresfitting.

Otherwise, the PDF can be inferred from other information such as

empirical knowledge. In this work, the PDF of each parameter is as-

sumed to be known, and the statistical distribution of each parameter in

θis time-invariant for simplicity.

Using the gPC expansion, thefirst step is to re-write each parameter

θiinθas a function of a random variableξias:

∑ ∑= ≈   = ⋯
=

∞

=

θξ   θ ξ   θ ξ   i   n() ˆΦ( ) ˆΦ( ),  1,  , ,i i

k

ik  k i

k

q

ik  k i θ

0

,

0

,
(2)

where ξΦ( )k i is the orthogonal polynomial chaos basis function of

parameterθi[19],θ̂ik, is the gPC coefficients of theith parameterθi,

which can be calculated through parameter estimation techniques, e.g.,

Maximum Likelihood Estimation, such that Eq. (2)followsa prior

known PDF ofθi,nθis the total number of parameters inθ. The random

variables that can be used to approximate the parametric uncertainty of

θ, i.e., =ξ ξ{}i, are assumed to be independent in this work.

Since model parameters can affect model predictions (outputs)

through the cardiac modelgin Eq.(1), it is necessary to estimate their

effect on the model outputs. Similar to the gPC expansion of parameters

θ, the model prediction can be estimated in terms of the random vector

=ξ ξ{}ias follows:

∑ ∑ ∑= +   + +…
= = =

y y  y ξ  y  ξ ξΨ̂ Ψ̂( ) ˆΨ( , )
i

n
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i
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ij i j0 0

1

1

1 1

, 2

θ θ

(3)

whereŷiandŷij,are the gPC coefficients that estimate the PDF profile of
the model predictiony, which describes the uncertainty in model

output resulting from parametric uncertaintyθ, ξΨ()k k=0,1,2 … is

the multivariate orthogonal polynomial basis function of random vector

ξdefined as the product of univariate basis functionsΦk's [18]. For

simplicity, Eq.(3)can be rewritten as:

∑ ∑= ≈
=

∞

=

ξ ξy y   yΨ̂( ) Ψ̂( ),
k

k k

k

Q

k k

0 0 (4)

It should be noted that infinite terms are needed in Eq.(2)and Eq.

(4)in order to approximate an arbitrary random variable with the gPC

expansions. However, for practical application purposes, the expansion

will be truncated into afinite number of terms. In this work, we used

thetotal-order expansion scheme[27] to determine the number of terms

in Eq.(4). The detailed explanation of how thetotal-order expansion

operates is given inAppendix A, and the empirical formula that can be

used to determine the necessary terms in both approximations is given

as below.

The total number of termsQin Eq.(4), according to the gPC ap-

proximation, can be determined as [28]:

⎜ ⎟=⎛

⎝

+ ⎞

⎠
−Q

n q

n q

( )!

!!
1,θ

θ (5)

As seen in Eq.(5), the number of terms used in model predictions

increases as the polynomial orderqand/or the number of parametric

uncertaintiesnθincreases. Different from the calculation of gPC coef-

ficients of parametric uncertaintyθ, the gPC coefficientsy{̂}k of the

model outputs can be calculated from the cardiac modelgin combi-

nation with the Galerkin projection, which will be described as follows.

Using Galerkin projection, it is possible to determine the gPC

coefficientsy{̂}k of model predictions by substituting Eq.(2)and Eq.(4)

into Eq.(1), and by projecting Eq.(1)onto each one of the polynomial

chaos basis functions ξ{Ψ ( )}k as:

∑ ∑< >=<
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Q
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whereθ̂represents the gPC coefficient ofθ,⋅is an inner product be-

tween two functions, which is calculated as:

∫ ∗ ′ ∗ξ ξ ξ ξW dΨ() Ψ()  ()  ,
Ω (7)

whereΩis the entire domain of the random variablesξused to ap-

proximate parametric uncertaintyθ, and ξW()is the weighting func-

tion, i.e. probability density function (PDF) ofξ. The integral in Eq.(7)

can be solved numerically with sparse quadrature rule [18]. In addi-

tion, it is important to note that the polynomial basis functions here are

chosenperthe option of the distribution ofξto ensure orthogonality

[18]. For example, Legendre polynomials are the choice of uniformly

distributed random variables, while Hermite polynomials can be chosen

for normally distributed random variables. Using the Galerkin projec-

tion and given the orthogonal property of the polynomials, the original

cardiac model, i.e., Eq.(1), can be transformed into a set of coupled

deterministic equations with unknown gPC coefficients (i.e., ŷk)of

model predictions as:

=
< ∑ >

< >
= …=

σ θ  ξ  ξ

ξ ξ

dy

dt
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j Q
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Q
k k j

j j
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(8)

As seen, the only unknown in the coupled equations system is the

gPC expansion coefficients, which can be solved with numerical

methods such as Runge-Kutta [29]. Once these gPC coefficients are

obtained, model predictions can be approximated by substituting these

gPC coefficients into Eq.(4)at each time interval. In addition, the

statistical moments of the model predictionycan be analytically ap-

proximated as follows.

∑=
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The key of using gPC in this work is that it can analytically infer the

stochasticity in model predictions (outputs) with Eqs.(9) and (10). This

can significantly reduce the computation time required by uncertainty

quantification, as the gPC coefficients can be easily solved which saves

a large number of simulations as compared with MC methods. The

discussion of the computation time will be given in the results section.

In addition to the fast calculation of these statistical moments of model

outputs, the distribution of the model predictions can be quantified by

samplingξfroma priordistribution and by substituting these samples

into the gPC approximation of model outputsyin Eq.(4), which can be

performed in a real-time fashion. The rapid calculation of uncertainty in

model outputs, resulting from parametric uncertainty, is the main ra-

tionale for using the gPC approximation in this work, since this can

necessitate efficient uncertainty propagation as compared to MC si-

mulations. To better demonstrate the procedures of uncertainty pro-

pagation with gPC, an example using the activation gate variable of

cardiac models is given inAppendix B.

2.2. Multiscale models of cardiac electrophysiology

Cardiac models of various species have been developed previously,

which can provide sufficient details for describing cardiac functions

across multiple organizational levels of ion channel, cell, tissue, and the
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whole organ [3]. The ion channel gating is often described with either

the Hodgkin Huxley type model or the Markov model, where gating

kinetics are determined by activation and inactivation variables

through ordinary differential equations (ODEs). For cardiac cells, the

change of transmembrane potential over time is modeled as a function

of ion currents, typically referred as Action Potential (AP). The elec-

trophysiology of cardiac tissue is modeled with a reaction diffusion

equation on mesh grids with each node defined as a cardiac cell. A

collection of cell models, coupled through either monodomain or bi-

domain models, forms a spatial-temporal model to describe the elec-

trical wave propagation in two/three-dimensional (2D/3D) tissue. In

this current work, we will demonstrate the efficiency of the gPC-based

uncertainty propagation using the Hodgkin-Huxley typeK+ channel

models of the transient outward K+ current (IKto), and the delayed

rectifierK+ current (IKur), mouse ventricular cell model [26], and

monodomain tissue model [30]. It should be noted thatK+currents are

chosen, since they play important roles in the repolarization of AP and

any slight changes in the currents can significantly affect the cardiac

functions, thus leading to ventricular arrhythmias and life threatening

cardiac events [31,32]. In addition, mouse ventricular cell model is

used for algorithm clarification in this work, since mouse ventricular

myocytes are widely used in-vitroexperiments for investigating un-

known etiology [33] and for testing drug efficiency [34]. We deliber-

ately chose this model because it can provide detailed gating kinetics in

ion channels, and it is considered sufficiently complicated to illustrate

the computational efficiency of gPC.

