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ABSTRACT. We study the localization game on dense random graphs. In this game, a cop
x tries to locate a robber y by asking for the graph distance of y from every vertex in a
sequence of sets Wy, Wa, ..., W,. We prove high probability upper and lower bounds for
the minimum size of each W, that will guarantee that x will be able to locate y.

1. INTRODUCTION

In this paper we consider the following Localization Game related to the well studied Cops
and Robbers game; see Bonato and Nowakowski [2] for a survey on this game. A robber is
located at a vertex v of a graph G. In each round, a cop can ask for the graph distance

between v and vertices W = {wy, wsy, ..., wy}, where a new set of vertices W can be chosen
at the start of each round. The cop wins immediately if the W -signature of v, i.e. the
set of distances, dist(v,w;), i = 1,2,...,k is sufficient to determine v. Otherwise, the

robber will move to a neighbor of v and the cop will try again with a (possibly) different
test set W. Given G, the localization number ((G) is the minimum % so that the cop can
eventually locate the robber, that means, the cop determines the exact location of the
robber from the test sets of size k. This game was introduced by Bosek et al. [3], who
studied the localization game on geometric and planar graphs, and also independently, by
Haslegrave et al. [6]. For some other related results see [4, [8, [9].

2. RESuULTS

The localization number is closely related to the metric dimension B(G). This is the
smallest integer k such that the cop can always win the game in one round. Clearly,
((G) < B(G).

In this note we will study the localization number of the random graph G, , with diameter
two. Here and throughout the whole paper w = w(n) = o(logn) denotes a function tending
arbitrarily slowly to infinity with n. We will also use the notation

g=1—pand p=p*+ .
We write A, < B, to mean that A, < (1 4 o(1))B, as n tends to infinity. We further
write A, ~ B,, if A, = (14 o(1))B, as n tends to infinity. Finally, we say that an event
&, occurs asymptotically almost surely, or a.a.s. for brevity, if lim, ., Pr(&,) = 1.

The metric dimension of G,,, was studied by Bollobés et al. [I]. If we specialize their result
to large p then it can be expressed as:
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Theorem 2.1 ([1]). Suppose that
21 1/2 log]
( ogn—l—w) Spél_?)ogogn'

n logn
Then,
2lognp 2logn
S B(Gry) S .Q.S.. 1

Note that the upper and lower bounds in are asymptotically equal if p > n=°W),

It is well-known (see, e.g., [5]) that if np® > 2logn + w, then a.a.s. diam(G,,) < 2. We
will condition on the diameter satisfying this. Graphs with diameter 2 enable some sim-
plifications. Indeed, if a vertex v has W-signature {dy, ...,di}, where W = {wy, ..., w},
where d; = dist(v, w;), then

g — 1 iff {v,w;} € E
"2 iff {v,w;} ¢ E.
Consequently, the probability that two vertices u and v in G, , have the same W-signature,
W = {wy,...,w}, such that u,v ¢ W is equal to
k
HPr(u,v € N(w;) or u,v & N(w;)) = p".
i=1
The upper bound on p in the below theorem is determined by a result of [I] about the
metric dimension of G, ,.

Theorem 2.2. Let
(210gn—|—w)1/2sp<1_3loglogn and ~ log(1/p)

n logn ~ logn

and let ¢ be a positive constant such that

1 /1 —3logl
0<c<mind = 2" 30gogn_1 e
2 log1/p

Then, a.a.s.
2logn
log1/p

(1 oy 410glogn> 2logn

logn < C<Gn,p) <(1—cn)

log1/p ~
2.1. Observations about Theorem [2.2l
First observe that if p > lno%, then

1 /1 —
1 (logn 310g10gn_1 > 1
2 log1/p

. e 1/2
and so ¢ can be any positive constant less than 1. Furthermore, for any p > (MTW) /

we have
1 logn—?)loglogn_l >1 : logn — 3loglogn 1) = Lo,
2 log1/p 3 (logn —log(2logn + w)) 2

-2
Hence, we can always take ¢ > 3 — o(1).
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If p=1/n* for some constant 0 < o < 1/2, then,

1—o(1) if 0 <<
77 = X and C S 1 1 .
5c — 3 — o(1) otherwise.

