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Abstract— Photoplethysmography (PPG) signals have been widely used for heart rate (HR) monitoring. Compared to
the electrocardiogram (ECG), PPG signals can be easily collected with wearable devices such as smart watches at a
lower cost. However, PPG signals are often contaminated by the motion artifact (MA) and noises, which greatly
deteriorate the signal quality and pose significant challenges on HR monitoring. In this paper, a new algorithm, using the
spectral subtraction and the Neural Network (NN), is developed for accurate HR tracking in the presence of MA and
noises. Specifically, the spectral component of MA is estimated from the acceleration (ACC) signals and then removed
from the spectra of PPG. In addition, a NN model is developed based on new features extracted from ACC signals to
identify the relationship between the ACC and HR variations in consecutive time windows. Such information is further
used as a reference to select the spectral peak corresponding to the actual HR. A post-processing algorithm is used to
correct mis-identified HR and to improve the accuracy. The NN-based algorithm is validated using the 2015 IEEE Signal
Processing Cup Dataset. Our algorithm achieves an average absolute error of 1.03 beats per minutes (BPM) (standard
deviation: 1.82 BPM), which outperforms previously reported works in the literature.
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acceleration (ACC), as a reference to remove the MA. For example,
Kalman filter can establish the relationships between PPG samples
and ACC signals, and the model residuals are considered as clean
PPG signals. Decomposition techniques such as WT and EMD can be
used to separate the PPG signal into different components including
clean PPG signals, noise, and MA, from which HR can be estimated.
However, the performance of such methods can be affected by the
decomposition and the component selection. For example, the choice
of wavelets in WT, the size of trajectory matrix in SSA, and the
stopping criterion of EMD can all affect the performance significantly.

Note that MA removal algorithm alone may not ensure a reliable
HR tracking, since there are residual MA and noises in PPG signals.
This may mislead the tracking algorithm and result in inaccurate
estimation of HR. Techniques have been developed to accurately
extract HR from PPG signals, which can be classified into three
categories, i.e., spectral peak selection [11], dominant frequency
calculation [12], and instantaneously frequency calculation [13]. For
the spectral peak selection, Bayesian decision theory [10]. support
vector machine [14], and particle filter [15] were used to identify the
peak corresponding to the actual HR. In addition, the dominant
frequency of clean PPG signals was taken as the HR frequency [12].
For the instantaneously frequency method, Hilbert transform [16],
phase vocoder technique [13]. and short-time Fourier transform [17]
were applied to estimate the HR. It is worth mentioning that previous
studies focus on the identification of the spectral peaks corresponding
to the actual HR, but only a few of them considers the impact of HR
variation on the HR estimation. HR changes are correlated with the

.  INTRODUCTION

Heart rate (HR) is one of the most readily accessible and
informative vital signs to evaluate cardiovascular conditions. For
example, the elevated HR is an important risk factor associated with
mortality and morbidity of patients with cardiovascular diseases [1].
Accurate HR monitoring is important in pre-diagnostics,
rehabilitation, and disease prevention. HR is often measured using
electrocardiogram (ECG) with multiple electrodes attached to the
body surface. However, such an approach is not comfortable and
often requires trained professionals to set up. For daily and continuous
cardiac monitoring, photoplethysmography (PPG) has become a
popular alternative to measure HR at a lower cost. PPG is typically
measured by pulse oximeter imbedded in wearable devices, which
captures the change in blood volume during cardiac cycles and the
light intensity in tissues and other non-pulsatile blood [2]. Each
cardiac cycle appears as a peak in the signal which reflects heart
activities. However, PPG signals are oftentimes contaminated by the
motion artifact (MA) resulting from the movements of subjects [3].
This, in turn, poses great challenges on accurate HR estimation.

Extensive studies have been conducted to eliminate MA from PPG
signals to realize reliable HR monitoring. Popular methods include
adaptive filter [4], Kalman filter [5]. wavelet transform (WT) [6].
singular spectrum analysis (SSA) [7]. principal component analysis
(PCA) [8], and independent component analysis (ICA) [3], empirical
mode decomposition (EMD) [9]. and spectrum subtraction (SS) [10].

Some of the studies use the motion data from the accelerometer, i.e.,
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intensity of physical activities. For example, HR increases as the
exercise intensity increases. However, limited work has been done to
consider the correlation between the HR variation and subjects’
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motion in the tracking algorithm. The present study extracts the
information pertinent to HR and HR variabilities from PPG and ACC
signals, and further integrate them to improve the HR monitoring.

