NashDB: An End-to-End Economic Method for Elastic Database
Fragmentation, Replication, and Provisioning

Ryan Marcus, Olga Papaemmanouil, Sofiya Semenova, Solomon Garber
Brandeis University
[ryan,olga,sofiya,solomon]@cs.brandeis.edu

ABSTRACT

Distributed data management systems often operate on “elastic”
clusters that can scale up or down on demand. These systems face
numerous challenges, including data fragmentation, replication,
and cluster sizing. Unfortunately, these challenges have tradition-
ally been treated independently, leaving administrators with little
insight on how the interplay of these decisions affects query perfor-
mance. This paper introduces NashDB, an adaptive data distribution
framework that relies on an economic model to automatically bal-
ance the supply and demand of data fragments, replicas, and cluster
nodes. NashDB adapts its decisions to query priorities and shifting
workloads, while avoiding underutilized cluster nodes and redun-
dant replicas. This paper introduces and evaluates NashDB’s model,
as well as a suite of optimization techniques designed to efficiently
identify data distribution schemes that match workload demands
and transition the system to this new scheme with minimum data
transfer overhead. Experimentally, we show that NashDB is often
Pareto dominant compared to other solutions.

KEYWORDS
Database management systems; partitioning; fragmentation

ACM Reference Format:

Ryan Marcus, Olga Papaemmanouil, Sofiya Semenova, Solomon Garber.
2018. NashDB: An End-to-End Economic Method for Elastic Database Frag-
mentation, Replication, and Provisioning. In SIGMOD’18: 2018 International
Conference on Management of Data, June 10-15, 2018, Houston, TX, USA.
ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3183713.3196935

1 INTRODUCTION

Large-scale elastic data management systems are becoming popular
as applications face increasing data sizes and workload demands.
These large-scale systems offer high availability and query perfor-
mance by fragmenting and replicating data across multiple cluster
nodes. The elasticity of these systems (growing and shrinking the
number of fragments, replicas, and nodes as needed) is critical for
handling workload spikes and reducing cluster maintenance costs.

Elastic distributed data management systems bring about many
complications for system administrators. First, administrators must
decide how many cluster nodes to provision, as under-provisioning

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-4703-7/18/06....$15.00
https://doi.org/10.1145/3183713.3196935

leads to diminished performance and over-provisioning leads to
undue resource usage cost. Second, administrators must decide
how to distribute data across the cluster. Since workloads often
change over time, static data distribution decisions can decrease
query performance. Third, supporting query prioritization, the ex-
pectation that queries with a higher priority should experience
relatively higher performance than ones with a lower priority, is
often expected. Thus, administrators must simultaneously navigate
cluster sizing, data replication, and data placement decisions, all
while taking into account query priorities and dynamic workloads.

Administrators typically approach these complex decisions by
manually adjusting the cluster size, re-partitioning, and re-replicating
the data to simply avoid hot spots. These decisions often rely on
rule-of-thumb estimations and gut instincts; even when adminis-
trators know exactly what performance levels are required, it is
difficult to translate performance goals and query prioritization
policies into an actualized distributed deployment (e.g., cluster size,
data fragments, replicas).

In this paper, we present NashDB, a data distribution and cluster
sizing framework for making priority-aware data distribution and
node provisioning decisions for read-only OLAP systems. NashDB
provides automatic data fragmentation, replication, placement, tran-
sitioning, and cluster sizing strategies, all while taking into account
user-defined query priorities. Ultimately, NashDB aims to balance
fragment and replica supply to workload demand, as captured by
query priority and data access patterns.

Previous works rarely address all of these issues in an end-to-end
manner. Several workload-driven fragmentation and replication
strategies (e.g., [12, 19, 24, 39, 41]) assume a fixed cluster size or do
not support query priorities. Many cluster sizing techniques (e.g., [9,
21, 26, 28, 30, 34, 37, 46]) rely on the underlying database to handle
fragmentation and replication. Existing work in elastic databases
(e.g., [13, 38, 42]) handle workload spikes by incrementally scaling
up/down the cluster, and re-distributing data on the new cluster
configuration. However, it is not straightforward to predict the
impact of adding/removing nodes on query performance.

NashDB relies instead on a more user-friendly approach: its takes
query prioritization — the monetary value of each query to the user
(i.e., the price the user is willing to pay for that query) - as an input,
and identifies the cluster size and data distribution scheme that
balances data supply to the value of incoming queries. NashDB uses
economics-inspired methods to make decisions about fragmenta-
tion, replication, and cluster sizing in an end-to-end manner while
respecting query priority. If all queries are assigned the same value,
NashDB will balance the data distribution to data access patterns,
adding more replicas for more popular tuples, scaling up the cluster
during workload spikes, and scaling down during lulls in activity.
When users adjust the value of queries, indicating their priority,

https://doi.org/10.1145/3183713.3196935
https://doi.org/10.1145/3183713.3196935

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

Distributed DBMS

Query plan
|| — Query ;
SaL A Optimizer i
Range
scans {
[
5 (]
3 Scan Tuple Value
z Router Estimator
i—H Fragmentation
‘ Manager
g ES 41 Replication
Elastic cluster Manager

Figure 1: NashDB system architecture

high-valued queries will experience better performance relative to
low-valued ones.

To accomplish this, NashDB first fragments the data by grouping
together adjacent tuples that have similar value, a metric defined
based on the frequency and price of the queries accessing a tuple.
NashDB relies on a novel tuple value estimation tree structure for
efficiently storing and retrieving tuple values. Second, NashDB
replicates fragments proportionally to their aggregated tuple value.
In this stage, we model each fragment as a product that can be
offered by the cluster. We replicate each fragment the same number
of times that the an ideal free market would choose to “offer” it (i.e.,
until it is no longer profitable to add one more replica), and we show
that this replication strategy results in a Nash equilibrium. NashDB
then allocates replicas onto “just the right number” of cluster nodes,
and routes data access requests to nodes aiming to minimize data
access latency. Finally, it includes a mechanism for transitioning
the cluster from an old data distribution scheme to a new scheme
with minimal data transfer overhead. Collectively, these techniques
can produce systems that offer low query execution times.

The contributions of this paper are:

e a data fragmentation algorithm that is aware of data access
patterns and query priorities,

e areplication algorithm that balances replica supply to work-
load demands,

e an algorithm for transitioning between two different data
distribution schemes with optimal data transfer overhead,

e and a latency-aware strategy for routing data access requests
to cluster nodes.

The rest of this paper is organized as follows. Section 2 describes
the NashDB system model and Section 3 presents the economic in-
tuition behind NashDB. Section 4 describes how NashDB maintains
tuple value information. Section 5 describes our fragmentation ap-
proach and Section 6 introduces our replication algorithm. Section 7
describes the mechanism for transitioning between distribution
schemes and Section 8 introduces our data access routing approach.
Related work is presented in Section 9. Experimental results are
presented in Section 10, and concluding remarks are in Section 11.

2 SYSTEM MODEL

NashDB is a data distribution framework for read-only OLAP an-
alytic applications. Figure 1 depicts our system model. NashDB
serves a distributed DBMS running on an elastic cluster (e.g., a
cluster built on a IaaS provider [2, 3, 5] or a private cloud). We

R. Marcus et al.

assume a shared-nothing cluster where each node has access to
a fixed amount of non-shared storage, e.g. local SSD or attached
Amazon EBS volumes [1].

NashDB generates fragmentation, replication, and cluster sizing
strategies that are aware of query priorities and adapt to workload
shifts. We conceptualize the priority of each query as the price the
user is willing to pay to process that query. The higher the query
price (ak.a. the query’s value) the more resources (i.e., replicas,
cluster nodes) will be allocated to serve that query, relatively to
lower-priced queries. Hence, higher-priced queries will enjoy im-
proved performance related to low-priced ones. Under no query
prioritization (i.e., all queries are assigned the same price), NashDB
still adapts the number of replicas and the cluster size to data access
patterns, scaling up the cluster during workload spikes, and scaling
the cluster down during lulls in activity.

NashDB examines both query prices and query plan information
from incoming queries to analyze tuples access frequency and to
estimate the “importance” of a tuple (aka tuple value). As shown
in Figure 1, incoming queries are analyzed by the DBMS optimizer.
NashDB receives the scans on the plan’s input relations. In OLAP
applications, these data access scans are typically performed on
ordered relations (i.e., a clustered table is ordered on a primary key).
Since these scan operators retrieve contiguous range of tuples, we
refer to them as “range scans” or “scans.” Since NashDB’s goal is
to understand data access patterns, we consider all fetched tuples
to be accessed by a query, even if a range scan fetches a block of
tuples that is irrelevant to the query, or that are later filtered out.

Data access scans are sent to the tuple value estimator, which
maintains a value estimate of each tuple in the database. These es-
timates are used periodically by the fragmentation manager, which
responds to changes in data access patterns by computing updated
fragmentation schemes. New schemes are sent to the replication
manager, which determines (a) how many times to replicate each
fragment, and (b) how to allocate these replicas across a cluster of
“just the right size”. NashDB also facilitates the transitioning from
one distribution scheme to another with minimal data transfer over-
head. Finally, for each incoming query, the scan router dispatches
data access requests to data replicas, accounting for both the span
(the number of nodes serving a request) and data access latency.

3 ECONOMIC MODELING

The primary intuition behind NashDB is an economic model of
nodes, data, and queries. NashDB models queries as customers
(“patrons”) who purchase data (“goods”) from nodes (“firms”). The
priority of a query is modeled as a price that the user is willing to
pay to acquire the data needed to process the query — a higher price
represents a higher priority. As in a free market, NashDB seeks to
balance the supply of data with the demand for data. This entails
identifying a data distribution scheme that is in Nash equilibrium.
In order to achieve this, we depend on economic theory and the
efficiency of market systems. We next describe our model.

