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ABSTRACT

Uncertainty and physiological variability are ubiquitous in cardiac electrical signaling. It is important to
address the uncertainty and variability in cardiac modeling to provide reliable and realistic predictions of
heart function, thus ensuring trustworthy computer-aided medical decision-making and treatment planning.
Statistical techniques such as Monte Carlo (MC) simulations have been applied to uncertainty quantification
and propagation in cardiac modeling. However, MC simulation-based methods are computationally prohibi-
tive for complex cardiac models with a great number of parameters and governing equations. In this paper, we
propose to use the Generalized Polynomial Chaos (gPC) expansion in combination with Galerkin projection to
analytically quantify parametric uncertainty in ion channel models of mouse ventricular cell, and further
propagate the uncertainty across different organizational levels of cell and tissue. To identify the most sig-
nificant parametric uncertainty in cardiac ion channel and cell models, variance decomposition-based sensi-
tivity analysis was first performed. Following this, gPC was integrated with deterministic cardiac models to
propagate uncertainty through ion current, ventricular cell, 1D cable, and 2D tissue to account for the sto-
chasticity and cell-to-cell variability. As compared to MC, the gPC in this work shows the superior performance
in terms of computational efficiency. In addition, the gPC models can provide a measure of confidence in
model predictions, which can improve the reliability of computer simulations of cardiac electrophysiology for

clinical applications.

1. Introduction

Mathematical models of cardiac electrophysiology have been widely
used to advance the fundamental understanding of etiology and pa-
thophysiology of cardiac diseases, aid clinical diagnosis and prognosis,
and assist therapeutic design and treatment development. Since Noble's
first attempt to study the electrophysiology of a single cell with the
Hodgkin-Huxley model [1,2], cardiac models have become more de-
tailed due to the increased knowledge of ion channel gating and cardiac
electrical signaling. Current models of cardiac electrophysiology are
multiscale and highly complex, which integrate models across different
organizational levels of ion channel, cell, tissue, and the organ [3].
These models have been used to examine cardiac disease mechanisms,
optimize treatment and surgical planning. For example, the whole-heart
model has been applied in clinical settings to localize ablation therapy
[4], terminate cardiac arrhythmias [5], and design cardiac re-
synchronization therapy [6].
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While cardiac models have shown the potentials, applications such as
model-based diagnosis and therapeutic design are still limited due to the
incapability of accounting for uncertainty and variability among in-
dividuals [7]. Uncertainty may originate from model assumptions, cali-
bration of model parameters using noisy data, intrinsic time varying
phenomena, and extrinsic cell-to-cell variability [8,9]. For example,
physiological variability constantly presents in ion channel gating, car-
diac electrical signaling, and electrical propagation in cardiac tissue, due
to the stochastic nature of ion channel gating [10] and the nonlinear
dynamics of alternans in cardiac action potential duration (APD) [8]. In
addition, Action Potential (AP) may change from cell to cell due to
quantities that genuinely vary among cells, e.g., cell size and ion channel
expression [11]. However, most of the available cardiac models are de-
terministic with fixed model parameters, which cannot account for un-
certainty. If the uncertainty in the cardiac models is not appropriately
addressed, computer experiments may fail to provide reliable predictions
and lead to false conclusions, thus misleading medical decisions [7].
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To improve the credibility and reliability of cardiac models, it is
necessary to quantify and propagate the uncertainty to obtain confident
model predictions (outputs). Uncertainty quantification and propaga-
tion techniques have been well developed in engineering and science
domains [12]. Computer models are often developed and calibrated
with data corrupted by various sources of uncertainty, which in tum
may introduce uncertainty in model parameters. Uncertainty quantifi-
cation and propagation typically assign probability distributions to
model parameters to represent parametric uncertainty, which can
subsequently be propagated onto model outputs to obtain a measure of
confidence in model predictions. Uncertainty quantification in cardiac
models has been previously studied [7,11-14]. For example, Romero
et al. investigated the effect of variability in ionic current on AP in
human ventricular myocytes [15]. Pathmanathan et al. [7] quantified
the variability in the steady-state inactivation of fast sodium current
among canine epi and endocardial cells, and further propagated the
uncertainty onto higher organizational levels to study the stochasticity
in upstroke velocity in AP and spiral wave dynamics in 2D tissue. Al-
though different uncertainty quantification methods were reported,
efficient algorithms that can be used to propagate parametric un-
certainty onto higher organizational scales in cardiac models have not
been extensively investigated [7,16].

Sampling-based techniques such as Monte Carlo (MC) simulations
are one of the most popular methods to propagate parametric un-
certainty onto model outputs [17]. For MC, samples are randomly
generated from the distribution of model parameters, simulations are
then performed with each sample. Based on the simulation results, the
variability in model outputs is approximated from a collection of the
simulated outputs. It should be noted that MC may require a large
number of simulations to ensure the convergence of the model pre-
dictions [18], which can be computationally prohibitive for complex
and nonlinear cardiac models. To reduce the computational burden and
improve the accuracy of uncertainty propagation, this work presents a
non-sampling based uncertainty analysis technique, i.e., generalized
polynomial chaos (gPC) expansion [19]. The gPC generally approx-
imates the distribution of parametric uncertainty with orthogonal
polynomial basis functions and propagates the uncertainty onto model
predictions (outputs) through first-principles models. One advantage of
the gPC is that it can provide analytical expressions of the statistical
moments of model predictions. As compared to MC, uncertainty pro-
pagation with gPC has been proved to be more efficient in terms of
computational time in different modeling, control, and optimization
problems [18,20-24]. Geneser et al. [16] introduced uncertainty in rate
coefficients of ion channel model, and applied gPC for uncertainty
propagation in ion channel gating. However, uncertainty was randomly
assigned to model parameters and the quantification of uncertainty was
only studied at the ion channel level, which cannot provide the in-
formation about the effect of uncertainty on higher organizational le-
vels such as cell and tissue. Using gPC, our previous work successfully
propagated parametric uncertainty onto K channel models [25].
However, the uncertainty propagation in higher organizational levels
was not studied.

Uncertainty propagation in cardiac models is challenging, since
models of cardiac electrophysiology are inherently multiscale and in-
volve a great level of complexity. These models generally integrate
cellular activities with tissue functions, where cellular activities are
regulated by the orchestrated function of transmembrane currents and
tissue functions are modeled as spatial-temporal propagation of elec-
trical waves. The cellular models often include numerous differential
equations coupled with over a hundred supporting equations. Further,
the cellular models can serve as sub-models of the tissue models, which
describe the electrical propagation in 2D/3D cardiac muscles using
partial differential equations (PDEs) and finite elements meshes. The
complexity of cardiac models poses great challenges on the gPC-based
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uncertainty propagation as the coupled differential equations and
supporting equations can make it difficult to quantify uncertainty in
model outputs resulting from parametric uncertainty. The objective in
this work is to: (i) investigate the feasibility of the gPC-based un-
certainty propagation in multiscale cardiac models across different or-
ganizational levels of ion channel, cell, and tissue, and (ii) quantify the
effect of parametric uncertainty on model predictions in each organi-
zational level in a computationally efficient manner.

Cardiac models are described by many equations involving hun-
dreds of parameters. It is possible but not practical to consider un-
certainty in all model parameters. To improve efficiency, we propose to
identify the most sensitive parametric uncertainty. To identify the most
significant uncertainty, sensitivity analysis techniques can be used. For
example, Du et al. [3] used fractional factorial design to find sensitive
parameters under different response functions for model calibration,
and Johnstone et al. [8] used Gaussian process to find parametric un-
certainty in cardiac models. However, these techniques concentrate on
the sensitivity in the vicinity of the mean value of parameter and may
fail to identify the most significant uncertainty. To overcome this issue,
the variance decomposition-based sensitivity analysis method is used in
this work to identify the parametric uncertainty that has the most sig-
nificant impact on the variability in the outputs of ion channel models
and the cardiac cell model. Based on the sensitivity analysis results, a
prior known distribution will be assigned to the significant parameters
to approximate uncertainty, which will be further propagated onto ion
currents, cardiac cell, and tissue. Specifically, different characteristics,
e.g., Steady State Activation (SSA) and Inactivation (SSI) in ion channel,
APDs in cardiac cell, and spiral wave propagation in tissue, are quan-
tified in order to visualize the effect of parametric uncertainty on model
outputs. Additionally, the efficiency and accuracy of gPC are in-
vestigated and verified with MC simulations. Note that for algorithm
clarification the Bondarenko's mouse ventricular model [26] is used in
this work for propagating parametric uncertainty onto higher organi-
zational levels of heart through multiscale cardiac models. We delib-
erately chose this model since it can provide detailed gating kinetics in
ion channels, and it is considered sufficiently complicated to illustrate
the computational efficiency of gPC.

