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DIFFUSION LIMITED AGGREGATION ON THE BOOLEAN LATTICE

By Alan Frieze∗ Wesley Pegden†

Carnegie Mellon University

In the Diffusion Limited Aggregation (DLA) process on Z2, or
more generally Zd, particles aggregate to an initially occupied origin
by arrivals on a random walk. The scaling limit of the result, empir-
ically, is a fractal with dimension strictly less than d. Very little has
been shown rigorously about the process, however.

We study an analogous process on the Boolean lattice {0, 1}n, in
which particles take random decreasing walks from (1, . . . , 1), and
stick at the last vertex before they encounter an occupied site for the
first time; the vertex (0, . . . , 0) is initially occupied. In this model, we
can rigorously prove that lower levels of the lattice become full, and
that the process ends by producing an isolated path of unbounded
length reaching (1, . . . , 1).

1. Introduction. In the classical model of Diffusion Limited Aggregation (DLA), we begin with
a single particle cluster placed at the origin of our space, and then, one-at-a-time, let particles take
random walks “from infinity” until they collide with, and then stick to, the existing cluster; when
the space is not recurrent, some care is required to make this precise.

Introduced by Witten and Sander in 1981 [10], the process is particularly natural in Euclidean space
(with particles taking Brownian motions) or on d-dimensional lattices; in these cases, the process is
empirically observed to produce structures with fractal dimensions strictly less than the dimension
of the space (e.g., roughly 1.7 for d = 2, with slight but seemingly nonnegligible dependence on
details such as the choice of underlying lattice or the precise “sticking” condition).

Strikingly little has been proved rigorously about the model, however. Kesten [8] proved an a.s. asymp-
totic upper bound of Cn2/3 on the radius of the n-particle cluster for the lattice Z2, for example,
but no nontrivial lower bounds are known. In particular, it is not even known rigorously that the
process does not have a scaling limit with positive density. (Eldan showed that an analogous process
in the hyperbolic plane does aggregate to positive density [6]). Eberz-Wagner showed at least that
the process leaves infinitely many holes [5]. For some more recent results, see Benjamini and Yadin
[1].

In this paper, we study an analogous aggregation process on the Boolean lattice B = {0, 1}n, which
evolves at discrete times t = 0, 1, . . . , each of which has an associated cluster Ct. C0 consists of just
the vertex 0 = (0, . . . , 0) ∈ B. Then, for t > 0, Ct is produced from Ct−1 by choosing a random
decreasing walk ρt from 1 = (1, . . . , 1), letting v be the last vertex of the longest initial segment
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of ρt which is disjoint from Ct−1, and setting Ct = Ct−1 ∪ {v}. The process terminates at the first
time tend when Ctend ∋ 1.

In particular, the clusters Ct grow from 0 by aggregation of decreasing random walks from 1. Our
initial motivation for considering this model was to evaluate the impact of very large dimensionality
on a DLA-like process. (An analogous motivation underlies work on percolation in the Boolean
lattice; see for example [3, 7, 9].) We will see, however, that the Boolean lattice also allows strong
rigorous (and perhaps, surprising) statements to be made about the structure of the aggregate. In
particular, let Lk = {x ∈ B | |x| = k} denote the kth level of B, so that |Lk| =

(
n
k

)
. We will prove

the following.

Theorem 1.1. There exists c0 > 0 such that w.h.p.1, for all

k ≤ k0 :=
√

c0n
logn ,

we have
Lk ⊂ Ctend .

Theorem 1.2. For any K > 0, we have w.h.p. that for all k ≤ n
150K logn , we have

|Lk ∩ Ctend | ≥
(
1− 1

nK

)
· |Lk|.

Theorem 1.3. For all ε ≤ 1
100 , we have w.h.p. that for all k < ε3n,

|Lk ∩ Ctend | ≥ (1− 2ε) · |Lk|.

Theorem 1.4. There is a constant c1 such that for all ε < 1
100 , we have w.h.p. that for all

k1 =
√

c1n
logn ≤ k < ε3n,

we have

|Lk \ Ctend | ≥

(
(1− ρ)e−

10n
9k

2

)
· |Lk|,

where

ρ = max

(
1−

(
k + 1

en

)100

, 1−
(

1

10e

)10
)
.

Thus Theorems 1.1, 1.2, and 1.3 provide progressively weaker statements as k increases about the
fullness of the level Lk at the end of the process; Theorem 1.4 shows that Theorems 1.1, 1.2 and
1.3 are qualitatively best-possible. A key contrast from classical DLA is that the process does “fill”
parts of the cube, and moreover, that this can be proved. Note also that the boundary between full

and not full levels occurs w.h.p. at around k =
√

n
logn .