Problem Statement Let us assume a distributed DBMS running
on an elastic cluster. Each cluster node has a cost per unit time it is
used (e.g., rent cost) and a certain amount of disk space for storing
data. We also assume the DBMS operates on a horizontally frag-
mented data set. Here, tables are stored in some physical ordering

NashDB: An End-to-End Economic Method for Elastic Databases

(e.g. arbitrary or clustered), and tables are horizontally fragmented
into a set of disjoint fragments. The first task of NashDB is to con-
tinuously evaluate the fragmentation of each table in the database,
and identify new fragmentation schemes that match the data access
patterns of incoming queries.

Each incoming query has an associated price indicating its pri-
ority. In our economic model, a query’s price is equally divided
among the tuples accessed by that query (formalized in Section 4.1).
NashDB continuously monitors the tuples accessed by incoming
queries and the price paid for each tuple in the database. Since
tuples are organized into fragments, this allows us to define the
value of a fragment, i.e., the total expected income earned from all the
tuples in a fragment. The value of a fragment is affected by (1) the
price of the queries accessing the fragment (higher-priced queries
provide more value), and (2) the number of queries accessing a
fragment (a higher number of queries provide more value).

We model each fragment as a good that can be provided by a
node. A node is paid by queries for access to fragments, and thus
each node has an incentive to provide fragments. The higher the
price of a query, and the higher the size of the fragment a node
provides for that query, the more income the node will receive
from that query. However, nodes must pay costs for each provided
fragment (e.g. storage fees). Therefore, nodes wishing to maximize
their income will only choose to provide profitable fragments.

Furthermore, fragments are replicated across the cluster nodes.
As in a market system, an increase in the supply of a good results in
a decrease in the price of that good. Specifically, as the number of
nodes providing a replica of a fragment increases (an increase in sup-
ply), the income a node expects to receive from a replica decreases.
Eventually, we aim to replicate each fragment such that storing
that a replica of that fragment is minimally profitable: all current
replicas are profitable, but the cost of storing a single additional
replica exceeds the diminished expected income from that replica.
In this setting, NashDB strives to balance supply against demand: it
seeks to replicate each fragment such that each replica is expected
to be profitable, but offering an additional replica does not increase
the expected profit for any of the cluster nodes. This condition
represents a Nash equilibrium [33] (formalized in Section 6).

4 TUPLE VALUE ESTIMATION

To measure demand (and thus balance it against supply), NashDB
maintains an estimate of the monetary value of each tuple in the
database. Next, we provide the formal definition of tuple and frag-
ment value and we introduce an augmented binary search tree
structure that enables efficiently storing and accessing these values.

4.1 Tuple & Fragment Value Definitions

Here, we formally define the notation of tuple value. For each incom-
ing query g, let the associated query price (or priority) be Price(q),
and let Sq be the scans issued by the corresponding query execu-
tion plan (see Figure 1). Since the input relations of our queries
have some physical ordering (e.g. arbitrary or clustered), we de-
note the starting (inclusive) and ending (exclusive) tuples of a
scan s; € Sq as Start(s;) and End(s;), respectively.! We define

IThe Start(s;) and End(s;) values refer to the index of a tuple relatively to the
physical ordering of the original table.

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

the size of a scan to be equal to the number of tuples it accesses, i.e.,
Size(s;) = End(s;) — Start(s;). Next, we define the price of a range
scan operation of a query g, Price(s;), to be proportional to its size
as follows:

Size(s;)

Price(s;) = ——2500
rice(si) 2s;jes, Size(s))

X Price(q) (1)
Intuitively, the monetary value of each tuple is the amount of in-
come that tuple generates from scans. Given the price of a range
scan s;, Price(s;), the value from each tuple retrieved by the scan s;
is Price(s;)/Size(s;). Since tuples are accessed by multiple scans from
different queries with potentially diverse prices, NashDB maintains
an average value estimate V(x) for all tuples over a window W of
the most recent range scans. This value represents the income a
node can expect to receive per scan by holding a copy of a tuple,
assuming there are no other copies of that tuple:

Price(s;) . .
V(x) = 1 Z Size(s)) if x was read by s; @
(W] siew 0 otherwise

Given the value of tuple, we can now define the value of a frag-
ment. Similarly to a range scan, a fragment f; of a table t is an
ordered set of tuples (according to the physical ordering of the table
t) starting at the tuple with index Start(f;) and ending at the tuple
with index End(f;). We define the size of fragment to be equal to
number of tuples it holds, i.e., Size(f;) = End(f;) — Start(f;). Next,
we define the value of a fragment f;, Value(f;), as the sum of the
average value of each tuple within that fragment. Formally:

End(f;)
Value(f;) = Z V(x) 3)

x=Start(f;)

We use the value of each fragment to decide how many times a
particular fragment should be replicated (see Section 6). Because
storing values for each tuple would be costly, we next introduce
a tree structure to allow for fast computation of fragment values
while using relatively little storage.

4.2 Value Estimation Tree

NashDB must track the average monetary value of each tuple. How-
ever, storing the value of each tuple directly in the database would
introduce significant overhead. Thus, we introduce a tuple value
estimation tree, an augmented binary search tree, similar to an inter-
val tree [15], which enables efficient storage and retrieval of tuples
values based on a window of processed range scans.

Intuitively, the tree works by tracking the change in the monetary
value of each tuple compared to the value of the previous tuple
based on the relation ordering. The monetary value of a tuple,
relative to the previous tuple, can only change if a scan stops or
starts at that tuple. Thus, a node is added to the tree for each unique
starting point and stopping point of the processed data access scans
within the window of scans W.

Let us denote as n; a node of the tree, with key K(n;) being
the tuple index represented by the tree node (i.e., a unique start-
ing/ending point). Each tree node n; also stores the price of the
scans starting or ending at K(n;), S(n;) and E(n;), respectively. For-
mally, with W representing the current window of recent range

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

5 0
I ’ 7[S:2,E: 0] ‘
EPrice(s1)= 6
Price(s,)=3 ’ 4S:05,E: 0] ‘ ’10 [S:0, E: 2.5]‘
L Ss : : iPrice(s,)=5
Cr2Eas 670N | g5 4, Ei0] || 5[S:0,E:1] |
Tuple

Figure 2: Example value estimation tree. Each node represents a
starting or ending point for a scan, and the S and E fields correspond
to the value of the range scans “starting” and “ending”, respectively.

scans, these prices can be defined as:

N Price(s;)
S(ni) = Z { Size(s;)

Price(s;)
Elni) = Z { Size(s;)
Example Figure 2 shows three example range scans and the
corresponding tree. Each tree node represents a starting or ending
point of one or more scans, e.g. the root node r has akey of K(r) = 7,
which corresponds to Start(s;) = 7. Similarly the tree has nodes
with keys equal to 4, 5, 0, and 10 because there are scans that start
or end at these tuples. For the root r with K(r) = 7, the value S(r)
is equal to the sum of the normalized price for all scans starting at
tuple 7. Since s; is the only scan that starts at tuple 7, its price is 6,
and it touches 3 tuples, we have S(r) = 6/3 = 2. The value E(r) is
zero, because no scans end at tuple 7. Similarly, for the rightmost
node n with a key of K(n) = 10, the associated scans are s and sy,
which end at tuple 10. Since scans s; and sz have prices of 6 and 3
respectively, the node has E(n) = 6/3 + 3/6 = 2.5.

sj € W A Start(sj) = K(n,)}

sj € W A End(sj) = K(ni)}

Algorithm 1 Value estimation tree iteration

function ITERATEVALUES(tree)
a0
for n; € tree (in-order) do
a «— a+S(n;)— E(n;)
NoTeVALUE(K (n;), K(nj+1), %)
end for
end function

Tree Lookups Since the tuple value at a key K(n;) increases by
S(n;) and decreases by E(n;), the value of any tuple x, V(x), can be
determined by summing the S(n;) — E(n;) values for all nodes n;
such that K(n;) < x. Thus, the value of every tuple can be computed
using an in-order traversal of the tree (Algorithm 1). We initialize
an accumulator a = 0, and then begin an in-order traversal of the
tree. For each node n; in the traversal, we add the value of S(n;)
and subtract the value of E(n;) from «. We then note that the value
of all tuples from K(n;) to K(n;+1) have a value of a. Since this
process requires only an in-order traversal of the tree, it requires
O(|W]) time and constant space.

Example We next show how we iterate through the tree in Figure 2,
which is created over a window of |W| = 3 scans. We first set @ = 0
and then begin an in-order traversal of the tree. The first node is 0,
so we add its S value to a, yielding & = 1. This means that all the
tuples from the current node (0) to the next node (4) have a value

R. Marcus et al.

of % = % The next node is 4, and we add its S value of 0.5 to «,
yielding & = 1.5. Therefore, all the tuples from the current node (4)
to the next node (5) have a value of % The next node is 5, which
has an E value of 1, so we subtract 1 from «, yielding & = 0.5. We
note that all tuples between 5 and 7 have a value of %4 Processing
the next node, 7, gives & = 2.5 and tells us that the tuples between
7 and 10 have a value of 23—5 Finally, processing node 10 causes us
to subtract 2.5 from a, yielding a = 0. This signifies that all tuples
10 and above have a value of zero.

Tree Updates When a query q arrives, the starting and stopping
points of its scans s; € g can be inserted into the tree by search-
ing the tree for a node ny with K(ny) = Start(s;) and a node ny
with K(ny) = End(s;), and then incrementing S(n;) and E(ny) by
Price(s;)/Size(s;). If either ny or ny do not exist, they are created.
The balance of the tree can be maintained using standard tech-
niques [8]. A scan is removed by finding the appropriate n; and ny
nodes, decrementing the S(n;) and E(nz) values, and then removing
either node if both S(n;) and E(n;) are zero.

To remove scans that fall outside the scan window size, we
additionally store a circular buffer of (Start(s;), End(s;), Price(s;))
values for each scan s; in the scan window. When a new query
q arrives, the scans s; € g are added to the buffer, and if the size
of the buffer exceeds the scan window size, the oldest scans are
removed from the buffer and the tree. Since adding and removing
an element from the buffer takes O(1) time and inserting/retrieving
values from a binary search tree requires O(log n) time, inserting
a new scan into the tree can thus be done in O(log |W|) time, and
the tree itself requires O(|W|) space. Additional optimizations are
given in Appendix A.