The rest of this paper is organized as follows. Section 2 presents the
research methodologies followed by design of computer experiments in
Section 3. Simulation results and discussion are provided in Sections 4
and 5, which is followed by conclusions in Section 6.

2. Background and methodologies
2.1. Generalized polynomial chaos expansion

The generalized polynomial chaos (gPC) expansion approximates
uncertainty as a function of another random variable based on a pre-
scribed distribution from Askey-Wiener scheme [19]. Suppose a cardiac
model can be defined with a nonlinear ordinary differential equation
(ODE) as:

dy

0<t<T, 0) =
o <t<T, y(0)= y

g(t, o, 8,y),

B @
where g is a nonlinear function of cardiac model, e.g., the ion channel
model, and y is a gating variable (i.e., output), e.g., the gating variable
of activation or inactivation, with initial condition y, over a finite time
domain [0, T], & and ¢ are model parameters. In this current work, &
denotes a vector of parametric uncertainties (i.e. input uncertainty)
while & is a vector of deterministic parameters defined with fixed va-
lues. Note that each parametric uncertainty in & will be described with a
probability density function (PDF) around a particular mean value and
specific variance in this work. The uncertainty in each parameter of €
may originate from time-varying phenomena such as stochasticity in
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channel gating or may result from extrinsic cell-to-cell variability. It
should be noted that, when experimental data are available, the PDF of
each parameter can be calibrated with experimental data using offline
parameter estimation techniques such as the least squares fitting.
Otherwise, the PDF can be inferred from other information such as
empirical knowledge. In this work, the PDF of each parameter is as-
sumed to be known, and the statistical distribution of each parameter in
€ is time-invariant for simplicity.

Using the gPC expansion, the first step is to re-write each parameter
6; in @ as a function of a random variable £ as:

il g
6 = D &) = Y] 6 (§), i=1, --,ng,

k=0 k=0 (2)
where ®(£) is the orthogonal polynomial chaos basis function of
parameter &; [19], é‘;,k is the gPC coefficients of the ith parameter &,
which can be calculated through parameter estimation techniques, e.g.,
Maximum Likelihood Estimation, such that Eq. (2) follows a prior
known PDF of 8;, ng is the total number of parameters in €. The random
variables that can be used to approximate the parametric uncertainty of
8, i.e.,, £ = {£}, are assumed to be independent in this work.

Since model parameters can affect model predictions (outputs)
through the cardiac model g in Eq. (1), it is necessary to estimate their
effect on the model outputs. Similar to the gPC expansion of parameters
8, the model prediction can be estimated in terms of the random vector
£ = {£} as follows:

ng i

D 0B &) + -

i=1 j=1

ng
y=5%+ ), 5w +

i=1

3

where §, and j,; are the gPC coefficients that estimate the PDF profile of
the model prediction y, which describes the uncertainty in model
output resulting from parametric uncertainty 8, ¥,(§) k =0, 1,2 ... is
the multivariate orthogonal polynomial basis function of random vector
£ defined as the product of univariate basis functions @'s [18]. For
simplicity, Eq. (3) can be rewritten as:

oo Q
y= D, %) = ) R%@),
k=0 k=0 4
It should be noted that infinite terms are needed in Eq. (2) and Eq.
(4) in order to approximate an arbitrary random variable with the gPC
expansions. However, for practical application purposes, the expansion
will be truncated into a finite number of terms. In this work, we used
the total-order expansion scheme [27] to determine the number of terms
in Eq. (4). The detailed explanation of how the total-order expansion
operates is given in Appendix A, and the empirical formula that can be
used to determine the necessary terms in both approximations is given
as below.
The total number of terms Q in Eq. (4), according to the gPC ap-
proximation, can be determined as [28]:

0= [(ﬂs + Q)!] Y
nglq! 5)
As seen in Eq. (5), the number of terms used in model predictions
increases as the polynomial order g and/or the number of parametric
uncertainties ng increases. Different from the calculation of gPC coef-
ficients of parametric uncertainty &, the gPC coefficients {j;} of the
model outputs can be calculated from the cardiac model g in combi-
nation with the Galerkin projection, which will be described as follows.
Using Galerkin projection, it is possible to determine the gPC
coefficients {,} of model predictions by substituting Eq. (2) and Eq. (4)
into Eq. (1), and by projecting Eq. (1) onto each one of the polynomial
chaos basis functions {¥;(£)} as:
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& dp Q
<2 %‘}‘k@), Y(E) > = < g[t, o6, ), J"’k‘l‘k('f)], wE >,
k=0

k=0
=0, ...Q (6)

where & represents the gPC coefficient of 8, {-) is an inner product be-
tween two functions, which is calculated as:

S e @)W ) dt
0 7

where Q is the entire domain of the random variables £ used to ap-
proximate parametric uncertainty 8, and W () is the weighting func-
tion, i.e. probability density function (PDF) of £. The integral in Eq. (7)
can be solved numerically with sparse quadrature rule [18]. In addi-
tion, it is important to note that the polynomial basis functions here are
chosen per the option of the distribution of £ to ensure orthogonality
[18]. For example, Legendre polynomials are the choice of uniformly
distributed random variables, while Hermite polynomials can be chosen
for normally distributed random variables. Using the Galerkin projec-
tion and given the orthogonal property of the polynomials, the original
cardiac model, i.e., Eq. (1), can be transformed into a set of coupled
deterministic equations with unknown gPC coefficients (i.e., ¥,) of
model predictions as:

B _ o 8T @, WO>
) > T ®

As seen, the only unknown in the coupled equations system is the
gPC expansion coefficients, which can be solved with numerical
methods such as Runge-Kutta [29]. Once these gPC coefficients are
obtained, model predictions can be approximated by substituting these
gPC coefficients into Eq. (4) at each time interval. In addition, the
statistical moments of the model prediction y can be analytically ap-
proximated as follows.

Q
EQ)=E [E fwk] = %o [%] = 3
2z ©

10

The key of using gPC in this work is that it can analytically infer the
stochasticity in model predictions (outputs) with Egs. (9) and (10). This
can significantly reduce the computation time required by uncertainty
quantification, as the gPC coefficients can be easily solved which saves
a large number of simulations as compared with MC methods. The
discussion of the computation time will be given in the results section.
In addition to the fast calculation of these statistical moments of model
outputs, the distribution of the model predictions can be quantified by
sampling £ from a prior distribution and by substituting these samples
into the gPC approximation of model outputs y in Eq. (4), which can be
performed in a real-time fashion. The rapid calculation of uncertainty in
model outputs, resulting from parametric uncertainty, is the main ra-
tionale for using the gPC approximation in this work, since this can
necessitate efficient uncertainty propagation as compared to MC si-
mulations. To better demonstrate the procedures of uncertainty pro-
pagation with gPC, an example using the activation gate variable of
cardiac models is given in Appendix B.

2.2, Multiscale models of cardiac electrophysiology
Cardiac models of various species have been developed previously,

which can provide sufficient details for describing cardiac functions
across multiple organizational levels of ion channel, cell, tissue, and the



Z Hu et al

Table 1
Detailed expression of parameters in K* ion currents.

Transient outward K™ current
IxioIgio = Gwﬂ,i[m(V — Ex)
%=aa(l — o) — 10 ‘f';—:"=m(l — o) — Bilio®a =
piexp(py (V+ p))B, = pyexp(ps (V+ pylla; =
Pexp(—( V+ po)f p)/( poexp(—( V+ pyp)/ pg) + 1)g; =
P11exp(( V+ pyg)f pe)/( praexp(( V+ pig)/ pg) + 1)
Delayed rectifier K™ current
Teurlxur = Gur Gurar (V — Fi) 3z — 35— fw Ll

Taur dr Tiur
= R - _V4ms

Ay = 1![1 +exp( o )] ig 1/(1 + exp( e )]

Taur = Pr7 €Xp(P15V) + Prg

Taur = Pag — P /(1 + exp(( V+ pis) pyg))

whole organ [3]. The ion channel gating is often described with either
the Hodgkin Huxley type model or the Markov model, where gating
kinetics are determined by activation and inactivation wvariables
through ordinary differential equations (ODEs). For cardiac cells, the
change of transmembrane potential over time is modeled as a function
of ion currents, typically referred as Action Potential (AP). The elec-
trophysiology of cardiac tissue is modeled with a reaction diffusion
equation on mesh grids with each node defined as a cardiac cell. A
collection of cell models, coupled through either monodomain or bi-
domain models, forms a spatial-temporal model to describe the elec-
trical wave propagation in two/three-dimensional (2D/3D) tissue. In
this current work, we will demonstrate the efficiency of the gPC-based
uncertainty propagation using the Hodgkin-Huxley type K™ channel
models of the transient outward K1 current (kwo), and the delayed
rectifier K* current (Ix,.), mouse ventricular cell model [26], and
monodomain tissue model [30]. It should be noted that K™ currents are
chosen, since they play important roles in the repolarization of AP and
any slight changes in the currents can significantly affect the cardiac
functions, thus leading to ventricular arrhythmias and life threatening
cardiac events [31,32]. In addition, mouse ventricular cell model is
used for algorithm clarification in this work, since mouse ventricular
myocytes are widely used in-vitro experiments for investigating un-
known etiology [33] and for testing drug efficiency [34]. We deliber-
ately chose this model because it can provide detailed gating kinetics in
ion channels, and it is considered sufficiently complicated to illustrate
the computational efficiency of gPC.

