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Left ventricular assist devices (LVADs) have been used for end-stage heart failure patients as a therapeutic option. The aortic valve
plays a critical role in heart failure and its treatment with a LVAD. The cardiovascular-LVAD model is often used to investigate
the physiological demands required by patients and predict the hemodynamic of the native heart supported with a LVAD. As it is
a “bridge-to-recovery” treatment, it is important to maintain appropriate and active dynamics of the aortic valve and the cardiac
output of the native heart, which requires that the LVAD pump be adjusted so that a proper balance between the blood contributed
through the aortic valve and the pump is maintained. In this paper, we investigate how the pump power of the LVAD pump can affect
the dynamic behaviors of the aortic valve for different levels of activity and different severities of heart failure. Our objective is to
identify a critical value of the pump power (i.e., breakpoint) to ensure that the LVAD pump does not take over the pumping function
in the cardiovascular-pump system and share the ejected blood with the left ventricle to help the heart to recover. In addition, the
hemodynamic often involves variability due to patients’ heterogeneity and the stochastic nature of the cardiovascular system. The
variability poses significant challenges to understanding dynamic behaviors of the aortic valve and cardiac output. A generalized
polynomial chaos (gPC) expansion is used in this work to develop a stochastic cardiovascular-pump model for efficient uncertainty
propagation, from which it is possible to rapidly calculate the variance in the aortic valve opening duration and the cardiac output
in the presence of variability. The simulation results show that the gPC-based cardiovascular-pump model is a reliable platform that

can provide useful information to understand the effect of the LVAD pump on the hemodynamic of the heart.

1. Introduction

Cardiovascular disease is one of the major causes of death
in the United States. Approximately 5.7 million adults in
the USA suffer from heart failure (HF). HF occurs when
the heart fails to maintain appropriate circulation to support
the physiological demands of the patients body [1]. Heart
transplantation is the well-recognized treatment for end-
stage HE. However, only a few patients are eligible for
transplantation, due to the limited organ donors as well
as the physical limitations such as age, health condition,
or other health issues (i.e., impaired renal function, other
comorbidities, or a high pulmonary vascular resistance) [2].
To overcome this limitation, an alternative treatment is to
implant a ventricular assist device (VAD) to help unload the

ventricles. VADs are mechanical pumps, which are designed
to assist either the right ventricle or the left ventricle, or both
ventricles in some cases, to eject the blood into the arterial
system and further into the peripheral and end-organ [2].
The left ventricular assist device (LVAD) is the most
commonly used device for HF patients, since the right side
of the heart can often make use of the heavily increased
blood flow from the LVAD. The LVAD can partially replace
the mechanical work of the failing left ventricle to maintain
a desired blood flow between the left ventricle and the
aorta. For example, it has been used to support an ailing
heart as a “bridge to transplant” until a suitable donor heart
is available. In addition, it is considered as a “destination
therapy” for HF patients who are not eligible for heart
transplantation. Recently, LVADs have been proposed as



a “bridge-to-recovery” therapeutic option to help patients
recover normal heart function [3, 4]. It was previously
reported that the native heart function of patients can be
improved with the support of LVADs. The reverse of HF can
possibly allow patients to return to their normal life without
the LVADs and potentially improve the quality of life for HF
patients [5-7].

LVADs can be generally divided into two generations
by the pump types, i.e., pulsatile pumps and rotary pumps.
Pulsatile pumps generate pulsatile blood flow close to the
native heart in a beat-like fashion, whereas rotary pumps
generate a continuous blood flow [8]. A rotary pump-based
LVAD has more advantages over pulsatile pumps in terms
of size, efficiency, durability, noise, and weight [9]. However,
an important issue with a rotary LVAD is the optimal
control of pump speed, which limits its extensive use. When
the pump is operated at a lower rotational speed, it can
induce regurgitation (i.e., backflow) from the aorta to the left
ventricle [10]. In contrast, ventricle suction can happen when
the pump speed is too high, which can lead to ventricular
collapse, because the pump draws more blood from the left
ventricle than available. In addition, the tuning of the pump
speed can inevitably affect the function of the aortic valve. For
example, inappropriate selection of pump speed may lead to
permanent closure of the aortic valve, which is detrimental to
cardiac recovery.

The LVAD pump is normally set at a constant speed by
physicians during the implantation surgery and cannot be
adjusted freely. However, the heart function changes over
time and patients may engage in a time-varying activity such
as sleep, rest, and wild exercise. For both cases, the LVADs
should be able to adjust the pump speed to meet different
physiologic demands without inducing ventricular suction or
regurgitation. The control of a LVAD is a difficult problem to
formulate, since physiological variables of patients with the
implanted LVADs have not been well studied and the effect
of changes in control variables on the cardiovascular-pump
system is not well understood either. Another challenge
associated with LVAD control is to assess the aortic valve
dynamics, while adjusting a control variable such as pump
speed or pump power. To maintain normal operation of the
aortic valve for the “bridge fo recovery,” it is important to
balance the amount of blood ejected through the pump and
the aortic valve in order to avoid the situation in which
the LVAD dominates blood circulation and takes over heart
function.

The aortic valve opens or closes periodically to allow
the blood flows from the left ventricle to the aorta in each
cardiac cycle. The aortic valve opens when the left ventricular
pressure (LVP) is larger than the aortic pressure (AoP). As
the blood flows out of the left ventricle, the LVP decreases
and the aortic valve closes. However, when the pump speed is
too high, the LVAD will provide the majority of left ventricle
unloading; thus the left ventricle cannot generate a sufficient
pressure to open the aortic valve [11]. Consequently, the
LVAD will bypass the left ventricle and the aortic valve will be
closed permanently. This can significantly change circulation
physiology and introduce complications such as thrombosis
and commissural fusion [12, 13]. The complications are fatal
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to HF patients, especially when the LVAD is used as a “bridge
fo recovery.” It is important to ensure that the aortic valve can
remain active, when the pump speed of the LVAD is adjusted.

Mathematical models of the human cardiovascular circu-
latory system have been developed to understand the cardiac
hemodynamic. Most of these models integrate the left and
right ventricles and atria with the systemic and pulmonary
arterial and venous system to predict heart functions [14-17].
Although these models have the potential to predict dynamic
changes of the physiological states, such as the left ventricular
pressure, their clinical applications are still restricted, since
these models fail to consider the interacting subsystems and
networks in the cardiovascular system. In addition, cardiac
function varies between different individuals and is different
for the same patient over time. These variations, i.e., the infer-
and/or intrapatient variability, defined as uncertainty, pose a
major challenge to the development of an accurate model for
the cardiovascular-pump system [18].