2.2.1. Models of ion currents

For algorithm clarification, wefirst investigated the parametric

uncertainty in ion channel models. Such parametric uncertainty may

either result from the stochastic nature of ion channel gating or origi-

nate from cell-to-cell variability. Using gPC as explained in Section2.1,

the uncertainty is propagated onto twoK+ ion currents, i.e.,IKtoand

IKur, which can be described by Hodgkin-Huxley type model as follows

[26]:

= −I G ai V E( ),Kto  to toto  K
3 (11)

= −I G ai V E( ),Kur  ur  ur ur  K (12)

whereGtoandGurare conductance,atoandaurare activation gating

variables,itoandiurare inactivation gating variables,EKis the reverse

potential (−82.8 mV), andV is the transmembrane potential. The

equations of activation and inactivation variables are shown inTable 1,

and the model parameters used in this work are given inTable 2[26].

2.2.2. Model of mouse ventricular myocyte

The movement of ions such asK+,Na+, andCa2+, i.e., across cell

membrane through ion channels, can lead to changes in membrane

potential. Uncertainties in ion channel gating will jointly affect cellular

activities, thus leading to variations in the AP in cardiac cells. In this

work, mouse ventricular myocyte model developed by Bondarenko

et al.'s [26] is used to study the effect of parametric uncertainty in ion

channel on electrical signaling of cardiac cell. In Bondarenko et al.'s

model, cell membrane is modeled as electrical circuit with subcellular

compartmental space. Assuming there are no electrical gradients within

the cell itself, the membrane potential is described as follows:

− = + + + + + + + +

+ +   +   + +   +

C
V

t
I I   I   I I I I   I I

I I   I   I I   I

d

d

,

m  CaL  p Ca  NaCa  Cab  Na  Nab  NaK  Kto  K

Ks  Kur  Kss  Kr  Cl Ca  stim

( ) 1

, (13)

wheretis time,Cmis the cell capacitanceperunit surface area,Istimis

the external stimulus current, which activates the cell from the resting

state. As seen in Eq.(13), the transmembrane currents incorporateL-

typeCa2+currentICaL, sarcolemmalCa
2+pump currentIp(Ca),Na

+/

Ca2+exchange currentINaCa, backgroundCa
2+andNa+ currentsICab

andINab,fastNa
+ currentINa, rapidly recovering transient outwardK

+

currentIKto, rapid delayed rectifierK
+ currentIKr, ultra-rapidly acti-

vating delayed rectifierK+ currentIKur, non-inactivating steady-state

voltage-activatedK+currentIKss, time-independent inwardly rectifying

K+ currentIK1, slow delayed rectifierK
+ currentIKs,Ca

2+-activated

Cl− currentICl,Ca, andNa
+/K+ pump currentINaK. Modeling of ionic

currents is based on either Hodgkin-Huxley or Markov-based formula-

tions. For brevity, the details of each current kinetics and parameters

used in this work are not given, but they can be found in Ref. [26]. The

parametric uncertainty inK+currents ofIKtoandIKurwere investigated

in this work, since they are two major voltage-gated currents that are

responsible for repolarization [32,35,36]. Note that the proposed un-

certainty quantification technique can be easily extended to other

currents with minor modifications.

2.2.3. Model of 1D cable and 2D tissue

Cardiac tissue is often modeled as a collection of cardiac cells

connected with gap junctions. Each depolarized cell can stimulate its

neighbor cells and trigger electrical conduction among tissue. We pro-

pose to study thecell-to-cellvariability by propagating the uncertainties

among cells into electrical activities at the tissue level. The electrical

propagation on the one-dimensional (1D) cell string and the two-di-

mensional (2D) tissue was studied. The conduction of AP in the cell

string and tissue was modeled using the following reaction diffusion

equation:

⎜ ⎟

∂

∂
=− ⎛

⎝
+ + ∇ ⎞

⎠

V

t C
I I

ρS
V

1 1
,

m
ion  stim

2

(14)

Table 1

Detailed expression of parameters inK+ ion currents.

Transient outward K+ current

IKto = −I G ai V E( )Kto  to toto  K
3

= − − = − −α a βa α i βi(1  ) (1  )
dato
t a to a to

dito
dt i to itod

αa=

+p p pexp(  ( V  ))1 2   3 βa= +p p pexp(  ( V  ))4 5   3 αi=

− + − +   +p p p   p   p   pexp( ( V  )/  )/(  exp( ( V  )/  )  1)6 7 8 9 10 8 βi=

+ + +p p p p   p pexp(( V  )/  )/(  exp(( V  )/  )  1)11 10  8  12 10  8

Delayed rectifier K+ current

IKur = −I G a i V E( )Kur  ur ur ur  K = =
− −daur
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τiurd d
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Table 2

Parameter declaration of K+ ion currents models.

IKto IKur

p1 p2 p3 p4 p5 p6 p13 p14 p15 p16 p17

0.18,064  0.03577  30.0 0.395 −0.06237  0.000152  22.5 7.7 45.2  5.7  0.493

p7 p8 p9 p10 p11 p12 p18 p19 p20 p21
13.5 7.0 0.067,083  33.5  0.00095 0.051,335 −0.0629  2.058  1200  170

Z. Hu et al. Computers in Biology and Medicine 102 (2018) 57–74

60



whereCmis the cell capacitanceperunit surface area,Iionis the sum of

transmembrane ion currents,ρis the cellular resistivity,Sis the sur-

face-to-volume ratio, and∇2is the Laplacian operator, i.e.,∂
∂

V

x

2

2
for linear

cable, and +
∂

∂

∂

∂

V

x

V

y

2

2

2

2 for 2D tissue,xandydetermine the spatial co-

ordinates of cells, respectively. To simulate the propagation of electric

waves along 1D cell string, Eq.(14)is solved numerically withfinite-

difference scheme as:
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m
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t

i
t
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(15)

Note that Neumann boundary condition was used in the 1D cable

simulation. The numerical discretization scheme for the 2D tissue can

be described as follows:
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where noflux boundary condition is assumed to ensure that there are

no current leakages on the boundaries.

2.3. Sensitivity analysis

Cardiac models often involve a great number of model parameters.

For example, the model ofIKtopresented in the previous section in-

volves 12 parameters. In addition, uncertainty in model parameters

may have different effect on model predictions. The identification of the

most sensitive parametric uncertainty is essential for efficient un-

certainty propagation. A variance-based global sensitivity analysis al-

gorithm in this work is developed to quantify the effect of parametric

uncertainty on the variability of model predictions.

The variance-based sensitivity analysis can decompose the model

outputs with respect to a set of samples of parametric uncertaintyθ.A

sensitivity index, i.e., Sobol Sensitivity Index (SI), can be used to

quantify the fractional effect of parametric uncertainty on the varia-

bility of model outputs [37]. The SI not only provides a measure of the

main effect of a particular parameter on the model predictions, but also

evaluates the joint effect of interactions among parameters on the

model outputs. Let us define the ion channel model described in Eq.(1)

as = py f()for simplicity, where =p p{}i,i=1,2,…n,nis the number
of model parameters in total. The model output = py f()can be de-

composed with respect to each parameter as [38]:
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where f0 is a constant that can be calculated as: =f y()0 ,
= −f yp  y( )  ()i i , = − − −f yp p  f  f  y( , )  ()ij i j i j, .