2.2.1. Models of ion currents

For algorithm clarification, we first investigated the parametric
uncertainty in ion channel models. Such parametric uncertainty may
either result from the stochastic nature of ion channel gating or origi-
nate from cell-to-cell variability. Using gPC as explained in Section 2.1,
the uncertainty is propagated onto two K™ ion currents, i.e., Ig,, and
Ixur, which can be described by Hodgkin-Huxley type model as follows
[26]:
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where Gy and G, are conductance, as, and a,r are activation gating
variables, i, and i,, are inactivation gating variables, Ey is the reverse
potential (—82.8mV), and V is the transmembrane potential The
equations of activation and inactivation variables are shown in Table 1,
and the model parameters used in this work are given in Table 2 [26].

2.2.2. Model of mouse ventricular myocyte

The movement of ions such as K¥, Na*, and Ca®7, i.e., across cell
membrane through ion channels, can lead to changes in membrane
potential. Uncertainties in ion channel gating will jointly affect cellular
activities, thus leading to variations in the AP in cardiac cells. In this
work, mouse ventricular myocyte model developed by Bondarenko
et al.'s [26] is used to study the effect of parametric uncertainty in ion
channel on electrical signaling of cardiac cell. In Bondarenko et al.'s
model, cell membrane is modeled as electrical circuit with subcellular
compartmental space. Assuming there are no electrical gradients within
the cell itself, the membrane potential is described as follows:

dv
- CmE = Icar + Iptca) + INaca + Icab + Ing + Inab + Inax + Ixto + Ik1

+ Iﬁ's + IKur + IKB + IKr + Iﬂ,C‘a + Is:im » (13}

where t is time, C,, is the cell capacitance per unit surface area, Iy, is
the external stimulus current, which activates the cell from the resting
state. As seen in Eq. (13), the transmembrane currents incorporate L-
type Ca®* current Ic,;, sarcolemmal C&®" pump current Iycca), Na™/
Ca®™ exchange current Iy,c,, background Ca®* and Na* currents Ioy,
and Iy,y, fast Na™ current I,, rapidly recovering transient outward K *
current Iy, rapid delayed rectifier K current Iy, ultra-rapidly acti-
vating delayed rectifier K* current Iy, non-inactivating steady-state
voltage-activated K™ current Iy, time-independent inwardly rectifying
K* current Iy, slow delayed rectifier K* current Iy, Ca?*-activated
Cl™ current Ig c,, and Na* /K" pump current Iy,k. Modeling of ionic
currents is based on either Hodgkin-Huxley or Markov-based formula-
tions. For brevity, the details of each current kinetics and parameters
used in this work are not given, but they can be found in Ref. [26]. The
parametric uncertainty in K* currents of Iy, and I, were investigated
in this work, since they are two major voltage-gated currents that are
responsible for repolarization [32,35,36]. Note that the proposed un-
certainty quantification technique can be easily extended to other
currents with minor modifications.

2.2.3. Model of 1D cable and 2D tissue

Cardiac tissue is often modeled as a collection of cardiac cells
connected with gap junctions. Each depolarized cell can stimulate its
neighbor cells and trigger electrical conduction among tissue. We pro-
pose to study the cell-to-cell variability by propagating the uncertainties
among cells into electrical activities at the tissue level. The electrical
propagation on the one-dimensional (1D) cell string and the two-di-
mensional (2D) tissue was studied. The conduction of AP in the cell
string and tissue was modeled using the following reaction diffusion
equation:

Ikio = Goagin(V — Ex) , (11) v 1 1
_ —= ——(fm + Ltim + —vzv] ,
Ixur = GurQuriy (V — Eg) , 1z) ot Crm 'OS a4
Table 2
Parameter declaration of K* ion currents models.
Ixro Ins
141 P2 I} Py ps 2 Pz P s Pis Py
0.18,064 0.03577 30.0 0.395 —0.06237 0.000152 225 7.7 45.2 57 0.493
p7 Pg P Puo Pu P12 P P1o Px Pn
135 7.0 0.067,083 335 0.00095 0.051,335 —0.0629 2.058 1200 170
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where Cp, is the cell capacitance per unit surface area, [ion is the sum of
transmembrane ion currents, p is the cellular resistivity, S is the sur-
face-to-volume ratio, and V? is the Laplacian operator, i.e., % for linear

cable, and % + ii—‘; for 2D tissue, x and y determine the spatial co-

ordinates of cells, respectively. To simulate the propagation of electric
waves along 1D cell string, Eq. (14) is solved numerically with finite-
difference scheme as:

dt
Vit = v = ——{mm + Ium) +

W= Viea + Vi — 2";';)]}

1
pS(dx)?
(15)

Note that Neumann boundary condition was used in the 1D cable
simulation. The numerical discretization scheme for the 2D tissue can
be described as follows:

dt
If'[-rfd' -V = _C_m {(Im + Iim) +

- 414:,-)} :

where no flux boundary condition is assumed to ensure that there are
no current leakages on the boundaries.

1
W(V;—IJ + Vi + Vi

vk

+ Vi1

(16)

2.3. Sensitivity analysis

Cardiac models often involve a great number of model parameters.
For example, the model of Ik, presented in the previous section in-
volves 12 parameters. In addition, uncertainty in model parameters
may have different effect on model predictions. The identification of the
most sensitive parametric uncertainty is essential for efficient un-
certainty propagation. A variance-based global sensitivity analysis al-
gorithm in this work is developed to quantify the effect of parametric
uncertainty on the variability of model predictions.

The variance-based sensitivity analysis can decompose the model
outputs with respect to a set of samples of parametric uncertainty €. A
sensitivity index, i.e., Sobol Sensitivity Index (SI), can be used to
quantify the fractional effect of parametric uncertainty on the varia-
bility of model outputs [37]. The SI not only provides a measure of the
main effect of a particular parameter on the model predictions, but also
evaluates the joint effect of interactions among parameters on the
model outputs. Let us define the ion channel model described in Eq. (1)
as y = f(p) for simplicity, where p = {p;},i =1, 2, ...n, n is the number
of model parameters in total. The model output y = f(p) can be de-
composed with respect to each parameter as [38]:

a7)

where f; is a constant that can be calculated as: f, =E(),
f =E6lp) — EO), f; = EOlp, B) — i - f; — EO).

The total variance can be calculated as:

v = [fp)dp-f}.
ﬂ"

i=1 i=1 j=i

(18)

Further, the total variance can be decomposed in the similar manner
as done in Eq. (17), which gives the following:

n n n
V= D %@+ D) 2 Y@ p) + AV, n(Prs By

i=1 i=1 j=i (19)
where Y = Y(EOQIR)), Vi = Y(EQWIp, p)) — Y(EQIP)) -
¥ (E (ylpb-}} — E(y). We can further divide the variance associated with
each parameter by the total unconditional variance of model predic-
tions in order to calculate the SI as:

(20)
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which provides the main effect S; of the i parameter p, on the model
output. Similarly, the second order SI can be estimated as:

Su=§ - @1)

And the total effect of p, on the model output can be calculated as:

n n n
S';r;: SE+ESJJ+ZESEJJ;+... .

j=1 j=1 k=1 (22)

The main and total effects provide a measure of the significance of
parametric uncertainty on model outputs. In this work, the SI of the
main S§; and total effect S;; of each parameter are used to identify the
most significant parametric uncertainties. Based on the sensitivity
analysis results, the gPC approximation explained in Section 2.1 is used
to approximate significant parametric uncertainty, which is then pro-
pagated onto different organizational levels such as cell and tissue in
order to evaluate the effect of uncertainty on model predictions.