To improve the reliability and credibility of the models, it
is important to consider the uncertainty in the cardiovascular
circulatory system. It should be noted that sampling-based
techniques such as Monte Carlo (MC) simulations are the
most popular method for uncertainty analysis [19]. How-
ever, MC-based methods can be computationally demanding
for modeling and control of the cardiovascular circulatory
system with an implanted LVAD, since a larger number of
simulations are often required to obtain accurate results [20].
Recently, generalized polynomial chaos (gPC) expansion-
based uncertainty quantification and propagation has been
studied in different modeling, optimization, and control
problems [21-25]. The gPC-based method can propagate a
probabilistic uncertainty onto model predictions in a real-
time manner, from which the uncertainty in model predic-
tions can be easily estimated from gPC coefficients [22]. Due
to the computational efficiency of the gPC, it is chosen for
the uncertainty analysis in the cardiovascular-pump system
in this work.

Following the discussion above, a stochastic model of
the human cardiovascular-pump system is developed in this
work, using the gPC theory. In the presence of uncertainty,
the dynamic behaviors of the aortic valve will be investigated
for different electric powers. Note that the electric powers
can be adjusted to vary the pump speed to meet various
physiologic demands. The main contribution of this work is
to efficiently quantify the uncertainty in cardiac outputs and
dynamic behaviors of the aortic valve in each cardiac cycle of
the cardiovascular-pump system. The uncertainty represents
a time-varying physiologic change of patients in this work.
Specifically, the aortic valve opening duration will be studied
for different levels of physical activity and for different severi-
ties of HE In addition, a probability description of the cardiac
output such as the mean and the variance can be rapidly
calculated using the gPC model, while taking uncertainty
into account. It is important to note that the cardiac output
can be determined by heart rate (HR) and stroke volume
[10]. The stroke volume depends on the preload, contractility,
and afterload of the heart. It is recognized that the rotary
pump has poor sensitivity to the preload of the ventricle
that is related to ventricular filling with venous blood and
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TasLE 1: Model parameters for the cardiovascular-LVAD system.

Circuit parameters Value Physiological Meaning
Resistance (mmHges/ml)

R, 1.0000 Systemic Vascular Resistance
Ry 0.0050 Mitral Valve Resistance
Ry 0.0010 Aortic Valve Resistance
R, 0.0398 Characteristic Resistance
R, 0.0677 Inlet Pump Resistance

R, 0.0677 Outlet Pump Resistance
R, 0.17070 Pump Resistance

R, See () = 35 s/l and%, -1 mimig
Compliance (ml/mmHg)

C(f) Time-varying Left Ventricular Compliance
Cp 4.4000 Left Atrial Compliance

C, 1.3300 Systemic Compliance

Cy 0.0800 Aortic Compliance
Inertances (mmHg-szf’ml)

L, 0.0005 Inertance of Blood in Aorta
L 0.0127 Inlet Inertance

L, 0.0127 Outlet Inertance

L, 0.02177 Pump Inertance
Valves (no units)

Dy ! Mitral Valve

Dy / Aortic Valve

high sensitivity to the afterload of the ventricle that is the
resistance to systolic ejection of blood [26, 27]. Therefore, we
mainly focus on the analysis of the aortic valve dynamics and
cardiac output in the presence of uncertainty in the afterload,
i.e., systemic vascular resistance (SVR). The stochastic model
can take into account the uncertainty among patients and
individual patients’ physiological activities, which lays a firm
foundation for control design of LVADs.

This paper is organized as follows. Section 2 presents a
deterministic cardiovascular-LVAD model and the theoreti-
cal background of the gPC theory. The results of the computer
simulations for the stochastic cardiovascular-pump model
are presented in Section 3, which is followed by conclusions
in Section 4.

2. Mathematical Background and Model

2.1. Cardiovascular-LVAD Model. The deterministic model
of the cardiovascular-LVAD system in this work was exper-
imentally validated by comparing the hemodynamic wave-
forms with data of patients [16, 28, 29]. It is assumed that
the patient has a healthy and normal right ventricle and
pulmonary system for simplicity. Thus, its effect on the
LVAD is negligible [13, 16]. Figure 1 shows a schematic of
the circuit model of the cardiovascular-LVAD system. The
model parameters and their corresponding values are listed
in Table 1.

As seen in Figure 1, the compliance Cj represents the
preload and pulmonary circulation and the resistors R;; and
R, are used to define the resistance related to the mitral
valve and aortic valve, respectively. D,; and D are two ideal
diodes to describe different phases in a cardiac cycle, i.e., (i)
isovolumic relaxation, (ii) filling, (iii) isovolumic contraction,
and (iv) ejection. For example, the mitral and aortic valves
of a healthy heart are closed during isovolumetric relaxation
or isovolumetric contraction. C, is the aortic compliance,
and parameters R, L., C,, and R, are used to describe the
afterload in a four-element Windkessel model. It is important
to note that R, i.e., systemic vascular resistance (SVR), varies
with respect to the level of physical activity of the patient.
For example, when a person starts to do mild exercise from
resting, R_ will decrease and the cardiac output will increase.
Similarly, the value of Ry, i.e., mitral valve resistance in
Figure 1, will change with respect to the preload condition
of the heart. The inlet and outlet resistances and inertances
of the pump cannulae are described by R;, R, L;, and L,
respectively. In addition, the pump resistance is defined as R,
and the suction resistance Ry, illustrating the phenomenon of
suction, can be defined with two parameters as below:

0, if x, () > x;
Rk = B (n
a(x; () -%), ifx()<x
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Figure 1: Cardiovascular-LVAD circuit model.

where « indicates a cannula dependent weighting parameter
and Xx; is predetermined threshold pressure of the left
ventricle.

For the cardiovascular-pump system, the left ventricle
compliance C(f) is a time-varying parameter, which is used
to describe the contractibility of the left ventricle. In addition,
the inverse of C(f) is the elastic function of the left ventricle,
i.e., E(t), which can be described by the pressure and volume
of the left ventricle as

. 1 LVP (t)

E® Ct) LVV(H) -V, @
where LVP(t) and LVV () represent the pressure and volume
of the left ventricle, respectively. V, is the theoretical volume
at zero pressure defined as a reference volume of the ventricle.
The mathematical expression of the elastance function E(t)
used in this work is described by a “double Hill” function
E, (t,) as below [16, 30]:

E{t) = {me _Emin) Eﬂ (tn) +Emi-n (3)

(t,/0.7)"° ] 1 ] @
1+ (t,/07)" | [ 1+ (¢,/117)"° |

E,(t,) =155

It is important to note that ¢ is defined as follows: t, = #/
(0.2+0.15t.) in (4), and t_ represents the cardiac cycle, which
is a sequence of events that occurs in each heart beat and
is related to the heart rate (HR). Additionally, the elastance
function E(f) has different values corresponding to different
heart conditions or severities of heart failure [13]. For exam-
ple, the maximum value of the elastance function, E,,,,, can
be set to 2 mmHg/ml, which means that the elastance and the
compliance function can describe the dynamic behavior of a
healthy heart. In contrast, if the value of E_is less than 2,
it represents an unhealthy heart. Different values of E,, ;. can
be used, depending on the severity of heart failure (HF). For