A striking (unproved) feature of the classical DLA processes is a rich-get-richer phenomenon, where
long arms of the process seem to grow at a rate significantly faster than t1/d. In the Boolean lattice,
we observe an extreme version of this kind of runaway growth:

1A sequence of events En, n ≥ 0 occurs with high probability (w.h.p.) if limn→∞ Pr(En) = 1.
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Theorem 1.5. If a < 1
2 then w.h.p. for all k ≥ n− na we have that

|Lk ∩ Ctend | = 1.

Recall that our DLA process on B ends once 1 is occupied; Theorem 1.5 implies that 1 becomes
occupied as the terminal vertex on an isolated path of occupied vertices whose length is at least
na.

Notation. In what follows we use the notation An ≈ Bn to mean that An = (1 + o(1))Bn as
n → ∞ and An ≲ Bn to mean that An ≤ (1+ o(1))Bn as n → ∞; we write An ≈b Bn to mean that
An/Bn is bounded above and below by positive absolute constants as n → ∞. In some places we
give expressions for integer quantities that may not be integer; in cases where we do this, it does
not matter whether we round up or down.

2. Lower levels. In this section, we prove Theorems 1.1, 1.2, 1.3 and 1.4. We define

(1) τk,ε =
ε

4

(
n

k + 1

)
= ωk,ε

(
n

k

)
for ωk,ε =

ε

4

n− k

k + 1
.

Roughly speaking, we expect that at time τk,ε, the level Lk is mostly full, while higher levels are
empty enough to have little effect on the process at this time. We will prove a sequence of lemmas
confirming this general picture. First, we establish an upper bound on the height of the cluster at
a time τk,ε:

Lemma 2.1. Let ϕ = 1 +
√
3 and 0 < ε < 1. If k < n

(1+ϕ)eϕ
, then, for all δ > 0, we have with

probability 1− o(n−1) that

Lj ∩ Cτk,ε = ∅ for all j ≥ (1 + ϕ+ δ)k.

Proof. Consider a fixed vertex v in Lk+s. If it becomes occupied by time τk,ε, then there is a
sequence of times tk+1 < tk+2 < · · · < tk+s ≤ τk,ε such that

(2) ρts ∩ Lk+s = {v} and ρti ∩ Lk+i−1 = ρti−1 ∩ Lk+i−1

for i = 1, . . . , s .

By considering the
(
τk,ε
s

)
possible choices of the times tk+1 < · · · < tk+s ≤ τk,ε, the probability that

each ρti satisfies the intersection conditions (2) for i = s, s− 1, . . . , we have that

Pr(v is occupied at time τk,ε) ≤
(
ωk,ε

(
n
k

)
s

) s∏
i=1

1(
n

k+i

)
≤

(
ωk,ε

(
ne
k

)k
e

s

)s s∏
i=1

(k + i)k+i

nk+i
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= ωs
k,εn

sk−sk−s(s+1)/2

(
ek+1

kks

)s s∏
i=1

(k + i)k+i

≤ ωs
k,εn

−s(s+1)/2

(
ek+1

kks

)s

(k + s)s(k+(s+1)/2)

=
(ωk,ε

s

)s
n−s(s+1)/2e(k+1)s

(
1 +

s

k

)ks
(k + s)s(s+1)/2

≤
(ωk,ε

s

)s((k + s)1/2 · e1+k/(s+1)

n1/2

)s(s+1)

.

So, multiplying by
(

n
k+s

)
we see that

Pr(∃v ∈ Lk+s : v is occupied at time τk,ε)

≤
(

n

k + s

)(ωk,ε

s

)s((k + s)1/2 · ek/(s+1)+1

n1/2

)s(s+1)

(3)

≤

(
ωk,ε

s

(
k + s

n

)(s+1)/2−1−k/s

e2+k/s+k+s

)s

.

Suppose now that k = αn, s = βn ≥ 1. Then the above expression becomes(
(α+ β)β/2eα+β

(
ωk,εs

−1n1/n(α+ β)−1/2−α/βe2+α/β
)1/n)βn2

.

We insist that β ≥ α, in which case(
ωk,εs

−1n1/n(α+ β)−1/2−α/βe2+α/β+α+β
)1/n

≤ 1 + o(1),

which implies that the expression in (3) is o(n−1) so long as (α+ β)β/2eα+β < 1.

Let β = γα (γ ≥ 1). Then our requirement is that (α(1 + γ))γ/2e1+γ < 1 or α < 1
e2+2/γ(1+γ)

. Now

e2+2/γ(1 + γ) is minimized at the solution to γ2 = 2(γ + 1), which is ϕ = 1 + 31/2. In summary, if
α < 1

(1+ϕ)eϕ
then with probability 1 − o(n−1) all levels above α(1 + ϕ + o(1))n are empty at time

ωk,ε

(
n
αn

)
, which gives the Lemma.

Now we define Φv,t to be the fraction of (monotone) paths between 1 and v which have at least one
occupied vertex other than v at time t. The following Lemma implies that levels above Lk play a
small role when analyzing level Lk at time τk,ε.