3. Design of experiments
3.1. Simulation protocols

The effects of parametric uncertainty on Steady State Activation
(SSA), Steady State Inactivation (SSI), and current density (i.e., I-V
relationship) are first investigated at the ion channel scale. To generate
the model outputs of SSA, SSI, and I-V, we performed computer si-
mulations using the K * current models of Ixw, and Ig,r. The simulations
follow standard experimental protocols, which are briefly described as
follows.

Steady State Activation (SSA): Cell membrane potential (V) is first
held at —100 mV for 200 ms, then steps to testing potentials varying
from —50 mV to + 50 mV with a 10 mV increment for 500 ms, followed
by a step change to —100 mV. For each K* current, the model is solved
accordingly to generate traces of ion current. The maximum steady
state conductance can be determined as G = I, /(V — Ex), where Lyax
is the peak current at each testing potential V, and Ex is the reverse
potential of the K* channel. The SSA is obtained by normalizing the
maximum steady state conductance at each testing potential to the
theoretical maximum conductance Gy,g,. In addition, the peak current at
each testing potential is recorded to generate current density (I—V re-
lationship).

Steady State Inactivation (SSI): Simulations are performed for each
K™ current using the models described in Section 2.1, where cell
membrane potential (V) is initially held at —70 mV before stepping to
testing potentials (varying from —110mV to OmV with a 10mV in-
crement) for 10s, then steps to 30 mV for another 4.5 s before returning
to —70mV. The simulation can generate one trace of ion current at
each testing potential, and the peak currents for these testing potentials
are normalized with respect to the maximum peak current.

3.2. Sensitivity analysis

3.2.1. Ion currents

Variance-based sensitivity analysis is first performed to identify
significant parametric uncertainties in K* currents, i.e., Ixy, and Iy,
Based on the sensitivity analysis results, a probability density function
is assigned to each of these significant parameters in order to describe
the uncertainty. The mathematical description of a significant para-
meter can be defined as:

6 =8 + AGE, (i = 1,..n),

(23

where n is the total number of significant parameters identified from
the sensitivity analysis, 6; is the ith parametric uncertainty, 5; denotes
the mean value of the parametric uncertainty while A8, is the parameter
that can be used to define the stochastic variation (uncertainty) around
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each mean value. In this work, each significant parameter is assumed to
be normally distributed with a mean value equals to the nominal value
given in Table 2, while two different variations (A6;) are used. That is, a
standard deviation equals to a 5% of the mean value and a standard
deviation equals to a 10% of the mean value. Again, it should be noted
that, when actual measurements are available, the probability dis-
tribution of parameters can be calibrated with offline estimation tech-
niques, i.e., the identification of parameters g, and A8 in Eq. (23).
However, this is not pursued here for brevity, since our objective is to
investigate how gPC operates for uncertainty propagation in complex
cardiac models. For algorithm clarification, we have also conducted
experiments assuming the parametric uncertainty follows a uniform
distribution. Due to space limitation, the results of uniformly dis-
tributed uncertainty are briefly summarized in Appendix C with simu-
lation results at the channel and cell levels. To calculate the Sobol SI,
the MC simulations-based method proposed by Satelli [39] was
adopted, where 4000 samples are randomly generated from the pre-
defined distribution. The corresponding model outputs are then calcu-
lated and used to evaluate the main effect and the total effect of each
parameter on the model outputs.

3.2.2. Cell

To identify the most sensitive parameters at the cell level, the action
potential duration (APDs) at a 75% (APD,s) and a 90% (APDg) re-
polarization levels were used as the output of cell models. Model
parameters in both K* currents were assumed to be normally dis-
tributed and the mean value equals to the nominal value given in
Table 2. In addition, two different levels of random variations, fol-
lowing the descriptions as given in previous section, i.e., a 5% and a
10% change, were used in the simulations. MC simulations with 10,000
samples were performed to evaluate the main effect and the total effect
of each parameter on the model outputs.

3.3. Uncertainty propagation in ventricular cell

The uncertainties in ion channels can be propagated onto a ven-
tricular cell, which can affect the membrane potentials at the cellular
level. The gPC approximation and Galerkin projection were used in the
mouse ventricular cell model (Eq. (13)) explained in Section 2.2.2 for
algorithm clarification, and the gPC coefficients of AP were solved
numerically using built-in function odel5s in MATLAB. A 0.5ms
—60 pA/pF stimulus current with a frequency of SHz was used to
trigger the depolarization in this work. During the experiments, it was
found that, on average, after approximately 10 stimulations of APs, the
changes in the AP waveform between two consecutive simulations are
negligible, which means the cell has reached the steady state. Thus,
data after the first 10 simulations were collected for subsequent analysis
as previously reported [8]. Variabilities in AP, AP durations (APDs),
and time to peak were quantified by sampling from the analytical de-
scription of the AP.

3.4. Uncertainty propagation in cardiac tissue

We further simulated the electrical propagation in 1D cell string and
2D tissue in the presence of uncertainties. For the 1D experiments, 100
ventricular cells were connected in order to form a linear fiber with a
conductance of 25nS/pF. 0.01 cm spatial resolution and 0.0001 ms
temporal resolution were used. A 0.5ms rectangular current with an
amplitude of 300 pA/pF and a frequency of 5 Hz was used to one end of
the cable to initiate the electrical wave propagation. It is important to
note that the variabilities in cells at the cable/tissue level were con-
sidered by introducing uncertainties among cells with random variable
£, which can quantify the variabilities among parameters in individual
cells. In the 1D cable experiments, APDs, Time to Peak, and Conduction
Velocity are measured in order to show the effects of uncertainty on the
electrical conduction in 1D cable. In the 2D experiments, a small section
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of ventricular tissue was modeled by connecting cells (100, x100 cells)
in a uniform way to form an isotropic tissue, where the conductance
was set to be 25/8nS/pF in all directions. A fixed time step of
0.0001 ms was used in the temporal domain, and spatial step was set to
0.02 cm. The spiral wave propagation in the 2D tissue was investigated.
In the presence of uncertainty, the wave contour and its variance, the
tip trajectory of the spiral wave and its boundaries were identified and
shown in the Results section below. To generate a spiral wave, a 0.5 ms
300 pA/pF stimulus was first applied to the left side of the tissue. When
the plane-wave arrives the middle of the tissue, a second stimulus was
given to the left-bottom comer, which covers one half of the tissue's
width and length. Computer experiments were performed with
MATLAB on a windows 7 64-bit machine.

3.5. Monte-Carlo simulations

The accuracy of the gPC-based uncertainty propagation was vali-
dated with MC simulations, where the results obtained with both gPC
and MC were compared in terms of computational efficiency across
different organizational levels. (1) Ion Channel: For each parametric
uncertainty, 10,000 samples were generated from a prior distribution,
i.e., a normal distribution with a mean value equals to the nominal
values given in Table 2 and two different standard deviations (i.e., a 5%
variation and a 10% variation around the mean value, respectively).
For each sample, simulations were performed following the voltage
clamp protocols described in Section 3.1. The mean value and the
variance of the SSA and SSI of the two K* currents, i.e., I, and Ix,,
were calculated and compared with the results obtained using the gPC
model, respectively. In addition, the computation time of MC simula-
tions and gPC model was also recorded and compared for each K*
current (2) Ventricular Cell: Samples (i.e., 10,000 samples) were ran-
domly drawn from the input uncertainty in ion channels, and simula-
tions were conducted with each of these samples to generate the AP of
ventricular cell using models given in Section 2.2.2. Experiments were
performed using built-in function odel5s in MATLAB, and the compu-
tation time was recorded and compared with the gPC model.

4. Results
4.1. Sensitivity analysis

4.1.1. Ion currents

As discussed in previous sections, cardiac models involve a great
number of parameters. The identification of significant parametric un-
certainty can potentially reduce the computational cost, thus improving
the efficiency of uncertainty propagation for multiscale modeling. In
this study, we first performed the variance-based sensitivity analysis to
evaluate the impact of the model parameters in each K* current on its
model outputs of SSA and SSI, respectively. The SI of the parameters are
displayed in Fig. 1 with bar-plots. These parameters are sorted in a
decreasing order with respect to their corresponding main SI. The
nominal value of each parameter used in this work is given in Table 2 in
Section 2.