The total variance can be calculated as:

∫= −p pf d f()  .
Ω

2
0
2

n (18)

Further, the total variance can be decomposed in the similar manner

as done in Eq.(17), which gives the following:
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where = yp((  ))i i , = − −yp p  yp((|, ))  ((|))ij i j i,

−yp  y((|))  ()j . We can further divide the variance associated with

each parameter by the total unconditional variance of model predic-

tions in order to calculate the SI as:

=S ,i
i

(20)

which provides the main effectSiof thei
thparameterpion the model

output. Similarly, the second order SI can be estimated as:

=S ,ij
ij

,
,

(21)

And the total effect ofpion the model output can be calculated as:
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The main and total effects provide a measure of the significance of

parametric uncertainty on model outputs. In this work, the SI of the

mainSiand total effectSTiof each parameter are used to identify the

most significant parametric uncertainties. Based on the sensitivity

analysis results, the gPC approximation explained in Section2.1is used

to approximate significant parametric uncertainty, which is then pro-

pagated onto different organizational levels such as cell and tissue in

order to evaluate the effect of uncertainty on model predictions.

3. Design of experiments

3.1. Simulation protocols

The effects of parametric uncertainty on Steady State Activation

(SSA), Steady State Inactivation (SSI), and current density (i.e., IeV

relationship) arefirst investigated at the ion channel scale. To generate

the model outputs of SSA, SSI, and IeV, we performed computer si-

mulations using theK+current models ofIKto, andIKur. The simulations

follow standard experimental protocols, which are briefly described as

follows.

Steady State Activation (SSA): Cell membrane potential (V) isfirst

held at−100 mV for 200 ms, then steps to testing potentials varying

from−50 mV to +50 mV with a 10 mV increment for 500 ms, followed

by a step change to−100 mV. For eachK+current, the model is solved

accordingly to generate traces of ion current. The maximum steady

state conductance can be determined as = −G I V E/( )max  K , whereImax
is the peak current at each testing potentialV, andEKis the reverse

potential of theK+ channel. The SSA is obtained by normalizing the

maximum steady state conductance at each testing potential to the

theoretical maximum conductanceGmax. In addition, the peak current at

each testing potential is recorded to generate current density (IeVre-

lationship).

Steady State Inactivation (SSI): Simulations are performed for each

K+ current using the models described in Section2.1, where cell

membrane potential (V) is initially held at−70 mV before stepping to

testing potentials (varying from−110 mV to 0 mV with a 10 mV in-

crement) for 10 s, then steps to 30 mV for another 4.5 s before returning

to−70 mV. The simulation can generate one trace of ion current at

each testing potential, and the peak currents for these testing potentials

are normalized with respect to the maximum peak current.

3.2. Sensitivity analysis

3.2.1. Ion currents

Variance-based sensitivity analysis isfirst performed to identify

significant parametric uncertainties inK+ currents, i.e.,IKto, andIKur.

Based on the sensitivity analysis results, a probability density function

is assigned to each of these significant parameters in order to describe

the uncertainty. The mathematical description of a significant para-

meter can be defined as:

= +   =θ θ   θξΔ  , (i  1, ...,n),i i   ii (23)

wherenis the total number of significant parameters identified from

the sensitivity analysis,θiis theithparametric uncertainty,θidenotes

the mean value of the parametric uncertainty whileθΔiis the parameter

that can be used to define the stochastic variation (uncertainty) around
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each mean value. In this work, each significant parameter is assumed to

be normally distributed with a mean value equals to the nominal value

given inTable 2, while two different variations (θΔi) are used. That is, a

standard deviation equals to a 5% of the mean value and a standard

deviation equals to a 10% of the mean value. Again, it should be noted

that, when actual measurements are available, the probability dis-

tribution of parameters can be calibrated with offline estimation tech-

niques, i.e., the identification of parametersθiand θΔiin Eq.(23).

However, this is not pursued here for brevity, since our objective is to

investigate how gPC operates for uncertainty propagation in complex

cardiac models. For algorithm clarification, we have also conducted

experiments assuming the parametric uncertainty follows a uniform

distribution. Due to space limitation, the results of uniformly dis-

tributed uncertainty are briefly summarized inAppendix Cwith simu-

lation results at the channel and cell levels. To calculate the Sobol SI,

the MC simulations-based method proposed by Satelli [39] was

adopted, where 4000 samples are randomly generated from the pre-

defined distribution. The corresponding model outputs are then calcu-

lated and used to evaluate the main effect and the total effect of each

parameter on the model outputs.

3.2.2. Cell

To identify the most sensitive parameters at the cell level, the action

potential duration (APDs) at a 75% (APD75) and a 90% (APD90) re-

polarization levels were used as the output of cell models. Model

parameters in both K+ currents were assumed to be normally dis-

tributed and the mean value equals to the nominal value given in

Table 2. In addition, two different levels of random variations, fol-

lowing the descriptions as given in previous section, i.e., a 5% and a

10% change, were used in the simulations. MC simulations with 10,000

samples were performed to evaluate the main effect and the total effect

of each parameter on the model outputs.

3.3. Uncertainty propagation in ventricular cell

The uncertainties in ion channels can be propagated onto a ven-

tricular cell, which can affect the membrane potentials at the cellular

level. The gPC approximation and Galerkin projection were used in the

mouse ventricular cell model (Eq.(13)) explained in Section2.2.2for

algorithm clarification, and the gPC coefficients of AP were solved

numerically using built-in functionode15s in MATLAB. A 0.5 ms

−60 pA/pF stimulus current with a frequency of 5 Hz was used to

trigger the depolarization in this work. During the experiments, it was

found that, on average, after approximately 10 stimulations of APs, the

changes in the AP waveform between two consecutive simulations are

negligible, which means the cell has reached the steady state. Thus,

data after thefirst 10 simulations were collected for subsequent analysis

as previously reported [8]. Variabilities in AP, AP durations (APDs),

and time to peak were quantified by sampling from the analytical de-

scription of the AP.

3.4. Uncertainty propagation in cardiac tissue

We further simulated the electrical propagation in 1D cell string and

2D tissue in the presence of uncertainties. For the 1D experiments, 100

ventricular cells were connected in order to form a linearfiber with a

conductance of 25 nS/pF. 0.01 cm spatial resolution and 0.0001 ms

temporal resolution were used. A 0.5 ms rectangular current with an

amplitude of 300 pA/pF and a frequency of 5 Hz was used to one end of

the cable to initiate the electrical wave propagation. It is important to

note that the variabilities in cells at the cable/tissue level were con-

sidered by introducing uncertainties among cells with random variable

ξ, which can quantify the variabilities among parameters in individual

cells. In the 1D cable experiments,APDs,Time to Peak, andConduction

Velocityare measured in order to show the effects of uncertainty on the

electrical conduction in 1D cable. In the 2D experiments, a small section

of ventricular tissue was modeled by connecting cells (100,×100 cells)

in a uniform way to form an isotropic tissue, where the conductance

was set to be 25/8 nS/pF in all directions. A fixed time step of

0.0001 ms was used in the temporal domain, and spatial step was set to

0.02 cm. The spiral wave propagation in the 2D tissue was investigated.

In the presence of uncertainty, the wave contour and its variance, the

tip trajectory of the spiral wave and its boundaries were identified and

shown in the Results section below. To generate a spiral wave, a 0.5 ms

300 pA/pF stimulus wasfirst applied to the left side of the tissue. When

the plane-wave arrives the middle of the tissue, a second stimulus was

given to the left-bottom corner, which covers one half of the tissue's

width and length. Computer experiments  were performed  with

MATLAB on a windows 7 64-bit machine.

3.5. Monte-Carlo simulations

The accuracy of the gPC-based uncertainty propagation was vali-

dated with MC simulations, where the results obtained with both gPC

and MC were compared in terms of computational efficiency across

different organizational levels. (1)Ion Channel: For each parametric

uncertainty, 10,000 samples were generated froma priordistribution,

i.e., a normal distribution with a mean value equals to the nominal

values given inTable 2and two different standard deviations (i.e., a 5%

variation and a 10% variation around the mean value, respectively).