Moreover,

p=1—-2p+2p* and so log1/p=2p+ O(p*) = %
Hence, Theorem implies the following corollary.
Corollary 2.3. Let p = 1/n%, where 0 < a < 1/2 is constant. Then, a.a.s.

a : 1
(1—-a)n*logn if0<a<g

(HTO“) nlogn otherwise.

(1 —-2a)n%logn S ((Ghp) S {

Notice that for 0 < a < % the upper bound on ((G,,) equals the lower bound from
Theorem Therefore, it is plausible to conjecture that ((G,,) < 5(Gnp)-
Now observe that if p = n='/¢, then

_ 2log(1/p) 2

2 = — =o(1).
g logn w o(1)
Thus, Theorem [2.2] implies:
Corollary 2.4. Let p=n~"“. Then,
2logn
Gh,p) =~ .

Clearly, this also holds for any constant p. In particular, for p = 1/2, we get:
Corollary 2.5. For almost all graphs G we have

2.2. Proof of Theorem [2.2] — lower bound.

Since we will deal with “mostly independent” random variables, we will use the following
form of Suen’s inequality (see, e.g. [7]).

Theorem 2.6 (Suen’s Inequality). Let 6;,i € I be indicator random variables which take
value 1 with probability p;. Let L be a dependency graph. Let X = Y. ,0;, and p =
E(X) = > ,c;pi. Moreover, write i ~ j if ij € E(L), and let A = %ij E(6,0;) and
) = max; iji p;. Then,

Pr(X = 0) gexp{—mm{ 2,%, }}

We will also use the following simple fact.

=

00
2|
Sl=

Lemma 2.7. Let 0 <p <1 and p+q=1. Then,

log(p® +¢°) _ 3
logp — 2
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Proof. This inequality is equivalent to
log(p® + ¢*)* < log(p* + ¢*)°
and so to
(0’ +a°)* < (0" + ).
The latter is equivalent to
2p°¢> < 3p'q® + 3p%¢" = 3p°* (P + ¢*) = 3p°¢*(1 — 2pq)
and consequently to
2pq < 3(1 — 2pq)
which is equivalent to

Pq <

o w

But this is always true since pg < i. U
The lower bound in Theorem will follow from the following result.
Lemma 2.8. Let

2log (%)

log? 2(1 —¢)1
nt/2 logn logn log1/p
Then a.a.s.,

(Ghp) = k.
First observe that e = 2n + M and so the lower bound in Theorem [2.2| holds.

log

Proof. For a fixed vertex u and k-set S let X, ¢ count the number of unordered pairs
w,v € N(u) with the same signature induced by S. We prove that the probability that
there is a vertex u and a k-set S such that X, ¢ = 0 is o(1). Consequently, this will imply
that a.a.s. for every vertex u and k-set S there are at least two neighbors of u with the
same signature in S. Hence, a.a.s. the localization number is at least k.

Clearly,

— k-1 2
p=E(X,s) = <n 5 )pka > pzexp{k‘logwr 2logn}

2 2

= %exp{—Q(l —¢)logn +2logn} = ‘%n

Furthermore, since every triple of vertices in N(u) with the same signature contributes
three unordered pairs of variables to A, we get

n
A S 3(3) (p3 +q3)kp3

2e

3
< % exp {k:log(p3 +¢*) + 3log n}

3 loo(1® + ¢
= % exp {—2(1 — 5)(logn)0g(f;T—;q) + 310gn} .
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Now, by Lemma [2.7]

3 3 3
A< % exp {—2(1 —¢)(logn) - 5 + 3logn} = %n3€.

Similarly
§ < 2np"p* = 2p*exp (klog p + logn) = 2p*n =112,
Thus,
2
NS b 523 d >
sa 2 il g 2 gt and > oen.

Since 0 < ¢ < 1 and pn® — oo (due to our choice of ¢) the lower bound in the first
inequality is the smallest. Hence, by Theorem

1
Pr(X,s=0) <exp {—6—4an} .

Now we use the union bound to show that the probability that there is a vertex u and a
k-set S such that X, ¢ = 01is o(1). Indeed, this probability is at most

n(Z) exp{—6i4pn } < exp{(k:—l— 1)logn — 6i4pn } @)

Now observe that p = (p + ¢)* — 2pg = 1 — 2pq and so
_ 2(1—¢)logn _ ~2(1—¢)logn - _ 2logn
log1/p log(1—2pq) — log(1l —2pq)
Since 1 —x < e " and 2pg < 1, we get that