Lemma 2.2. For all fixed ε > 0 and all α = k
n < min( ε

2

4 ,
1

100), we have

(4) Pr
(
∃v ∈ Lk s.t. Φv,τk,ε ≥ ε

)
= o

(
1
n

)
.

Proof. Recall that the particle in Ct \Ct−1 is deposited by the decreasing walk ρt. We fix a vertex
v ∈ Lk, choose some λ such that k + λ ≤ n

2 , and define, for each t = 1, . . . , τk,ε, a random variable
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ξv,t ∈ [0, 1] equal to the fraction of paths between v and Lk+λ+1 whose interiors intersect the path
ρt. Let Uv denote the set of all 2n−k ancestors x > v of v. Note that ξv,t is determined by the
minimum ζ ≥ 1 such that ρt visits Lk+ζ ∩ Uv, and, with respect to this random variable ζ, can be
bounded by

(5) ξv,t ≤ ξ(ζ) :=

⎧⎪⎪⎨⎪⎪⎩
λ∑

i=ζ

1(
n−k
i

) ≤ 3

2(n−k
ζ )

ζ ≤ λ

0 ζ > λ.

Moreover, we have for s ≤ k + λ that

(6) Pr(ζ = s) =

(
n−k
s

)(
n

k+s

) · k

k + s
,

since this is the probability that ρt visits Lk+s ∩ Uv, and then on the next step, moves outside of
Uv. In particular, we have that

(7) E(ξ(ζ)) ≤ 3

2

λ∑
s=1

(
n−k
s

)(
n

k+s

) k

k + s

1(
n−k
s

) ≤ 3

2

λ∑
s=1

1(
n

k+s

)
=

3

2

⎛⎝1 +
∑λ

s=2
(k+2)···(k+s)

(n−k−1)···(n−k−s+1)(
n

k+1

)
⎞⎠ ≤ 2(

n
k+1

) ,
for k + λ < 1

2(n− k − λ+ 1), or k + λ < n+1
3 .

We will use the following concentration inequality for nonnegative and bounded independent ran-
dom variables; we show in Appendix A that this is an easy consequence of Bernstein’s inequality.

Lemma 2.3. Let X1, . . . , XN be independent random variables such that, for all i, E(Xi) ≤ E and
Xi ∈ [0, C] almost surely. Then for SN =

∑N
i=1Xi, EN = E(SN ), and for all t ≤ NE, we have that

Pr (|Sn − En| > t) < 2 exp

(
− t2/4

NEC

)
.

Note that in the same situation, Hoeffding’s inequality gives 2e−2t2/NC2
, which, ignoring constant

factors in the exponent, is always worse; the point is that we are interested in the case where
E ≪ C. And though we have stated the lemma here with the condition t ≤ NE, one could drop it

and still obtain the bound 2 exp
(
− t2/2

NEC+Ct

)
, an analogous improvement over Hoeffding anytime

t ≪ NC.

To apply Lemma 2.3, notice that from (5) that ξ(s) ≤ 3
2(n−k) always. If Ξv,T =

∑T
t=1 ξv,t then Ξv,T

is stochastically dominated by a sum ZT = ξ(ζ1)+ξ(ζ2)+· · ·+ξ(ζT ) where each ζj is an independent
copy of a random variable ζ satisfying (6). Now (7) implies that TE(ξ(ζi)) = E(ZT ) ≤ 2T

( n
k+1)

, and

thus Lemma 2.3 with t = θ,N = τk,ε, E ≤ 2

( n
k+1)

, C = 3
2(n−k) gives that
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Pr

(
Ξv,τk,ε ≥

2τk,ε(
n

k+1

) + θ

)
≤ Pr

(
Zτk,ε ≥

2τk,ε(
n

k+1

) + θ

)
≤

exp

⎛⎜⎝− θ2/4
2τk,ε

( n
k+1)

· 3
2(n−k)

⎞⎟⎠ = e−θ2(n−k)/(3ε) = e−θ(n−k)/6,

for

θ = ε−
2τk,ε(

n
k+1

) =
ε

2
( from (1)).

Now we have that

Pr

(
∃v ∈ Lk, Ξv,τk,ε ≥

2τk,ε(
n

k+1

) + θ

)
≤
(en
k

)k
e−θ(n−k)/6.

Writing k = αn, we have that(en
k

)k
e−θ(n−k)/6 = eln(e/α)αn−θn(1−α)/6 = o

(
1
n

)
,

for any α < min(θ2, 1
100), say. Thus for α < min( ε

2

4 ,
1

100), we have that

Pr
(
∃v ∈ Lk, Ξv,τk,ε ≥ ε

)
= o

(
1
n

)
.

Now, by taking λ > 2ϕk, we may assume that the levels above level λ are still empty at time τk,ε,
so that Φv,τk,ε ≤ Ξv,τk,ε , completing the proof of the Lemma.

Now we define Υv,t for v ∈ Lk to be the fraction of down-neighbors of v which are unoccupied at
time t. By controlling Υv,t and Ξv,t simultaneously, we can make the behavior of the cluster with
respect to v sufficiently predictable.