Scan Window Size The size of the window of scans controls how
responsive the value estimation tree is to changes in a workload.
Small scan window sizes cause the value estimation tree to respond
quickly to the most recent queries, as the scans of old queries will be
quickly evicted from the buffer. Large scan window sizes enable the
value estimation tree to capture more complex workload trends (e.g.
when queries become small and disjoint, or simply more complex).
The scan window size must be tuned by the administrator, aiming
for a value that is sufficient to capture access patterns and respond
to changes at an acceptable rate.

5 FRAGMENTATION

In traditional distributed DBMSes (e.g., [6, 25]), fragmentation
schemes are chosen by skilled administrators, who normally use a
value-based or hash-based approach. However, such fragmentation
approaches are difficult to tune and require frequent intervention
as workloads shift. Furthermore, this approach, as well as previous
techniques (e.g., [12, 24, 39, 42]) are agnostic to query priorities and
often act independently from replication decisions.

NashDB introduces an automatic and workload-driven approach
to fragmentation that is also tightly coupled to replication. NashDB
fragments data and replicates fragments across multiple machines.
As described previously, NashDB maintains an up-to-date estimate
of the value of each fragment. Given this value, NashDB aims to
replicate fragments with higher value because they are required
by more scans (or by higher priced/priority scans). Specifically,
we want to replicate fragments proportionally to each fragment’s

NashDB: An End-to-End Economic Method for Elastic Databases

Value
3
@
Q
=}

Tuple

Figure 3: An example of an imbalanced fragment: the tuples in ¢;
will be under-replicated, and the tuples in ¢, will be over-replicated.

value, which is the sum of the values of the tuples in the fragment.
Since fragments will be replicated based on their value, we strive
to create fragments where the monetary value of each tuple is as
uniform as possible. This avoids under or over replicating tuples.

To illustrate this, consider Figure 3, which shows an example of
a fragment with non-uniform value. The dotted line indicates the
average value of the fragment. The tuples labeled ¢; have a value
less than the mean, and the tuples labeled c; have a value greater
than the mean. If the entire fragment is replicated based on its mean
value, then the tuples labeled c; will be over-replicated, and the
tuples labeled ¢z will be under-replicated. To create fragments that
are as uniform as possible, the tuples in ¢ and ¢y should be placed
into different fragments.

We next explain how fragment uniformity is measured, and give
the optimization problem to be solved. Then, we present two auto-
matic fragmentation algorithms. The first uses a dynamic program-
ming scheme [29] to find optimally uniform fragments for small
databases. The second uses a greedy heuristic to create good, but
not necessarily optimal, fragmentation schemes for large databases.

5.1 Fragment Uniformity

One intuitive measure of the inefficiency caused by variation from
the mean value within a fragment is the unnormalized variance,
which we refer to as the error. If the fragment f; stores the tuples
from index Start(f;) to End(f;) and the number of tuples it includes
is Size(f;) = End(fi) — Start(f;), then this error can be defined as:

End(f) 2
Value(f;)
Err(fi) = (V(X) T 4)
x:S;t(ﬁ) Size(fi)

Maximally uniform fragments could be created by placing each
tuple into its own fragment, but this level of granularity could not
be effectively stored in disk blocks. Since a block represents the
minimum level of granularity readable by a disk, we set a cap on the
maximum number of fragments, maxFrags, such that, on average,
each fragment fits in a disk block.

We choose to make the average fragment size equal to the size of
a disk block instead of requiring each fragment to be approximately
the size of a block. Doing so enables our fragmentation algorithm
to pack even small groups of high-valued tuples into fragments that
can be highly replicated. If a small set of high-valued tuples were
forcibly grouped with neighboring low-value tuples, the resulting
fragment would not be sufficiently replicated. By requiring that
only the average fragment size be equal to the disk block size, we
balance disk-read efficiency with the total fragment error. We thus
seek a set of horizontal disjoint fragments F = { f1, f2, ...} of each

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

table that minimizes the sum of the errors:

m}n Z Err(fi), subject to |F| = maxFrags (5)
fi€F

5.2 Computing Optimal Fragments

Prior work [20, 22, 29] has shown how to find optimal fragmenta-
tions using dynamic programming in O(kn?) time and O(kn) space,
where n is the number of tuples in the table to be fragmented and
k is the number of fragments. This solution works with arbitrary
error functions, but requires the error function for a potential frag-
ment starting at Start(f;) and ending at End(f;) to be computable in
constant time. We next explain how our error function (Equation 4)
can be computed in constant time.

Since our error function is the unnormalized variance of a frag-
ment, it can be expressed in terms of the squared sum and sum of
squares of each fragment (see Appendix B for a derivation):

End(f;) End(f;) 2
Err(f)= Y, V&P-[) V@ (©)
x=Start(f;) x=Start(f;)

We can thus compute the error of our potential fragment, Err(f;),
using only the squared sum of values and the sum of squared val-
ues between Start(f;) and End(f;). Therefore, we precompute two
arrays of size n, s and sy, to store the cumulative sum and sum of
squared V(x) values for all tuplesuptoy, 0 <y < n:

y
syl = > V()
x=0

Both sums can be computed trivially in linear time. The error
function Err(f;) can thus be computed in constant time:

Err(fi) = (s2[End(f)] = salStart(fi)))~(s[End(f)] = s[Start(f;)])*

Using these precomputed values, the dynamic programming
scheme of [29] can be used to find an optimal fragmentation. How-
ever, the time complexity of O(kn?) and the space complexity of
O(nk) may be prohibitive for very large databases. In the next sec-
tion, we present a greedy approximation for optimizing Equation 5.

y
salyl =) Vix)?
x=0

5.3 Greedy Fragmentation

For very large databases, computing the optimal fragmentation
could be time and space prohibitive. For this case, we propose a
greedy strategy based on successively splitting and merging to-
gether fragments in a way that greedily minimizes the fragment
error (Equation 4) at each step.

Given a cap on the maximum number of fragments to create,
maxFrags, our greedy fragmentation consist of two procedures:

e When the number of fragments is less than maxFrags, we
split one fragment into two in a way that maximizes unifor-
mity within the resulting fragments.

e When the number of fragments is equal to maxFrags, we
merge three adjacent fragments into two fragments in a way
that maximizes uniformity within the resulting fragments.

The merging and splitting procedures are executed at user-
specified time intervals. Both procedures make greedy decisions
that minimize error and help adapt the fragmentation scheme to
dynamic workloads. Intuitively, the splitting procedure splits the

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

Value
Value
Value

—

Tuple S Tuple Tuple

Figure 4: When considered, these three adjacent fragments will be
joined into two fragments, split at the point marked by S.

most advantageous fragment, increasing the number of fragments
by one and decreasing the error. However, once the splitting pro-
cedure has created maxFrags fragments, no new fragments can be
created, but the workload may still shift over time. The merging
procedure is then used to decrease the number of fragments by
one - it selects the three fragments that, when combined into two,
increase the error the least. This allows the splitting procedure to
find new splits that are beneficial to the shifted workload.

5.3.1 Fragment Splitting. Intuitively, splitting a fragment at the
right point can reduce the unnormalized variance by creating two
new fragments where the values of each tuple in each new fragment
are closer to the fragment’s mean. For example, the fragment in
Figure 3 could be split at the point between c¢; and cz to create two
new fragments with significantly lower unnormalized variance.

In order to split one fragment into two, we first determine the
optimal splitting point, Split(f;), for each fragment f; € F. Then, we
select the fragment for which the optimal splitting point produces
the greatest reduction in error. Formally, we define Split(f;), the
optimal splitting point for a fragment f;, as the split point that
would result in the minimum sum of error:

Split(fi) = ngn [Err(fj) + Err(fk)] s.t. 7)

Start(fj) = Start(f;), End(fj) = p
Start(fi) = p, End(fy) = End(f;)

To find this split point, one can track the sum and the sum of
the squared value V(x) for all tuples with an index (position within
the fragment) less than the currently considered point, and for all
tuples with an index greater than the currently considered point.
These values can be used to compute the quality of a potential split
using Equation 6. This split point can be efficiently computed in
constant space and O(n) time, where n is the number of tuples in
the fragment. We give the precise algorithm in Appendix C.

After computing the optimal split points, Split(f;), for each
fi € F, we select the fragment for which the split produced the
largest reduction in error.? That is, we split the fragment f; into
the fragments f; and f; for which Err(f;) — (Err(fj) + Err(fi))
is maximized. While greedy, each split operation is guaranteed to
reduce the sum of unnormalized variance [10] of the fragmentation.
If the fragmentation scheme is already optimal, the split will leave
the sum of the unnormalized variance unchanged.

5.3.2 Fragment Merging. Simply using the splitting procedure
until the maximum number of fragments have been created is
not enough to enable NashDB to adapt to changes in workload.
Thus, when the maximum number of fragments have been created,

2In practice, to avoid unnecessary splitting, one might wish only to split a fragment if
the reduction in unnormalized variance is sufficiently large.

R. Marcus et al.

NashDB recombines fragments with similar means so that more
advantageous splits can be found. Since adjacent tuples are likely
to have similar value, NashDB seeks to combine adjacent fragments
where the mean value of both fragments are similar.

A simple strategy of combining pairs of adjacent fragments
leaves room for improvement. Consider the three adjacent frag-
ments in Figure 4. The second and third fragments have similar
mean value, so a simple strategy would combine them. However,
the combined second and third fragments have a mean value sig-
nificantly different from the first fragment’s mean. Even though
the tuples on the right-hand side of the first fragment could be
advantageously combined with the second fragment, the simple
fragment joining strategy may never combine them.

Thus, we consider merging three adjacent fragments into two.
Our merging procedure is motivated by the fact that the best single
split point (Equation 7) can be found in linear time, whereas finding
the optimal split point for turning k > 4 adjacent fragments into
k — 1 fragments would require quadratic time.

