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DIFFUSION LIMITED AGGREGATION ON THE BOOLEAN LATTICE

By ALAN FrRIEZE* WESLEY PEGDENT

Carnegie Mellon University

In the Diffusion Limited Aggregation (DLA) process on Z?, or
more generally Z¢, particles aggregate to an initially occupied origin
by arrivals on a random walk. The scaling limit of the result, empir-
ically, is a fractal with dimension strictly less than d. Very little has
been shown rigorously about the process, however.

We study an analogous process on the Boolean lattice {0,1}", in
which particles take random decreasing walks from (1,...,1), and
stick at the last vertex before they encounter an occupied site for the
first time; the vertex (0, ..., 0) is initially occupied. In this model, we
can rigorously prove that lower levels of the lattice become full, and
that the process ends by producing an isolated path of unbounded
length reaching (1,...,1).

1. Introduction. In the classical model of Diffusion Limited Aggregation (DLA), we begin with
a single particle cluster placed at the origin of our space, and then, one-at-a-time, let particles take
random walks “from infinity” until they collide with, and then stick to, the existing cluster; when
the space is not recurrent, some care is required to make this precise.

Introduced by Witten and Sander in 1981 [10], the process is particularly natural in Euclidean space
(with particles taking Brownian motions) or on d-dimensional lattices; in these cases, the process is
empirically observed to produce structures with fractal dimensions strictly less than the dimension
of the space (e.g., roughly 1.7 for d = 2, with slight but seemingly nonnegligible dependence on
details such as the choice of underlying lattice or the precise “sticking” condition).

Strikingly little has been proved rigorously about the model, however. Kesten [8] proved an a.s. asymp-
totic upper bound of Cn?/3 on the radius of the n-particle cluster for the lattice Z2, for example,
but no nontrivial lower bounds are known. In particular, it is not even known rigorously that the
process does not have a scaling limit with positive density. (Eldan showed that an analogous process
in the hyperbolic plane does aggregate to positive density [6]). Eberz-Wagner showed at least that
the process leaves infinitely many holes [5]. For some more recent results, see Benjamini and Yadin

[1].

In this paper, we study an analogous aggregation process on the Boolean lattice B = {0, 1}", which

evolves at discrete times ¢t = 0, 1,.. ., each of which has an associated cluster C;. Cy consists of just
the vertex 0 = (0,...,0) € B. Then, for t > 0, C} is produced from C;_; by choosing a random
decreasing walk p; from 1 = (1,...,1), letting v be the last vertex of the longest initial segment
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of p; which is disjoint from Cy_1, and setting C; = Cy—1 U {v}. The process terminates at the first
time tepq when Cp . 5 1.

end

In particular, the clusters C; grow from 0 by aggregation of decreasing random walks from 1. Our
initial motivation for considering this model was to evaluate the impact of very large dimensionality
on a DLA-like process. (An analogous motivation underlies work on percolation in the Boolean
lattice; see for example [3, 7, 9].) We will see, however, that the Boolean lattice also allows strong
rigorous (and perhaps, surprising) statements to be made about the structure of the aggregate. In
particular, let £ = {z € B | |z| = k} denote the kth level of B, so that |L;| = (}). We will prove
the following.

THEOREM 1.1.  There exists co > 0 such that w.h.p.", for all
k< ko= \/ 15%%

L C C

we have

end *

THEOREM 1.2.  For any K > 0, we have w.h.p. that for all k < m, we have

‘ck rjc’tend| Z (1 - HLK) ’ "Ck|

1

105, we have w.h.p. that for all k < e3n,

THEOREM 1.3. For alle <
|£k ﬂ Ctend‘ 2 (1 - 26) : |£k‘

THEOREM 1.4. There is a constant c1 such that for all e < ﬁ, we have w.h.p. that for all

k1 = lg}g’; <k <éedn,
we have
(1—p)e ot
£\ Cral > [ 2 e,
where

Jo+ 1) 100 1\ 10
p:max<1—<€n> 71_<1Oe> )

Thus Theorems 1.1, 1.2, and 1.3 provide progressively weaker statements as k increases about the
fullness of the level L at the end of the process; Theorem 1.4 shows that Theorems 1.1, 1.2 and
1.3 are qualitatively best-possible. A key contrast from classical DLA is that the process does “fill”
parts of the cube, and moreover, that this can be proved. Note also that the boundary between full

and not full levels occurs w.h.p. at around k = , /=%

ogn”

A striking (unproved) feature of the classical DLA processes is a rich-get-richer phenomenon, where
long arms of the process seem to grow at a rate significantly faster than t'/%. In the Boolean lattice,
we observe an extreme version of this kind of runaway growth:

LA sequence of events &,,n > 0 occurs with high probability (w.h.p.) if limy 0 Pr(&€,) = 1.
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THEOREM 1.5. Ifa < % then w.h.p. for all k > n — n® we have that

Ly N Cy, | =1.

end

Recall that our DLA process on B ends once 1 is occupied; Theorem 1.5 implies that 1 becomes
occupied as the terminal vertex on an isolated path of occupied vertices whose length is at least

n?.

Notation. In what follows we use the notation A, ~ B, to mean that A, = (1 + o(1))B, as
n — oo and A, < B, to mean that A4,, < (14 0(1))B,, as n — oo; we write A,, ~} B, to mean that
A, /By, is bounded above and below by positive absolute constants as n — oo. In some places we
give expressions for integer quantities that may not be integer; in cases where we do this, it does
not matter whether we round up or down.

2. Lower levels. In this section, we prove Theorems 1.1, 1.2, 1.3 and 1.4. We define

(1) &0 = " for w —En_k
The =4 \k41) = P\ g A

Roughly speaking, we expect that at time 73 ., the level £; is mostly full, while higher levels are
empty enough to have little effect on the process at this time. We will prove a sequence of lemmas
confirming this general picture. First, we establish an upper bound on the height of the cluster at
a time 7y .:

LEMMA 2.1. Let g =1+ 3 and 0 < e < 1. Ifk <
probability 1 — o(n™1) that

1+¢) =5, then, for all § > 0, we have with

LiNCr, = forallj>(1+¢+0d)k.