Lemma 2.4. Suppose that 0 < ε ≤ 1
100 and k ≤ ε3n is fixed. Then,

(8) Pr (∃t ∈ [τk−1,ε, τk,ε], v ∈ Lk, Φv,t +Υv,t ≥ 2ε) = o
(
1
n

)
.

Lemma 2.4 will be proved by induction on k. Before giving the proof, we use it to prove Theorems
1.1, 1.2, and 1.3.

Proof of Theorem 1.1. Let Λk denote the set of vertices in Lk which are still unoccupied by
particles at time τk,ε. We fix ε = 1

100 and apply Lemma 2.4. Since τk,ε − τk−1,ε >
1
2τk,ε, we have for

any vertex v ∈ Lk that if Ψ = max {Φv,t +Υv,t : t ∈ [τk−1,ε, τk,ε]},

Pr (v not occupied by τk,ε | Ψ ≤ 2ε) ≲

(
1− 1− 2ε(

n
k

) ) 1
2
ωk,ε(nk)

≤ e−
1
3
ωk,ε .

Explanation: For a fixed time t for which Φv,t + Υv,t ≤ 2ε, the term 1

(nk)
· (1 − 2ε) is a lower

bound on the probability that ρt chooses to go through v on level k, avoids occupied vertices on
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the way to v and then chooses an occupied vertex in level k − 1. Conditioning on Ψ ≤ 2ε (i.e.,
on the 2ε condition for all t’s simultaneously) inflates these probabilities by at most a factor of
Pr(Φ ≤ 2ε)−1 = 1 + o(1).

Thus

E (|Λk| | Ψ ≤ 2ε) ≲

(
n

k

)
e−ωk,ε/3

and so by the Markov inequality,

Pr (Λk ̸= ∅ | Ψ ≤ 2ε) ≤
(
n

k

)
e−ωk,ε/4 = o(n−1)

as long as

ωk,ε =
ε

4

n− k

k + 1
≥ 5k log(ne/k).

In particular, this holds for

k ≤
√

εn

10 log n

and gives the desired statement (recalling that ε = 1/100).

Proof of Theorem 1.2. Again by the Markov inequality applied to |Λk|, we have

Pr

(
|Λk| ≥ β

(
n

k

) ⏐⏐⏐⏐ Ψ ≤ 2ε

)
≲

e−ωk,ε/3

β
.

This is o(n−1), assuming that ε = 1
100 and

k ≤ n

150K log n
, β =

1

nK
,

for any constant K > 0, giving the theorem.

Theorem 1.3 is a consequence of the following slightly stronger statement:

Lemma 2.5. For all ε > 0, we have w.h.p. that for all k ≤ ε3n, Lk is at least (1− 2ε) occupied at
time τk,ε.

Proof. This follows directly from Lemma 2.4. Indeed, if there are ℓ occupied sites in Lk at time
τk,ε, and m edges between Lk+1 and occupied sites in Lk, then assuming that Φv,t +Υv,t ≤ 2ε for
v ∈ Lk+1, (from (8)), the degrees of vertices in Lk,Lk+1 gives that with probability 1− o(n−1),(

n

k + 1

)
· (1− 2ε)(k + 1) ≤ m ≤ ℓ(n− k),

so that ℓ ≥ (1− 2ε)
(
n
k

)
.
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We now prove Lemma 2.4, by induction on k.

Proof of Lemma 2.4. In particular, assuming that (8) holds for some k, we aim to prove that if
0 < ε ≤ 1

100 and k ≤ ε3n then

(9) Pr (∃t ∈ [τk−1,ε, τk,ε], w ∈ Lk, Φv,t +Υv,t ≥ 2ε) ≤ 2k

n3
.

Observe that since Φv,t is increasing in t and Υv,t is decreasing in t, (9) can be proved by showing

0 < ε ≤ 1

100
, k ≤ ε3n implies that Pr

(
∃w ∈ Lk, Υw,τk,ε ≥ ε

)
≤ k

n3
,(10)

and

0 < ε ≤ 1

100
, k ≤ ε3n implies that Pr

(
∃w ∈ Lk, Φw,τk,ε ≥ ε

)
≤ k

n3
.(11)

Of course, (11) follows from (4), so we just need to show (10). For the sake of conditioning in the
induction, define the event

Ak,ε,n = (∀t ∈ [τk−1,ε, τk,ε], w ∈ Lk, Φv,t +Υv,t < 2ε) ,

so that we are aiming to prove inductively that

Pr(Ak,ε,n) ≥ 1− k

n3
.

As a base case we take k = 1 which trivially satisfies (9). Assume k ≥ 1 and fix some vertex w ∈ Lk,
and let N−

w ⊂ Lk−1 be the down-neighborhood of w. If we fix a set D ⊂ N−
w of size |D| = ∆, then

we have, since k ≤ ε3n, that

(12) Pr
(
D ∩ Cτk,ε = ∅ | Ak−1,ε,n

)
≤

(
1− 4∆

5
(

n
k−1

))τk,ε−τk−1,ε

≤ e−
∆ωk,ε

2 .