Intuitively, NashDB’s fragment merging procedure works by
first measuring the unnormalized variance of joining together each
window of three adjacent fragments into two hypothetical frag-
ments, and then selecting the triplet of adjacent fragments that
led to the best observed unnormalized variance. This results in
one fewer total fragments. Formally, we check each adjacent set
of three fragments, f;, fj and fi, and find the point that optimally
divides the three fragments into two new fragments, fo and fg.

Merge(fi, fj, fx) =n}}n [Err(fa) + Err(flg)] s.t.

Start(fy) = Start(f;), End(fg) = p
Start(fg) = p, End(fg) = End(fi.)
Start(f;) < Start(fj) < Start(fy)

We then select the triplet of fragments which, when joined into
two fragments, maximizes the decrease (or, when this is not possi-
ble, minimizes the increase) of the total sum of the errors. Specifi-
cally, we select the triplet for which Err(f;) + Err(f;) + Err(fy) —
[Err(fa) + Err(fﬁ)] is minimized. This will not always decrease
the sum of unnormalized variance, but this will always decrease
the number of fragments by one. If the number of fragments before
joining was maxFrags, this allows the splitting procedure (Sec-
tion 5.3.1) to be performed again. As workloads shift, this ensures
that NashDB can continuously adapt its fragmentation scheme.

6 REPLICATION

Given any fixed fragmentation scheme (optimally or greedily gen-
erated), NashDB decides (1) how many replicas of each fragment
to create, (2) how many cluster nodes to provision, and (3) how
to allocate replicas onto those nodes. We refer to these decisions
collectively as a cluster configuration. Intuitively, fragments with
higher value (fragments which are used by high-value queries, or a
large number of low-value queries) should be replicated more than
fragments with lower value. Our goal is to identify a configuration
such that the demand for a fragment (the fragment values) is bal-
anced against the cost of storing these fragments (the number of
replicas of these fragments and their associated storage costs).

NashDB: An End-to-End Economic Method for Elastic Databases

Many different configurations may balance the number of repli-

cas and the cost of storing each replica, but we aim for a configura-
tion that is in Nash equilibrium. Intuitively, a solution is in Nash
equilibrium if and only if no single node can unilaterally increase
its profit by dropping, adding, or swapping replicas. While previ-
ous work [41] used economic models to offer similarly balanced
replication schemes, their approach relies on market simulation
and hence slowly reaches Nash equilibrium with high probability
given sufficient time. A major advantage of NashDB lies in its abil-
ity to compute a converged solution directly, without requiring a
costly market simulation. Our algorithm assumes a fixed fragmen-
tation scheme as an input, and will find a Nash equilibrium for any
fragmentation scheme.
Nash equilibrium Let us assume a cluster where each node has
some usage cost Cost per unit time (e.g., rent cost), as well as some
fixed disk capacity Disk. Then the average cost of disk storage per
time period is g?ssli For simplicity, we assume that the cost and
disk space of all nodes are equal, but our techniques can be easily
extended to work with non-uniform costs and disk sizes.

Given a set of fragments G to replicate on an elastic cluster,
the expected cost of storing a replica of fragment f; € G with size
Size(f;) on a cluster node is:

Cf;) = Size(fi) x %

The expected income per replica of a fragment f;, I(f;), is then
the expected income of the fragment f; over a window of scans W,
divided by the number of replicas for that fragment, Replicas(f;).
Hence, the more replicas are available, the lower their value is to
the nodes. This expected income is defined as:

Value(f;)
Replicas(f;)

Finally, ignoring the cost of unused space, we define the profit
of anode m; € M storing replicas of a set of fragments G; C G as:

Profit(mi,Gi) =) I(fi) = C(fi) ®)

fiEGi

I(fi) = [W| x

Definition 6.1. We say that a cluster configuration is in Nash
equilibrium if and only if all of the following hold: (1) no node can
remove a fragment to gain a profit, (2) no node can add a fragment
to gain a profit, (3) no node can swap one fragment for another and
gain a profit, and (4) no new node can find any set of fragments
such that it produces a profit if added in the cluster. This definition
is formalized in Appendix D.

We next express NashDB’s algorithm for finding a cluster con-
figuration that meets Definition 6.1, followed by a proof of the
algorithm’s correctness. Our algorithm works in two parts. First,
given a set of fragments G to replicate, we determine the number of
replicas, Replicas(f;), for each fragment f; € G. We replicate each
fragment f; such that any node owning one of the replicas of f;
will make a profit, but if a single extra replica of f; is created, no
node owning a replica of f; will make a profit. Second, we find an
assignment of these replicas to cluster nodes.

Number of Replicas We define Ideal(f;) as the largest value of
Replicas(fi) such that the profit from owning a replica of f; is at

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

least zero, but adding an extra replica would cause the profit to go
below zero. Thus, Ideal(f;) is equal to:

Value(f;)

Cost S
Replicas(f;)

0
Disk —

W| x — Size(fi) X

max

Replicas(fi)
It is trivial to show that the ideal number of replicas to create for
a particular fragment is equal to the total revenue earned by the
fragment divided by the cost of the fragment:

Ideal(f;) =)

W[X Value(fi) | _ { |W| X Value(f;) x Disk
Size(f;) x g‘l’ssli Size(f;) X Cost

Intuitively, this formula states that when any of (1) the number of

scans per unit time, (2) the average value of the tuples in a fragment,
or (3) the amount of disk space available increases (ceteris paribus),
the number of replicas should increase. Additionally, if the size of
the fragment or the cost of a node increases (ceteris paribus), the
number of replicas should decrease.
Replica Allocation The formulation of profit given in Equation 8
does not penalize nodes for unused disk space (it assumes each node
only pays for used space). However, costs are normally incurred
regardless of how much local disk space is used. In order to minimize
wasted space, we will seek the tightest possible packing of the
selected number of replicas into the fewest number of nodes.

We constrain ourselves to assignments where no node gets a
duplicate of a fragment (since storing the same data twice on the
same machine would not be useful). Finding an assignment of
each replica to one of a minimal number of cluster nodes, thus
achieving the minimum wasted free space, is equivalent to the class-
constrained bin packing problem [40], which is NP-Hard. However,
there are greedy heuristics with known error bounds [17, 45].

We employ the Best First Fit Decreasing (BFFD) algorithm of [45],
which has an approximation factor of 2. BFFD works by maintaining
alist of nodes (bins) M, initially with a single empty machine. BFFD
first places the replicas of the fragment f; for which Replicas(f;)
is the highest. To place a replica, BFFD scans the current list of
machines M and places the replica on the first machine on which
the replica fits. If no such machine exists, a new one is created and
added to the end of the list. Once all of the replicas of f; are placed,
BFFD moves on to the fragment with the next highest number of
replicas. This process repeats until all replicas are placed.

This procedure may still leave unused space on some nodes. One
could take advantage of this small amount of extra space to store
additional replicas. This would ignore the economic model (the
additional replicas are not profitable), and might produce additional
overhead when transitioning the cluster.

Theorem 6.1. The set of cluster nodes produced and the associated
replication scheme is in Nash equilibrium.

Proor. The intuition is that Equation 9 replicates each fragment
such that each replica’s profit is greater than or equal to zero, but
creating one additional replica of any fragment will cause the profit
to go below zero. Therefore, deleting or adding any fragment (in-
cluding in a swap) cannot increase profit. We prove that each of four
conditions given in Definition 6.1 are satisfied in Appendix E. O

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

7 CLUSTER TRANSITIONING

At user-specified time intervals, NashDB will use the up-to-date
tuple value estimator to compute a new fragmentation and replica-
tion scheme. Once this new scheme is selected, NashDB transitions
the cluster from the old scheme to the new scheme, which might in-
clude changes to (1) fragment boundaries, (2) the number of replicas,
(3) the number of cluster nodes, and (4) the allocation of replicas to
nodes. Finding the transition strategy that minimizes data transfer
is critical to quickly transitioning between schemes.

The problem of finding the optimal transition strategy can be
expressed as a bipartite graph matching problem. Each node in the
old scheme is represented as a vertex in the first partition of the
graph, and each node in the new scheme is represented as a vertex in
the second partition. The edges between the vertices represent the
cost of transitioning one node into another. The minimum-weight
perfect matching, which can be found using the Kuhn-Munkres
algorithm [23], represents the optimal transitioning strategy.

Formally, given initial nodes {m1,ma,...,my} € V and a new
configuration {m{,mj, ..., m;.} € V', we create a bipartite graph
G ={VUV’,E}. Gis complete,ie. E = {(m,m’) |meV,m' e V'}.
If the number of nodes in each partition are not equal (i.e, |V| #
[V’]), we add “dummy vertices” to whichever partition (V or V’)
has fewer vertices so that |V| = |V’|. A dummy vertex in the first
partition V represents a node that will be added (the new scheme
has more nodes than the previous scheme), and a dummy vertex
in the second partition V” represents a node that will be removed
(the previous scheme has more nodes than the new scheme).

The edge weights, w(m;, mj’.), between two vertices m; € V and
m’, € V' represent the total amount of data that would have to
be transferred to transition m; into m’,. Intuitively, turning a node
in the old scheme into a node in the new scheme with similar
fragments should have a low cost, and turning a node in the old
scheme into a node in the new scheme with dissimilar fragments
should have a high cost. Let Data(m;) = {tq, tp, . .. } represent the
tuples assigned to fragments on machine m;, and let Data(m;.) -
Data(m;) be the tuples that are on mj’ but not on m;. Then, the
edge weights w(m;, mj’) can be defined as:

e When m; € V is not a dummy vertex and mj’. eV'isa
dummy vertex, the edge (m;, m}) represents entirely remov-
ing the node represented by m;, so the weight of the edge is
zero, i.e. w(mj, m;.) =0.

e When m; € V is a dummy vertex and m} € V' is not a
dummy vertex, the edge (m;, mj’) represents provisioning
a fresh node, so all the data required, Data(m}), must be
copied. Therefore, w(m;, m}) = |Data(m})|.

e When m; € V and m]’ € V’ are both non-dummy vertices,
the edge (m;, m;.) represents turning m; into m}. The new
data that must be copied is any data that is on m’; but not on
m;, so w(m;, m;) = |Data(mj’.) — Data(m;)|.