The proposed algorithm includes three consecutive steps: spectrum
subtraction to remove MA, modeling of HR variations, spectral peak
selection and HR estimation. First, PPGs and ACCs are transformed
into the frequency domain and the maximum spectral peaks of ACCs
are subtracted from the spectral of PPGs to remove MA. Note that the
effect of MA on PPGs cannot be eliminated by the spectrum
subtraction alone. To achieve a robust estimation of HR, a NN model
is developed to predict the HR variation using new features extracted
from the ACCs. The predicted variations are further used in the
spectral peak selection to identify the actual HR. Finally, a post-
processing algorithm is developed to correct the misidentified HR.
Contributions of the present study include (i) the extraction of new
features from the acceleration data. and (i) the integration of
predicted HR variations from the NN model into the HR tracking
algorithm to facilitate an accurate HR estimation.

The paper is organized as follows. The method is present in Section
I1. Section IIT shows the efficiency of the proposed algorithm with a
published dataset, followed by the conclusions in Section IV.

. Methods

A. Preprocessing

The algorithm is validated using the 2015 IEEE Signal Processing
Cup dataset of 12 subjects [8]. Recording for each subject includes
one-channel ECG signals, two-channel PPG signals, and three-axis
ACC signals. All signals are sampled at 125 Hz. Note that the goal in
this current work is to develop an efficient PPG-based HR estimation
algorithm, so ECG signals are used only for algorithm validation and
the training of the neural network.

Before MA removal and HR estimation, the PPG and ACC signals
are first filtered with a band-pass filter at 0.5 and 3 Hz to eliminate
noises, and down-sampled to 25 Hz to reduce the computational cost.
Then, a sliding time window is used to truncate the signal into small
segments. The length of the time window is 8 s and the moving step
is 2 s. In addition, PPG and ACC signals were normalized to ensure
the variance is identical for all channels of ACC and PPG signals.

B. Motion Artifact Removal

Using ACCs, the spectral subtraction is performed to remove MA
from PPG signals. To eliminate the impact of noises on the MA
removal, we first examine the randomness of ACC signals, i.e., ACC
signals that only contain random noises are excluded from the MA
removal step. Then, PPG and the non-random ACC signals are
transformed into the frequency domain, and the maximum spectrum
of the ACC signals is removed from the spectra of the PPG signal.
This is due to the fact that the spectra of the recorded PPG signals are
proportional to the spectra of clean PPG and ACC signals [19].

Let define the spectra of PPG signals in a time window as: x =
(%1, %5, -, %y)T . the spectra of transformed ACC signals as: z =
(21,25,--+,2y)7 . and the spectra difference as: y = (¥, V2, -, ¥u)7>
where N is the spectra length, the spectrum subtraction is defined as:

y=x-1z )
Then, the spectra of the cleansed PPG signals can be obtained by
setting the negative spectra difference to zero.
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Using spectral subtraction, artifacts correlated to ACC signals can
be removed. However, there are remaining noises and artifacts, which
can still affect the HR tracking. As shown in Fig. 1, multiple peaks
are observed in the frequency domain of PPG signals, which are
attributed to ACC signals (blue friangle). HR (red circle), and noise
(green square). MA removal technique may be able to eliminate the
peak that corresponds to ACC., but the remaining noise (green square)
can still mislead the HR estimation. It is important to distinguish the
true peak from those of the noises and residual artifacts. To achieve
this, we propose to infer HR variations from ACC signals and use the
information to identify the actual HR.
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Figure 1. Time and frequency domain representation of PPG and
ACC signals.

C. Modeling of HR Variations

HR variations are estimated by a NN model based on the features
extracted from the ACC signals, which are further used to identify the
spectral peaks corresponding to HR.

The NN model is developed using two types of features extracted
from the ACC signals, i.e., the summation of the sum of the squared
ACC signals in each time window (denoted as Sacc; in the ith time
window), i.e.. Sacei=X =1 (Xace,; + Yore,j + Zace,;)- and the rate of
Sacc changes (denoted as ;) between neighbor time windows. Here,
rate of Sacc changes in five consecutive windows preceding the current
window (i.e.. the (i — 5)®" to the i*"time windows) are considered.
Therefore, B; is 1 X 6 vector for the i™ time window. The rationale of
choosing these features is as follows. First, a positive correlation is
observed between the variations in Sacc and the HR. As shown in Fig.2
(a), the trajectory of the HR is consistent to the Sacc despite slightly
differences in amplitudes. In addition, the scatter plot of f and HR
variations shows a positive correlation in Fig. 2 (b). Both figures
indicate that it is feasible to identify changes in HR using Sacc and f.
Such information is useful for developing efficient HR estimation
algorithm to find the actual HR in the presence of noises and MA.