Explanation: The first inequality arises because each path ρt for t ∈ [τk−1, 1
10

+ 1, τk,ε] has proba-

bility ∆

( n
k−1)

of intersecting D, and conditioned on that event, applying (8) inductively with ε = 1
100

ensures that with probability at least 4
5 , a particle will occupy at least one site v of D after step t

for τk−1,ε < t ≤ τk,ε (either because v was already occupied before step t, or because ρt deposits a
particle at v.) The second inequality arises because k ≤ ε3n implies that τk,ε − τk−1,ε ≥

ωk,ε

2

(
n
k

)
.

Thus we have that

Pr
(
∃w ∈ Lk, D ⊂ N−

w , s.t. |D| = ∆, D ∩ Cτk,ε = ∅
)

≤
(
n

k

)(
k

∆

)
e−∆ωk,ε/2 ≤

(ne
k

)k (ke

∆

)∆

e−∆ωk,ε/2

= ek log(ne/k)+∆ log(ke/∆)−∆ωk,ε/2 ≤ 1

n3
,

if either k ≤ n1/2 or (ii) k > n1/2 and ∆ ≤ k and ∆ωk,ε > 4max(k log(ne/k),∆ log(ke/∆)).
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For (ii), recalling that ωk,ε =
ε
4 · n−k

k+1 , we can take

∆(n− k) > 16
ε · k(k + 1) log(ne/k),

and
n− k > 4

ε · k log(ke/∆),

which, for ∆
k ≥ ε, would follow from

(13)
20 · k log(n/k)

n− k
< ε2,

and

(14) e1−εn−k
4k < ε,

respectively. Both (13) and (14) are satisfied when k < ε3n and n is large.

Lemma 2.4 is not quite strong enough to prove Theorem 1.4. For that purpose, we prove the
following Lemma, which allows stronger statements when k is linear in n:

Lemma 2.6. Suppose that k ≥ k0. Let t
ρ
k be the first time when a ρ fraction of the vertices in Lk

are occupied. We have that

Pr
(
∃w ∈ Lk+1, Υw,tρk

≥ 1
10

)
= o

(
1
n

)
,

provided that ε = 1
100 , α = k

n ≤ ε3 and

(15) ρ = 1−
(
k + 1

en

)100

.

Proof. For any constant K and sufficiently large n, we have that

Pr

(
tρk >

1

2

(
n

k

)
log

(
1

1− ρ

))
> 1− 1

nK
.

This is because the number of vertices in Lk that are occupied at time t is dominated by the number
of occupied bins when t balls are placed randomly into

(
n
k

)
bins. Note that the expected number of

occupied bins in the latter experiment is(
n

k

)(
1−

(
1− 1(

n
k

))t)
≈ (1− (1− ρ)1/2)

(
n

k

)
≤ ρ

2

(
n

k

)
when t =

1

2

(
n

k

)
log

(
1

1− ρ

)
.

Note also that the number of occupied boxes is highly concentrated. This can be verified through
a simple application of McDiarmid’s inequality, see [2].

In particular,

tρk − τk−1,ε ≥ Hρ,k :=
log(1/(1− ρ))

2

(
n

k

)
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with probability at least
(
1− 1

nK

)
. This follows from the fact that ρ ≥ 1− e−ε/4.

From (15) we also have that

Hρ,k = 50 log

(
en

k + 1

)
·
(
n

k

)
,

and so we have τk−1,ε + Hρ,k ≤ τk,ε for sufficiently large n; see (1). In particular, we can apply
Lemma 2.4 in the entire range [τk−1,ε, τk−1,ε +Hρ,k].

To do this, we fix some vertex w ∈ Lk+1, and let N−
w ⊂ Lk be the down-neighborhood of w. If we

fix a set D ⊂ N−
w of size |D| = ∆, then we have for k ≤ ε3n that

Pr
(
D ∩ Ctρk

= ∅ | tρk ≥ τk−1,ε +Hρ,k

)
≤
(
1− 1

nK

)−1
(
1− 4∆

5
(
n
k

))Hρ,k

≤ 2e−
∆·log(1/(1−ρ))

5 = 2(1− ρ)∆/5.

Explanation: We repeat the argument for (12) and multiply by (1 − n−K)−1 to account for
conditioning on tρk ≥ τk−1,ε +Hρ,k.

Thus we have that

Pr
(
∃w ∈ Lk+1, D ⊂ N−

w , s.t. |D| = ∆ = (k + 1)/10, D ∩ Cτk,ε = ∅ | tρk ≥ τk−1,ε +Hρ,k

)
≤
(

n

k + 1

)(
k + 1

∆

)
× 2(1− ρ)

∆
5 ≤ 2

(
ne

k + 1

)k+1((k + 1)e

∆

)∆

(1− ρ)∆/5.