We define a transition strategy, T, to be a perfect matching of G:
a set of edges such that each vertex appears in exactly one edge.
The bold edges in Figure 5 shows one such perfect matching. An
edge (mj, m}) € T means that the machine represented by m; is

turned into the new machine represented by m}’.. Since T is a perfect

R. Marcus et al.

oid New
(0, 20) \ ‘ 1 (0,20)
(30, 50) 0 (20, 35)

T 20
20, 30 -35 (35,55)
A
T/ (30,50)] 55 75)
15

(0, 20) N
(50, 75) 22 gf’

Figure 5: A perfect minimal weight bipartite matching between the
old scheme (left) and the new scheme (right). The original top and
bottom nodes transition, and the middle node is destroyed.

matching, every machine in the old scheme is turned into some
machine in the new scheme (or deleted / created, if matched with
a dummy vertex). Note that it is impossible for both m; € V and
m} € V’ to be a dummy vertex, since dummy vertices are only
added to the partition with fewer members (i.e., a dummy vertex
can be added to either V or V’, but not both).

The cost (number of tuples to be copied) for a strategy T is the
sum of the edge weights, and we seek the optimal T. Letting T be
the set of all possible perfect matchings, the optimal T € T is:

rTnel% Z w(m;, m]’) (10)
(m,-,m;.)eT

While there are O(|V|!) possible perfect matchings, the Kuhn-
Munkres algorithm [23] can find the minimal perfect matching in
O(|V|®) time [43]. In our experiments, we found standard imple-
mentations [4] to be sufficiently fast even for thousands of nodes.
Example Figure 5 shows an example graph. The left-hand side
represents the old configuration (S), containing three nodes. The
right-hand side represents the new configuration (S). Each edge
weight represents the cost of turning the left-hand side node into
the connected node on the right-hand side. For example, the edge
weight between the two top-most nodes is 15, because 15 new
tuples would need to be transferred. The edge weight between the
middle two nodes is 25, because tuples 50-75 would have to be
transferred onto the machine. The edge from all the machines on
the left-hand side to the bottommost dummy vertex on the right-
hand side has weight zero, since removing a node does not require
any data transfer. The bold edges show a minimal perfect matching,
and is thus a solution to Equation 10.

NashDB computes a new fragmentation and replication scheme
and transitions to it based on a user-defined time interval. This in-
terval must be tuned by the user. If the interval is too short, NashDB
may initiate a large number of small but unnecessary data transfers.
If the interval is too long, workload drift may cause significant
performance degradation. We suggest setting the interval based on
how frequently the tuple value estimation buffer cycles through
data: for example, if the maximum number of scans held in the
buffer represents an hour of data, we suggest transitioning the
cluster every hour. We leave to future work the task automatically
detecting when the cluster should be transitioned.

NashDB: An End-to-End Economic Method for Elastic Databases

8 ROUTING DATA ACCESS REQUESTS

NashDB includes a range scan router module that strives to iden-
tify the best replicas to read when processing an incoming query.
Previous approaches aimed to either minimize query span [24] (i.e.,
the total number of nodes used to fetch the input of a query) or data
access time [42] (by load balancing the access of popular tuples
across many nodes). Here, we present the MAX oF MINSs algorithm,
which balances these two goals: MAX oF MINS seeks to take advan-
tage of highly-replicated, popular tuples to improve access latency,
while increasing the data access span only when it is beneficial to
the overall performance of the query.

When routing a range scan s of a query, the DBMS breaks down
the range scan operation into the set of fragments to be fetched,
F(s), and then selects a replica of each required fragment. Let us
denote as E(s) the nodes that store at least one fragment in F(s).
NashDB makes routing decisions based on the wait time on these
nodes (due to the bottleneck of disk access). Specifically, we assume
that fragment access requests are queued on nodes and the time
to read a fragment is proportional to the number of tuples in the
fragment. Hence, the wait time to read a fragment from a node
m;, Wait(m;), is equal to the total number of tuples in the node’s
already-queued requests. Like previous work [9, 11, 26, 39], we
note that, for OLAP workloads, these queues can be tracked with
relatively little overhead, as scans tend to take a long time to process
and thus dominate communication costs.>

To model the query span overhead, Max oF mINs adds an es-
timate of the penalty from increasing the span by one, ¢, to the
estimated wait time of any node not currently included in the span.
A new node m; is used for serving a scan only if doing so is benefi-
cial despite the penalty ¢.

Max oF MINs schedules fragment requests on the node with
the shortest queue, in order based on the largest minimum possible
wait time for access to a fragment. The maximum of the minimum
wait times is selected because we assume queries can finish only
after all required fragments have been fetched. Therefore, since the
request whose minimum possible processing time is maximal is a
bottleneck, we schedule it first.

Let U(s, m;j) be a function that indicates if the node m; has al-
ready been selected to process the range scan s. Formally, Max oF
MINS schedules the fragment request that satisfies the following:

max min Wait(m;) + U(s,mj) X 11

fi€F(s) \m, €E(s) (m;) j) % ¢ ()

The fragment request selected is scheduled on the node for which

the wait time was minimal. Intuitively, MAX OF MINS only increases

the span when doing so is better than using any of the nodes
currently selected to process the fragment read.

9 RELATED WORK

Previous work on fragmentation and replication have been diverse.
Mariposa [41] assumes a fixed number of nodes which bid on
queries and bargain in an open marketplace. Nodes split, sell, and
replicate fragments. Mariposa adapts to changes and converges to a

31f scans were to be smaller, one could adapt “Power of 2” techniques [32, 35] to
schedule scans (e.g., consider only two random nodes from the eligible set, and choose
the node from that pair which satisfies our goal as captured by Equation 11).

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

good fragmentation strategy over time. Unlike NashDB, Mariposa
directly simulates a marketplace, creating overhead while slowly
driving the system towards equilibrium. NashDB computes this
equilibrium directly, avoiding the overhead of a market simulation.

DYFRAM [19] maintains access frequency histograms at each of
a fixed number of nodes. Each node can choose to split or combine
fragments based on a cost function, or replicate fragments from
their neighbors. DYFRAM’s primary goal is decentralization, making
it more resilient to failures at the cost of increased overhead.

SWORD [24] and Schism [12] represents tuples and queries as
vertices and edges of a hypergraph. Given a fixed number of nodes,
a hypergraph is cut into n disjoint partitions, trying to break as few
edges as possible. Each partition is assigned to a node. To fill excess
space, tuples are replicated based on a heuristic to further decrease
the number of broken edges. Both systems try to decrease network
costs for distributed query processing, and thus consider replication
only as a tool to decrease potential communication overhead, and
not as a way to increase performance in general.*

E-Store [42] uses a thresholding approach in which tuples are
either “hot” (accessed frequently) or “cold” (accessed infrequently).
The hot and cold tuples are assigned to one of a fixed number of
nodes. “Hot” tuples are replicated aggressively. E-Store adjusts the
size of the cluster by adding or removing single nodes when the
CPU usage of the cluster moves outside a threshold, after which
fragmentation and replication strategies are recomputed. This ap-
proach is easy to implement, but responds only to CPU usage and
raw access frequency, as opposed to dollar-cost and query priority.

Clay [39] combines the threshold approach with the hypergraph
approach, actively migrating “hot” tuples, and tuples frequently
accessed along with them, away from overloaded nodes. Clay does
not handle data replication or cluster sizing.

Unlike NashDB, all of these solutions are agnostic to query prior-
itization. Modern DBMSes generally allow for some form of query
priority, but existing solutions are limited to allocating compute
resources (CPU, RAM, etc.) at query runtime [31].

Squall [16] is a system for performing pre-defined live migrations
on main-memory partitioned databases, concerned with safety and
efficiency for OLTP databases. In principle, Squall could be used to
execute the transition plans created by NashDB (Section 7).

10 EXPERIMENTS

In this section, we evaluate NashDB experimentally. We built a

prototypical NashDB on the AWS [2] cloud with m2.1large EC2

instances. Our prototype executed SQL queries on PostgreSQL [6]

and we replaced the physical access operators of PostgreSQL to

route data requests through NashDB’s scan router.

Workloads In our experiments we used two different types of

workloads from several datasets (details in Appendix F):

(1) Static workloads: these workloads represent batch jobs in which
a large number of queries are sent simultaneously. Here, the
TPC-H workload consists of all query templates of the TPC-
H [7] benchmark with a size of 1TB. The Bernoulli workload
is a variation of the TPC-H workload that consists of simple
range queries over the 1TB TPC-H fact table. It simulates a
time-series analysis in which more recent tuples are accessed

4 As noted in [12, 24], this applies strongly to OLTP workloads.

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

more frequently than older tuples: each range query ends at
the last tuple, and the starting points are drawn from a binomal
distribution, such that 95% of the queries access the last 1GB of
data, 90% of the queries access the second to last 1GB of data,
and 100 X %n percent of the queries access the nth from the
last GB of data. Finally, we used a real-world workload (Real
data 1) that represents a batch workload of 1000 queries over an
800GB database that is periodically executed to update analytic
dashboards at a large corporation, which provided data on the
condition of anonymity. We provide more information about
this dataset in Appendix F.

(2) Dynamic workloads: these workloads represent online jobs,
spanning 72-hour periods. The Random workload is synthetic,
and represents a sequence of aggregated range queries with
uniformly distributed start and end points over a TPC-H fact
table. Real data 1 and Real data 2 represent real-world queries
issued by analysts and other applications on a production data-
base server at two large corporations that provided data on
the condition of anonymity. The databases are 300GB and 3TB
in size, and the workload includes 1,220 and 2,500 queries re-
spectively. We provide more information about this dataset in
Appendix F.

System Parameters Unless otherwise noted, we collect our value

estimation statistics over a the scan window size of 50 scan re-

quests. When applicable, the cluster transitioning algorithm was
ran every hour. We include the overhead of cluster transitioning
and scheduling in our cost and latency measurements.

10.1 Fragmentation

First, we evaluate NashDB’s ability to find low-variance fragments.
In Figure 6a and 6b, we compare the inner-fragment variance of
several algorithms, which we describe next.