Proor. Consider a fixed vertex v in Ljs. If it becomes occupied by time 7., then there is a
sequence of times 41 < tg4o < -+ < tg4s < T such that

(2) pty N Liys = {v} and py, N Lyyi1 = pt;_y N Leria

fore=1,...,s.

By considering the (T’“ s) possible choices of the times ;41 < - -+ < tg4s < 71, the probability that
each py, satisfies the intersection conditions (2) for i = s,s —1,..., we have that

wie () 77 1
Pr(v is occupied at time 75, ) < ( EN\k > H -
s =1 (k+z)

< (% (’}:)’“e)s (ki)
- S
=1

Ryo;
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s, sk—sk—s(s+1)/2 eI\ £ N ki
= Wk (k:ks> [Tk +9)

=1
k+1\ S
/i n—s(s+1)/2 <€ i > (k+5)s(k+(s+1)/2)

IN
(S

€ kks

(%)Sn—s(s-&-l)ﬂe(k—kl)s (1 + z)ks (k + 5)°(+D)/2

s(s+1
< (wk’E)S ((k‘ + 8)1/2 . el-i-k’/(s-i-l)) (s+1)
- ’I’L1/2 ’

S

So, multiplying by (kis) we see that

Pr(3v € Lj45 : v is occupied at time 73 )

n Wke\* (l{} + 3)1/2 . ek/(5+1)+1 s(s+1)
(3) < <k+5>( ke o

S —1-k/s S
< (cukg <k+5>( /21K 62+k/s+k+s>
s n

Suppose now that k = an,s = fn > 1. Then the above expression becomes

n\ A
((a + B)P/2eth (wk st/ + 5)_1/2_‘”/662“‘/5) Y > .
We insist that 8 > «, in which case
1/n
(wk,ss—lnl/n(a+B)—1/2—a/,362+a/5+a+5) / <1+ 0(1),

which implies that the expression in (3) is o(n™') so long as (a + )#/2e*8 < 1.

1
e2+2/7(147)

e*t2/7(1 + 7) is minimized at the solution to 42 = 2(y + 1), which is ¢ = 1 + 3/2. In summary, if

a < m then with probability 1 — o(n™!) all levels above a(1 + ¢ + o(1))n are empty at time
Wk e (O:Ln), which gives the Lemma. O

Let 8 = ya (y > 1). Then our requirement is that (a(1 + v))?/2e*7 < 1 or a < Now

Now we define ®,, + to be the fraction of (monotone) paths between 1 and v which have at least one
occupied vertex other than v at time ¢. The following Lemma implies that levels above L play a
small role when analyzing level £ at time 7y ..

1

LEMMA 2.2.  For all fired e > 0 and all a = % < min(%, o), we have

(4) Pr(3ve Ly st &, >c)=o(l).
PROOF. Recall that the particle in Cy \ C;—1 is deposited by the decreasing walk p;. We fix a vertex

v € Ly, choose some A such that &+ A < 5, and define, for each ¢t = 1,..., 74, a random variable
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vt € 10,1] equal to the fraction of paths between v and L4 )41 whose interiors intersect the path
pt. Let U, denote the set of all 27—k ancestors & > v of v. Note that &u,t 1s determined by the
minimum ¢ > 1 such that p; visits Ly NU,, and, with respect to this random variable ¢, can be
bounded by

B
1 3
(5) Eor <E(Q) = ) (") = ) C<A

i=¢ \ i ¢

Moreover, we have for s < k + A that

n—k
() Pr<<:s>:((z;-k_";s,
k+s

since this is the probability that p; visits L5 NU,, and then on the next step, moves outside of
U,. In particular, we have that

(7) o n S 9 n
<33, ChF e <10
_3 1+ Z?:z (nfk(ﬁJf)Q-?-f'rEli:i)s+1) 2
2 (1) T ()

for k+A<i(n—k—XA+1),0ork+ A< 2

We will use the following concentration inequality for nonnegative and bounded independent ran-
dom variables; we show in Appendix A that this is an easy consequence of Bernstein’s inequality.

LEMMA 2.3.  Let X1,...,Xn be independent random variables such that, for all i, E(X;) < E and
X; € 10,C)] almost surely. Then for Sy = Zf;l X, En = E(Sy), and for allt < NE, we have that

2/4
Pr(|S, — E,| >t) < 2exp <_]ffl/*70>

Note that in the same situation, Hoeffding’s inequality gives 2e~2t*/N CQ, which, ignoring constant

factors in the exponent, is always worse; the point is that we are interested in the case where
F <« C. And though we have stated the lemma here with the condition ¢ < N E, one could drop it

2
and still obtain the bound 2 exp (—W%), an analogous improvement over Hoeffding anytime

t<< NC.

To apply Lemma 2.3, notice that from (5) that £(s) < ﬁ always. If =, 7 = ZtT:l vt then E, 1
is stochastically dominated by a sum Z7 = §((1)+£((2)+- - - +£(¢r) where each (; is an independent
copy of a random variable ¢ satisfying (6). Now (7) implies that TE(£((;)) = E(Z7) < 2L, and

N
€=

thus Lemma 2.3 with t =0, N =75, ., F' < 5 _k) gives that
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Pr (EU% > 2he | 9) <Pr (Zm > 2The | 9) <
(k4¥1) (k%*l)

2
exp _% — ¢ (n—k)/(3e) _ e—@(n—k)/G,

for

Now we have that

2 k
Pr (Elv € Lk, By, > T:’e + 9) < (@) o —0(n—k) /6
(k1) k

Writing £ = an, we have that

k
(%) e~ 0(n—k)/6 _ In(e/a)an—0n(1-a)/6 _ (%) ,

for any a < min(6?, 155), say. Thus for o < min(%, 15), we have that

Pr (31} € Lk Evme = 6) =o0 (%) .