For each sample, simulations were performed following the voltage

clamp protocols described in Section3.1. The mean value and the

variance of the SSA and SSI of the two K+ currents, i.e.,IKto, andIKur,

were calculated and compared with the results obtained using the gPC

model, respectively. In addition, the computation time of MC simula-

tions and gPC model was also recorded and compared for each K+

current (2)Ventricular Cell: Samples (i.e., 10,000 samples) were ran-

domly drawn from the input uncertainty in ion channels, and simula-

tions were conducted with each of these samples to generate the AP of

ventricular cell using models given in Section2.2.2. Experiments were

performed using built-in functionode15s in MATLAB, and the compu-

tation time was recorded and compared with the gPC model.

4. Results

4.1. Sensitivity analysis

4.1.1. Ion currents

As discussed in previous sections, cardiac models involve a great

number of parameters. The identification of significant parametric un-

certainty can potentially reduce the computational cost, thus improving

the efficiency of uncertainty propagation for multiscale modeling. In

this study, wefirst performed the variance-based sensitivity analysis to

evaluate the impact of the model parameters in eachK+ current on its

model outputs of SSA and SSI, respectively. The SI of the parameters are

displayed inFig. 1withbar-plots. These parameters are sorted in a

decreasing order with respect to their corresponding main SI. The

nominal value of each parameter used in this work is given inTable 2in

Section2.

The parameter sensitivity was investigated at two levels of varia-

tions, i.e., 5% and 10% changes around the nominal values given in

Table 2, respectively. The sensitivity analysis results are shown in

Fig. 1, where the two different variations (5% and 10%) show con-

sistent results. For example, as shown inFig. 1(a), both the main SI and

the total SI indicate that the 3rd parameter,p3, is the most sensitive

parameter of SSA inIKto. Similarly, as seen inFig. 1(c),p10was iden-

tified as the most significant parameter of SSI inIKtoin both bar-plots.

For theIKurcurrent, the most significant parameters of SSA and SSI are

p13andp15(seeFig. 1(b) & (d)), respectively. Thus far, we have

identified the most significant parameters in each K+ current, i.e., (p3,

p10)inIKto, and (p13,p15)inIKur. It is worth mentioning that we assumed

that  parametric  uncertainties  among  different  currents  are
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independent, thus we investigated each type ofK+ current in-

dependently in the sensitivity analysis. Based on the sensitivity analysis

results, only uncertainty in these most significant parameters is con-

sidered, which will be further propagated onto the ion channel gating

and ion currents as discussed in Section4.2.

4.1.2. Ventricular cell

Following the same procedure as done in the channel level, sensi-

tivity analysis was performed at the cell level to identify the significant

parametric uncertainty inIKurandIKtomodels that has larger impacts on

the APDs in ventricular cell.Fig. 2shows the main and total SIs of

APD75and APD90, where random perturbations in each parameter

follow the same probability distribution as described in Section4.1.1.

As seen inFig. 2, for both case studies with variations of a 5%

change and a 10% change in the model parameters, the SI identifies the

same set of sensitive parameters, i.e.p3,p4inIKto,p13,p18inIKur. Based

on the sensitivity analysis results, parametric uncertainty wasfirst in-

troduced into these 4 parameters, which will be further propagated

onto Action Potential (AP), as well as electrical wave propagation in

cardiac tissue.

4.2. Uncertainty propagation in ion channels

As discussed in Section4.1, bothIKtoandIKurmodels have two

significant stochastic parameters. Each parameter was further re-

presented as a function of a random variableξfollowing the procedure
explained in Section2.1, i.e., =∑

=
p p ξΦ̂()

k

q
k k0

, whereξfollows a
standard normal distribution, and Hermite polynomial basis function

was used. Note that the gPC coefficientsp{̂ }k of each parameter were

determined to ensure thatpfollowsa priorknown normal distribution.

The probability distribution of each parameter follows the same de-

scription as given in Section4.1.1, i.e., the mean value of each para-

meter was set to be the corresponding nominal value inTable 2, while

two different sets of variation were used in this work, i.e., a 5% var-

iation and a 10% variation around the mean values, respectively. It is

important to note that the distribution for parameters was presumed in

this study to investigate the performance of the gPC-based uncertainty

propagation. Uncertainty quantification methods can be used to esti-

mate the mean and variance of parametric uncertainties fromin-vitro

data, which is not discussed here for brevity.

Since model parameter is approximated with gPC, the model pre-

diction can be consequently estimated with gPC following the

Fig. 1.SI of model parameters for SSA and SSI ofIKto(a&c) andIKur(b&d).

Fig. 2.SI of model parameters ofK+ channel models for APDs.
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procedures as discussed in Section2.1. The activation gating variable

atowill be used as an example to illustrate how the gPC-based un-

certainty propagation operates in this work. Wefirst rewrite the para-

meter p3 and the gating variableato as: =∑
=

p p ξˆ Φ( )
k k k3 0

1
3,  1 and

=∑
=

a a ξˆ Φ( )to k to k  k0

1
, 1, respectively. These two approximations can be

substituted into the model ofatoas shown inTable 1. Following this, the

Galerkin projection can be used to calculate the gPC coefficients of

a{̂ }to k, . Once the gPC coefficients ofatoare available, the analytical ex-

pression of gating variablesatocan be obtained and its statistical mo-

ments at each time instant can be easily estimated with Eqs.(9) and

(10)in Section2.1. Thus far, the parametric uncertainty inp3has been

propagated onto the gating variableatothrough the ion channel model.

Similar procedures can be applied to other gating variables, such asito,

aur, andiur, to evaluate the effect of uncertainty on model predictions in

ion channel gating. Simulations were conducted using the resulting

stochastic models following the experimental protocols as explained in

Section3.1, and the results are shown inFig. 3. It is important to note

that two terms are used in the gPC approximation of parametric un-

certainty, the detailed discussion about the effect of the truncation on

uncertainty propagation is provided inAppendix D.

InFig. 3, the dynamic ranges of SSAs and SSIs for bothK+ currents

at different testing voltages are given, i.e., the mean value plus or

subtract the variability approximated from Eq.(10). As can be seen, the

variances are relatively larger around the half-activation voltage, (i.e.,

−20 mV–10 mV in SSA ofIKto (seeFig. 3(a&c) black curve), and

−30 mV∼ -10 mV in SSA ofIKur(seeFig. 3(b&d) black curve)), and

the half-inactivation voltage (i.e.,−30 mV∼ -20 mV in SSI ofIKto(see

Fig. 3(a&c) red curve), and−60 mV∼ -30 mV inIKur(seeFig. 3(b&d)

red curve)). The possible reason is that the gating of theK+channels is

more active in these voltage ranges, and slightly variations in model

parameters can lead to significant changes in the gating activities. In

addition, it was found that the increase of uncertainty in model para-

meter can result in larger variations in model predictions. For example,

as seen inFig. 3, the variances in SSA and SSI of bothIKtoandIKurare

larger, when the variance of the parametric uncertainty is set to a 10%

change around the mean value, as compared to a 5% change near the

mean value (seeFig. 3(a)vsFig. 3(c) andFig. 3(b)vsFig. 3(d)).

To validate the experimental results and to show the efficiency of

gPC-based uncertainty propagation, MC simulations were used in this

work. For both gPC and MC, the upper bounds and the lower bounds of

the steady state activation and inactivation ofIKtoare shown inFig. 4.