2| Healthy heart /""" T
—_ 15 ]
H
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g | AL s, 1 Em ----------------
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Ficure 2: Elastance function of the left ventricle with respect to
different severities of heart condition (cardiac cycle = 60/HR, where
HR is the heart rate).

clarity, Figure 2 shows the simulation results of the elastance
function E(t) for three values of E, .., i.e., a healthy heart with
a value of 2 mmHg/ml, mild heart failure (HF) with a value
of 1 mmHg/ml, and a severely failing heart with a value of 0.5
mmHg/ml

As mentioned above, the right ventricle and pulmonary
system of the patient with the LVAD are assumed to be
healthy in this work. Thus, the blood returning from the
pulmonary system enters the left atrium and subsequently
flows back into the left ventricle when the mitral valve opens.
In addition, it is assumed that some portion of the blood
in the left ventricle is ejected by the LVAD and the rest of
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the blood is pumped by the native heart through the aortic
valve to the aorta and arterial system. In order to describe
the cardiovascular-pump system, six state space variables, as
shown in the circuit model in Figure 1, are defined in Table 2.

Based on the basic circuit analysis, a 6™-order state space
cardiovascular-pump model can be formulated to describe
the hemodynamic of a HF patient implanted with a LVAD
as

X=A)x+P(t)p(x)+bu(t), (5)

where x is a vector of the 6 state variables given in Table 2
and A(t) and P(t) are 6 X 6 and 6 x 2 time-varying matrices,
respectively, which can be defined as

~<® 0 0 0 o0 —
C(t) C(t)
0 - 0 0 0
Rslck Rsfljk )
0 — — 0 — 0
RCs RsC C
At) = §hs TSES 9 1 (6)
0 0 0o 0 — —
Cys Cy
1 1 -Rg¢
0 0 - — =< 9
Ly Lg Lg
L 0 o = o K
| L L L
r 1 -1 T
— — 0 0 00
pe=|C® (;R NN @)
[ C) Ca

It is important to note that a 2 x 1 vector p(x) in (5) is used to
mimic the nonlinear behaviors of the mitral and aortic valves,
represented by two diodes in the circuit model in Figure 1.
The details about this vector are given in (8) and (9). In
addition, b in the last term in (5) is expressed by a 6 x 1 vector
as given in (10). The control variable in (5) is u(t) = Pg(f),
where Pg(f) is the electric pump motor power, which can be
regulated to adjust the pump speed of the LVAD to meet the
physiologic demands (e.g., blood) with respect to different
levels of activity. The autonomous tuning of the pump speed
is not discussed in this work, since our objective is to evaluate
the distribution of the blood ejected through the LVAD and
the aortic valve as a function of the electric power in the
presence of uncertainty, e.g., variations in systemic vascular
resistance (SVR).

1
R_"{xz—xd
p)=|"M" (8)
a" (3 —xy)
& if{=0
r(() = { / 9
0, if{<0

5 1T
Lxg | -~

b(x) = [0 0000 (10)

In addition, the pressure gain (or pump head) H, (see
Figure 1) can be defined as a function of the pressure
difference across the pump and pump flow x, as shown in

d
xl—x4=R'x6+L'f—Hp, (11)

where the pump head Hy can be approximated using the
pump speed w as follows [13]:

Hp = o’ (12)

Note that the coefficient 8 in (12) is set to 9.9025 x 107
mmHg,uf(rpm)2 [13]. In (11), the total resistance R* and
inductance L* are two parameters related to the LVAD, which
can be given by the following equations as

R" =R, +R,+R, + R (13)
L'=L;+L,+L,. (14)

The pressure gain across the pump Hy has the direct relation
to the electric power delivered to the pump motor Pg.
Defining the pump efficiency as #, the electric power Pg
can be related to the hydrodynamic power P, as shown in
(15). Further, Py can be approximated with the density of the
reference fluid p, gravitational acceleration g, the pump flow
rate x, and the pump head Hj, as shown in (16).

Pp =nPg (15)
Pp = pgHpxs. (16)

Rearranging both equations above, the relation between the
pressure gain Hy and the electric power Py can be defined as
follows [31]:

H

0Py
p- T *

. )
where the constant § is set to 7495 mmHgeml/s»W, which is
a function of the density of the reference fluid p, the gravity
acceleration g, and the pump efficiency # [26]. For simplicity,
7 is set to 100% in this work.

Based on the definition of pump head H, in (12) and (17),
the corresponding rotational pump speed w can be defined in
terms of the pump electric power P as

' oPy
=4/—". (18)
@ Bxg

To study the effect of uncertainty in aortic valve dynamics
and cardiac outputs, the operating power range of the LVAD
pump is set to 0.12 to 156 W in this work [32]. The
corresponding rotational pump speeds for different electric
powers are shown in Appendix A.

2.2. Generalized Polynomial Chaos (¢gPC) Expansion. The
generalized polynomial chaos (gPC) expansion generally
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TaBLE 2: State variables used in the cardiovascular-LVAD model.

Circuit Variables Physiological variables Physiological Meaning Units
x, (1) LVE(t) Left Ventricular Pressure mmHg
x,(t) LAP(t) Left Atrial Pressure mmHg
x;(t) AP(t) Arterial Pressure mmHg
x,(1) AoP(t) Aortic Pressure mmHg
x5(1) Q1) Total Flow Rate ml/s
x4(1) Qp(t) Pump Flow Rate ml/s

approximates a random variable using an arbitrary probabil-
ity density function (PDF) defined by another random vari-
able (e.g., &) with a prior distribution (PDF) in the Wiener-
Askey framework [22]. In this work, the gPC expansion will
be used to approximate the uncertainty such as systemic
vascular resistance (SVR) (i.e., R,) to study and quantify how
uncertainty can affect the model predictions, e.g., the aortic
valve dynamics and cardiac outputs. Note that SVR in the
model is used to describe the different levels of activity, which
can vary over time within the same HF patient. Thus, it is
assumed that the exact value of SVR is unknown at each time;
however, the PDF of SVR over a period of time is available,
which can be determined by physicians or estimated through
offline estimation techniques. The rationale of choosing SVR
as the uncertain source in this work will be explained in the
results session through the sensitivity analysis.