Now, by taking A > 2¢k, we may assume that the levels above level A are still empty at time 7, .,
so that ®, -, . < E, ;, ., completing the proof of the Lemma. O

Now we define Y, ; for v € L, to be the fraction of down-neighbors of v which are unoccupied at
time ¢. By controlling Y, ; and =, ; simultaneously, we can make the behavior of the cluster with
respect to v sufficiently predictable.

LEMMA 2.4.  Suppose that 0 < e < ﬁ and k < &3n is fized. Then,

(8) Pr (3t € [th—16Thel, v € Lk, Py + Ty >26) =0 (%) .

Lemma 2.4 will be proved by induction on k. Before giving the proof, we use it to prove Theorems
1.1, 1.2, and 1.3.

PROOF OoF THEOREM 1.1. Let A denote the set of vertices in £; which are still unoccupied by
particles at time 7, .. We fix ¢ = ﬁ and apply Lemma 2.4. Since 7 — Tj—1, > %Tkﬁ, we have for
any vertex v € Ly, that if ¥ = max{®y; + Yoy 1t € [Tho10,Thel},

- 25) 2wk (3)
(%)
1

Explanation: For a fixed time ¢ for which ®,; + Y,; < 2¢, the term &+ - (1 — 2¢) is a lower

Pr (v not occupied by 74, | ¥ < 2¢) < (1 -

k
bound on the probability that p; chooses to go through v on level k, avoids occupied vertices on
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the way to v and then chooses an occupied vertex in level & — 1. Conditioning on ¥ < 2¢ (i.e.,
on the 2¢ condition for all ¢’s simultaneously) inflates these probabilities by at most a factor of
Pr(® <2e)~! =1+0(1).

Thus
Y —wre/3
B (0] | @ <22) S (] )emene
and so by the Markov inequality,
Pr (A #@ | U <2)< (Z) e~Wmelt = o(n7h)

as long as

_En—k
e T Ak 1

[ en
k<
~— \/ 10logn

and gives the desired statement (recalling that ¢ = 1,/100). O

> 5klog(ne/k).

In particular, this holds for

PROOF OF THEOREM 1.2. Again by the Markov inequality applied to |Ag|, we have

n e_wk,s/?’
Pr(\Ak|2ﬂ<k> ‘\Il§2£>§ 7

This is o(n™'), assuming that ¢ = 1} and

n 1
k<< ——— —
~ 150K logn’ p nf’

for any constant K > 0, giving the theorem. O

Theorem 1.3 is a consequence of the following slightly stronger statement:

LEMMA 2.5. For all € > 0, we have w.h.p. that for all k < £3n, Ly, is at least (1 — 2¢) occupied at
time Ty c.

PrOOF. This follows directly from Lemma 2.4. Indeed, if there are ¢ occupied sites in L at time
Tre, and m edges between L1 and occupied sites in L, then assuming that &, ; + 1, ; < 2¢ for
v € Ly41, (from (8)), the degrees of vertices in Ly, L1, 1 gives that with probability 1 — o(n™1),

(k:LLl) (1=2e)(k+1) <m < L(n—k),

so that £ > (1 —2¢)(}). O
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We now prove Lemma 2.4, by induction on k.

PROOF OF LEMMA 2.4. In particular, assuming that (8) holds for some k, we aim to prove that if
0<£§ﬁandk§£3nthen

2k
(9) Pr (3t € [Th—16,The), W € Liy, Pop + Lo > 2) < 3

Observe that since @, is increasing in ¢ and Y, ; is decreasing in ¢, (9) can be proved by showing

1 k
(10) 0 <e < —,k<e&3n implies that Pr (Elw €Ly, Yopr. > 5) < —,
100 e n3
and
1 3 .. k
(11) 0<e< 100" k < e°n implies that Pr (Elw €Ly, Pyry . > 5) <.
: n

Of course, (11) follows from (4), so we just need to show (10). For the sake of conditioning in the
induction, define the event

.Ak@n = (Vt S [Tk_175,77€75], w € Ly, (I)v,t + Tv,t < 28) ,

so that we are aiming to prove inductively that

k
PI‘(.Ak,g,n) Z 1— E

As a base case we take k = 1 which trivially satisfies (9). Assume k£ > 1 and fix some vertex w € Ly,

and let N, C L1 be the down-neighborhood of w. If we fix a set D C N, of size |D| = A, then
we have, since k < e3n, that

(12) Pr (D NCr,.=9| Akfl,s,n) < (1 ~ <e 2

(k21

Explanation: The first inequality arises because each path p; for ¢t € [7,_; 1 + 1,7, .| has proba-
710

bility ﬁ of intersecting D, and conditioned on that event, applying (8) inductively with ¢ = 1%)70
k—1

ensures that with probability at least %, a particle will occupy at least one site v of D after step ¢

for 7,1, <t < 7. (either because v was already occupied before step ¢, or because p; deposits a

particle at v.) The second inequality arises because k < e3n implies that The = Th—l,e = w’;a (Z)

4A )Tk,s_Tkl,s 7Awk,5

Thus we have that

Pr (3w € L, D C N,

w

st. [D|=A,DNC,, . =2)

Tk,e

n\[(k\ _a nexk (ke\* _
< wke/2 « (2 g Awg,e /2
()= G (5)

_ hlog(ne/k)+A log(ke/A) - Awp o /2 < 1

n3’

if either k < n'/2 or (i) k > n'/? and A < k and Awy. > 4max(klog(ne/k), Alog(ke/A)).
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For (ii), recalling that wy . = £ - %, we can take
A(n —k) > 5. k(k + 1) log(ne/k),

and
n—k>12 klog(ke/A),

which, for % > ¢, would follow from

20 - klog(n/k) _ 2

(13) ot ,
and

(14) T < g

respectively. Both (13) and (14) are satisfied when k < 3n and n is large. O

Lemma 2.4 is not quite strong enough to prove Theorem 1.4. For that purpose, we prove the
following Lemma, which allows stronger statements when k is linear in n:

LEMMA 2.6.  Suppose that k > kq. Let tZ be the first time when a p fraction of the vertices in Ly
are occupied. We have that

Pr <E|w € Liy1, Tw,tz > %) =0 (%) ,

provided that € = -

(15) pzl—(k+1)100.