Note that these two bounds for gPC and MC were estimated using2-fold

standard deviation. As can be seen, the results obtained with both gPC

and MC can converge to the same upper and lower bounds, which

verifies the accuracy of the gPC. However, it was found that MC de-

mands more simulation runs to obtain the similar results as compared

to gPC.

For comparison purpose, we quantitatively measured and compared

the performance of gPC and MC in terms of the computation time and

accuracy. The results are summarized inTable 3. As can be seen in

Table 3, the gPC and MC can provide similar results at different clamp

voltages, i.e., similar estimations of mean and standard deviation in

model predictions in the presence of parametric uncertainty. However,

there is significant difference between gPC and MC in terms of the

computation time. The gPC only requires one simulation run to estimate

the mean and variance in the model prediction, but MC may demand

thousands of simulation-runs to obtain the similar results as gPC. The

computation time required by gPC and MC for accurate estimations of

the mean and variance of model predictions for both SSAs and SSIs are

given inTable 3. As seen in the last two columns, the gPC only requires

about 1 s to generate the upper and lower bounds. However, MC simu-

lations require approximately 47–144 min to obtain similar results. Note

that 10,000 samples were used for MC simulations in this work. In ad-

dition, it was found that the computational burden of MC can be de-

creased when a small number of samples were used, but the accuracy

was sacrificed. Additionally, we compared the mean and standard de-

viation of SSA and SSI for bothK+ currents with a 5% and a 10% var-

iation in parametric uncertainty, respectively. As listed inTable 3,the

increased variation (i.e., from 5% to 10%) in model parameters can lead

to a larger variance in the model predictions of SSA and SSI.

Fig. 3.Steady state activation and inactivation ofIKto(a&c) andIKur(b&d).
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Fig. 4.Comparison between gPC and MC Simulation. ((a&c) Upper bound and Lower bound of Steady State Activation ofIKto, (b&d) Upper bound and Lower bound

of Steady State Inactivation ofIKto).

Table 3

Summary of comparison results (MCvs. gPC).

Currents  Standard deviation  Methods  SSA SSI Computation Time (s)

−20 mV −10 mV  0 mV −40 mV −30 mV −20 mV  SSA  SSI

IKto 5% gPC  0.163 ± 0.032  0.408 ± 0.043  0.644 ± 0.033  0.935 ± 0.013  0.516 ± 0.052  0.075 ± 0.012  0.631  1.310

MC  0.163 ± 0.032  0.409 ± 0.043  0.644 ± 0.033  0.935 ± 0.013  0.516 ± 0.052  0.075 ± 0.012  6598.009  8659.850

10% gPC  0.168 ± 0.065  0.408 ± 0.086  0.640 ± 0.065  0.926 ± 0.027  0.513 ± 0.099  0.077 ± 0.022  0.625  1.221

MC  0.168 ± 0.064  0.408 ± 0.084  0.640 ± 0.065  0.925 ± 0.028  0.513 ± 0.100  0.078 ± 0.026  6598.143  8659.951

−30 mV −20 mV −10 mV −50 mV −40 mV −30 mV

IKur 5% gPC  0.271 ± 0.029  0.575 ± 0.035  0.831 ± 0.020  0.696 ± 0.081  0.302 ± 0.078  0.083 ± 0.025  0.546  0.710

MC  0.271 ± 0.027  0.575 ± 0.033  0.831 ± 0.019  0.696 ± 0.082  0.302 ± 0.079  0.083 ± 0.026  2804.161  5690.349

10% gPC  0.274 ± 0.057  0.574 ± 0.069  0.828 ± 0.040  0.681 ± 0.151  0.318 ± 0.149  0.096 ± 0.056  0.532  0.712

MC  0.274 ± 0.057  0.574 ± 0.069  0.828 ± 0.041  0.681 ± 0.154  0.318 ± 0.151  0.096 ± 0.061  2803.833  5691.034

Fig. 5.Current density ofIKtoandIKur.
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We also investigated the stochasticity in the current density ofIKto
andIKurin the presence of parametric uncertainty. These two currents

can be approximated with gPC expansion as:
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whereξ1andξ2are two random variables that were used to approximate
perturbations in parametersp3andp10in theIKtomodel,ξ3andξ4are

two random variables used to approximate variation in parameters of
p13andp15in theIKurmodel. These gPC coefficients, i.e.,a{̂ }to k, ,i{̂ }to k,,

a{̂ }ur k, , andi{̂ }ur k, , can be calculated following the procedures as ex-

plained in Section2.1. Based on the analytical expressions ofK+ cur-

rents, we further investigated theIeVrelationships. The simulation

results are shown inFig. 5. As can be seen, the ion currents ofIKtoand

IKurexhibit larger variations, when the clamp voltages are between

−20 mV–10 mV forIKurand−20 mV∼ −10 mV forIKto, respectively.

In addition, by comparingFig. 5(a) andFig. 5(b), it was found that the

increase of standard deviation, i.e., from a 5% change to a 10% change,

can introduce more variation in both K+ currents. For clarity, the un-

certainty in the current densities resulting from parametric uncertainty

is summarized inTable 4, along with their corresponding mean values

at each clamp voltage.

4.3. Uncertainty propagation in cardiac cell

In cell level, we introduced uncertainty (i.e., a 5% variation and a

10% variation) into the sensitive parameters ofp3,p4inIKto, andp13,p18
inIKur, identified from sensitivity analysis (see section4.1.2), which

results in uncertainty in ion channel models. Note that parametric un-

certainty may originate fromcell-to-cellvariability. Such uncertainty

can be further propagated onto AP through the cell model described in

Section2.2.2. Using the stochastic gPC models ofIKtoandIKur,itis

possible to  approximate the  AP  with  a  gPC  expansion  as:

V=∑
=

ξV̂Ψ()
k k k0

4
, for which the coefficients can be similarly solved as

done for the channel models. Given the analytical expression of the AP,

we can easily determine the uncertainty in quantities such as APDs and

AP peak, which are previously used in various studies in order to gain

insights of cardiac arrhythmia vulnerability [32]. Simulations of car-

diac cells follow the design procedures as described in Section3.3, i.e.,

a 0.5 ms stimulus current with a magnitude of 60 pA/pF and a fre-

quency of 5 Hz was used to trigger the depolarization. When the

changes in the AP waveform between two consecutive stimulations are

negligible, i.e., after approximately 10 stimulations, data were collected

for uncertainty quantification.

Fig. 6shows the uncertainty in AP, resulting from parametric un-

certainty for two different case studies, i.e., a 5% change in parameter

around the nominal value and a 10% change in the vicinity of the

nominal value. As shown inFig. 6, the variation in AP with a 10%

change is larger than the 5% change. In addition, for both case studies,

it was found that the variation in AP in the repolarization period, i.e.,

1825 ms–1850 ms, is larger than the rest periods such as upstroke and

resting states. This is because bothK+ currents (IKtoandIKur) mainly

contribute to the repolarization of AP. For comparison, we further

quantified the shape of AP with APD25, APD50, APD75, APD90, peak

value, and time to peak (TTP). The means and the standard deviations

of these quantities are summarized inTable 5. As seen inTable 5, these

quantitative measures show that the standard deviations in APD75and

APD90are larger than APD25and APD50for both 5% and 10% varia-

tions. In addition, it was found that uncertainty inK+ channel models

has little impact on the peak value and TTP of AP, since the relative

variations in the peak value and the TTP of AP are less than 1% and

0.3%, respectively.