Suppose that the cardiovascular-LVAD system in (5),
described by a set of nonlinear ordinary differential equations
(ODEs), can be simplified as follows:

x=f(t,x,v,g:u), (19)

where the vector x consists of the 6 state variables defined
in Table 2 with initial valuesx, at f = 0. v is a vector
of deterministic model parameters in the cardiovascular-
pump system, which are fixed constants. In contrast, a
vector of parametric uncertainties is defined by g, which
will be approximated with their PDFs instead of using fixed
constants, such as the SVR explained above, representing the
level of activity of HF patients. In addition, u is the control
variable, e.g., electric power Pg(t), which can be adjusted to
meet the physiologic demands.

To evaluate the effect of uncertainty on the model pre-
dictions x, each parameter g; (i=12, ..., n,) in g will be
approximated with a gPC model as a function of a set of
independent random variables § = {£;} as

gi=9 (&), (20)

where &, is the i random variable used to approximate g; that
follows a prior PDF defined in the Wiener-Askey framework.
Since each parametric uncertainty is approximated with a
gPC model, the model predictions x can be also defined with
random variables &, which can assess the effect of uncertainty
on the model predictions of the cardiovascular-pump system.
Using the orthogonal polynomial basis functions defined in
the Wiener-Askey framework, the gPC approximations for

both uncertainty and model predictions can be defined as
follows:

[=:] q
9 (®) = Y 3t (&) = Y Gusic (&) (21)
=0 k=0

o Q
x;(t,8) = ijk (1) (8) = ijk B i (§)» (22)
k=0 k=0

where {7, } and {Ej 1(t)} are the gPC coefficients of the it

parametric uncertainty and the j“‘ model prediction (state
variable) and ¢, (§;) and v, (§) are multidimensional polyno-
mial basis functions. When the PDF of g; is given or can be
estimated so that g;(£) follows a prior distribution, the gPC
coefficients {g;;} in (21) can be subsequently determined.
As compared to {g;z}, the gPC coefficients of X;;(f) will
be calculated by substituting (21) and (22) into (5), which
is followed by using a Galerkin projection. The Galerkin
projection between a state variable x; and a polynomial basis
function can be defined as

(% (1.8), v (®)
= {f(tx;.6),0.9)su) % ©)) -

For each state variable x;, the Galerkin projection will pro-
duce a system with a set of coupled deterministic equations,
in which the first equation provides the mean value of x;
at each time instant, while the rest of the equations can be
used to estimate the variation resulting from uncertainty. In
addition, as seen in (21) and (22), the infinite number of terms
is often truncated into a finite number of terms for practical
application, i.e., g and Q, respectively. The number of terms
in (21), i.e, g, can be optimally selected, so that the gPC
model of uncertainty can approximate a prior known PDF
of uncertainty. The total number of terms Q in (22) can be
computed with a heuristic formula, which can be defined by
the polynomial order g and the total number of parametric
uncertainties », as

s
n, +q)!
(n5'a!)

In addition, the inner product between any two vectors in (23)

can be determined as

(6©).¢'(®) = ]¢(E)¢’ OW®dE (25

(23)
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where the integration on the right-hand side of (25) is per-
formed over the entire domain defined by random variables
& and W (&) is the weighting function, i.e., the probability
density function of &, which is selected according to the
polynomial basis function in the Wiener-Askey framework.
For example, a normally distributed random variable £ should
be used, when the uncertainty follows a normal distribution
[22]. Thus, Hermite polynomial basis functions are the best
choice of the weighting function.

Using the gPC coefficients of state variables x in (22), the
statistical moments such as mean and variance of x at a given
time interval { can be quickly computed as follows:

Q
E(x;®)=E (Zi},- () w,-)
i=0 (26)

Q
=25 (O E(w;) + Y E(W:) = %j0 (8)
=

var (xj {t)) =E (x (t)-E (xj {t])z)

Q 2
(Zfﬁ (B)y; — Xj6-0) (f)) )
pary

Q 2 (27)
(ij,- (®) w;) )
i=1

=E

As seen, the first statistical moment ofx, i.e., mean value,
can be approximated with the first gPC coefficient X;; ,,
while the second statistical moment, i.e., variance of x, can
be calculated using the higher-order gPC coefficients and the
mean of squared orthogonal polynomial basis function y;(&).
Once again, the variance in state variables x originates from
uncertainty g, as defined in (20).

The gPC provides analytical formulas to calculate the
statistical moments of model predictions, from which the
PDF profiles can be rapidly estimated. This is the main
rationale to use the gPC approximation in this work. The
fast calculation of uncertainty in hemodynamic waveforms,
resulting from the time-varying physiologic change such as
SVR (R,) in this work, can provide useful information to
better understand the physiologic demands. Specifically, the
PDF profiles of x, approximated from a gPC model, will be
used to account for the effect of uncertainty in R, on the aortic
valve opening duration and the cardiac outputs, which will be
discussed in detail in Section 3.

3. Results and Discussion

3.1. Cardiac Hemodynamic. The cardiovascular-pump model
as explained in Section 2.1 involves a few model parameters,
which can be used to represent the physiological dynamics
of the heart supported with a LVAD. As previously reported,

parameters R, R, and heart rate (HR) can govern the
behavior of the cardiovascular-pump system [13]. Thus, we
propose to investigate their effect on the dynamics of the
aortic valve and the cardiac output.

Since the gPC-based stochastic model in this work is
developed based on a deterministic model in (5), the first step
is to validate the ability of the deterministic model in order to
mimic the hemodynamic of the cardiovascular-pump system.
The linear relationship between the end-systolic pressure and
the left ventricle volume in the presence of perturbations in
R, and Ry, is used. Note that the perturbations in R, and
R, represent the stochastic changes during the preload and
afterload of the heart. A total of 4 preload and 4 afterload
changes were simulated as shown in Figure 3, for which the
left ventricle parameters such as E ., Ein, and V| are set to
constant and the electric pump power is set to Py = 0.12 W.

The left ventricle pressure and the left ventricle volume
graph (PV-loop) are shown in Figure 3. The PV-loops in
Figure 3(a) show the hemodynamic changes resulting from
variations in the afterload, i.e., different values of R, (SVR)
that represent the changes in the level of activity. In contrast,
the PV-loop in Figure 3(b) shows the result by altering the
preload, ie., Ry, representing mitral valve resistance. For
both graphs, a linear relationship between the left ventricle
pressure and the left ventricle volume is observed, thus
confirming the ability of the model to describe the hemo-
dynamic of the cardiovascular-pump system. In addition, it
was found that any variations in the cardiovascular-pump
system can significantly affect the PV-loop such as the area
that represents the stroke work.

Note that the dynamic behaviors of the aortic valve will be
used in this work as a criterion to evaluate the effect of uncer-
tainty on the cardiovascular-pump system. The rationale is
that any changes in physiological parameters such as R, can
affect left ventricular pressure as seen in Figure 3(a). Constant
low ventricular pressure can result in the permanent closure
of the aortic valve, which is detrimental to cardiac recovery.
Specifically, the aortic valve opening duration is used to
quantitatively assess the effect of uncertainty on the dynamic
behaviors of the aortic valve.