PRrOOF. For any constant K and sufficiently large n, we have that

1 1 1

This is because the number of vertices in £ that are occupied at time ¢ is dominated by the number
of occupied bins when ¢ balls are placed randomly into (Z) bins. Note that the expected number of
occupied bins in the latter experiment is

() (- (=) )=o) <5(2) ene- 3 (5)

Note also that the number of occupied boxes is highly concentrated. This can be verified through
a simple application of McDiarmid’s inequality, see [2].

In particular,

ti — Tk—1,e Eilipﬁ =

10g(1/(21 —p)) <Z>
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with probability at least (1 — 1;() This follows from the fact that p > 1 — e~</4.

en n
Hp,k = 50].0g <k;—|—]_> . (k>,

and so we have 7,1 . + H, < 71 for sufficiently large n; see (1). In particular, we can apply
Lemma 2.4 in the entire range [75_1 ¢, Th—1, + H, 1]

From (15) we also have that

To do this, we fix some vertex w € Li1, and let N, C Ly be the down-neighborhood of w. If we
fix a set D C N, of size |D| = A, then we have for k < e®n that

1\ ! an \
_ p i
Pr (DﬂCtZ—®|th7‘k_1,a+Hp,k) < <1_nK) <1_ 5(@)

_ Addog(1/(1=p))
5

< 2 = 2(1 — p)A/5.

Explanation: We repeat the argument for (12) and multiply by (1 — n=%)~! to account for

conditioning on t > 71 + Hpy .
Thus we have that

Pr (3w € L41,D C Ny, st. |D| = A= (k+1)/10,DNCr,. =@ |t > 71 + H, )

- (kj—l) (ijLl) <2(1-p)% <2 (le)kH (W)A(l—p%”’-

_ 9p(k+1) log(ne/k+1)+Alog((k+1)e/A)+(A/5) log(1—p) _ <1> ’
n

A

if A= (k+1)/10 and Alog(flp) > 10max {(k + 1) log(ne/(k + 1)), Alog((k + 1)e/A)}.

For these cases, we require that

en
and
A 10 1\ 10
21 () = ()
respectively, both of which follow from our choice of p. O

We are now ready to prove Theorem 1.4.

PROOF OF THEOREM 1.4. We apply Lemma 2.6 with ¢ = 1—(1)0 and p satisfying (15). Condition on
the event F = {Vv € L, Type < %0} Let O = L N Cye be the set of occupied vertices in Ly, so

that |Ok| = (p(Zﬂ Fix a vertex v € Uy = L \ O and let N,/ be its neighborhood in L. For
each w € N7, we define events £. and £2, respectively by
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1. Every path pg, t > tz which contains w avoids both Oy and v, and
2. The first path p;, ¢ > ¢} which intersects w and then hits Oy U {v} hits Oy, and not v,

and set &, = EL U E2. Let A, be the event that &, occurs for each w € N, . Observe that if A,
occurs then vertex v remains unoccupied on termination. Moreover, if we fix some set Wy C N,
then the events &, for w € Wy are conditionally independent, given the event that Wy = W =
{w € N;} such that =&} occurs}. (Indeed, given that —&. occurs, we know that at least one path
goes through w. Moreover, the event £2 depends on just the first path with this property, and the
choice this path makes below w is independent of choices made by paths not going through w.)
Now, for any choice of Wy and any w € Wy, we have

since [(Ox N Ny) U {v}| > 2k, and €2 implies that the first path through w choosing among
(Ox NN, )U{v} chooses v. Now using the conditional independence of the &,’s given Wy, we have
that

n—k
Pr(AU}_,W:WO)Z<1—9k> >pi=e Ve

Finally, since this is true for any fixed Wy, we have that

n—Fk
(16) Pr(A, | F) > (1 - ;2) > p.

It follows from (16) that on termination, conditioning on F, there are in expectation at least
(1—-p)p (Z) vertices of Uy that remain unoccupied at the end of the process.

Let now Zj denote the number of v such that A, occurs. Now Z; is determined by at most
(k+ 1)(1:11) random choices viz. the paths from 1 to L4 that give rise to a first visit to a vertex
of L1 that continues on to Of. More precisely, we partition the paths from 1 to 0 according to
which member of Ly, they visit. Zj is determined by an independent choice of a path from each
part of the partition followed by a choice of vertex in L. Changing one of these choices, changes
Zi. by at most one and so applying McDiarmid’s inequality we get

1=p (n (-0 (&) ek (3)"
PF<Z’“§2<k>)§eXp{‘M}§exp{— .

k\100  _on/k (nyk
k n 2
log<(€”) ¢ (i) ) :(k:—lOO)log(n/k)—100—logn—?n > 2logn

n

Now

if k1 < k < e3n. This proves the Theorem. O

3. Long path. In this section we prove Theorem 1.5
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3.1. Setup. We begin our proof by fixing certain parameters a, b, c. Recall that n® is the length of
the path that we prove exists. n® will be a bound on the expected value of a level at a certain time,
and the exponent ¢ will occur in error bounds in our concentration analysis.

Our proof will require that these parameters satisfy the following constraints:

a < 1 — 2¢. This is needed to ensure that the probability in (44) is o(n~!) as claimed.
2¢ < 1 — a. This is needed to ensure that the RHS of (38) is o(yuo).

a < 2c. This is needed to ensure that ; in (39) to be o(1).

a+ b < 1. This is needed to ensure that the LHS of (48) is o(1).

a < 1. This is also needed to ensure that the LHS of (48) is o(1).

a > b. This is needed in (22).

S GU W=

We choose a as large as possible here. So we take

1 ¢
= _ —-_9 - _=c
a 5 e, b 5 g, C 173
for some arbitrarily small € > 0.
We then let
(17) (=n"and k=n—/{

and assume that £ is an integer. We let O;; = C; N L, the set of occupied vertices on level j at
time t.