= 2e(k+1) log(ne/k+1)+∆ log((k+1)e/∆)+(∆/5) log(1−ρ) = o

(
1

n

)
,

if ∆ = (k + 1)/10 and ∆ log( 1
1−ρ) ≥ 10max {(k + 1) log(ne/(k + 1)),∆ log((k + 1)e/∆)}.

For these cases, we require that

ρ ≥ 1−
(
k + 1

en

)100

and

ρ ≥ 1−
(

∆

e(k + 1)

)10

= 1−
(

1

10e

)10

,

respectively, both of which follow from our choice of ρ.

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. We apply Lemma 2.6 with ε = 1
100 and ρ satisfying (15). Condition on

the event F = {∀v ∈ Lk, Υv,tρk
< 1

10}. Let Ok = Lk ∩ Ctρk
be the set of occupied vertices in Lk, so

that |Ok| =
⌈
ρ
(
n
k

)⌉
. Fix a vertex v ∈ Uk = Lk \ Ok and let N+

v be its neighborhood in Lk+1. For
each w ∈ N+

v , we define events E1
w and E2

w, respectively by
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1. Every path ρt, t > tρk which contains w avoids both Ok and v, and
2. The first path ρt, t > tρk which intersects w and then hits Ok ∪ {v} hits Ok and not v,

and set Ew = E1
w ∪ E2

w. Let Av be the event that Ew occurs for each w ∈ N+
v . Observe that if Av

occurs then vertex v remains unoccupied on termination. Moreover, if we fix some set W0 ⊂ N+
v ,

then the events Ew for w ∈ W0 are conditionally independent, given the event that W0 = W :=
{w ∈ N+

v such that ¬E1
w occurs}. (Indeed, given that ¬E1

w occurs, we know that at least one path
goes through w. Moreover, the event E2

w depends on just the first path with this property, and the
choice this path makes below w is independent of choices made by paths not going through w.)
Now, for any choice of W0 and any w ∈ W0, we have

Pr(Ew | F ,W = W0) ≥ 1− 1
9
10k

,

since |(Ok ∩ N−
w ) ∪ {v}| ≥ 9

10k, and E2
w implies that the first path through w choosing among

(Ok ∩N−
w )∪ {v} chooses v. Now using the conditional independence of the Ew’s given W0, we have

that

Pr(Av | F ,W = W0) ≥
(
1− 10

9k

)n−k

≥ p := e−1/α.

Finally, since this is true for any fixed W0, we have that

(16) Pr(Av | F) ≥
(
1− 10

9k

)n−k

≥ p.

It follows from (16) that on termination, conditioning on F , there are in expectation at least
(1− ρ)p

(
n
k

)
vertices of Uk that remain unoccupied at the end of the process.

Let now Zk denote the number of v such that Av occurs. Now Zk is determined by at most
(k+ 1)

(
n

k+1

)
random choices viz. the paths from 1 to Lk+1 that give rise to a first visit to a vertex

of Lk+1 that continues on to Ok. More precisely, we partition the paths from 1 to 0 according to
which member of Lk+1 they visit. Zk is determined by an independent choice of a path from each
part of the partition followed by a choice of vertex in Lk. Changing one of these choices, changes
Zk by at most one and so applying McDiarmid’s inequality we get

Pr

(
Zk ≤ 1− ρ

2
p

(
n

k

))
≤ exp

{
−
(1− ρ)2p2

(
n
k

)2
2(k + 1)

(
n

k+1

) } ≤ exp

{
−
(

k
en

)100
e−2n/k

(
n
k

)k
n

}
.

Now

log

((
k
en

)100
e−2n/k

(
n
k

)k
n

)
= (k − 100) log(n/k)− 100− log n− 2n

k
≥ 2 log n

if k1 ≤ k ≤ ε3n. This proves the Theorem.

3. Long path. In this section we prove Theorem 1.5
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3.1. Setup. We begin our proof by fixing certain parameters a, b, c. Recall that na is the length of
the path that we prove exists. nb will be a bound on the expected value of a level at a certain time,
and the exponent c will occur in error bounds in our concentration analysis.

Our proof will require that these parameters satisfy the following constraints:

1. a < 1− 2c. This is needed to ensure that the probability in (44) is o(n−1) as claimed.
2. 2c < 1− a. This is needed to ensure that the RHS of (38) is o(µ0).
3. a < 2c. This is needed to ensure that δj in (39) to be o(1).
4. a+ b < 1. This is needed to ensure that the LHS of (48) is o(1).
5. a < 1

2 . This is also needed to ensure that the LHS of (48) is o(1).
6. a > b. This is needed in (22).

We choose a as large as possible here. So we take

a =
1

2
− ε, b =

1

2
− 2ε, c =

1

4
− ε

3

for some arbitrarily small ε > 0.