Fragmentation algorithms The Optimal algorithm computes op-

timal fragmentations using a dynamic programming scheme as
described in Section 5.2. The NashDB algorithm uses the greedy
splitting/joining approach we introduced in Section 5.3. The DT
algorithm greedily searches for the best split point of the data,
then recursively splits the resulting two halves until the maxi-
mum number of partitions have been created. This is equivalent
to only running the “split” procedure of NashDB, and is similar
to the CART [10] decision tree induction algorithm. The Hyper-
graph algorithm uses a hypergraph partitioning approach to create
partitions that minimize query span, similar to SWORD [24]. This
approach treats each tuple and each query as the vertices and edges,
respectively, of a hypergraph. Standard hypergraph partitioning
techniques are applied to give a fixed number of partitions with few
edges spanning multiple partitions. Tuples are selected for replica-
tion to further decrease the number of broken edges (“Improved
LMBR” in [24]). While this approach aims to minimize query span,
and not to minimize the error (Equation 4) as NashDB does, we
compare against it to highlight the difference in the fragmentation
strategies selected by the two approaches. The Naive algorithm
partitions the database into fragments of equal size.

Static workloads Figure 6a shows the performance of various
partitioning algorithms on static workloads. To evaluate the perfor-
mance of each algorithm, we run the static workload first and then

R. Marcus et al.

measure the error (Equation 4) of each partitioning algorithm after
the whole workload has been seen. For both synthetic workloads,
the DT algorithm outperformed the Hypergraph and Naive methods.
The Bernoulli dataset represents an adversarial input for the hyper-
graph approach, since the best k-cut of the graph will place the first
k — 1 tuples in their own partitions, and the remaining tuples will
be grouped together in one partition. On the real-world workload,
the Hypergraph approach outperformed both the Naive and DT ap-
proaches, implying that the good min-cut partitionings of the query
span hypergraph can correspond with low-variance fragmentation
strategies in real world data. In each case, the NashDB algorithm
is within 50% of the Optimal partitioning, and, in each case, the
NashDB algorithm matches or outperforms all the other heuristics.
Dynamic workloads Figure 6b shows the performance of the frag-
mentation algorithms on dynamic workloads. The fragmentation
scheme is recalculated after each query, and the sum of the total er-
ror over each fragmentation scheme is computed. The significantly
higher gap (when compared to the static case) between the Optimal
and the NashDB algorithm shows how the suboptimal nature of the
split/join heuristics can become significant over time. The differ-
ence between the partitions created by NashDB and DT (a factor of
approximately two) shows the importance of being able to split and
join fragments as workloads progress and change. By employing
both a splitting and joining heuristic, NashDB outperforms other
heuristics on dynamic data by approximately a factor of two.

Value estimation overhead We also measured the overhead of
the tuple value estimation tree (Section 4.2). With a window size of
|W| = 50 scan requests, the size of the value estimation tree and
buffer was always under 1 kilobyte, and the access time was always
under 5ms. Increasing the scan window size to 1000 scans (a value
significantly higher than necessary), the size was always under 4
kilobytes, again with access times less than 5ms. We conclude that
the tuple value estimation tree is able to maintain its online estimates
with sufficiently low overhead.

10.2 Query Prioritization

NashDB allows users to specify a price for each query sent, with
higher prices resulting in lower query latencies. Figure 6¢c shows
the average latency over time of TPC-H [7] workloads running on
NashDB. Here, all queries are given the same price, and we vary
this price. When the price of each query in the batch is set to 1/100
of a cent, the average latency has high variance and mean. As the
price per query increases, both the mean and variance decrease, as
this increase in query value causes NashDB to generate additional
replicas and to provision more nodes. A higher resource usage cost
is incurred, but the query execution times are improved.

NashDB also supports workloads with mixed query priorities.
Using the same TPC-H workload, we varied the price of all instances
of TPC-H template #7 (the template with latency closest to the
average latency for the whole workload) from 1/100 of a cent to
16/100 of a cent, while keeping the priority of all other queries fixed
at 1/100 of a cent. As a result, the average latency of instances of
template #7 fell significantly (by a factor of four), while the queries
with fixed priority saw only a modest (10%) improvement (Figure 9a
in Appendix G).> This modest improvement is due to the fact that

5 All other templates exhibit similar behavior. We plot only #7 due to space constraints.

NashDB: An End-to-End Economic Method for Elastic Databases

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

100000 T T — 1x107 — T — 450 T T — - -
Optimal m— Naive m=== Optimal m— Naive m=== Query price = 1/100 ——
NashDB mmmmm Hypergraph ——— - NashDB mmmmm Hypergraph ——— 400 Query price = 2/100 —— |
DT == o DT == guery price = 4/100
= - — fim} _ - 350 uery price = 8/100
g = 1x10% F 3 @ Query price = 16/100
] < >
z £ 2
] & 2
E 10000} (L 100000 F 1 kS
g 5 o
[S @
K] = g r
° k] z
[g 10000 ¢ i \
p=1
« 50
1000 TPC-H Bemoull Real data 1 1000 Random Realdatai Real data 2 OG0 20 30 40 50 60 70 80 90 100
Dataset Dataset Time

(a) Fragment variance for static workloads (b) Fragment variance for dynamic workloads

(c) Effect of query priority on latency

Figure 6: Variance and query priority

the other queries can often still take advantage of the extra replicas
created for higher priority queries. NashDB’s responsiveness to query
priorities provides a single knob to adjust performance and cost, at
both the workload and query level.

10.3 Cost and Performance Evaluation

Here, we evaluate various cost and latency properties of NashDB
and compare it to other heuristics. First, we compare NashDB with
the Hypergraph approach we described in Section 10.1. This ap-
proach is tuned by adjusting the number of partitions created by
the hypergraph, which correspond to the number of nodes used.
Increasing the number of partitions increases the cluster size, which
increases cost while decreasing latency. We also compare against
a thresholding algorithm, labeled Threshold. Like in E-Store [42],
this algorithm first partitions the data into “hot” and “cold” sets of
tuples, and then distributes those tuples over a number of nodes.®
Since the E-Store system was designed for OLTP databases with-
out replicated tuples, we additionally replicate each tuple in linear
proportion to the tuple’s access frequency. This approach is tuned
by adjusting the size of the cluster, i.e. the number of nodes. More
nodes incur a higher cost, but leads to better query performance.
Pareto Analysis In this section, we compare the end-to-end perfor-
mance of NashDB against the Hypergraph and Threshold heuristics
on our static workloads. To compare these systems, we vary their
parameters through a wide range of reasonable values and plot the
resulting monetary cost and average query latency in Figure 7. For
NashDB, we varied the query priority between 0 and 128, by steps
0f 0.005. For Hypergraph, we vary the number of partitions between
4 (the minimum, given our dataset size) and 400. For Threshold, we
vary the number of nodes between 4 (the minimum) and 400. Fig-
ures 7a, 7b, 7c show the latency and cost achieved by each of these
algorithms for static each workload (i.e. the production possibilities
for each algorithm). A point is Pareto optimal if there is no other
point that has both an equal or lower latency and an equal or lower
cost. The set of all Pareto optimal points is the Pareto front.

For both synthetic workloads, shown in Figure 7a and 7b, all the
points on the Pareto front are from NashDB. In other words, no
configurations of the Threshold or Hypergraph approaches were
found for which NashDB does not provide a equally good or better
performance for equally good or lower cost. For the real-world

5We use the “Greedy extended” algorithm proposed in [42].

workload (Figure 7c), a single configuration of the hypergraph algo-
rithm is on the Pareto front. Setting this point aside, we conclude
that for these workloads, there exists an NashDB configuration that
strictly dominates any configuration of the other two systems.

Fixed Latency/Cost We compare NashDB, Hypergraph, and
Threshold in terms of monetary cost and data transfer overhead
after adjusting each algorithm to achieve identical average latency
on our dynamic datasets. During this experiment, the transitioning
techniques for all three system ran hourly. The monetary cost and
latency overheads of these transitions, as well as overhead included
from query routing, are included in the results.

Figure 8a shows that NashDB can achieve the same average query

latency at significantly lower cost than Threshold or Hypergraph.
For the Real data 2 dataset, the cost of NashDB is approximately 15%
lower that Hypergraph. Furthermore, when keeping the monetary
cost fixed, NashDB allows for lower data access latency as shown in
Figure 8b: with a fixed total cost of $20, NashDB provides an average
query latency that is 20% — 50% lower than other approaches. The
95% and 99% tail latencies (Figure 10 in Appendix G.1) also confirm
that a high percentage of queries benefit from NashDB, i.e., have
lower latency compared to the other techniques.
Transitioning Overhead NashDB incurs significantly higher data
transfer overhead when transitioning between two different con-
figurations (Figure 9b in Appendix G). Hypergraph has the lowest
data transfer cost as it is designed to optimize for that overhead.
Threshold comes second in terms of transition overhead. However,
both Threshold and Hypergraph still result in higher total cost and
latency than NashDB, as shown in Figure 8a and 8b (note that the
latency measurements include transition overhead). Hence, despite
the fact that NashDB transfers more data during transitions, it is still
Pareto optimal with respect to monetary cost and query latency.

We note that the average data transferred per hour by NashDB is
very small (< 200MB) and the average time to perform a transition
was under two seconds. To put this number in context, for the Real
data 2 dataset (the dataset with the largest transfer overheads), the
per-minute data throughput of NashDB varied between 255GB/m
and 265GB/m, representing a variance of less than 5%. Similar ob-
servations can be made from the other two datasets (Figure 11 in
Appendix G.2). Hence, the transitioning overhead has a minimum
impact on the throughput of the system.