A considerable difficulty facing our proof of Theorem 1.5 is that we do not understand the “inter-
mediate” behavior of the cube; that is, our Theorems 1.1, 1.2, 1.3, 1.4 lose their bite well below
level 7, say. Thus the proof must be agnostic to the behavoir of the process in the middle layers
of the cube. One natural idea to handle this would be to to assume a “worst-case” behavior for
the intermediate levels of the cube; say, that level k& becomes full while levels k + j (j > 1) are
still empty, and show that even in this scenario, a path of length nearly n — k will still grow, for
sufficiently large k. However, the DLA process is not monotone in a clean way, preventing us from
arguing directly that having level k full while higher levels are empty is truly a worst-case scenario

from the standpoint of the probability that a long isolated path reaches 1.

Instead, we proceed by defining a stopping time. We run the DLA process on the empty cube, until
time 7y when there first exists 0 < j* < jp such that

Okl 2 €77, p0)-

Here pg and jg are parameters which will chosen later, and we define

. B (jé%)
C(]nu()) - jo(jffj)n(jy
and -
e
() = ")
n(j SHO (6 B S)
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o will be an upper bound estimate for the time after 79 when we can expect the process to end,
and jo ~ v2¢ will be the level from which we show the isolated path with grow. We will see in (22)
that ((jo — 1, pno) < 1, so that the stopping time 7y always occurs.

Roughly speaking, by beginning our analysis from this stopping time, we begin from a situation
where we have some (carefully chosen) useful bounds on the sizes of levels, which makes an analysis
of the remainder of the process possible.

For the purpose of analyzing the growth of the DLA process in expectation, it is useful to allow
the process to continue past the point when vertex 1 becomes occupied. To do this, we extend the
DLA process past time tenq by letting ©; be the number of particles stuck “above” 1. In particular,
©; = max {0,t — tenq }, and occupancies of vertices v € B at times ¢t > tonq are the same as at time

tend-

Now we let X = [Opqjrot+t| for 0 < j,t and let Yj; = 07 + Zr>j*+j X;t. (It would be natural to
replace ©? with ©; here, but using ©?—or any fast-enough growing function of ©;—ensures that
the following recurrence for Y;; will not be broken by the cases where t > tenq.) Then we have that
for j > 1,

Xi 14—
(18) B(Xj— Xy | Xjoe) < 2550, 6> 1
(e—j+1)
Yio1:— Yic1:—
(19) E(Yjt = Yji1 [ Yj14-1) 2 e s N

Zrzj“rj (ef:ﬂ) N (ij*{rijJrl)’

Explanation

The RHS of (18) is the probability that a particle chooses an occupied position on level k + j. It is
an upper bound for the increase because it does not account for the particle being blocked higher
up in the cube.

For the middle term in (19), observe that there are Y;_; ;1 occupied vertices among the Z?"Zj*ﬂ' (Z_:fﬂ)
vertices at or above level 7 — 1; thus the middle term gives the probability that a randomly chosen
vertex from p; N UTZJ* 4 Ly_r4+1 is occupied, and the occurrence of this event implies that Y;;
increases by one. This explains the first inequality.

Removing the conditioning in (18), (19) we obtain for j > 1,

E(X,_1:_
(20) E(Xjr — Xj-1) < W t>1.
(e—j+1)
E(Y,_1+
(21) B(Yi— V1) 2 DO sy
(Z—j*—j-i—l)

The recurrences (20), (21) yield upper and lower bounds as on the expectations of X ;,Y;, which
will be analyzed in Section 3.3.

To prove that a path grows from jj, we will first show that after

n
251 i—Mo—w1<€ )
—Jo
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steps for

wi = log?n,
we will have that w.h.p. Yj, rotp = 1° and Xjo—174 S win’. Observe that this implies that
for the minimum tg, for which Yj, 4, = 1, we have Xj,_14,, < win’, and that we have that
|Ok-tjo.ten | = 1. In particular, we will prove that the DLA process can quickly produce a path from
to 1 after tg4,; that X, _1; does not increase quickly after ¢g,, and that the small value of X;,_1;
for ¢ near tg, implies that no particles stick at jy while the path to 1 is being created.

3.2. Chotice of po, 41, Jo- In this section we define pg, i1, jo and compute various quantities asso-
ciated with them for later use. In particular, we let

) 0 o w0
R

§(j,t) =

Note from (17) that

: : o —Jo+1
C(jo — 1, o) = &(jo — L o) ——5——
JoHo
This, together with lines (23), (27) and (30), below, will imply then that
. n®
22 Clin = 1.10) =0 (25 ) = ol

Roughly speaking, £(j,t) is an approximate target for comparison with |Op.; 7 4¢|. In particular,
we will choose 1, jo and prove that

P1: E(Xjou) < €(jo, po) = n® — see (27) and (36).
P2: E(Xjo—1,u) S€Uo—1,m0) = 2e3nd — see (37).
P3: E(Yjyu) 2 29210 — see (41).

We choose

w=(1-a)logn
and then jy by

44
jO:min{j:j(j—|—3)>2€+}.
w—1

Now j(j+3)—(j —1)(j +2) = 2j + 2 and so we have that

4/ . 44 .
2+ —— < jo(jo+3) <24+ —— + 2jp+ 2.
w—1 w—1

Thus

4/
2 e =204+ —— 40
(23) Jo T %
where |6p| < 37p.

Next we prove an asymptotic estimate for n(7).
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LEMMA 3.1. If€>j,n—{+j> 1, and £ = o(n'/?), then

n)j(f—(j—l)/Q) (27%)_%jegj+382j/2n+aaj—abj2’

n(j) ~ (Z

. N 2 . .9 -\ 3
_J J _J I J

where

Proor. We let

be the superfactorial function. It is known that
$(0) ~ Crea s ¢ 10—t 97y 2!

for some absolute constant C; > 0. (See, for example, Adamchik [4]. We use the asymptotic
expression for the Barnes function G(z) on page 2. Note also that ¢(¢) = G(¢ + 2).)