The calculation of the aortic valve opening duration
proceeds as follows. In a cardiac cycle, the period of time,
topen» during which the left ventricular pressure (LVP) is
larger than the aortic pressure (AoP) will be first determined.
The aortic valve opening duration can then be obtained by
calculating the ratio between f,,, and the time of a cardiac
cycle .. A schematic of the calculation of the aortic valve
opening duration is given in Figure 4. Let us suppose there
are 9 data points of both LVP and AoP in a cardiac cycle, and
the time interval between any two data points is f;,,. As seen,
two data points of LVP are larger than the AoP, indicating that
Lopen 18 2% 1, Similarly, the cardiac cycle can be calculated
as f_ = 9x {;,. Thus, the aortic valve opening duration can
be determined with 2/9 =~ 0.222, representing that the aortic
valve remains open during approximately 22.2% of a cardiac
cycle.

The cardiac output (CO) is another key physical property,
which can be calculated as a product of stroke volume and
HR. The cardiac output represents the total amount of blood
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F1Gure 4: Schematic for the calculation of the aortic valve opening
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pumped from the ventricle in a minute. The stroke volume is
theblood volume pumped from the left ventricle in a beat and
is determined by the contractility, preload, and afterload. The
area of the PV-loop is often calculated to represent the stroke
work. As shown in Figure 3, any changes in R, and R,; can
affect the total amount of blood entering the ventricle, thus
affecting the stroke volume and the cardiac output. Therefore,
the cardiac output is used as a second criterion to evaluate the
effect of uncertainty on the cardiovascular-pump system in
this work.

3.2. Sensitivity Analysis. As mentioned above, R, R, and HR
can affect the physiological dynamics of the heart such as the
aortic valve opening and the cardiac output. However, each
factor may have different effect on the hemodynamic of the
failing heart. Thus, a sensitivity analysis is first performed to

identify the most significant physiological factor. The effect
of variations in R,, Ry, and HR on the aortic valve and the
cardiac output is first investigated, using the cardiovascular-
LVAD model with a mild HF patient (i.e., E,,,, = 1.0) and
electric pump power Pg = 0.12 ~ 0.6 W. Similar results were
found for other heart conditions and pump powers, but they
are not shown for brevity.

It is assumed that each parameter can vary randomly
between two levels, ie., +1 and -1, which correspond to a
+10% change and a -10% change with respect to its nominal
values. Note that the nominal values of each parameter are
R, = 1.0 mmHges/ml, R;; = 0.005 mmHges/ml, and HR =
75 bpm. For each parameter, let us define the aortic valve
opening duration (or the cardiac output) as w;i and w, for
two different levels and the corresponding result with the
nominal values of model parameters as w;_. Then, the effect

of uncertainty in the i parameter (R,, R, and HR) on either
the aortic valve opening duration or the cardiac output can be
defined with a sensitivity index as follows:

| + 0 | | — 0

w. —1_ w.—1_

awp. — Gi > i + Gi 5 i , {28)
' w w

Gi Gi

where dw,, is a sensitivity index that can be used to decide

the significance of the i parameter.

Based on the sensitivity index, a half-normal probability
diagram is used [33] to identify the significant parameters;
i.e., the factors induce significant changes in the aortic valve
opening duration and the cardiac output. The half-normal
probability is defined as

[(D_l (0.5 + w) ,6wp‘_] N

3 (29)
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where i = 1, ..., k is the i parameter and &' represents
the cumulative distribution function (CDF) with respect to
a standard normal distribution.

For clarity, Figure 5 shows the sensitivity analysis results
for different electric pump powers Pr. Note that Figures
5(a)-5(c) are the results for the aortic valve opening duration,
while Figures 5(d)-5(f) are the results for the cardiac output.
The electric pump power in Figures 5(a) and 5(d) was set to
0.12 W, and 0.36 W was used in Figures 5(b) and 5(e). For
Figures 5(c) and 5(f), the pump power was set to a relatively
larger value of 0.6 W. It is worth mentioning that the pump
motor power was chosen to avoid the permanent closure of
the aortic valve.

As seen in Figure 5, it was found that systemic vascular
resistance (SVR), i.e., R,, is the most significant uncertainty
for all the case studies except in Figure 5(a). To validate the
results, additional case studies were performed to evaluate the
effect of variations in R, and HR on the aortic valve opening
duration with respect to a relatively larger range of pump
powers, and the results were summarized in Figure 6.

As seen in Figure 6, it was found that the sensitivity index
of R, increases as the pump power Py increases, whereas the
sensitivity index of HR decreases slowly when P, is increased.
This indicates that the hemodynamic such as the aortic valve
opening is more sensitive to variations in the level of activity
of a HF patient, i.e., R,, especially when the electric pump
power is higher. Since the pump is often operated above the
minimum value of the pump power, we will focus on the
level of activity R, in this work for the rest of the study.
It is important to note that similar results were previously
reported by clinical studies; i.e., a rotary LVAD pump is more
sensitive to the afterload of the left ventricle [26, 27].

Based on discussion, R, is identified as the most sensitive
factor in the cardiovascular-LVAD system that can affect the
cardiac hemodynamic. Following the procedures as discussed
in Section 2.2, a gPC model is developed to study the effect of
the variations in R, on the aortic valve opening duration and
the cardiac output.

3.3. Formulation of the Stochastic gPC Model. It is assumed
that systemic vascular resistance (SVR), i.e., R, in this work,
follows a normal distribution. Three mean values of R,
are used for algorithm verification, i.e., 0.5 mmHg/ml/s,
1 mmHg/ml/s, and 2 mmHg/ml/s, which represent dif-
ferent levels of physical activity, ie., very active (0.5
mmHg/ml/s), moderately active (1 mmHg/ml/s), and inactive
(2 mmHg/ml/s). For example, the very active state represents
that the patient is climbing stairs, while the inactive state
means the patient is resting or sleeping. To build a gPC model
of SVR, the order of the polynomial chaos expansion is set
to 1, i.e, g =1 in (21), since the uncertainty is normally
distributed. Using (24), the expansion of each state variable
in Table 2 would involve 2 terms, i.e., Q = 1, since there is
one uncertainty (n, = 1) and the highest order of polynomial
expansion of uncertainty is 1 (g=1).

To introduce perturbations in SVR, a 10% variation
around each mean value is used, which can be used to
determine the gPC coefficients of R, in (21). The gPC
coefficients of the hemodynamic variables (x,-x,) can be

calculated by substituting the gPC models of R_ and each
state variable into (5) and by using a Galerkin projection,
from which a stochastic model can be formulated. This model
can describe dynamic behaviors of the cardiovascular-pump
system in the presence of uncertainty in SVR (R,). For
brevity, the stochastic model is presented in Appendix B.
The simulation results of the stochastic cardiovascular-pump
model are shown in Figure 7.