To validate the results obtained with gPC, computer experiments

with MC were conducted and the results are shown inFig. 6. As seen,

the red lines inFig. 6represent the APs generated with MC, whereas the

blue and black lines are the mean, lower and upper bounds calculated

with gPC. The APs generated with MC are bounded by the upper and

lower bounds calculated with the gPC, which verifies the accuracy of

gPC. Again, these two bounds of gPC were estimated using2-fold

standard deviation. We also compared the efficacy in terms of compu-

tation time for both gPC and MC. It was found that the computation

time of the gPC is not affected by the level of uncertainty in parameters

and can provide the lower and upper bounds in one simulation run,

Table 4

Current density.

Currents −30 mV −20 mV −10mV 0mV 10mV 20mV 30mV

IKto 5%  0.673 ± 0.200  3.995 ± 0.787  11.580 ± 1.232  20.770 ± 1.055  29.060 ± 0.687  35.890 ± 0.410  41.660 ± 0.255

10%  0.745 ± 0.420  4.121 ± 1.583  11.590 ± 2.448  20.670 ± 2.103  28.950 ± 1.362  35.800 ± 0.820  41.590 ± 0.484

IKur 5%  2.262 ± 0.239  5.706 ± 0.348  9.550 ± 0.231  12.380 ± 0.093  14.430 ± 0.031  16.160 ± 0.010  17.790 ± 0.003

10%  2.285 ± 0.474  5.695 ± 0.687  9.517 ± 0.463  12.360 ± 0.190  14.420 ± 0.063  16.160 ± 0.020  17.790 ± 0.006

Fig. 6.Mean, upper, and lower bounds of AP obtained with gPC and MC.
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which takes on average about 4 s. In contrast, the MC requires more

than 66 min for 10,000 simulation runs, where 10,000 samples were

generated for =ξ ξ{1,ξ2,ξ3,ξ4} that are used to approximate the most

significant parameters identified in Section4.1. It should be noted that

the computational cost can be reduced when a smaller number of

samples ofξwere used in MC, but the accuracy would be sacrificed.

This shows the efficiency of the gPC method, thereby demonstrating its

advantage for uncertainty propagation in ion channel and cardiac cell

models.

4.4. Uncertainty propagation in 1D cable and 2D tissue

We further investigated the performance of gPC-based uncertainty

propagation on 1D cell string and 2D tissue. In this case study, ven-

tricular cells were connected with gap junctions in order to form a 1D

cable and a 2D cell array. For the 1D cable experiment, stimulations

were applied to the left of the cable to initiate the excitation, and the

electrical waves were generated and propagated from one end to the

other. Note that we propagated the parametric uncertainty inK+

channel models onto each cardiac cell in 1D cable to account for cel-

lular variabilities, which was introduced through random variablesξ.

Based on the methodology described in Section2.1, the AP of each cell

in the 1D tissue can be approximated with a gPC approximation, i.e.,

=∑
=

ξV V̂ Ψ( )i k ik k0

4
, ,i=1,2,…, 100, which will further be substituted

into the 1D cable model given in Section2.2.3. By applying Galerkin

projection to the models of the 1D cable and by solving the integral

with Sparse Quadrature rule, we can approximate the mean value V()i
and the corresponding variance V( )i of AP for each cell with gPC

models.Fig. 7shows the electrical propagation on 1D cable (Fig. 7(a)),

and the upper and lower bounds of the APs in the cable (Fig. 7(b)).

As seen inFig. 7(a), the horizontal axis represents the propagation

time while the vertical axis shows the cell index. Different colors in-

dicate different values of AP. Variabilities can be observed among the

repolarization of cells, which is consistent with the observations in the

cell level, i.e., parametric uncertainty inK+currents ofIKtoandIKurcan

lead to variations in repolarization. Further,Fig. 7(b) shows the mean,

upper, and lower bounds of the APs measured in the 1D cable. To

quantify the variations in the 1D cable, we further investigated the

APDs, Peak, and TTP. The mean values and variance in these quantities

were calculated from the cable and the results are summarized in

Table 6.

As can be seen inTable 6, APD75and APD90appear larger varia-

tions, as compared to APD25and APD50. Additionally, it was found that

the uncertainty inK+ channels has little effect on the peak values and

the TTPs. We further quantified the conduction velocity (CV) as shown

inTable 6, which was calculated using the distance between the 21st

and 80thcell divided by the travelling time of the wavefront between

these two cells. As seen, the maximum and minimum values of the CV

are 0.647 m/s and 0.645 m/s, respectively. In terms of computation

time, it was found that on average about 125.90 min were required for a

100 ms simulation with the gPC on a windows 7 64-bit desktop.

In addition, 100 × 100 cell array was constructed in order to study

the electrical propagation on two-dimensional tissue. Similarly, fol-

lowing the methodology presented in Section2.1, the AP of each cell in

the 2D tissue was approximated as: =∑
=

V V ξˆ Ψ ()ij k ijk ij k, 0

1
,,  ,, ,i=1,2,…,

100,j=1, 2, …, 100, which can be substituted into the 2D tissue

model described in Section2.2.3. The uncertainty in AP originates from

the uncertainty inK+ channels. Using Galerkin projection, the model

can be transformed into a set of coupled equations of gPC coefficients
V̂ijk,,, which can be solved numerically through Sparse Quadrature and

Table 5

Summary of uncertainty in APDs and AP peak.

Standard deviation APD25(ms) APD50(ms) APD75(ms) APD90(ms) Time to Peak (ms) Peak (mV)

5% 1.967±0.077 4.029±0.157 12.976±0.600 20.000±0.863 3.121±0.007 31.937±0.145

10% 1.971±0.142 4.043±0.311 12.984±1.161 20.080±1.643 3.151±0.009 31.800±0.281

Fig. 7.(a) Electrical propagation in 1D cable, and (b) Mean, upper, and lower bounds of AP in 1D cable.

Table 6

Measurements of 1D cable.

APD25(ms)  APD50(ms)  APD75(ms)  APD90(ms)  Time to Peak (ms)  Peak (mV)  CV(m/s) Running time (mins)/(100 ms)

min  max

2.740±0.019  6.303±0.265  17.222±1.743  26.402±2.842  5.58±0.010 18.927±1.227  0.645  0.647  125.90
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finite difference method. Once the gPC coefficients are available, we

can easily approximate the mean value V( )ij, and the variance V( )ij, of

APs in the 100 × 100 cell array. For comparison,Fig. 8shows the re-

sults of spiral waves of the 2D tissue modeled with both deterministic

model and gPC model, respectively.

For clarity, the spiral waves inFig. 8were visualized as images with

different colors representing different values of membrane potentials.

As seen inFig. 8(a) and (c), deterministic model can providefixed

predictions of membrane potential, which may fail to incorporate cell

variabilities. However, as shown inFig. 8(b) and (d), the spiral wave

obtained with the gPC model can account for variabilities among cells.

It is worth mentioning that large variations appear in the wave tails

(i.e., repolarization phase of APs). This is because parametric un-

certainties in bothK+ currents ofIKtoandIKurwere considered in this

work, and these two currents contribute greatly to the repolarization of

a single AP cycle. In the presence of uncertainty, the gPC model can

provide a more realistic description of ventricular tissue activities, since

it can account for thecell-to-cellvariabilities.

To quantify the uncertainty in the 2D tissue,Fig. 9shows the con-

tours of the spiral wave and its confidence intervals as well as the APs of

different cells on the 2D tissue for thefirst 50 ms. As seen inFig. 9(a),

the solid black lines show the mean value of the contours, while the red

and blue dash lines show the lower and upper bounds associated to the

mean values. InFig. 9(b), the APs of 20 random selected cells on the 2D

tissue for thefirst 50 ms are plotted. The spiral wave leads to variations

in AP among different cells, and the repolarization shows larger var-

iations due to the parametric uncertainty in theK+ currents of ion

channel models.