We need to estimate ¢Ef(;)m) where z = O(£'/?). In preparation we observe that if x = O(¢/?) then

T\ - wi —x+eqT
(1—Z> :exp{_x_'_;z(z—l)ﬁl—l}:e + ,

1—1

where g4 = 3272 st = 5 + O ((%)2>, and

1 €T %(fo)Q / S a’ —ﬁtf—l— 22 —gpa?
(_Z) - P _7x+ 1: Zzz—l 2))0i—2 - ’

=3

2

7 2 3
where e =3 ;- 3W:&+JW+O((%> )

Thus, if 2 = O(¢'/?) then

o(l—z) (1- %)%(f—xﬁ (1- %)f—w (1- e)% 03—ty o~ §(0—2)’—(t-x) (%)%(4—@
o(0) ~ €1€2+€+ﬁ e—fﬁ - (27r)2£
Y\ 3(—2)° x\ e 1 —bz+1a? —z, Str—3224a Y
S 13 (- gy b

Q

1 2 _ oy Bpp_32 1
e " 2J:€+ 22 teqz—epa? < f Zz-‘,— z2 Te (ac ac —1—90(27_‘_) 3T

_ g—ﬁx-{—%xQ—xeﬂx—I—an—ebm (271_)—5@

Observe that if s3 = O(m?) for some m — oo with n then

(24) (”:) - ﬂ;—!sexp {—;; +0 (;;) }
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So, if > j,n—L+7>1and £ = o(n'/?) then

1. . 2 . . .2
(271_0 2]€Z]+3€ j/2n+eaj—cepj ’

nd(=G=1)/2)g=35/2n8(¢ _ ;) (n
(L) -

i(t=3G-1)/2)
‘)
as desired. 0]

(25) n(j) =

As a consequence, we have:

LEMMA 3.2.  If pg > pu1 > % then
,uéOJrl (Iuoe)jo—l—l(QW)%jogjo(f—%jo-i-l)

do+ DnGo) /2o (jo + 1)+ tndo(E= 30— et~ F+<0)in”

& (jo, o) = (

where 9 = o(1).

PRrROOF. Using (23), we compute

. . J J j —
cudo R =10 B oy o)

(o) (3e0(2)) o

1

= — (3 — €0> Jjo where €9 = o(1).

The lemma now follows by using (24) to deal with (Jé‘il) and Stirling’s approximation and (25) to

deal with 7(jo). The factor €3°90/2" can be absorbed into the £gjo term. O

Now choose pg as

1 Jo
55 b\ Jot1

1 1/ 1, 4 -
1 (j0+1)1+3'0n€ z (o 1)ez 3+3j0j()2]0n]°
Ho == —

€ (27r)j3];olef—%j0+1
o nt—30o—1) ¢ J'OJ%
(26) N — —
e32ml \ -3l
n €+O(£)
-(7)

Observe that with this choice, we have from Lemma 3.2,
(27) &(jo, o) ~ nl.
We now compare g and ji1.

LEMMA 3.3.

(28) )
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PROOF. Evaluating the exponents in (26), we see from (23) that

(£ = 300 —1))jo

joy = 20+ I0) — o 20
Jo+1

Jo+1 C(w=1)(o+1)

—0(1).

— (-

In particular this says that

; l—jo+—2L ——_0O(1) _tig

It follows from this that

0—jo jo—t . 2 .
(20) o> pol™ e o (ﬁ) Gtor W Go-gb S
(%) nt=io ™ o5\ /oni \L
¢ .
—0(1 2 - —0(1) .55 t+J
Jozl m ((") w el)”“ o — Jo7 4( Jedot1 > oo,
e32ml ¢ e3/2ml
and the lemma follows. O

We now compare &(jo, to) and &(jo — 1, p1o)-

LEMMA 3.4.

(30) £(jo, ko)

PrROOF. We have that

€Go—1,m0) () (Z—J‘T(L)—I—l)'

f(jov NO) B (/jg)
Using (24) and applying Stirling’s formula to (¢ — jo + 1)!, we get that
§(jo — 1, p0) jo(ne) o +1

f(j(]a MO) - V 27T£,l1,0(€ —Jo+ 1)€—j0+1

J
~ Jo(ne)t—dotl Aot [ -3y \ o
2ml(l — jo + 1)¢—do+1 Jo nt—50o—1) ot ’

where at the end we have used (26). Now

L
_ pl—jo+1 . Jo—1 (,70 - 1)2 j3
= (oot exp{—(ﬂ—jo—i-l)( 7 + 202 +0 B

~ pl—dot+1,—do

, t—jo+1
, . —1
(€ —jo+ 1)t = gttt (1 _ L0 )

So, we can write

. _L(i 1)) 20 (g _
W R e% <€> e ejo_%(jo—l)jg%
Jo, Mo ne
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= e3¢ 200t+1)
ne

24
4 doliotd) ( i )<w1>(jo+1)+0(1)

Our choice of w implies that
20 1 (ne) 2(w+1)
——log(— ) = ——=.
w—1 & 14 w—1
And then we see that

£(jo — 1, po)
£(Jos po)

4 1 e 20 ne
~e3 'eXp{Q(jo—i-l) <]0(]0—|-3) . 1log( 7 ) —I—O(logn))}

e .exp{z(jolm (jo<jo+3> - W»

Here we have used (23). O

3.3. Expected occupancies. Now we analyze the random variables X;; and Yj; in expectation. The
next lemma helps us deal with the recurrences (20), (21).

LEMMA 3.5. Leta_1=p_1=1.