1 2
klogn < (log) )
pq
Furthermore, since by assumption p < 1 — logn’ we obtain ¢ > —— and so
1
Flogn < 108M)°
p
Also
1 4
pns — peslogn — ( Ogn) ]
p
Thus, the exponent in tends to —oo. This completes the proof of Lemma O

2.3. Proof of Theorem — upper bound.
Let deg(v) denote the degree of vertex v in G,,, and let codeg(v, w) denote the co-degree
of vertices v, w in G,,,. We observe next that the Chernoff bounds imply that a.a.s.

deg(v) = np + O((nplogn)*/?) for all v € [n]. (3)
codeg(v, w) = np? + O((np*logn)'/?) for all v € [n). (4)

Lemma 2.9.
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lo

-l <p<1- 310glogn'

logn

2logn
Gnp) S ————.

1/2
2logn 4+ w < p<eM0EN)  gng g log1/p and b — 2(1 —cn)logn
logn log1/p

1 /1 —3logl
0<c<min< = oen 3ogogn_1 J1 5.
2 log1/p
C(Gnp) < k.
Proof. Part (f]) follows immediately from Theorem [2.1]

Then, a.a.s.

We now prove (ii). Equations and plus our bound of two on the diameter are all we
need for this. So the analysis works for any graph satisfying these conditions. Let S; be a
randomly chosen k-subset of V' and let X; be the number of pairs with the same signature

in S7. Then, if
D(v,w) = (N(v) \ N(w)) U (N(w) \ N(v))

for v, w € [n| then

E(X;) = Pr((N(v)NS) = (N(w)nS))
vFW
= ZPr(Sl N D(v,w) = 0)
vFEW

n? (1—2p(1—p) (1+o (%))) (5)
ey <1 e (’“ng#)) )

= (14 o(1))n*". (7)

and by the Markov inequality we have X; < wn?" a.a.s.. (Going from to @ uses the
trivial identity 1 — a(l — ) = (1 — a) (1 4+ 1%.).) Thus, the set R of vertices with exactly
the same signature in S as the robber is a.a.s. of size at most w!'/?n. Let T, consist
of R and the set of neighbors of R. The robber can move to somewhere in 75. Clearly,
T3] < 2w'?npn a.a.s..

Now let Sy be another random k-subset of V', chosen independently of S;. Let X5 be the
number of pairs of vertices from T, with the same signature in S,. Arguing as for (7)), we

IN
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see that
klog'/?n
E(XQ) < (2w1/2ncnpn)2pk <1 + O (nlg—/2p>>
= (14 o(1))(2w"/?p)* exp((2 + 2cn)(log n) + klog p) = (4 + o(1))wp*n*"

and by the Markov inequality we get that a.a.s we have X, < w?p?n®". Thus, the number
of vertices with exactly the same signature as the robber in Sy is at most wpn?. Let Ty
consist of these vertices together with their neighbors. Clearly, |T3| < 2wp?n?1+1,

We proceed inductively. Assume that |T;] < 2(w!/?p)~tnl—Yertl Now, arguing as above
with another independently chosen k-set S;.1, we have

E(Xi1) < (24 o(1))(("2p) a2 ek = (2 4 o(1)) (w!/2p) 2= nen
and so by the Markov inequality,
Xip1 < w(w?p)2i-Dp2ien g 5., (8)

Thus, the number of vertices with exactly the same signature in S;;; is at most
w2 (w2p)~1n’n. Hence,

|Ty4q] < 2w1/2(w1/2p)i—lnicnpn _ 2(w1/2p)inicn+17

completing the induction.
After ¢ rounds we get that with probability at least 1 — fw™" we have, using (g)),

1 Xo| < w(wZp)2 D20 — i1 exp {2(0 — 2) logp + 2(¢ — 1)enlogn)}

= w'lexp {—2(0 —2 — (£ — 1)) log(1/p)} . (9)
Clearly, (9) is o(1) for sufficiently large constant ¢, since by assumption log(1/p) = Q(logn).
U

3. SUMMARY

We have separated the localization value ((Gy,,,) from the metric dimension 5(Gy,,) in the
range where the diameter of G, , is two a.a.s.. It would be interesting to continue the
analysis in the range of p for which the diameter of G, is at least 3. It would also be of
interest to examine the localization game on random regular graphs.

Acknowledgment We are grateful to all referees for their detailed comments on an earlier
version of this paper.
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