The first and second columns in Figure 7 show the gPC
coefficients of the state variables in (5), i.e., the left ventricle
pressure (x,), the aortic pressure (x,), and the flows of the
pump and aorta (x5 and x;), respectively. For the simulations
of 20 cardiac cycles, the first 3 cardiac cycles are given in
the first column, whereas the second column shows the last
two cardiac cycles. The third column shows the variations in
these states resulting from perturbations in SVR (R,). For the
results shown in Figure 7, the HR was set to 75 bpm, and the
mean value of R, was 1 mmHg/ml/s. The maximum elastane
(E pax) Was set to 1 mmHg/ml, which represents a native heart
with mild heart failure, and the pump motor power Py used in
this case study was 0.12 W to avoid permanent closure of the
aortic valve. It is important to note that the difference between
the waveforms of the pump flow (x,) and the aortic flow (x)
in each cardiac cycle can be used to estimate the blood flow
ejected by a native heart.

As seen in the third column of Figures 7(c) and 7(f), the
left ventricular pressure (x,) and the aortic pressure (x,) can
be affected by perturbations in SVR (R,). In addition, it was
found that the resulting variation in the aortic pressure is
more significant than the left ventricular pressure. Note that
the variations in x; increase as the electric power increases;
however, this is not shown for brevity. Using the gPC coeffi-
cients, it is possible to estimate the upper and lower bounds
of all state variables at each time interval. For example,
Figure 7(f) shows the results of aortic pressure, where o is
the standard deviation calculated with the higher-order gPC
coefficients in (27), i.e., 0 < k < Q. The range defined by the
upper and lower bounds can quantify the dynamic values of
aortic pressure within three standard deviations of the mean
value of aortic pressure, which shows the 99% confidence
interval of the aortic pressure at a particular time interval.

As explained in Section 3.1, the aortic valve opens when
the left ventricular pressure is higher than the aortic pressure.
Using the upper and lower bounds of the left ventricular
pressure and aortic pressure, the effect of perturbations in
R, on the aortic valve opening duration can be quickly
estimated. In addition, the mean and the variance in the
pump flow can be rapidly calculated with (26) and (27) as
shown in Figures 7(i) and 7(1), from which the variation in
the cardiac output can be estimated. The calculation of the
variance in the aortic valve opening duration and the cardiac
output will be further discussed in the following sections.

3.4. Dynamics of Aortic Valve Flow and Pump Flow. The effect
of perturbations in the SVR (R,) on the state variables has
been discussed in the previous section, where the electric
pump power Pp was fixed. In this case study, the main
objective is to investigate the effect of uncertainty on the
aortic valve dynamics of the heart supported by a LVAD with
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a time-varying pump power. For this purpose, the electric
pump power Pr was changed from 0.12 to 1.56 W in order
to better study the effect of the pump speed on the aortic
valve over a wide range of operating conditions. The aortic
valve opening duration can be determined by examining the
difference between the left ventricular pressure and aortic

pressure, as explained above [13]. When the aortic valve
opens, a certain portion of the blood from the left ventricle
flows through the aortic valve. As the pump motor power
increases, the portion of blood flowing through the aortic
valve will be decreased. It was found that when the pump
power reaches a certain level, the LVAD takes over heart
function and the aortic valve can be fully bypassed, i.e.,
permanently closed. Figures 8 and 9 show the changes in
aortic valve flow and pump flow for different pump power
values (Py) in the presence of perturbations in SVR (R,).

Due to the pulsatility in hemodynamic waveforms, Fig-
ures 8(a) and 9(a) show the maximum, minimum, and mean
values of aortic valve flow and the pump flow corresponding
to different pump powers, respectively. It is worth mentioning
that the maximum, minimum, and mean values of the state
variables, i.e., aortic valve flow and pump flow in Figures 8(a)
and 9(a), are calculated from the first gPC coefficient in (22)
of each state variable, i.e., X;;_o. In contrast, the bar plot,
representing the confidence interval, is calculated with other
higher-order gPC coefficients, i.e., % (0 < k < Q), using
(27).

Figures 8(b) and 9(b) show the simulation results of the
hemodynamic waveforms of the aortic valve flow and the
pump flow for a specific cardiac cycle, when different pump
powers Py were used. The variances around the maximum
and minimum values in both flows through the aortic valve
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Ficure 8: Hemodynamic waveforms of aortic valve flow in the
presence of uncertainty in SVR (R,).

and pump are calculated by using the high order of gPC
coefficients corresponding to the maximum values, while the
variances of mean values for both flows are obtained based
on the upper and lower bounds quantified with standard
deviation calculated by gPC coefficients. It is important to
note that the pump power Py can be automatically selected
according to the level of activity in order to meet different
physiological demands, but this is not discussed in this work,
as our objective is to evaluate the dynamic behaviors of the
aortic valve over a wide range of pump power.

As seen in Figure 8(a), it was found that the maximum
and mean values of the aortic valve flow decrease with
the increase of the pump motor power Pg. Note that the
aortic valve was completely closed when the pump power
Py was increased to 0.84 W, which can be defined as a
breakpoint. In addition, as seen in Figure 8(a), when the
pump power Py is below the breakpoint, negative values
of the minimum aortic valve flow were observed. This can
possibly be attributed to regurgitation of flow through the
aortic valve, because of aortic compliance. Physiologically,
this phenomenon can be caused by the adverse pressure
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Ficure 9: Hemodynamic waveforms of pump flow in the presence
of uncertainty in SVR (R,).

gradient, which can be developed as the aortic flow starts
to decelerate quickly after reaching its maximum. This can
eventually affect the low momentum fluid near the wall of the
aorta, thus inducing reverse flow in the sinus region, which
was previously reported [34]. It is important to note that
the maximum and mean values of aortic valve flows remain
positive. The reverse flow only exists in the minimum values
of aortic valve flow, which is negligible and can be decreased
as the pump power is increased. After the breakpoint,i.e., Py =
0.84 W, the aortic flow is reduced to approximately 0 L/min,
which means that the LVAD takes over the left ventricle
function for the entire cardiac cycle and there is negligible
blood that can flow through the aortic valve. Further, as
can be seen in Figure 8(b), the pulsatility of the aortic flow
decreases as the pump power is increased. When the pump
power Py reaches the breakpoint, the aortic valve flow can
completely lose the pulsatility. Such information can be useful
for the controller design to adjust the pump speed to meet the
different physiological demands.