(a) Let x5, satisfy (i) vor < oo +t, (it) xj0 < ay, (i) xjp — xj—1 < fj—1xj—14-1 for j > 1,
where Bj > 0 for j > 0. Then when j > 1 we have

J+1 ¢ j—1
1) se< (1) 11 o
1=0 s=j—1

(b) Let yjr satisfy (i) yj=+ > aj«, (i) yjo > 0 for j > j*, and (i) yjt — yje—1 > Bj—1yj—1,4—1 for
j > jg*,t>1. Then for j > j* we have

t o\ o
(32) Yjt > Qg (] . ]*> H Bs-

PROOF. (a) Now we have

t

t
s <ar+fo) (a0 +7-1) = +aoﬂot+ﬁo<2>-

T=1

So equation (31) is true for j = 1. Assume inductively that it is true for j — 1 where j > 2. Then

t
zjr < aj+ fi-1 E Tj 171

T=1
t g o1\ 2
< aj +5j—1220&j—1—z‘< ; > H Bs
=1 i=0 s=j—i—1
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J Jj—2
t
=a; + Bj-1 E aj—l—i<l.+1) H Bs
i=0

s*j—i—l
J
:Olj+zaj—1—7j< > H Bs
=0 s=j—i—1
Jj+1
=a; + Zaj l( > H Bs.
s=j—i—1

19

(b) We have y;+; > o« and so equation (32) is true for j = j*. Assume inductively that it is true

for 5 — 1 where j > j*. Then,

t
Yit > Bi-1 ijq.rq

=1

> B 12% <
<J—J>Hﬁs

O]

3.3.1. Upper Bound. To use Lemma 3.5 for an upper bound on E(Xj 4),7 > 0 we use the

definition of the stopping time 7y to define

(o)

. 1 .
Q= ’OkJrj,TO‘ < C(JvMO) = m and 6] = W for 7 > 0.
L—j

0\jo—j

Thus, for 0 < j < jp and 1 <t < po,

j+1 A
E(Xjrit) €D |Oktjiml <z> -

i=0 s=j—i (ﬁ—s)
J+1 j—1
t 1
< ZC j =iy po < > 0
s=j—i (Z—s)

(33) —ji (%7)(3—@) (t) ﬁ (/11)

= 0*]0 Jo—j+i

" <S8 (VT o

:f(],t)

To go from (33) to (34) we let u; denote the summand in (33) and observe that

(35) ui+1:?_i.j0_]:+i'+1”
U; t+1 po—Jotjg—1
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This implies that

Us M1

ﬁ > <1 B OJI(EnjO))]O —1_ 0(1)’

whenever i < j. Here we have used (28). Furthermore, (35) implies that u;+1 < u; for j < jo. This
verifies (34).

So:

LEMMA 3.6. We have

(36) E(Xjo,rot1) S €(jos 1) = &(jo, po) ~ 1

and

(37) E(Xjo—1m0+p) S &G0 = 1, 0) = € (o, o) x O(1) = O(n”).

PROOF. These come from (27), (28), (30) and (34). O

3.3.2. Lower Bound. To use Lemma 3.5 for a lower bound on E(Yj;),j > 0 we use y;; = Yj; for
J > 4%, and take
- 1
Qjx = ’Ok‘l‘j*ﬂ'o‘ > C(] aMO) and Bj = ( n )7
l—j

to get:
LEMMA 3.7. For j >0,

@) ()

vo (g gmG) (o)

~
<
*
\_/
<.
=}
*
|
:
i}

E(Yj+) > ¢(j", no) <] —

3.4. Concentration. We can obtain w.h.p. upper bounds on the sizes of sets Oj,4; by applying
Markov’s inequality to the random variables X ;. In this section, we obtain suitable w.h.p. lower
bounds on the random variables Y} ;. Let

n (ja31)
N':< ,)andL4:Wforj20.
RN T on() ()
Observe from Lemma 3.7 that we have

(j+1tfj*)Lj

E(Y; >
( ,]+1,t) - NJ

We will establish lower concentration of the level sizes inductively, starting from level j* + 1. For
each level j > j*, there will be a time ¢; past which we have a good w.h.p. lower bound on the level
size, which can then be used inductively for the next level.
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Wedeﬁne?j,j*-l-lﬁjﬁjo—lby
R Li(.*,
tj:min{tzj(]_j)>n}-

And then define ¢, j* +1 < j < jo— 1 by
tj — max {%\j,Wthfl} , Wy = nt.
We also let ¢+ = .

Our definition ensures that t; < tj41 for all j* < j < jo — 1. The following Lemma shows that the
t;’s don’t grow to large.

LEMMA 3.8. Forj*+1<j<jo—1,

(39) (%)5—0(3’0)

o Jo/3
- (¢
<tj S wy o o <K [o-

ProOOF. We will first need to bound 7§AJ from above and below. Thus we estimate

Li_ Gt
Ni gonli + (/)
b (o= )!
Jjo(jo+1)n(5 + 1)
(jo — 5*)! jo =Y Go-1) 0\ 04T
T joo + ! \ ed+o) o \ pt-3Go-1)
0N G+D(E=3/2) o ‘ y | o
X <> (27€)§(J+1)e—€(j+1)—3f (J+1)/2n—ea(j+1)+ep(G+1)
n

¢\ {0=3")+3 (05" =3%)=0(o)
<(4) _
n

Thus,

(@)4— J;(;_](J”j —0(jo) - (n)f—O(J’o)

ti >t > -
J = ") = g

I

. PP
since clearly 2 j_JJP*J < Jo.

On the other hand, because Tt\j is large we can write

D N\ G NG .
ol (N LGS (G &l monGio)
N; 110 N; 1o jon(j +1)
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We see from this that

by do—1 N\ YG=i7)
U ﬁ)“ _
7\ 0 i
b=\ /077 (n)(jofj—n(eﬁ(jo+j>>/(jfj*> (n)j0/3
Jo ¢ 4
Consequently,
j0/3
t<wWlTE < g o
= Wy J n Ho,
which completes the proof of the lemma. ]

Our next task is to obtain a high probability lower bound on the random variables Y} ;. Define,
for j* <j <jo—1,

o J—J
(39) 0j = o

We define £; to be the event that there is a 7 € [t;, po] such that Y;, < (1 —6;)L; (]_T]*)

LEMMA 3.9. For all j* < j < jo— 1, we have

J=J
(40) Pr (&) < 2
Moreover, we have that w.h.p.
(1) Vi 2 E00)

PrROOF. We prove (40) by induction. The base case j = j* is trivial because all we assume is that
}/‘vj*’t 2 Lj* = C(]*,'LLO) fOl“ t Z T0-

Assume now that j*+1 < j+ 1< jg— 1. We write

L= £y

3’23

~ 5 n
Ny =145 = ) (e- )
g J
3'2j
We define a new random variable Zj 1 = 0114, + 011,41 + - + 041+, where the 0,41 s are
independent {0,1} random variables where

(L= 6;)Ly(; - — )L (T
(42) E(gj-i-l,T) = [ N (J - )—| 2 a 3\[]. (J J )

and
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We will define these variables so that
(43) ﬁgj implies Yj+1,t > Zj—i—l,t fort € [tjuﬂl]-

For each 7 > t;, we define S; - to be the lexicographically first subset of E_j among subsets of size
{(1 —6;)L; (]—T]*)—‘ for which a maximum possible number of vertices at level j are occupied. (In

particular, —=&; implies that S is full.) We let ;1 be the indicator random variable for the
event that the path p, used at step 7 intersects S; . Observe that the 6,1 ;’s are independent for
T > t; and also that (42) and (43) hold.