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

R. Marcus et al.

7 7 7
1x10 NashDB 1xo NashDB 1o NashDB
Hypergraph Hypergraph Hypergraph
Threshold . Threshold Threshold
- _ oo et S
S 1x10%F S 1x10%F . "t - S 1x10%F
o o o
o o o
2 = e '
= - = = :
& 100000 & 100000 & 100000
o o -~ o - .
10000 55567000 1500 2000 2500 3000 3500 4000 °°%0G 500 1000 1500 2000 2500 3000 3500 4000 °C°G 500 1000 1500 2000 2500 3000 3500 4000
Average Latency (s) Average Latency (s) Average Latency (s)
(a) TPC-H workload (b) Bernoulli workload (c) Real workload
Figure 7: Cost and latency tradeoffs for static workloads.
4.5x10° 300 1000 .
NashDB mmmmm NashDB mmmm Max of mins mm—m
ax108 Hypergraph s | 280 - Hypergraph 900} Shortest queue
x10 Threshold === Threshold === Greedy SC ==
S 35x10°} @ Ziz | @ 8001
8 axi0f) g 7of
] g 01 S ool
= 25108 S 200t S
z o © 500
7 2x10° g 180 e
3 S 160 & 40r
© 1 5x10°} z z
: 140 - 300
1x10° 1 120} 200
500000 Random Realdata1 Real data 2 100 Random Realdata1 Real data 2 100 Random Realdata1 Real data 2
Dataset Dataset Dataset

(a) Monetary costs with fixed latency

(b) Average latency with fixed cost

(c) Latency, various schedulers

Figure 8: Experiments on dynamic workloads

10.4 Routing Evaluation

Next we evaluate MAX OF MINS, the algorithm for routing fragment
read requests to replicas, by comparing to two other approaches: (a)
Greedy SC, which minimizes query span of each query by repeatedly
selecting the node with highest number of remaining tuples [24],
and (b) Shortest queue, which minimizes fragment request latency
by scheduling each fragment request on the node with the shortest
queue. We compare these algorithms for dynamic query workloads.

For MAx OF MINs we set ¢, the cost of increasing the query
span by one, to ¢ = 350ms after performing a simple experiment on
AWS [2]. Each node reports its queue length whenever a fragment
read completes. This overhead is included in all of our experiments.

Figure 8c shows that, at approximately the same cost, MAX OF
MINs delivers substantially shorter latency than either Shortest
queue or Greedy SC. This advantage in latency comes from taking
into account both the queue size and the query span. The signifi-
cantly higher latency incurred by the Greedy SC is due to nodes
with particularly popular sets of fragments becoming performance
bottlenecks — other nodes sit idly while the few nodes with popular
fragment sets process their queues.

We measured the average span (number of nodes used per query)
of the produced schedules (Figure 9c in Appendix G). As expected,
Greedy SC has the lowest average query span (1.1 on “Real Data
2”). Shortest queue has the highest query span (3.3), because the
algorithm does not take query span into account at all. Max oF
MmiINs, which increases query span only when there is a latency

benefit, has an average query span of 1.5, which is significantly
lower than Shortest queue, but slightly higher than Greedy SC. Max
OF MINS strikes a balance between span and wait time, which provides
both low-latency and low-cost schedules.

11 CONCLUSIONS

This work introduced NashDB, a data distribution framework for
OLAP workloads that relies on ecomomic theory to automati-
cally fragment, replicate, and allocate replica on an elastic cluster.
NashDB takes an input query priorities (expressed as prices) and
data access requests, and strives to optimally balance replica supply
to workload demands. Specifically, it tightly couples an economic
model to (a) an automatic fragmentation algorithm that adapts to
changes in “importance” (value) of tuples and (b) replication and
replica allocation mechanisms that are guaranteed to produce a data
distribution scheme that is in Nash equilibrium. We have shown that
a prototypical implementation of NashDB displays Pareto dominate
performance (in terms of cluster usage cost and query execution
latency) on a number of synthetic and real-world workloads.
Moving forward, we plan to investigate applications of NashDB’s
model to OLTP workloads, as well as integrating more advanced
query scheduling algorithms into the system. We are also consider-
ing how economic models could provide performance guarantees.

ACKNOWLEDGMENTS
This research was funded by NSF IIS 1253196.

NashDB: An End-to-End Economic Method for Elastic Databases

REFERENCES

1] Amazon EBS, https://aws.amazon.com/ebs/.

] Amazon Web Services, http://aws.amazon.com/.

] Google Cloud Platform, https://cloud.google.com/.

] JGraphT, http://jgrapht.org/.

] Microsoft Azure Services, http://www.microsoft.com/azure/.

] PostgreSQL database, http://www.postgresgl.org/.

] The TPC-H benchmark, http://www.tpc.org/tpch/.

] ADELSON-VELSKY, G., ET AL. An algorithm for the organization of information.

Soviet Mathematics '62.

[9] AzaR, Y., ET AL. Cloud scheduling with setup cost. In SPAA ’13.

BREIMAN, L., ET AL. Classification and Regression Trees.

1] CHL Y., ET AL. iCBS: Incremental Cost-based Scheduling Under Piecewise Linear

SLAs. PVLDB ’11.

CuRINO, C., ET AL. Schism: A workload-driven approach to database replication

and partitioning. VLDB ’14.

Das, S., ET AL. ElasTraS: An Elastic, Scalable, and Self-managing Transactional

Database for the Cloud. TODS ’13.

[14] DEAN,]., ET AL. The Tail at Scale. Comm. ACM ’13.

[15] EDELSBRUNNER, H. A New Approach to Rectangle Intersections. Journal of

Computer Math ’83.

ELMORE, A.], ET AL. Squall: Fine-Grained Live Reconfiguration for Partitioned

Main Memory Databases. In SIGMOD ’15.

[17] EpsTEIN, L., ET AL. Class constrained bin packing revisited. Theoretical Computer

Science ’10.

HaLr, M., ET AL. The WEKA Data Mining Software: An Update. SIGKDD 09.

HaucLip, J. O., ET AL. DYFRAM: Dynamic fragmentation and replica management

in distributed database systems. Distrib Parallel DB ’10.

[20] JacapisH, H., ET AL. Optimal Histograms with Quality Guarantees. VLDB "98.

[21] JaLAPARTI, V., ET AL. Bridging the Tenant-provider Gap in Cloud Services. In

SoCC ’12.

KonnNo, H., ET AL. Best piecewise constant approximation of a function of single

variable.

[23] Kunn, H. W. The Hungarian method for the assignment problem. NRLQ ’55.

[24] KumaR, K. A, ET AL. SWORD: Workload-aware Data Placement and Replica
Selection for Cloud Data Management Systems. VLDB Journal ’14.

[25] Lams, A., ET AL. The Vertica Analytic Database: C-store 7 Years Later. VLDB ’12.

[26] LEITNER, P., ET AL. Cost-Efficient and Application SLA-Aware Client Side Request
Scheduling in an Infrastructure-as-a-Service Cloud. In CLOUD ’12.

[27] Lt J., ET AL. Tales of the Tail: Hardware, OS, and Application-level Sources of
Tail Latency. In SOCC ’14.

[28] Loros, K., ET AL. Elastic management of cloud applications using adaptive
reinforcement learning. In Big Data ’17.

[29] MAHLKNECHT, G., ET AL. A scalable dynamic programming scheme for the
computation of optimal k -segments for ordered data. Information Systems '17.

[30] Marcus, R., ET AL. WiSeDB: A Learning-based Workload Management Advisor
for Cloud Databases. VLDB ’16.

[31] MCWHERTER, D., ET AL. Priority mechanisms for OLTP and transactional Web

applications. In ICDE "04.

MITZENMACHER, M. The Power of Two Choices in Randomized Load Balancing.

IEEE Parallel Distrib. Sys. "01.

[33] Nasm, J. F. Equilibrium points in n-person games. PNAS °50.

[34] Orriz, J., ET AL. PerfEnforce Demonstration: Data Analytics with Performance

Guarantees. In SIGMOD '16.

OusTERHOUT, K., ET AL. Sparrow: Distributed, Low Latency Scheduling. In SOSP

'13.

PEDREGOSA, F., ET AL. Scikit-learn: Machine Learning in Python. JMLR ’11.

ROGERS, J., ET AL. A generic auto-provisioning framework for cloud databases.

In ICDEW ’10.

SERAFINI, M., ET AL. Accordion: Elastic Scalability for Database Systems Support-

ing Distributed Transactions. VLDB ’14.

SERAFINI, M., ET AL. Clay: Fine-grained Adaptive Partitioning for General Data-

base Schemas. VLDB ’16.

[40] SmacHNAL H., ET AL. Polynomial time approximation schemes for class-
constrained packing problems. J. of Scheduling "01.

[41] SiDELL,]J., ET AL. Data replication in Mariposa. In ICDE 9.

[42] TarT, R, ET AL. E-Store: Fine-grained Elastic Partitioning for Distributed Trans-

action Processing Systems. VLDB ’15.

Tomizawa, N. On some techniques useful for solution of transportation network

problems. Networks '71.

WELFORD, B. Note on a Method for Calculating Corrected Sums of Squares and

Products. Technometrics '62.

XAVIER, E. C., ET AL. The class constrained bin packing problem with applications

to video-on-demand. Theoretical Computer Science *08.

[46] XIONG, P., ET AL. Intelligent management of virtualized resources for database

systems in cloud environment. In ICDE ’11.

==
=2

[12

[13

[16

janrany
2%

[22

[32

[35

[36
[37

[38

[39

[43

[44

N
A}

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

A VALUE ESTIMATION TREE OPTIMIZATION

It is not necessary to store both the S(n;) and E(n;) values for each
node. Since « is always updated by adding the quantity S(n;) —
E(n;), we can store this value, A(n;), instead. When inserting or
removing a scan s;, two nodes are retrieved or created, ny and na,
corresponding to Start(q;) and End(q;). When inserting, A(n;) is
updated by adding Price(q;) and A(nz) is updated by subtracting
Price(q;) from A(nz). The addition and subtraction are swapped
for removing a scan.