The parameter sensitivity was investigated at two levels of varia-
tions, i.e., 5% and 10% changes around the nominal values given in
Table 2, respectively. The sensitivity analysis results are shown in
Fig. 1, where the two different variations (5% and 10%) show con-
sistent results. For example, as shown in Fig. 1 (a), both the main SI and
the total SI indicate that the 3rd parameter, p;, is the most sensitive
parameter of SSA in I,,. Similarly, as seen in Fig. 1 (¢c), p,, was iden-
tified as the most significant parameter of SSI in Iy, in both bar-plots.
For the Iy, current, the most significant parameters of SSA and SSI are
Pi; and pys (see Fig. 1 (b) & (d)), respectively. Thus far, we have
identified the most significant parameters in each K* current, i.e., (pss
Dyo) in Iy, and (p5, pys) in Ig,. It is worth mentioning that we assumed
that parametric uncertainties among different cwrents are
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Fig. 1. SI of model parameters for SSA and SSI of Ik, (a&c) and gy (b&d).

independent, thus we investigated each type of K™ current in-
dependently in the sensitivity analysis. Based on the sensitivity analysis
results, only uncertainty in these most significant parameters is con-
sidered, which will be further propagated onto the ion channel gating
and ion currents as discussed in Section 4.2.

4.1.2. Ventricular cell

Following the same procedure as done in the channel level, sensi-
tivity analysis was performed at the cell level to identify the significant
parametric uncertainty in Iy, and I, models that has larger impacts on
the APDs in ventricular cell. Fig. 2 shows the main and total SIs of
APD;s and APDgp, where random perturbations in each parameter
follow the same probability distribution as described in Section 4.1.1.

As seen in Fig. 2, for both case studies with variations of a 5%
change and a 10% change in the model parameters, the SIidentifies the
same set of sensitive parameters, i.e. p;, p, in Ixy, P13, Pig in Ix,. Based
on the sensitivity analysis results, parametric uncertainty was first in-
troduced into these 4 parameters, which will be further propagated
onto Action Potential (AP), as well as electrical wave propagation in
cardiac tissue.
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4.2. Uncertainty propagation in ion channels

As discussed in Section 4.1, both I, and I, models have two
significant stochastic parameters. Each parameter was further re-
presented as a function of a random variable £ following the procedure
explained in Section 2.1, ie., p =Y} p ®(£), where ¢ follows a
standard normal distribution, and Hermite polynomial basis function
was used. Note that the gPC coefficients {p,} of each parameter were
determined to ensure that p follows a prior known normal distribution.
The probability distribution of each parameter follows the same de-
scription as given in Section 4.1.1, i.e., the mean value of each para-
meter was set to be the corresponding nominal value in Table 2, while
two different sets of variation were used in this work, i.e., a 5% var-
iation and a 10% variation around the mean values, respectively. It is
important to note that the distribution for parameters was presumed in
this study to investigate the performance of the gPC-based uncertainty
propagation. Uncertainty quantification methods can be used to esti-
mate the mean and variance of parametric uncertainties from in-vitro
data, which is not discussed here for brevity.

Since model parameter is approximated with gPC, the model pre-
diction can be consequently estimated with gPC following the
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Fig. 2. SI of model parameters of K* channel models for APDs.
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procedures as discussed in Section 2.1. The activation gating variable
ay, will be used as an example to illustrate how the gPC-based un-
certainty propagation operates in this work. We first rewrite the para-
meter p, and the gating variable a, as: p, = ZLO D3 ®c(§) and
a, = Z}(:u Giok Pi (§)), respectively. These two approximations can be
substituted into the model of a,, as shown in Table 1. Following this, the
Galerkin projection can be used to calculate the gPC coefficients of
{dsw,k}. Once the gPC coefficients of ay, are available, the analytical ex-
pression of gating variables a,, can be obtained and its statistical mo-
ments at each time instant can be easily estimated with Egs. (9) and
(10) in Section 2.1. Thus far, the parametric uncertainty in p, has been
propagated onto the gating variable a,, through the ion channel model.
Similar procedures can be applied to other gating variables, such as iz,
a,r, and i,,, to evaluate the effect of uncertainty on model predictions in
ion channel gating. Simulations were conducted using the resulting
stochastic models following the experimental protocols as explained in
Section 3.1, and the results are shown in Fig. 3. It is important to note
that two terms are used in the gPC approximation of parametric un-
certainty, the detailed discussion about the effect of the truncation on
uncertainty propagation is provided in Appendix D.

In Fig. 3, the dynamic ranges of SSAs and SSIs for both K* currents
at different testing voltages are given, i.e.,, the mean value plus or
subtract the variability approximated from Eq. (10). As can be seen, the
variances are relatively larger around the half-activation voltage, (ie.,
—20mV-10mV in SSA of Iy, (see Fig. 3 (a&c) black curve), and
—30mV ~ -10mV in SSA of I, (see Fig. 3 (b&d) black curve)), and
the half-inactivation voltage (i.e., —30mV ~ -20mV in SSI of I, (see
Fig. 3 (a&c) red curve), and —60 mV ~ -30mV in Ix,, (see Fig. 3 (b&d)
red curve)). The possible reason is that the gating of the K™ channels is
more active in these voltage ranges, and slightly variations in model
parameters can lead to significant changes in the gating activities. In
addition, it was found that the increase of uncertainty in model para-
meter can result in larger variations in model predictions. For example,
as seen in Fig. 3, the variances in SSA and SSI of both I, and I, are
larger, when the variance of the parametric uncertainty is set to a 10%

change around the mean value, as compared to a 5% change near the
mean value (see Fig. 3 (a) vs Fig. 3 (c¢) and Fig. 3 (b) vs Fig. 3 (d)).

To validate the experimental results and to show the efficiency of
gPC-based uncertainty propagation, MC simulations were used in this
work. For both gPC and MC, the upper bounds and the lower bounds of
the steady state activation and inactivation of Iy, are shown in Fig. 4.
Note that these two bounds for gPC and MC were estimated using 2-fold
standard deviation. As can be seen, the results obtained with both gPC
and MC can converge to the same upper and lower bounds, which
verifies the accuracy of the gPC. However, it was found that MC de-
mands more simulation runs to obtain the similar results as compared
to gPC.

For comparison purpose, we quantitatively measured and compared
the performance of gPC and MC in terms of the computation time and
accuracy. The results are summarized in Table 3. As can be seen in
Table 3, the gPC and MC can provide similar results at different clamp
voltages, i.e., similar estimations of mean and standard deviation in
model predictions in the presence of parametric uncertainty. However,
there is significant difference between gPC and MC in terms of the
computation time. The gPC only requires one simulation run to estimate
the mean and variance in the model prediction, but MC may demand
thousands of simulation-runs to obtain the similar results as gPC. The
computation time required by gPC and MC for accurate estimations of
the mean and variance of model predictions for both SSAs and SSIs are
given in Table 3. As seen in the last two columns, the gPC only requires
about 1 s to generate the upper and lower bounds. However, MC simu-
lations require approximately 47-144 min to obtain similar results. Note
that 10,000 samples were used for MC simulations in this work. In ad-
dition, it was found that the computational burden of MC can be de-
creased when a small number of samples were used, but the accuracy
was sacrificed. Additionally, we compared the mean and standard de-
viation of SSA and SSI for both K™ currents with a 5% and a 10% var-
iation in parametric uncertainty, respectively. As listed in Table 3, the
increased variation (i.e., from 5% to 10%) in model parameters can lead
to a larger variance in the model predictions of SSA and SSI.
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Table 3
Summary of comparison results (MC vs. gPC).
Currents Standard deviation Methods SSA SSI Computation Time (s)
—=20mV =10mV 0mv =40 mV =30 mV =20 mV SSA SsI
Ixe 5% gPC 0.163 = 0.032 0.408 = 0.043 0.644 = 0033 0935 = 0.013 0.516 * 0.052 0075 = 0.012 0.631 1.310
MC 0.163 = 0.032 0.409 = 0.043 0.644 = 0,033 0935 = 0.013 0.516 * 0052 0.075 = 0.012 6598.009 8659.850
10% gPC 0.168 = 0.065 0.408 = 0.086 0.640 = 0.065 0926 * 0.027 0513 = 0,099 0.077 = 0.022 0.625 1.221
MC 0.168 = 0.064 0.408 = 0.084 0.640 = 0.065 0925 *= 0.028 0513 *+ 0.100 0.078 *= 0.026 6598.143 8659.951
=30mV —=20mV =10 mV =50mV =40 mV —=30mV
I 5% gPC 0.271 = 0.029 0.575 *= 0.035 0.831 = 0.020 069 = 0.081 0302 = 0.078 0.083 = 0.025 0.546 0.710
MC 0.271 = 0.027 0.575 = 0.033 0.831 + 0.019 069 == 0.082 0302 + 0079 0.083 = 0.026 2804.161 5690.349
10% gPC 0.274 = 0.057 0.574 = 0.069 0.828 = 0.040 0681 = 0.151 0.318 * 0.149 0.096 = 0.056 0.532 0.712
MC 0.274 = 0.057 0.574 = 0.069 0.828 = 0.041 0681 = 0.154 0318 * 0151 0.09 == 0.061 2803.833 5691.034
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Table 4
Current density.
Currents =30mV =20 mV =10mV Omv 10 mv 20mv 30mv
Iaw 5% 0.673 = 0.200 3.995 = 0.787 11.580 = 1.232 20.770 = 1.055 29.060 = 0.687 35.890 = 0.410 41.660 = 0.255
10% 0.745 = 0.420 4,121 *+ 1.583 11.590 = 2.448 20670 = 2,103 28,950 = 1.362 35.800 = 0.820 41.590 = 0.484
I 5% 2262 = 0.239 5706 = 0.348 9.550 = 0.231 12.380 = 0.093 14.430 = 0.031 16.160 = 0.010 17.790 = 0.003
10% 2285 = 0.474 5.695 = 0.687 9.517 = 0.463 12.360 = 0.190 14.420 = 0.063 16.160 = 0.020 17.790 = 0.006