Now for ¢ > t;411 we have

And applying Hoeffding’s theorem, we see that

(1- 5j+1>Lj (j—i—lt—j*) . ]+1 J*
(44) Pr (3t € [tjr1ml: Zjae < N, < D ewq- 10w§N

n £+O(€ 1 20
émeXp{_lowg}:(e) exp{ 10 }

ny o0 AU L
prigy) < Prigy)+ (3) e {1 b < 120

completing the inductive proof of (40).

Thus

Evaluating just the ¢ = iy term from (44) with j = jo — 1, §;, = n~%/* gives

1—68;)L—1(."., 1 —0jo)Ljo—1(; "
o (ijul < ( = .0 (]0 : )> . (Zjowl < ( JO) z (]0 ]) +Pr(5j0*1)

-1 Njo—1

)L

N]o

Lijo—1(;,";-) £(jos 10)

< _ Jo—Jj -1\ _ ~sUo, Mo -1

_exp{ 10n¢/2Nj,_q Foln™) exp{ 10jone/? +oln™)
b

n _ —
Sexp{—w}—l—o(n 1):0(71, 1).
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(Notice we only proved concentration for one value of ¢ in the jy case, as opposed to an interval as
n (44).) So we have that w.h.p.

sk 12 ] _j* H )
Y; Ljopg’ " (o) 110" ~ (i) _ £l o)
I Nj1Go =)0 o (5,5 )nGio)Go — 7)1 dom (o) jo
giving (41). -

So now let 75 < p1 be the first time that level k + jo is non-empty. Equation (41) shows that 7
exists w.h.p. Now consider the next w, (Efjo) particles. We argue that w.h.p. these particles create
an isolated path from level k& + jg to the top.

Observe that we have w.h.p. that
Ok jo.rs | =1 and |Okyjo—1,7] < nlogn.

For the second bound we have used the Markov inequality and (37) from Lemma 3.6. Note that
we have O; r+ = & for j > k + jo. Next let 7,7 > 1 be the time when the first particle occupies
Li+jo+i- We observe that

n 1 wl(k+jon+i71)
(45) Pr (T-* -7 > w1< o >) <|l-F+—7— <e .
o k+joti—1 (k—f—j(ﬁi—i—l)

We observe next that for 4 > 0 we have

n—k—jo
n n
46 ) <9
(46) w2 <k+jo+r>— wl(k+jo+z')

r=1

This implies that for i <n —k — j() we that W.h.p.,
i =10 1 k j 0

For the final inequality we used (29).

In particular, tena—75 = T, _ jo — 73 < po-. Finally, let us consider the probability that |O;¢, .| > 2
for some i > 0,5 > k + jo. At a fixed time ¢ € [7§, o], the probability that a particle lands on

nblogn

level k + 7o is at most ) and the probability that a particle at time ¢ € (7, teng] lands at
k+jg—1
level k + jo+ i (i > 0) by colliding with the first particle which landed at level k + jo + 7 — 1 is at
most ﬁ Thus, using (45), (46) and (47), the probability the particle at time t € [77, tend]
ko i1
becomes the second particle to occupy a level j € [k + jo,n| is at most

n n’logn ek dot n 1
(48) 2w1< , )n + 2w1< , )n +o(1) = o(1). O
k+Jo (k+jo—1) ; k+jo+i (k+jo+ze1)
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4. Further Questions. In some sense, our theorems characterize the beginning and end of the
process under consideration. Understanding the behavior of the process in the middle of the cube
seems like a major challenge. On the other hand, it is likely to be a prerequisite for an understanding
of some basic parameters of the model. For example, from empirical evidence, the following seems
likely:

CONJECTURE 4.1.  teng = 0(27).

Of course an extremely natural target is the following:

QUESTION 4.2.  How large can the parameter a be in Theorem 1.5¢

There are also some interesting modifications of the model to consider. For example, what happens
if the random walks are not monotone? In the Boolean lattice this may seem a bit unnatural. It
may be interesting to consider hypercubes [m]”, in which case the behavior of the process relative
to the relationship between m and n can be explored.
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EONC)

APPENDIX A: CONCENTRATION INEQUALITY

In this section we derive Lemma 2.3. Recall the statement:

LEMMA A.1 (Lemma 2.3). Let Xi,..., Xy be independent random variables such that, for all i,
E(X;) < E and X; € [0,C] almost surely. Then for Sy = Zf\il Xi, En = E(SN), and for all
t < NE, we have that

t2

This is an immediate consequence of Bernstein’s inequality (see, e.g., [2]):
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LEMMA A.2 (Bernstein). Let Xi,...,Xn be independent random variables and V,C' be constants
such that

N

Y E(X7) <V

=1

and for all ¢ > 3,

N

|
Y E(max(X7,0)) < %ch—?
i=1

Then for Sy = SN | X;, Ex = E(Sy), we have that

42

PrOOF OF LEMMA 2.3. In the setting of Lemma 2.3, the conditions of Lemma A.2 hold for the

random variables X; (as well as for the random variables —X;) by taking C' as given, and taking
V = NCE, since 0 < X; < (. So we have that

—12/9 —12/9
Pr(Sy — Ey > 1) <exp <NCE/+Ct> < exp <2NC'/E>’

assuming t < E'N. The analogous statement holds for —Sy also, giving the Lemma. 0
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