We then let

(17) ℓ = na and k = n− ℓ

and assume that ℓ is an integer. We let Oj,t = Ct ∩ Lj , the set of occupied vertices on level j at
time t.

A considerable difficulty facing our proof of Theorem 1.5 is that we do not understand the “inter-
mediate” behavior of the cube; that is, our Theorems 1.1, 1.2, 1.3, 1.4 lose their bite well below
level n

2 , say. Thus the proof must be agnostic to the behavoir of the process in the middle layers
of the cube. One natural idea to handle this would be to to assume a “worst-case” behavior for
the intermediate levels of the cube; say, that level k becomes full while levels k + j (j ≥ 1) are
still empty, and show that even in this scenario, a path of length nearly n − k will still grow, for
sufficiently large k. However, the DLA process is not monotone in a clean way, preventing us from
arguing directly that having level k full while higher levels are empty is truly a worst-case scenario
from the standpoint of the probability that a long isolated path reaches 1.

Instead, we proceed by defining a stopping time. We run the DLA process on the empty cube, until
time τ0 when there first exists 0 ≤ j∗ < j0 such that

|Ok+j∗,τ0 | ≥ ζ(j∗, µ0).

Here µ0 and j0 are parameters which will chosen later, and we define

ζ(j, µ0) =

(
µ0

j0+1

)
j0
(

µ0

j0−j

)
η(j)

,

and

η(j) =

j−1∏
s=0

(
n

ℓ− s

)
.
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µ0 will be an upper bound estimate for the time after τ0 when we can expect the process to end,
and j0 ≈

√
2ℓ will be the level from which we show the isolated path with grow. We will see in (22)

that ζ(j0 − 1, µ0) < 1, so that the stopping time τ0 always occurs.

Roughly speaking, by beginning our analysis from this stopping time, we begin from a situation
where we have some (carefully chosen) useful bounds on the sizes of levels, which makes an analysis
of the remainder of the process possible.

For the purpose of analyzing the growth of the DLA process in expectation, it is useful to allow
the process to continue past the point when vertex 1 becomes occupied. To do this, we extend the
DLA process past time tend by letting Θt be the number of particles stuck “above” 1. In particular,
Θt = max {0, t− tend}, and occupancies of vertices v ∈ B at times t > tend are the same as at time
tend.

Now we let Xj,t = |Ok+j,τ0+t| for 0 ≤ j, t and let Yj,t = Θ2
t +

∑
r≥j∗+j Xr,t. (It would be natural to

replace Θ2
t with Θt here, but using Θ2

t—or any fast-enough growing function of Θt—ensures that
the following recurrence for Yj,t will not be broken by the cases where t ≫ tend.) Then we have that
for j ≥ 1,

E(Xj,t −Xj,t−1 | Xj−1,t−1) ≤
Xj−1,t−1(

n
ℓ−j+1

) , t ≥ 1.(18)

E(Yj,t − Yj,t−1 | Yj−1,t−1) ≥
Yj−1,t−1∑

r≥j∗+j

(
n

ℓ−r+1

) ≈ Yj−1,t−1(
n

ℓ−j∗−j+1

) , t ≥ 1.(19)

Explanation
The RHS of (18) is the probability that a particle chooses an occupied position on level k+ j. It is
an upper bound for the increase because it does not account for the particle being blocked higher
up in the cube.

For the middle term in (19), observe that there are Yj−1,t−1 occupied vertices among the
∑

r≥j∗+j

(
n

ℓ−r+1

)
vertices at or above level j − 1; thus the middle term gives the probability that a randomly chosen
vertex from ρt ∩

⋃
r≥j∗+j Lℓ−r+1 is occupied, and the occurrence of this event implies that Yj,t

increases by one. This explains the first inequality.

Removing the conditioning in (18), (19) we obtain for j ≥ 1,

E(Xj,t −Xj,t−1) ≤
E(Xj−1,t−1)(

n
ℓ−j+1

) , t ≥ 1.(20)

E(Yj,t − Yj,t−1) ≳
E(Yj−1,t−1)(

n
ℓ−j∗−j+1

) , t ≥ 1.(21)

The recurrences (20), (21) yield upper and lower bounds as on the expectations of Xj,t, Yj,t, which
will be analyzed in Section 3.3.

To prove that a path grows from j0, we will first show that after

µ1 := µ0 − ω1

(
n

ℓ− j0

)
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steps for
ω1 = log2 n,

we will have that w.h.p. Yj0,τ0+µ1 ≳ nb and Xj0−1,τ0+µ1 ≲ ω1n
b. Observe that this implies that

for the minimum tfin for which Yj0,tfin = 1, we have Xj0−1,tfin ≲ ω1n
b, and that we have that

|Ok+j0,tfin | = 1. In particular, we will prove that the DLA process can quickly produce a path from
to 1 after tfin; that Xj0−1,t does not increase quickly after tfin, and that the small value of Xj0−1,t

for t near tfin implies that no particles stick at j0 while the path to 1 is being created.