In addition, we studied the evolution of the tip of the spiral wave on

the 2D tissue. The tip trajectory was tracked following the method

proposed by Gray et al. [40], in which a cardiac phase variable for each

cell can be defined as:

⎜ ⎟= ⎛

⎝

+ −

−
⎞

⎠
θ  t  arctan

V t τ  V

V t  V
()

( )

()
,ij

ij ref

ij  ref
,

,

, (26)

Fig. 8.Spiral waves and their contour plots modeled with deterministic model (a & c) and gPC model (b & d).

Fig. 9.(a) Contour plots of spiral wave with gPC model and (b) APs of 20 cells in the 2D tissue.
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whereVrefandτare threshold parameters, which were set as−70 mV

and 10 ms in this work, respectively;arctanis the inverse of the tangent

function. Given the phase variable, the line integral was numerical

calculated as:

∮∇⋅θdl, (27)

wherelis the coordinates of 8 neighbor cells. The tip was determined as

the location that a phase singularity is present.

Fig. 10(a) shows the mean, upper and lower bounds of the tip

trajectory for 400 ms, where the blue solid line is the mean trajectory,

and the black dash line and the red dot line are the lower and upper

bounds. For better illustration, tip trajectory for 80 ms was shown in

Fig. 10(b). As seen, the progression of the wave tip stabilized in the

area between the upper bound and lower bound.

5. Discussions

This paper investigated the gPC-based uncertainty propagation for

multi-scale cardiac modeling. It has demonstrated the potential of gPC

for efficient uncertainty propagation in cardiac ion channels, cell, 1D

cable, and 2D tissue. The variance decomposition-based sensitivity

analysis wasfirst used to identify the most significant parametric un-

certainty, which was further approximated with polynomial functions

of random variables from the Wiener-Askey framework, and then pro-

pagated ontoK+ channel gating and ion currents ofIKtoandIKur. The

uncertainty in ion channel level was further propagated onto the AP of

mouse ventricular cell in a computationally efficient fashion. The

computation time for gPC models and MC simulations was compared at

ion channel level and cellular level. The simulation results show that

gPC is superior to MC in terms of computational efficiency. In addition,

uncertainty was further propagated onto 1D cable and 2D tissue with

the gPC method, and conduction velocity and spiral wave propagation

were measured to show the performance of the gPC method.

5.1. Monte Carlo Simulations vs gPC

Sampling-based techniques such as MC simulations are one of the

most popular methods for uncertainty analysis [7,17]. The key idea of

MC is tofirst generate a set of random samples froma priorprobability

distribution, and then perform simulations with each of these samples.

The simulation results are used to evaluate the effect of parametric

uncertainty on model predictions. The performance of MC greatly de-

pends on the number of samples used in MC simulations. For complex

models involving a large number of equations, MC method can be

computationally prohibitive. The gPC method, however, can approx-

imate the uncertainty as a function of random variables and analytically

propagate the uncertainty onto model predictions. In this way, the

variability in model predictions can be easily approximated with the

gPC approximation, which can significantly reduce the computational

burden. As shown in the result section, the gPC can provide an accurate

approximation of the upper and lower bounds of model outputs. Ex-

perimental results indicate that gPC outperforms MC at ion channel

level and cellular level (see Sections4.2 and 4.3). In addition, gPC can

be applied to 1D cable and 2D tissue to quantifycell-to-cellvariability,

which was found be to be inefficient with MC method due to the heavy

computational cost, as previously reported [41]. The current study

verified the feasibility of gPC method for uncertainty propagation in

multi-scale cardiac model, and has showed its superior performance as

compared to MC.

It is worth mentioning that when the dimension of the random

vectorξincreases significantly, the computational cost may not be

trackable with gPC. As previously reported, techniques such as the

adaptive sparse basis construction method [23,42] can be used to im-

prove the computational efficiency. However, this can only reduce the

computation time to a certain degree when the dimension of random

vector is high. In contrast, the convergence rate of MC is independent of

the dimensionality asymptotically. Thus,  when the random di-

mensionality becomes large enough, the MC method may be preferable.

We would like to point out that the sensitivity analysis was used in this

work to identify significant parametric uncertainties, which can sig-

nificantly reduce the dimension of parametric uncertainty, thus im-

proving the efficiency of gPC-based uncertainty propagation. Ad-

ditionally, parametric uncertainty may be described by arbitrary

random variables other than standard distributions from the Wiener-

Askey family. This may affect the accuracy of gPC-based uncertainty

propagation. To overcome this challenge, random variables (ξ) used to

approximate uncertainty should be carefully defined and new poly-

nomial functions can be built to satisfy the orthogonality requirement

with respect to the random variables used to estimate input un-

certainties [43]. The development of new polynomial functions for

uncertainty quantification and propagation was reported in our pre-

vious work and it is not discussed here for brevity [44].

5.2. Randomness vs variability

The gPC method can model both randomness and variabilities in

cardiac cells. APs of individual ventricular cell can be shaped by the

interplay of deterministic law of cardiac cell excitation and random-

ness. The AP of each cell can exhibitfluctuations and uncertainty due to

Fig. 10.Tip trajectory (a) 400 ms and (b) 80 ms
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the intrinsic noise. In this study, AP of a single cell was derived as a

function of random vectorξ, i.e., =∑
=

ξV V̂ Ψ( )i k ik k0

4
, , which introduces

stochasticity into the deterministic model of the ventricular cell, thus

quantifying the randomness in AP predictions. In addition, genetically

identical cells in ventricles can have different ion currents and APs,

which may lead tocell-to-cellvariability. In this current work, each cell

in the 1D cable and 2D tissue models was described with a stochastic

model defined through random vectorξ. The random vector enables the

gPC model the capability of capturing variabilities among cells. A

salient feature of the gPC model is that it can integrate the randomness

andcell-to-cellvariability simultaneously in a unified framework.

6. Conclusions

In this paper, the gPC method is presented to propagate parametric

uncertainty across multiscale cardiac models of ion channel, cell, 1D

cell string, and 2D tissue. The study has demonstrated the feasibility

and efficiency of gPC-based uncertainty propagation in multiscale

cardiac modeling. As compared to MC simulations, the gPC shows its

superior performance in term of computational efficiency. In addition,

the integration of gPC with deterministic cardiac models provides a

stochastic framework that can account for both randomness and vari-

abilities in cardiovascular system, thus enabling a more reliable and

robust modeling platform for knowledge discover, disease mechanism

investigation, and treatment design and planning.
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Appendix A. Justification of Eq.(5)

To show the rationale of Eq.(5), we will use one example here. Suppose =n 2θ , which means there are two parametric uncertainties. Firstly, we

set the highest order of the two-dimensional orthogonal polynomials as: =Q 2. Since the highest order of the univariate polynomials ≤q Q, in-

dicating that each univariate polynomial basis would just contain ξ ξ ξ{Φ(),Φ(),Φ()}i i i0 1 2 . All combination of these univariate polynomials would have

9 components. However, the selection of =Q 2will rule out the third and fourth order polynomials ξ ξ   ξ ξ   ξ ξ{Φ()*Φ( ), Φ()*Φ( ), Φ()*Φ( )}1 1 2 2 2 1 1 2 2 1 2 2 , and

this  will  further  restrict  the  two-dimensional  polynomial  basis  functions  to  be  from  the  following  combinations

ξ ξ   ξ ξ   ξ ξ   ξ ξ   ξ   ξ{Φ()*Φ( ),  Φ()*Φ( ),  Φ()*Φ( ), Φ()*Φ( ), Φ(), Φ( )}0 1 0 2 1 1 0 2 0 1 1 2 1 1 1 2 2 1 2 2 , which only involves 6 items. Therefore, =Q 5, which is identical to

the results obtained from Eq.(5), i.e. + −((2  2)!/(2!2!)) 1. In addition, as an example,Tables A1 and A2show a few polynomial basis functions used

for approximating the model response in the presence of one- and two-dimensional random variables.