As shown in Figure 9(a), the maximum, minimum, and
mean values of pump flow rate increase when the pump
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power is increased. The maximum values of the pump flow
increase until the pump power reaches the breakpoint and
then converges to a constant after the breakpoint Py = 0.84
W, while the minimum and mean values of the pump flow
keep increasing as the pump power increases. In addition,
it is important to note that the dashed lines (purple and
red) in Figure 9(b) represent the variations in the pump
flow, resulting from the perturbations in SVR (R,). As seen,
when the pump takes over the native heart, the variation
in pump flows becomes larger, as compared to the cases
when the aortic valve operates normally (i.e., before reaching
the breakpoint). Further, it is worth mentioning that the
variations of the aortic valve flow and pump flow shown in
Figures 8 and 9 are correlated to the pump motor power.
It was found that the aortic valve flow can be significantly
affected by perturbations in R, before the breakpoint. In
contrast, the variation in pump flow is larger when the LVAD
pump begins to take over the left ventricular function after
the breakpoint. This observation can be used as a tuning
constraint of pump power in the controller design, since
larger variations in the pump flow and the aortic flow may
weaken the myocardium, which is detrimental to cardiac
recovery and can be fatal to HF patients with LVADs. For
example, constraints can be used to confine the allowable
tuning range of the pump power to avoid inducing larger
variations in pump flow, while taking perturbations in SVR
(R,) into account.

3.5. Aortic Valve Opening Duration. In Section 3.4, it was
found that the aortic valve flow rate varies with respect to
the electric pump power. The aortic valve can be closed when
the pump power reaches a certain level (e.g., breakpoint), at
which the LVAD pump takes over heart function. Based on
this observation, the objective in this case study is to examine
the aortic valve opening duration in a cardiac cycle, while
considering the perturbations in SVR (R,).

As explained in Section 3.1, the aortic valve opening
duration is measured by calculating the ratio between the
time that the aortic valve opens during a cardiac cycleand the
duration of the cardiac cycle. For clarity, the mean values of
the aortic valve opening duration for a mild HF patient (E,,,..
=1) and a severe HF patient (E,,,, = 0.5) with different electric
pump powers are shown in Figures 10 and 11, respectively.
In addition, the variations around the mean values of aortic
valve opening duration are summarized in Tables 3 and 4
for brevity. In this study, HR is set to 75 bpm for both cases,
and R_ follows the same probabilistic description as done in
Section 3.3, i.e., three different levels of physical activity of a
patient.

Asseen in Figures 10 and 11, aortic valve opening duration
highly depends on the level of activity for a patient and
the severity level of heart failure. For example, as seen in
Figure 10, when the patient is very active, the aortic valve
can remain open in a cardiac cycle over a wide range of
pump motor power. In contrast, the aortic valve can be easily
taken over by the pump when a patient is in an inactive
state and when the pump power is higher than 0.36 W. In
addition, it was found that the operating range of the pump
is much smaller, when the level of heart failure is severe. For
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example, as seen in Figure 11, for a very active patient with
severe HF, the aortic valve will be closed when the pump
power is larger than about 0.7 W. However, the aortic valve
can remain open for the whole range of the pump power
for a very active mild HF patient (see Figure 10). Thus, the
breakpoint, where the aortic valve closes permanently, can be
determined with respect to the level of physical activity as
well as the severity of HE These observations can provide
useful information when the pump motor power is used
as a control variable. For example, it is difficult to control
the pump power to maintain the aortic valve open for a
severe heart failure patient, since the allowable operating
range of the pump power to keep the aortic valve open is
small. This may reduce the cardiac perfusion required to
meet the physiological demands. For severe HF patients, an
appropriate controller can be developed by considering the
severity of HF and by taking into account possible levels of
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activity, which finds a trade-off between the desired cardiac
output and the aortic valve opening duration.

To validate the results, the aortic valve opening duration
was also compared with previously reported work. As men-
tioned in [35], the average opening duration of the aortic
valve is 30.5% for a native healthy heart without a LVAD,
27% for a mild HF patient, and 25% for a severe HF patient.
This clearly shows that our results are in good agreement with
these clinical observations. In addition, it was found that in
this work the aortic valve opening duration is highly related
to the level of activity and the severity of the native heart.

In addition, Tables 3 and 4 show the confidence interval
of the aortic valve opening duration. It was found that the
variance in the aortic valve opening duration increases, as the
mean value of R, decreases and as the pump power increases.
For example, as seen in Table 3, for an active and mild heart
failure patient (i.e., R, = 0.5 mmHg/ml/s), the variations
in the aortic valve opening duration increase as the pump
power increases. It was found that the variation in aortic valve
opening duration is about 2 percent point of the mean values
on average for these possible pump powers shown in Table 3.
However, for an active and severe heart failure patient as seen
Table 4 (R, = 0.5 mmHg/ml/s), the average of the variation in
the aortic valve opening duration is approximately 0.8%.

3.6. Cardiac Output. Cardiac output (CO) is conventionally
calculated as the product of the stroke volume (V) and the
HR as CO = V x HR. However, for HF patients with
implanted LVADs, the calculation of cardiac output needs to
consider the blood ejected by both the native heart and the
LVAD pump. To accomplish this, the cardiac output can be
calculated by integrating the aortic flow (x;) [8]. For a cardiac
cycle, (30)~(32) can be used to estimate the cardiac output as

VT = V_p + Vh (30)
t+t, t+t,
] x5 (6) = J X6 (€) + V, @31
i t
€O, = CO, + CO,, (32)

where V- in (30) is the total blood volume pumped into aorta
and V; and V}, are the blood volume ejected by the LVAD
pump and the native heart, respectively. The blood volume
can be calculated with (31) for a cardiac cycle £, from which
the total cardiac output of the aorta can be approximated with
the summation of two cardiac outputs generated by the pump
CO, and the native heart CO,, by multiplying both sides of
(31) with the HR. Note that since the perturbations in SVR
(R,) are considered in this work, both the pump flow and the
aortic flow are functions of a random event £ that can be used
to approximate the variation in SVR. Thus, the integration
in (31) is calculated over the domain defined by &. To solve
(31), the trapezoidal rule is used in this work. Using the gPC
model of state variable such as x; and x, it is possible to
provide a measure of confidence interval in the cardiac output
prediction.

Note that V;, in (31) is the blood volume of the native
heart, which can be estimated from a PV-loop using the gPC
models. Figure 12 shows the PV-loops of a mild HF patient
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Ficure 12: PV-loops generated by the developed stochastic model
using gPC theory (E,,,, = 1.0, P; = 0.12 W, and HR = 75 bpm).

with different levels of activity. In this case, the pump power
issetto 0.12 W and the HR is 75 bpm. As seen in Figure 12, any
perturbations in R, can affect the stroke work, thus affecting
the cardiac output.