For the NN model, the features extracted from the ACC are used as
inputs, x, while HR variations among windows are the output, i.e., 7.
Notably, the input-output relationship is defined as ¥ = f(w, x, b).
where w is an n X 7 weight matrix, n is the number of windows for
each subject, and b is the bias. Linear activation function is chosen
and Levenberg—Marquardt algorithm is used in backpropagation to
find the optimal solution. In this way, the HR variation in the i** time
window can be predicted using features (Sacc,i, and [3;) extracted from
ACCs in the current and previous windows, i.e., (i-5)" to i" windows,
which can be used in the next step to identify the actual HR.
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Figure 2. The correlation between S, and HR (a), and the correlation
between £ and HR variations (b).

D. HR Estimation

The HR in a time window can be decided by locating the maximum
spectral peak. However, multiple peaks can be found in the PPG
signals in the presence of MA and noises, which poses a great
challenge on HR estimation. Identification of the correct spectral peak
that corresponds to the actual HR is of great interest for robust HR
tracking. To find the actual HR, the spectral peak is selected based on

the predicted HR variations and selection criteria described as follows.

As seen in Fig. 3, we integrate the HR variations obtained from
previous time windows (i.e.. 1y, ..., 7;_,) and the HR variations
predicted with the NN model (i.e., ;..... f;_,) into a linear regression
model to approximate the actual HR changes in the cwrent time

window. The algorithm proceeds as follows. (i) the HR changes (.....

T;_,) in the previous windows are predicted using features extracted
from ACC signals and the NN network model. (if) The HR variations
from previous windows (i.e., 13. ..., 1;—1) are calculated using the HR
difference between two consecutive windows. (iif) Further, a linear
regression model is developed to predict the actual HR change, 1;. in
the i" time window, from which the actual HR is predicted as H;,;=
hr;_; +1;. The spectral peak that provides the closest estimation to
E’i will be selected. Such a design balances the information between
acceleration data and the previously estimated HRs, which in tumn
provides more reliable estimation.
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Figure 3. HR change prediction and HR estimation

Additional criteria are used to avoid incorrect estimation of HR.
Specifically, spectral peaks whose amplitudes are less than 0.8 times
of the maximum spectral amplitude will be discarded. A HR is treated
as an incorrect estimation when it is 20 BPM higher than the HR
estimations in two consecutive windows prior to the current window.

E. Post Processing

A moving average filter is used to post-process the HR estimations.
Given the estimated HR hr;. a window containing nearest 10 HRs is
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generated, and their mean and standard deviation are defined as m,.
and g;, respectively. When the estimation (hr;) is found to be inside
the range of [m; —og;,m; + 0;]. it is treated as the actual HR.
Otherwise, it is considered inaccurate. Further, a smooth algorithm
[18] is used to find the false estimation in all time windows. For the
selected HR, hr, the corrected HRs, hr', are given in a cost function:
S = |hr — hr'|? + A|Dhr'|? 2
where A is a constant and D is a differential matrix. To minimize this
cost function, partial derivatives of § with respect to hr' are used as:

S
b —— — 4 3
S 2(hr — hr') + 2AD" Dhr 3)
By setting (3) to 0, the corrected HRs, hr', can be calculated as:
hr' = (I + AD'D) *hr “@

where [ is an identity matrix and A is set to 30. When the relative error
between hr and corrected hr' is larger than 20%, the estimated HR
was discarded and replaced by corresponding corrected HR.

Notably, it is expected that the detected HRs change smoothly and
there is no large variation in a short period of time. Thus, piecewise
polynomial is used to smooth the HR curve. This step is driven by the
assumption that the HR varies continuously during physical exercise,
and sharp changes are not likely to occur. Given the interval [x,, x;].
the false estimation is approximated by the polynomial function as:

f) =a(x—x)+b(x—x,)?+c(x—x)' +d 3)

where a, b, c, and d are parameters obtained by fitting the estimated
HR to the polynomial function.