⎜ ⎟=⎛

⎝

+ ⎞

⎠
−Q

n q

n q

( )!

!!
1θ

θ (5)

Table A1

One-dimensional polynomial chaos basis functions

i Q∗ ithpolynomial basis functionΨi

0 0   1

1 1 ξ1
2 2 −ξ 11

2

3 3 −ξ ξ31
3

1

4 4 − +ξ ξ6 31
4

1
2

*As defined in (21),Qis the order of homogenous polynomial chaos.

Table A2

Two-dimensional polynomial chaos basis functions

i Q* ithpolynomial basis functionΨi

0 0 1

1 1 ξ1
2 ξ2
3 2 −ξ 11

2

4 ξξ12
5 −ξ 11

2

6 3
(continued on next page)
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Table A2 (continued)

i Q* ithpolynomial basis functionΨi

−ξ ξ31
3

1

7 −ξξ  ξ1
2
2 2

8 −ξξ  ξ12
2

1

9 −ξ ξ32
3

2

10 4 − +ξ ξ6 31
4

1
2

11 −ξ ξξ31
3

12

12 − − +ξξ  ξ  ξ 11
2
2
2

1
2

2
2

13 −ξξ  ξξ312
3

12

14 − +ξ ξ6 32
4

2
2

Appendix B. The gPC-based uncertainty quantification and propagation

To demonstrate how gPC operates for uncertainty propagation, we will use the activation gating variableatoofIKtoas an example. Thefirst-

principle model used foratocan be defined as:

= − −
da

t
α a βa

d
(1  )  ,to
a to a to

Suppose a parameterp3that can be used to define the dynamic ofαaandβafollow a normal distribution with a mean value of 30 and a standard

deviation of 3, a gPC expansion ofp3can then be defined as below:

= +p ξ30  3,3

where ∼ξ N(0,1), which is a standard normal distribution from the Askey-Wiener scheme. Sincep3is approximated withξand sincep3is related to
ato,atowould be a function ofξ, which can be defined asa ξ().to The uncertainty inatowould be further propagated onto the cell membrane potential

V, thusVcan be also defined withξ, i.e.,Vξ().In the presence of parametric uncertainty inp3,αaandβacan be mathematically described as:

= +α ξ p p ξ p ξ()  exp( (V()  ())),a 1 2   3

= +βξ p p ξ p ξ()  exp( (V()  ())),a 4 5   3

As seen, parametric uncertainty inp3can be propagated onto the membrane potentialV, which in turn introduces stochasticity in the activation

gating variableato.

Based on these aforementioned gPC expansions, Galerkin projection can be used for uncertainty propagation. By setting the highest order of the

resulting polynomials ofatoto 1, the gPC expansion ofatocan be explicitly defined as: = +a a   a ξto  to  to0 1. Following the procedures of the Galerkin

projection, the original ODE function ofatocan be transformed into two coupled equations as below:

∫= − − ⋅
−∞

+∞
da

t
α ξ  a ξ  β ξa ξ pξdξ

d
[  ( )(1  ( ))  ( )  ( )] ( ) ,to
a to a to

0

∫= − − ⋅⋅
−∞

+∞
da

t
α ξ  a ξ  β ξa ξ ξpξdξ

d
[  ( )(1  ( ))  ( )  ( )]  ( ) ,to
a to a to

1

whereato0andato1are the gPC expansion coefficients that can be used to approximate the uncertainty inato. It should be noted that the resulting two

coupled equations are of the same form as compared to the original model. In addition, it is possible that resulting coupled equations system does not

have analytical solution due to the integration step involved in the Galerkin projection. However, this coupled equations system can be solved by

numerical methods such as the sparse quadrature rules in combination with Runge-Kutta methods.

At each time instant, the coefficientsato0andato1can be calculated and then used to approximate uncertainty inato, which would be further

incorporated inIKto. Following this,IKtotogether with other currents would be applied to calculate the uncertainty inV. The function ofVis a simple

form ODE, for which the gPC expansion can be determined as done forato.
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Appendix C. Uncertainty propagation at the channel and cell levels with uniformly distributed uncertainty

The uncertainty propagation at the channel and cell levels using uniform distribution were investigated. For algorithm verification, a 10% and a

25% variation were introduced in the sensitive parameters, respectively, and the simulation results were compared with MC simulations. These

results are shown inFig. A1below, where the gPC method and MC simulation show consistent results, thus justifying the accuracy of the gPC

approach in this work.

Fig. A1.Mean, upper, and lower bounds of AP obtained with gPC and MC for uniform distribution.

Appendix D. Effects of the truncation on the accuracy of the uncertainty propagation

In addition, we have tested the effect of adding more terms to the gPC expansion by settingqto 2. Whenqis set to 2, the approximation of the

gating variable has 6 terms, i.e.Q= 5. However, the increase of polynomial terms does not significantly affect the results. As seen inFig. A2and

Table A3, there is little difference in the Steady State Activation and Inactivation ofIKto, whenqwas set to 1 and 2, respectively. Further, we

investigated the effects of increasing the number of gPC expansion terms (q=2) on AP in the cellular level. It was found that the mean, upper bound,

and lower bound of AP estimated withq= 2 are very close to the results obtained using q= 1 (see Fig. A3), thus demonstrating thatq=1 is

sufficient for the current simulation study.
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Fig. A2.SSA and SSI curve comparison by using 1st and 2nd order expansion.2

Table A3

Comparison of SSA and SSI using 1st and 2nd order expansion

Standard

deviation

Order −30 mV −20 mV −10mV  0mV 10mV  20mV  30mV

SSA5%  1st 0.033 ± 0.010

0.033 ± 0.010

0.163 ± 0.032

0.163 ± 0.032

0.408 ± 0.043

0.408 ± 0.043

0.644 ± 0.033

0.644 ± 0.033

0.804 ± 0.019

0.804 ± 0.019

0.896 ± 0.010

0.896 ± 0.010

0.948 ± 0.006

2nd 0.948 ± 0.006

10%  1st 0.036 ± 0.020 0.168 ± 0.065 0.408 ± 0.086 0.640 ± 0.065 0.800 ± 0.038 0.893 ± 0.020 0.945 ± 0.011

2nd 0.036 ± 0.022 0.168 ± 0.064 0.408 ± 0.085 0.640 ± 0.065 0.799 ± 0.039 0.892 ± 0.021 0.945 ± 0.012

Standard

deviation

Order −80 mV −70 mV −60 mV −50 mV −40 mV −30 mV −20 mV

SSI 5%  1st 0.994 ± 0.006

0.994 ± 0.006

0.994 ± 0.006

0.994 ± 0.006

0.993 ± 0.006

0.993 ± 0.006

0.989 ± 0.006

0.989 ± 0.006

0.934 ± 0.013

0.934 ± 0.013

0.516 ± 0.052

0.516 ± 0.052

0.075 ± 0.012

2nd 0.075 ± 0.012

10%  1st 0.988 ± 0.012 0.988 ± 0.012 0.988 ± 0.012 0.983 ± 0.012 0.926 ± 0.028 0.513 ± 0.099 0.077 ± 0.022

2nd 0.988 ± 0.013 0.987 ± 0.012 0.987 ± 0.013 0.982 ± 0.013 0.925 ± 0.027 0.512 ± 0.100 0.078 ± 0.025
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Fig. A3.Mean, upper, and lower bounds of AP obtained with gPC by using 1st and 2nd order expansion.3
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