We also investigated the stochasticity in the current density of Ik
and Iy, in the presence of parametric uncertainty. These two currents
can be approximated with gPC expansion as:

1 301
IKto = Gm{z dm,kq’k(gl)] [ Z fm,k¢’k(€z)](v_ Ek),
k=0 k=0 24)
and
1 1 .
IKur = Gur( Z dur,k®k(§3)] ( Z iur,k¢k(§4}](v_ EKJa
k=0 k=0 (25)

where £ and £, are two random variables that were used to approximate
perturbations in parameters p, and p,, in the Iy, model, & and £, are
two random variables used to approximate variation in parameters of
Py; and p; in the I, model. These gPC coefficients, i.e., {d;}, {fm,k},
{@ur i}, and {fu,,k}, can be calculated following the procedures as ex-
plained in Section 2.1. Based on the analytical expressions of K* cur-
rents, we further investigated the -V relationships. The simulation
results are shown in Fig. 5. As can be seen, the ion currents of Ix,, and
g, exhibit larger variations, when the clamp voltages are between
—20mV-10 mV for I, and —20mV ~ —10mV for Iy, respectively.
In addition, by comparing Fig. 5 (a) and Fig. 5 (b), it was found that the
increase of standard deviation, i.e., from a 5% change to a 10% change,
can introduce more variation in both K* currents. For clarity, the un-
certainty in the current densities resulting from parametric uncertainty
is summarized in Table 4, along with their corresponding mean values
at each clamp voltage.

4.3. Uncertainty propagation in cardiac cell

In cell level, we introduced uncertainty (i.e., a 5% variation and a
10% variation) into the sensitive parameters of p,, p, in Ik, and p;s, Pig
in Ik, identified from sensitivity analysis (see section 4.1.2), which
results in uncertainty in ion channel models. Note that parametric un-
certainty may originate from cell-to-cell variability. Such uncertainty
can be further propagated onto AP through the cell model described in
Section 2.2.2. Using the stochastic gPC models of Ig, and Ixur it is
possible to approximate the AP with a gPC expansion as:
V=Z::0 Vi Wi (£), for which the coefficients can be similarly solved as
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done for the channel models. Given the analytical expression of the AP,
we can easily determine the uncertainty in quantities such as APDs and
AP peak, which are previously used in various studies in order to gain
insights of cardiac arrhythmia vulnerability [32]. Simulations of car-
diac cells follow the design procedures as described in Section 3.3, i.e.,
a 0.5ms stimulus current with a magnitude of 60 pA/pF and a fre-
quency of 5Hz was used to trigger the depolarization. When the
changes in the AP waveform between two consecutive stimulations are
negligible, i.e., after approximately 10 stimulations, data were collected
for uncertainty quantification.

Fig. 6 shows the uncertainty in AP, resulting from parametric un-
certainty for two different case studies, i.e., a 5% change in parameter
around the nominal value and a 10% change in the vicinity of the
nominal value. As shown in Fig. 6, the variation in AP with a 10%
change is larger than the 5% change. In addition, for both case studies,
it was found that the variation in AP in the repolarization period, i.e.,
1825 ms-1850 ms, is larger than the rest periods such as upstroke and
resting states. This is because both K* currents (Ig, and I, mainly
contribute to the repolarization of AP. For comparison, we further
quantified the shape of AP with APDss, APDsg, APD7s, APDgg, peak
value, and time to peak (TTP). The means and the standard deviations
of these quantities are summarized in Table 5. As seen in Table 5, these
quantitative measures show that the standard deviations in APD5 and
APDgg are larger than APDss and APDsg for both 5% and 10% varia-
tions. In addition, it was found that uncertainty in K* channel models
has little impact on the peak value and TTP of AP, since the relative
variations in the peak value and the TTP of AP are less than 1% and
0.3%, respectively.

To validate the results obtained with gPC, computer experiments
with MC were conducted and the results are shown in Fig. 6. As seen,
the red lines in Fig. 6 represent the APs generated with MC, whereas the
blue and black lines are the mean, lower and upper bounds calculated
with gPC. The APs generated with MC are bounded by the upper and
lower bounds calculated with the gPC, which verifies the accuracy of
gPC. Again, these two bounds of gPC were estimated using 2-fold
standard deviation. We also compared the efficacy in terms of compu-
tation time for both gPC and MC. It was found that the computation
time of the gPC is not affected by the level of uncertainty in parameters
and can provide the lower and upper bounds in one simulation run,
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Fig. 6. Mean, upper, and lower bounds of AP obtained with gPC and MC.
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Table 5
Summary of uncertainty in APDs and AP peak.
Standard deviation APD3s (ms) APDs; (ms) APD5 (ms) APDgg (ms) Time to Peak (ms) Peak (mV)
5% 1.967+0.077 4.029+0.157 12.976x0.600 20.000+0.863 3.121+0.007 31.937+0.145
10% 1.971+0.142 4.043+0.311 12.984+1.161 20.080+1.643 3.151+0.009 31.800+0.281
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Fig. 7. (a) Electrical propagation in 1D cable, and (b) Mean, upper, and lower bounds of AP in 1D cable.

which takes on average about 4s. In contrast, the MC requires more
than 66 min for 10,000 simulation runs, where 10,000 samples were
generated for £ = {£, £, &, £} that are used to approximate the most
significant parameters identified in Section 4.1. It should be noted that
the computational cost can be reduced when a smaller number of
samples of £ were used in MC, but the accuracy would be sacrificed.
This shows the efficiency of the gPC method, thereby demonstrating its
advantage for uncertainty propagation in ion channel and cardiac cell
models.

4.4. Uncertainty propagation in 1D cable and 2D tissue

We further investigated the performance of gPC-based uncertainty
propagation on 1D cell string and 2D tissue. In this case study, ven-
tricular cells were connected with gap junctions in order to form a 1D
cable and a 2D cell array. For the 1D cable experiment, stimulations
were applied to the left of the cable to initiate the excitation, and the
electrical waves were generated and propagated from one end to the
other. Note that we propagated the parametric uncertainty in K*
channel models onto each cardiac cell in 1D cable to account for cel-
lular variabilities, which was introduced through random variables £.
Based on the methodology described in Section 2.1, the AP of each cell
in the 1D tissue can be approximated with a gPC approximation, i.e.,
Vi= E;zo Vi kW(&),i =1, 2, ..., 100, which will further be substituted
into the 1D cable model given in Section 2.2.3. By applying Galerkin
projection to the models of the 1D cable and by solving the integral
with Sparse Quadrature rule, we can approximate the mean value E(1])
and the corresponding variance ¥ (V;) of AP for each cell with gPC
models. Fig. 7 shows the electrical propagation on 1D cable (Fig. 7 (a)),
and the upper and lower bounds of the APs in the cable (Fig. 7 (b)).

Table 6
Measurements of 1D cable.

As seen in Fig. 7 (a), the horizontal axis represents the propagation
time while the vertical axis shows the cell index. Different colors in-
dicate different values of AP. Variabilities can be observed among the
repolarization of cells, which is consistent with the observations in the
cell level, i.e., parametric uncertainty in K™ currents of I, and I, can
lead to variations in repolarization. Further, Fig. 7 (b) shows the mean,
upper, and lower bounds of the APs measured in the 1D cable. To
quantify the variations in the 1D cable, we further investigated the
APDs, Peak, and TTP. The mean values and variance in these quantities
were calculated from the cable and the results are summarized in
Table 6.