Il Results

To evaluate the proposed algorithm, two metrics are used, i.e., the
average absolute error (Errorl) and the average absolute error

percentage (Error2). The former is defined as e1=(i) E?=1|rgst_i -

rtm”|, while the latter is defined as e, =(i) ;‘zlw. As

seen in Table L, the proposed model achieves 1.03BPM and 0.79% for
Errorl and Error2, respectively. Our error rates are lower than the
error rates previously reported in [10] and [19], where Errorl and
Error2 are 1.50BPM and 1.12BPM, 1.28% and 1.01%, respectively.
In addition, the proposed algorithm in this current work can provide a
lower standard deviation as compared to [10], i.e., 1.82 and 1.5 in our
work vs 2.61 and 2.29 in [10].

It is worth mentioning that our method shows better performance
on subject 10 and subject 12 as compared to other studies (see Table
I). Fig. 4 shows the spectra of PPG signals of the subject 10 and 12
after MA removal, the actual HR (red solid line), and our estimations
(red dotted line). Notably, the proposed algorithm can accurately
estimate the HR when the spectral peak is dominated by noises (see
the area circled by yellow).

Further, the efficiency of the proposed algorithm is graphically
demonstrated using the Bland-Altman plot and the scatter plot
between 13, and 1., with a fitted line, which indicates the errors
between the estimated HR and the actual HR. The Bland-Altman plot
shows the relationship between (1y,46 + Terue)/2- A0d (Trye — Terue)-
As seen in Fig. 5 (a), the x-axis and y-axis of the Bland-Altman plot
are the average of the difference between the actual HRs and the
estimations. The 95% limit of agreement is [-2.55, 4.59] BPM. Scatter
plot between BPM,,.,,, and BPM,_, is given in Fig. 5 (b) with a fitted
line Y = 0.9947X + 0.7895, where X is BPM,,.,, and Y is BPM,,.
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The correlation coefficient is 0.9969 and R? is 0.9950, indicating that
the proposed algorithm can provide an accurate estimation of HR.

(a) Subject 10 (b)

Subject 12
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Figure 4. Spectra of PPG signals for subject 10 (left) and 12 (right).
(Actual HR: red solid line, estimated HR: red dotted line)

Table |  Errors of HR Estimation
No e, (BPM) e, (%)
" | ALS10] | JOSS [19] | NN | ALS 10] | JOSS [f19] | NN
1 1.18 133 1.47 1.04 1.19 1.27
2 242 1.75 135 233 1.66 1.23
3 0.86 1.47 0.82 0.66 127 0.65
4 138 1.48 0.78 1.31 141 0.72
5 092 0.69 0.67 0.74 051 049
[ 137 132 1.23 1.14 1.09 0.93
7 1.53 0.71 1.23 1.36 0.54 0.87
8 0.64 0.56 0.52 0.55 047 0.44
9 0.60 0.49 0.53 0.52 041 0.42
10 3.65 3.81 2.15 227 243 1.36
11 092 0.78 0.73 0.65 051 047
12 125 1.04 0.84 1.02 0.81 0.6
Avp. 1.50 128 1.03 1.12 1.01 0.79
s.d. 195 261 1.82 1.47 229 1.5
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Figure 5. Performance of the proposed algorithm (a & b), and
comparison of estimated HRs before (c) and after post processing (d).

To show the advantages of the linear regression for accurate HR
estimation, experiment was conducted without the regression model.
Errorl and Error2 are 1.1342.13 and 0.86+1.67%, respectively, which
shows the efficiency of the regression to improve HR estimation.

To explore the effect of post-processing on the HR estimation, a
comparison between the actual HR with the estimated HR before and
after the post-processing for subject 1 is shown in Fig. 5 (c) and (d).
As seen, the post-processing can smooth the trajectory of HR and
improve the accuracy of HR estimation. The efficiency of the
algorithm is also evaluated in terms of computation time. Notably, an
average of 1.185 s was required to process a subject (performed using
Intel Core i5 CPU 650 (@3.20 GHz and 8GB RAM).
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IV CONCLUSION

PPG signals are oftentimes contaminated by MAs, which poses
challenges on accurate HR estimation. This paper develops a new
algorithm to efficiently identify the HR during physical exercise using
PPG signals. Specifically, spectrum subtraction is firstly implemented
to remove major components of MA from the PPG signals. Then, the
neural network and a linear regression model are combined to identify
the most possible spectral peaks from the spectra of cleansed PPG
signals. Further, post-processing techniques are used to enhance the
result of HR tracking. The efficiency of the proposed algorithm is
evaluated on a benchmark dataset. Experimental results show that the
proposed algorithm outperforms other methods previously reported.
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