B ERROR FUNCTION

Here, we show how Equation 4 can be computed using only the
sum of squares and square sum, as given in Equation 6. Since our
error function is the unnormalized variance, it can be computed by
taking the variance of a fragment, Var(f;), and multiplying Var(f;)
by the size of the fragment. Thus, letting a = Start(f;), b = End(f;),

and E[f(x)]g be the expected value of f(x) over the interval («, §):

b b ~\2
B = Y v - Zize YO

— b—a
xX=a

=(b—-a)x Var(f;)

=(b-a) = (E[V(X)Z]Z - (E[V(x)]'é)z)
b b 2
= Z V(x)? - Z V(x)

C FINDING OPTIMAL SPLIT POINTS

Algorithm 2 Finding the best split point

1: function FINDSPLIT(f;)

2 a « V(Start(f;))

3 ay « V(Start(fi))?

s eI V@)

x=Start(f;)+1

End(f) 2
> ﬁZ - z“x:_S‘t‘art‘(f,-)+1 V(x)

6: BestPoint < 0

7: BestPointVal « co

8: for PotSplit « Start(f;) + 1 to End(f;) do
9 CurrScore «— (ag — a®) + (B + f%)
10: if CurrScore < BestPointVal then
11: BestPointVal < CurrScore

12: BestPoint < PotSplit

13: end if

14: a «— a + V(PotSplit)

15: oy «— ag + V(POtSplit)z

16: B« p — V(PotSplit)

17: Bo «— Po — V(PotSplit)?

18: end for

19: return BestPoint

20: end function

Algorithm 2, a modified version of Welford’s algorithm [44]
inspired by CART [10], computes optimal binary split point in a
fragment in linear time and constant space. The variables a and
ay are used to track of the sum and squared sum of V(x) for the

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

R. Marcus et al.

Name Use DB Size | # Queries | Med. read | Min. read | Med. # results
Static “Real data 1” Dashboard 800GB 1000 600GB 5G 10k
Dynamic “Real data 17 | Descriptive analytics | 300GB 1220 50GB <1GB 20k
Dynamic “Real data 2” | Predictive analytics 3TB 2500 450GB 80KB <2k

Table 1: Statistics about datasets

values to the left of the current point, and the variables and S,
are used to track the respective values to the right of the current
point. Lines 2-5 initialize these variables, and lines 14-17 update
them at each iteration. Line 9 uses a, @z, §, and S, to compute the
sum of the error of the fragments that would result from splitting
fi at the potential splitting point PotSplit. At the end of the loop,
the best splitting value is known and returned. Similar algorithms
have been used in various implementations [18, 36] of regression
trees [10].

While Algorithm 2 iterates over every tuple for simplicity, the
optimal split point can only be at a point where the value (V(x))
changes [10, 29]. Thus, it can be optimized to only iterate over the
“chunks” of tuples and tuple values generated by Algorithm 1 by
checking only the beginning and end of each chunk, and adding
the appropriate summed values between each step (the summed
values can easily be computed by multiplying V(x) by the size of
the chunk).

D NASH EQUILIBRIUM DEFINITION

Definition 6.1 can be formalized as follows. A set of nodes M is
in Nash equilibrium if all the following conditions hold. For each
m; € M, let G; be the set of fragments assigned to the machine m;.
Conditions 1-3 are formalized as:

Vm; € M,—-3f,g € Gs.t.

Profit(m;,G;) < Profit(m;,G; — {f}) \Y
Profit(m;,G;) < Profit(m;,G; U {f}) \%
Profit(m;,G;) < Profit(m;,G; U{f} —{g})

Condition 4 is formalized as:
= (3m; ¢ M,3b C G s.t. (Profit(m;, b) > 0))

E PROOF OF THEOREM 6.1

An extended proof of Theorem 6.1 is given below.

ProoF. Equation 9 replicates each fragment such that each replica
profit is greater than or equal to zero, but creating one additional
replica of any fragment will cause the profit to go below zero. By
replicating each fragment according to Equation 9, each of these
conditions is satisfied.

e Condition 1: no node can remove a fragment and gain a
profit. By Equation 9, each replica created will be profitable.
Therefore, removing a fragment will decrease profit.

e Condition 2: no node can add a fragment and gain a profit.
By Equation 9, each fragment is replicated so that a single
additional replica would cause the profit for all replicas to
become negative.

e Condition 3: no node can swap one fragment for another
and gain a profit. Deleting a replica of f; and then adding
another replica of fragment f; will not be profitable, since
condition 2 shows that adding a replica of f; will decrease
profit, and removing a replica of f; will (1) decrease profit as
in condition 1, and (2) will not change the value of a replica
of fj.

¢ Condition 4: no new node can enter the market and make
a profit. Any new node would have to add a replica of a
fragment, which, by condition 2, would not be profitable.

[m}

F DATASET DESCRIPTIONS

The static “Real data 1” and dynamic “Real data 1” and “Real data 2”
come from three different corporations that executed their queries
against a Vertica [25] database, but all of our experimental results
were produced using Postgres and the NashDB prototype. A few
queries using Vertica-specific features were rewritten into equiva-
lent Postgres-compatible SQL queries.

Since the static “Real data 1” and dynamic “Real data 1” and “Real
data 2” datasets contain sensitive information, we can only provide
summary statistics about them. Table 1 shows the database size,
number of queries, median data read by a query, minimum data
read by a query, and the median number of results returned by
queries.

G ADDITIONAL EXPERIMENTS
G.1 Tail latency

While Section 10 investigated NashDB’s performance in terms of av-
erage latency, here we additionally analyze NashDB'’s performance
based on tail latency [14, 27], e.g. the 95th and 99th percentile of
latency. Figure 10 shows the tail latency performance for NashDB,
Hypergraph, and Threshold when each algorithm was adjusted to
achieve an identical monetary cost (matching the parameters for
the experiment described in Section 10.3). In addition to having
superior average latency (Figure 8b), NashDB exhibits superior tail
latency on all three datasets.

G.2 Throughput over time

In addition to the discussion of NashDB’s overhead costs pre-
sented in Section 10.3, we additionally provide throughput-over-
time graphs for the three real-world workloads in Figure 11. For
the dynamic “real data 1” workload, throughput varied between 14
and 18GB/m. For the dynamic “real data 2” workload, throughput
varied between 255 and 256GB/m. For the dynamic “random” work-
load, throughput varied between 112 and 118 GB/m, and exhibited
relatively lower variation because each query is random (and thus
there is no pattern over time, so the distribution stays constant

NashDB: An End-to-End Economic Method for Elastic Databases

SIGMOD’18, June 10-15, 2018, Houston, TX, USA

300 200000 T 3.5 — T
Prioritized quew Iatency — NashDB Max of mins s
Other query latency —— Hypergraph Shortest queue
250 | Threshold == al Greedy SC ==
150000 | §
200} —
> — g
2 150+ g 100000 - 3
9 c [0}
5 s)
100 - = g
g
I 50000 | z
sor]”I“ tifiagt
00 é lt é é 1‘0 1‘2 1‘4 1‘6 1‘8 20 0 Random Realdata1 Real data2 ! Random Realdata1 Real data 2
Priority (1/100 cent) Dataset Dataset
(a) TPC-H workload varying priority (b) Average data transfer cost for fixed latency (c) Span, various schedulers
Figure 9
500 . . 120 T T T T NashDB © T T
o ynamic random) ——
NashDB 3 8 el
450 | Hypergraph s S | =
Threshold === (=) & 12t
(=]
400 3 108}
-
= L L L L L L L L
w 350 1045 500 1000 1500 2000 2500 3000 8500 4000 4500
~ Time (m)
3
S 300 (a) Dynamic “random” dataset
E 250 o gg L ' ' ' ' 'NashDB (Dynamic real data1) —_—
S 18t
5 16
200 i W\/\/\/\W\/MX\/\/\/\W\/\/\N/\/«\N
S 12t
o 1of
150 Z 8l
85 500 1000 1500 2000 2500 3000 3500 4000 4500
100 i
Random Real data1 Real data 2 Time (m)
Dataset (b) Dynamlc ‘real data 1”7 dataset
o 268 'NashDB (Dynamlc real data 2) —_—
. . . . G 264, 1
Figure 10: Percentile (tail) latency comparison pot 260 MMMMWMW
Qo
S 256
[}
and the cluster transitioning algorithm moves less data). For the £ 227
static “real data 1” workload, the throughput varies between 2148 #8000 1000 1500 2000 2500 8000 500 4000 450C
to 2190GB/m. The lower relative variation of the static “real data 1” Time (m)
workload is due to the fact that the cluster transitioning technique (©) Dynamlc “real data 2” dataset
was never apphefi (thef worquad .repr.esents a batch workload and o 2 NashDB (Siatic Toa) G)
so our approach identified a distribution schema and never had to T oos0)
transition to a new one). For all workload the transition overhead 3 2000 |
<
(which ranges between 5-200MB based on Figure 11) is significantly S srs NW\,/\/\/\/V\AN\/\/\M\/\/\/\NV\/\W\/\/\
lower that the throughput (which ranges between 10s-1000s GB/m). £
21005 20 0 60 80 100 120 140 160 180

H ECONOMIC TERMINOLOGY

Throughout this paper, we use the colloquially understood phrases
“increases in supply” or “decreases in demand.” To readers deeply
familiar with economic literature, we note that this increase in
supply or demand is in reference to a change in quantity supplied or
demanded, not a shift in the supply or demand curves themselves.

Time (m)

(d) Static “real data 1” dataset

Figure 11: Throughput over time for various datasets

	Abstract
	1 Introduction
	2 System model
	3 Economic modeling
	4 Tuple value estimation
	4.1 Tuple & Fragment Value Definitions
	4.2 Value Estimation Tree

	5 Fragmentation
	5.1 Fragment Uniformity
	5.2 Computing Optimal Fragments
	5.3 Greedy Fragmentation

	6 Replication
	7 Cluster Transitioning
	8 Routing Data Access Requests
	9 Related work
	10 Experiments
	10.1 Fragmentation
	10.2 Query Prioritization
	10.3 Cost and Performance Evaluation
	10.4 Routing Evaluation

	11 Conclusions
	References
	A Value estimation tree optimization
	B Error function
	C Finding optimal split points
	D Nash equilibrium definition
	E Proof of Theorem 6.1
	F Dataset descriptions
	G Additional experiments
	G.1 Tail latency
	G.2 Throughput over time

	H Economic terminology