As can be seen in Table 6, APD7s and APDgo appear larger varia-
tions, as compared to APD,gs and APDs,. Additionally, it was found that
the uncertainty in K* channels has little effect on the peak values and
the TTPs. We further quantified the conduction velocity (CV) as shown
in Table 6, which was calculated using the distance between the 21st
and 80" cell divided by the travelling time of the wavefront between
these two cells. As seen, the maximum and minimum values of the CV
are 0.647 m/s and 0.645m/s, respectively. In terms of computation
time, it was found that on average about 125.90 min were required for a
100 ms simulation with the gPC on a windows 7 64-bit desktop.

In addition, 100 x 100 cell array was constructed in order to study
the electrical propagation on two-dimensional tissue. Similarly, fol-
lowing the methodology presented in Section 2.1, the AP of each cell in
the 2D tissue was approximated as: V}; = E};:u ﬂ‘j,kll-'i‘j, W&,i =1,2, ...,
100, j =1, 2, ..., 100, which can be substituted into the 2D tissue
model described in Section 2.2.3. The uncertainty in AP originates from
the uncertainty in K* channels. Using Galerkin projection, the model
can be transformed into a set of coupled equations of gPC coefficients
174 k> which can be solved numerically through Sparse Quadrature and

APD.s (ms) APDs, (ms) APD;s (ms) APDgg (ms) Time to Peak (ms) Peak (mV) CV(m/s) Running time (mins)/(100 ms)
min max
2.740+0.019 6.303+0.265 17.222+1.743 26.402+2.842 5.58+0.010 18.927+1.227 0.645 0.647 125.90
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(b) Stochastic Model
2D Spiral Wave With Uncertainty
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Fig. 8. Spiral waves and their contour plots modeled with deterministic model (a & ¢) and gPC model (b & d).
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Fig. 9. (a) Contour plots of spiral wave with gPC model and (b) APs of 20 cells in the 2D tissue.

finite difference method. Once the gPC coefficients are available, we
can easily approximate the mean value E (17;) and the variance V (V;) of
APs in the 100 x 100 cell array. For comparison, Fig. 8 shows the re-
sults of spiral waves of the 2D tissue modeled with both deterministic
model and gPC model, respectively.

For clarity, the spiral waves in Fig. 8 were visualized as images with
different colors representing different values of membrane potentials.
As seen in Fig. 8 (a) and (c), deterministic model can provide fixed
predictions of membrane potential, which may fail to incorporate cell
variabilities. However, as shown in Fig. 8 (b) and (d), the spiral wave
obtained with the gPC model can account for variabilities among cells.
It is worth mentioning that large variations appear in the wave tails
(i.e., repolarization phase of APs). This is because parametric un-
certainties in both K™ currents of Iy, and Iy,, were considered in this
work, and these two currents contribute greatly to the repolarization of
a single AP cycle. In the presence of uncertainty, the gPC model can
provide a more realistic description of ventricular tissue activities, since
it can account for the cell-to-cell variabilities.

To quantify the uncertainty in the 2D tissue, Fig. 9 shows the con-
tours of the spiral wave and its confidence intervals as well as the APs of
different cells on the 2D tissue for the first 50 ms. As seen in Fig. 9 (a),
the solid black lines show the mean value of the contours, while the red
and blue dash lines show the lower and upper bounds associated to the
mean values. In Fig. 9 (b), the APs of 20 random selected cells on the 2D
tissue for the first 50 ms are plotted. The spiral wave leads to variations
in AP among different cells, and the repolarization shows larger var-
iations due to the parametric uncertainty in the K* currents of ion
channel models.

In addition, we studied the evolution of the tip of the spiral wave on
the 2D tissue. The tip trajectory was tracked following the method
proposed by Gray et al. [40], in which a cardiac phase variable for each
cell can be defined as:

BEJ (t) = amfan[w]

Vig(t) = Vg (26)
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Tip Tracjectory for 80ms
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Fig. 10. Tip trajectory (a) 400 ms and (b) 80 ms

where Viy and 7 are threshold parameters, which were set as —70 mV
and 10 ms in this work, respectively; arctan is the inverse of the tangent
function. Given the phase variable, the line integral was numerical
calculated as:

‘(ﬁ vo.dl, (27)

where [ is the coordinates of 8 neighbor cells. The tip was determined as
the location that a phase singularity is present.

Fig. 10 (a) shows the mean, upper and lower bounds of the tip
trajectory for 400 ms, where the blue solid line is the mean trajectory,
and the black dash line and the red dot line are the lower and upper
bounds. For better illustration, tip trajectory for 80 ms was shown in
Fig. 10 (b). As seen, the progression of the wave tip stabilized in the
area between the upper bound and lower bound.

5. Discussions

This paper investigated the gPC-based uncertainty propagation for
multi-scale cardiac modeling. It has demonstrated the potential of gPC
for efficient uncertainty propagation in cardiac ion channels, cell, 1D
cable, and 2D tissue. The variance decomposition-based sensitivity
analysis was first used to identify the most significant parametric un-
certainty, which was further approximated with polynomial functions
of random variables from the Wiener-Askey framework, and then pro-
pagated onto K* channel gating and ion currents of I, and Ig,,. The
uncertainty in ion channel level was further propagated onto the AP of
mouse ventricular cell in a computationally efficient fashion. The
computation time for gPC models and MC simulations was compared at
ion channel level and cellular level. The simulation results show that
gPC is superior to MC in terms of computational efficiency. In addition,
uncertainty was further propagated onto 1D cable and 2D tissue with
the gPC method, and conduction velocity and spiral wave propagation
were measured to show the performance of the gPC method.

5.1. Monte Carlo Simulations vs gPC

Sampling-based techniques such as MC simulations are one of the
most popular methods for uncertainty analysis [7,17]. The key idea of
MC is to first generate a set of random samples from a prior probability
distribution, and then perform simulations with each of these samples.
The simulation results are used to evaluate the effect of parametric
uncertainty on model predictions. The performance of MC greatly de-
pends on the number of samples used in MC simulations. For complex
models involving a large number of equations, MC method can be
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computationally prohibitive. The gPC method, however, can approx-
imate the uncertainty as a function of random variables and analytically
propagate the uncertainty onto model predictions. In this way, the
variability in model predictions can be easily approximated with the
gPC approximation, which can significantly reduce the computational
burden. As shown in the result section, the gPC can provide an accurate
approximation of the upper and lower bounds of model outputs. Ex-
perimental results indicate that gPC outperforms MC at ion channel
level and cellular level (see Sections 4.2 and 4.3). In addition, gPC can
be applied to 1D cable and 2D tissue to quantify cell-to-cell variability,
which was found be to be inefficient with MC method due to the heavy
computational cost, as previously reported [41]. The current study
verified the feasibility of gPC method for uncertainty propagation in
multi-scale cardiac model, and has showed its superior performance as
compared to MC.

It is worth mentioning that when the dimension of the random
vector & increases significantly, the computational cost may not be
trackable with gPC. As previously reported, techniques such as the
adaptive sparse basis construction method [23,42] can be used to im-
prove the computational efficiency. However, this can only reduce the
computation time to a certain degree when the dimension of random
vector is high. In contrast, the convergence rate of MC is independent of
the dimensionality asymptotically. Thus, when the random di-
mensionality becomes large enough, the MC method may be preferable.
We would like to point out that the sensitivity analysis was used in this
work to identify significant parametric uncertainties, which can sig-
nificantly reduce the dimension of parametric uncertainty, thus im-
proving the efficiency of gPC-based uncertainty propagation. Ad-
ditionally, parametric uncertainty may be described by arbitrary
random variables other than standard distributions from the Wiener-
Askey family. This may affect the accuracy of gPC-based uncertainty
propagation. To overcome this challenge, random variables (£) used to
approximate uncertainty should be carefully defined and new poly-
nomial functions can be built to satisfy the orthogonality requirement
with respect to the random variables used to estimate input un-
certainties [43]. The development of new polynomial functions for
uncertainty quantification and propagation was reported in our pre-
vious work and it is not discussed here for brevity [44].