In addition, the results of the total cardiac output with
respect to different mean values of R, and pump motor
powers are shown in Figures 13 and 14 for a mild HF patient
and a severe HF patient, respectively. For simplicity, only
three pump powers were investigated, i.e., 0.12, 0.84, and
1.56 W, respectively. These values were chosen according to
the dynamic behavior of the aortic valve. For example, the
smallest value of the pump power, i.e., 0.12 W, is used to
ensure the aortic valve can operate normally. The medium
value of the pump power, i.e., 0.84 W, is used to study the
cardiac output when the pump is operated at the breakpoint
as discussed before. In contrast, the largest value of pump
power, i.e., 1.56 W, is used to study the effect of perturbations
on cardiac output, when the pump takes over heart function.

In Figures 13 and 14, the vertical bar represents the mean
value of the cardiac output, while the error-plof in each
vertical bar represents the variation around the mean value.
As seen, the cardiac output and the variation in the cardiac
output decrease as the mean value of R, increases, since
the HF patient is less active, and less blood is required. In
addition, it was found that the cardiac output increases as
the pump power increases. Further, it was found that the
variation in the cardiac output decreases as heart function
gets weaker. For example, as seen in Figure 13, the variation in
the cardiac output for an active and mild heart failure patient
is about 6.1 L/min, when the pump power is set to 0.12 W.
In contrast, the variation in cardiac output for an active and
severe heart failure patient is approximately 4.2 L/min with
the same pump power as seen in Figure 14.

4. Conclusions

In this paper, a stochastic cardiovascular-LVAD model is
developed to predict the dynamic behaviors of the aortic valve
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TasLE 3: Aortic valve opening duration calculated from gPC coefficients for a mild heart failure patient.

Pump power, Py (watts) 0.12 0.36 0.84 1.08 1.32 1.56
R =05

Opening duration (%) 29.70+0.80 26.47+0.94 23.51+1.08 20.40£1.23 16.88+1.41 12.55+1.70 0£9.20
R =10

Opening duration (%) 23.39+0.74 18.23+0.91 13.15+1.24 - - - -

R =20

Opening duration (%) 16.04+0.66 0+4.66 - - - -

TaBLE 4: Aortic valve opening duration calculated from gPC coefficients for a severe heart failure patient.

Pump power, Py (watts) 0.12 0.36 0.6 0.84 1.08 132 156
R =05
Opening duration (%) 26.27+0.85 19.89+0.74 12.06x1.03 - - - -
R =10
Opening duration (%) 18.54+0.57 0+1.62 - - - - -
R =20
Opening duration (%) 8.65+0.57 - - - - -
10 - 10
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£ £ o
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Il P: = 0.12 (watts)
I Pe =084 (watts)
[] Pg =156 (watts)

Frcure 13: Simulated cardiac output with respect to mean values of
R, and pump motor power for mild heart failure (E,,,, = 1.0).

and cardiac output in the presence of uncertainty in systemic
ventricular resistance (SVR). First, the effect of uncertainty
in different model parameters on the aortic valve opening
duration and the cardiac outputs was evaluated through a
half-normal based sensitivity analysis. For the most sensitive
model parameter, i.e., SVR representing the level of activity
of a heart failure patient, a generalized polynomial chaos
(gPC) expansion was used to approximate the perturbations
around a set of mean values of SVR. Further, the effect
of uncertainty on the cardiac hemodynamic such as the
left ventricular pressure was evaluated using a Galerkin
projection. It was found that perturbations in the level of
activity (SVR) can significantly affect the aortic valve flow and
the pump flow, which can consequently affect the aortic valve
opening duration and the total cardiac output in each cardiac

. Pg = 0.12 (watts)
I Pe =084 (watts)
|:| P =1.56 (watts)

Ficure 14: Simulated cardiac output with respect to mean values of
R, and pump motor power for severe heart failure (E,, = 0.5).

cycle. To ensure proper operation and avoid permeant closure
of the aortic valve, an upper limit of the pump power (i.e.,
breakpoint) is defined. As discussed in Results, the breakpoint
of the pump power should be specified with respect to the
different levels of activity and different severities of heart
failure patients. The more severe the heart failure, the lower
the value of the pump power. In addition, the variation in
the aortic valve opening duration and the cardiac output can
be quickly calculated with the gPC model. This is useful for
the control design to automatically adjust the pump power to
meet the different physiological demands of the human body,
since larger variation in the aortic valve opening and cardiac
output may weaken the myocardium, which is detrimental
to cardiac recovery and can be fatal to HF patients with
LVADs. The understanding of the contribution of the pump
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Ficure 15: Pump speed corresponding to different pump power
levels.

in the overall task of the ejected blood can be very useful for
developing a reliable and adaptive controller for the LVAD

pump.
Appendix
A.

See Figure 15.

B.

The stochastic cardiovascular-LVAD model in the presence of
uncertainty in R, is

dxyq

dt

__C'(t)x L
S Ccm™

1
+ mr(xm 2 Xy | (%0 —%10))

1
- T)RA” (%10 2 x40 | (%10 — %49))

dxsq
dt
1
= _CRRsO (520 — x30) A + (%31 — %31) B)
- CRRMr (20 = x19 | %39 — Xy9)
dx;m
dt

_ 1
CSRSD

1
((xzo —x30) A+ (x3 —x31) B+ C_sxsu
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dx4u
di

1
= —— (x5 — x40)
Cy

1
+ r (%19 2 x40 | %19 — Xg9)
CuR,
dx 1
d_:o = I, (30 — x40 + Rexs)
dx 1 . )
— % = 7= (%10~ %a0 — R0 + 8P D (1))
dxll
dt
STco T cE
1
—_— = —
+ C(t)RMr{xm 2 xy0 | (X1 — %11))
1
— — = —
o R; (%10 = x40 | (211 — %41))
del
dt
1
= _CRRs{I (220 — x30) B + (%21 —x31) C
1
- r (X0 = x99 | X3 —%11)
CiRy
dxq;
dt
1 1
= @ (%20 = x30) B+ (%31 — %3,) C + EsxSI
dx41
dt
1
= _C_A (x51 - xﬁl)
1
+ CARAr{xm > xq9 | X1 — X41)
dx 1
d_:l = I, (31 — %41 + Rexs)
dx, 1 : -
dfl =1 (%11 — X4 — R"xg; + OPE (1)),

(B.1)

where A, B, C, D, and E are the gPC model parameters and
D(t) and E(t) are time-varying constants at each time interval.
All parameters are calculated with the Galerkin projection
as explained in Section 2.2. In these equations above, x;

represents the mean value of the it physiological variables
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defined in Table 2 and x;, is the higher-order gPC coefficient
used to approximate uncertainty due to variations in R,.
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The stochastic models and the model parameters used to
support the finding in this study are included within the
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