5.2. Randomness vs variability

The gPC method can model both randomness and variabilities in
cardiac cells. APs of individual ventricular cell can be shaped by the
interplay of deterministic law of cardiac cell excitation and random-
ness. The AP of each cell can exhibit fluctuations and uncertainty due to
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the intrinsic noise. In this study, AP of a single cell was derived as a cardiac modeling. As compared to MC simulations, the gPC shows its
function of random vector ¢, i.e., V; = E;:o Vi ¢ Wi(¢), which introduces superior performance in term of computational efficiency. In addition,
stochasticity into the deterministic model of the ventricular cell, thus the integration of gPC with deterministic cardiac models provides a
quantifying the randomness in AP predictions. In addition, genetically stochastic framework that can account for both randomness and vari-
identical cells in ventricles can have different ion currents and APs, abilities in cardiovascular system, thus enabling a more reliable and
which may lead to cell-to-cell variability. In this current work, each cell robust modeling platform for knowledge discover, disease mechanism
in the 1D cable and 2D tissue models was described with a stochastic investigation, and treatment design and planning.

model defined through random vector £. The random vector enables the
gPC model the capability of capturing variabilities among cells. A
salient feature of the gPC model is that it can integrate the randomness
and cell-to-cell variability simultaneously in a unified framework.
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Appendix A. Justification of Eq. (5)

To show the rationale of Eq. (5), we will use one example here. Suppose ng = 2, which means there are two parametric uncertainties. Firstly, we
set the highest order of the two-dimensional orthogonal polynomials as: Q = 2. Since the highest order of the univariate polynomials g < Q, in-
dicating that each univariate polynomial basis would just contain {®4(£), ®,(£), ®,(£)}. All combination of these univariate polynomials would have
9 components. However, the selection of Q = 2 will rule out the third and fourth order polynomials {®;(£,)*®,(&,), ®:(6)*®1(E,), ©2(£)*@,(E,)}, and
this will further restrict the two-dimensional polynomial basis functions to be from the following combinations
{@o(E)*Do(E),  PuED*Dp(E,),  Do(E)*2(Ey), D1(ED*Pi(E), @a(E), @2(£)}, which only involves 6 items. Therefore, Q = 5, which is identical to
the results obtained from Eq. (5), i.e. ((2 + 2)!/(2!2!)) — 1. In addition, as an example, Tables A1 and A2 show a few polynomial basis functions used
for approximating the model response in the presence of one- and two-dimensional random variables.

(ng + q)!
==l
? { nglq! ] (5)

Table Al
One-dimensional polynomial chaos basis functions

i Q i polynomial basis function ¥
0 0 1

1 1 &

2 2 -1

3 3 & -3

. ; G- o4 3

*As defined in (21), Q is the order of homogenous polynomial chaos.

Table A2
Two-dimensional polynomial chaos basis functions

i Q* i polynomial basis function ¥,
0 0 1

1 1 &

2 13}

3 2 £-1

4 513

5 -1

6 3

(continued on next page)
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Table A2 (continued)

i Q* i polynomial basis function ¥,
Elg - 351
Elzgz - Ez

8 glgzz - El

9 &-34

10 4 £ —6E+3

11 Elg - 35152

12 25 -+

13 §& - 364

14 E—6E+3

Appendix B. The gPC-based uncertainty quantification and propagation

To demonstrate how gPC operates for uncertainty propagation, we will use the activation gating variable ay, of I, as an example. The first-
principle model used for a;, can be defined as:

da
d_;u = ag(l — ag) — ﬁaﬂm,

Suppose a parameter p, that can be used to define the dynamic of a, and §, follow a normal distribution with a mean value of 30 and a standard
deviation of 3, a gPC expansion of p, can then be defined as below:

Py =30 + 3§,

where £ ~ N (0,1), which is a standard normal distribution from the Askey-Wiener scheme. Since p, is approximated with ¢ and since p, is related to
ay,, ay, would be a function of £, which can be defined as a;,(£). The uncertainty in a;, would be further propagated onto the cell membrane potential
V, thusV can be also defined with £, i.e., V(£). In the presence of parametric uncertainty in p,, @, and 8, can be mathematically described as:

aa(€) = pexp(p; (V) + p3 (),

B, = pexp(ps (V(E) + p;(6))),

As seen, paramefric uncertainty in p, can be propagated onto the membrane potential V, which in turn introduces stochasticity in the activation
gating variable ay,.

Based on these aforementioned gPC expansions, Galerkin projection can be used for uncertainty propagation. By setting the highest order of the
resulting polynomials of ay, to 1, the gPC expansion of ay, can be explicitly defined as: aw = awo + am €. Following the procedures of the Galerkin
projection, the original ODE function of a;, can be transformed into two coupled equations as below:

daw _'pr

“ar = J 120 - a) - AOWOIPOL,
daw _ P

= '{, (@@ - a@) - £,Ea@O1EpE)d,

where a,,; and ay,; are the gPC expansion coefficients that can be used to approximate the uncertainty in ay,. It should be noted that the resulting two
coupled equations are of the same form as compared to the original model. In addition, it is possible that resulting coupled equations system does not
have analytical solution due to the integration step involved in the Galerkin projection. However, this coupled equations system can be solved by
numerical methods such as the sparse quadrature rules in combination with Runge-Kutta methods.

At each time instant, the coefficients ay,, and a, can be calculated and then used to approximate uncertainty in a;,, which would be further
incorporated in Ii,. Following this, I, together with other currents would be applied to calculate the uncertainty in V. The function of V is a simple
form ODE, for which the gPC expansion can be determined as done for ay,.
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Appendix C. Uncertainty propagation at the channel and cell levels with uniformly distributed uncertainty

The uncertainty propagation at the channel and cell levels using uniform distribution were investigated. For algorithm verification, a 10% and a
25% variation were introduced in the sensitive parameters, respectively, and the simulation results were compared with MC simulations. These

results are shown in Fig. A1 below, where the gPC method and MC simulation show consistent results, thus justifying the accuracy of the gPC
approach in this work.

@) Ixio (10%) (b) Ikio(10%)

1 1 T
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Fig. Al. Mean, upper, and lower bounds of AP obtained with gPC and MC for uniform distribution.

Appendix D. Effects of the truncation on the accuracy of the uncertainty propagation

In addition, we have tested the effect of adding more terms to the gPC expansion by setting g to 2. When q is set to 2, the approximation of the
gating variable has 6 terms, i.e. Q = 5. However, the increase of polynomial terms does not significantly affect the results. As seen in Fig. A2 and
Table A3, there is little difference in the Steady State Activation and Inactivation of Ig,, when g was set to 1 and 2, respectively. Further, we
investigated the effects of increasing the number of gPC expansion terms (g =2) on AP in the cellular level. It was found that the mean, upper bound,
and lower bound of AP estimated with ¢ = 2 are very close to the results obtained using q = 1 (see Fig. A3), thus demonstrating that g = 1 is
sufficient for the current simulation study.
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Fig. A2. SSA and SSI curve comparison by using 1st and 2nd order expansion.2
Table A3
Comparison of SSA and SSI using 1st and 2nd order expansion
Standard Order —30mV —20mV —10mV 0mV 10mV 20 mV 30 mV
deviation
SSA 5% 1* 0.033 = 0.010 0.163 = 0.032 0.408 += 0.043 0.644 = 0.033 0.804 = 0.019 0.896 + 0.010 0.948 = 0.006
2™ 0.033 = 0.010 0.163 = 0.032 0.408 + 0.043 0.644 + 0.033 0.804 + 0.019 0.896 + 0.010 0.948 + 0.006
10% 1% 0.036 = 0.020 0.168 = 0.065 0.408 + 0.086 0.640 + 0.065 0.800 + 0.038 0.893 + 0.020 0.945 + 0.011
27 0,036 + 0.022 0.168 = 0.064 0.408 * 0.085 0.640 * 0.065 0.799 = 0.039 0.892 + 0.021 0.945 + 0.012
Standard Order —80mV =70 mV —60mV —50mV —40 mV —30mV —20mV
deviation
SSI 5% 1* 0.994 + 0.006 0.994 + 0.006 0.993 + 0.006 0.989 + 0.006 0.934 + 0.013 0.516 + 0.052 0.075 = 0.012
2" 0994 + 0.006 0.994 + 0.006 0.993 = 0.006 0.989 + 0.006 0.934 + 0.013 0.516 + 0.052 0.075 * 0.012
10% 1% 0.988 = 0.012 0.988 + 0.012 0.988 + 0.012 0.983 * 0.012 0.926 + 0.028 0.513 + 0.099 0.077 = 0.022
2 0988 + 0.013 0.987 = 0.012 0.987 = 0.013 0.982 = 0.013 0.925 = 0.027 0.512 + 0.100 0.078 + 0.025
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Fig. A3. Mean, upper, and lower bounds of AP obtained with gPC by using 1st and 2nd order expansion.3
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