3.2. Choice of µ0, µ1, j0. In this section we define µ0, µ1, j0 and compute various quantities asso-
ciated with them for later use. In particular, we let

ξ(j, t) =

(
µ0

j0+1

)
η(j)

·
(
t
j

)(
µ0

j0

) = ζ(j, µ0) ·
j0
(

µ0

j0−j

)(
t
j

)(
µ0

j0

) .

Note from (17) that

ζ(j0 − 1, µ0) = ξ(j0 − 1, µ0)
µ0 − j0 + 1

j20µ0
.

This, together with lines (23), (27) and (30), below, will imply then that

(22) ζ(j0 − 1, µ0) = O

(
nb

na

)
= o(1).

Roughly speaking, ξ(j, t) is an approximate target for comparison with |Ok+j,τ0+t|. In particular,
we will choose µ0, j0 and prove that

P1: E(Xj0,µ1) ≲ ξ(j0, µ0) ≈ nb – see (27) and (36).

P2: E(Xj0−1,µ1) ≲ ξ(j0 − 1, µ0) ≈ 2e
4
3nb – see (37).

P3: E(Yj0,µ1) ≳
ξ(j0,µ0)

j0
– see (41).

We choose

ω = (1− a) log n

and then j0 by

j0 = min

{
j : j(j + 3) ≥ 2ℓ+

4ℓ

ω − 1

}
.

Now j(j + 3)− (j − 1)(j + 2) = 2j + 2 and so we have that

2ℓ+
4ℓ

ω − 1
≤ j0(j0 + 3) ≤ 2ℓ+

4ℓ

ω − 1
+ 2j0 + 2.

Thus

(23) j20 = 2ℓ+
4ℓ

ω − 1
+ θ0,

where |θ0| ≤ 3j0.

Next we prove an asymptotic estimate for η(j).
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Lemma 3.1. If ℓ ≫ j, n− ℓ+ j ≫ 1, and ℓ = o(n1/2), then

η(j) ≈
(n
ℓ

)j(ℓ−(j−1)/2)
(2πℓ)−

1
2
jeℓj+3ℓ2j/2n+εaj−εbj

2
,

where

εa =
j

2ℓ
+O

((
j

ℓ

)2
)
, εb =

j

6ℓ
+

j2

24ℓ2
+O

((
j

ℓ

)3
)
.

Proof. We let

ϕ(ℓ) =

ℓ∏
r=1

r!

be the superfactorial function. It is known that

ϕ(ℓ) ≈ C1ℓ
1
2
ℓ2+ℓ+ 5

12 e−
3
4
ℓ2−ℓ (2π)

1
2
ℓ

for some absolute constant C1 > 0. (See, for example, Adamchik [4]. We use the asymptotic
expression for the Barnes function G(z) on page 2. Note also that ϕ(ℓ) = G(ℓ+ 2).)

We need to estimate ϕ(ℓ−x)
ϕ(ℓ) where x = O(ℓ1/2). In preparation we observe that if x = O(ℓ1/2) then

(
1− x

ℓ

)ℓ−x
= exp

{
−x+

∞∑
i=2

xi

i(i− 1)ℓi−1

}
= e−x+εax,

where εa =
∑∞

i=2
xi−1

i(i−1)ℓi−1 = x
2ℓ +O

((
x
ℓ

)2)
, and

(
1− x

ℓ

) 1
2
(ℓ−x)2

= exp

{
−1

2
xℓ+

3

4
x2 −

∞∑
i=3

xi

i(i− 1(i− 2))ℓi−2

}
= e−

1
2
xℓ+ 3

4
x2−εbx

2
,

where εb =
∑∞

i=3
xi−2

i(i−1(i−2))ℓi−2 = x
6ℓ +

x2

24ℓ2
+O

((
x
ℓ

)3)
.

Thus, if x = O(ℓ1/2) then

ϕ(ℓ− x)

ϕ(ℓ)
≈
(
1− x

ℓ

) 1
2
(ℓ−x)2 (

1− x
ℓ

)ℓ−x (
1− x

ℓ

) 5
12 ℓ

1
2
(ℓ−x)2+ℓ−x+ 5

12 e−
3
4
(ℓ−x)2−(ℓ−x) (2π)

1
2
(ℓ−x)

ℓ
1
2
ℓ2+ℓ+ 5

12 e−
3
4
ℓ2−ℓ (2π)

1
2
ℓ

=
(
1− x

ℓ

) 1
2
(ℓ−x)2 (

1− x

ℓ

)ℓ−x (
1− x

ℓ

) 5
12
ℓ−ℓx+ 1

2
x2−xe

3
2
ℓx− 3

4
x2+x(2π)−

1
2
x

≈ e−x− 1
2
xℓ+ 3

4
x2+εax−εbx

2 × ℓ−ℓx+ 1
2
x2−xe

3
2
ℓx− 3

4
x2+x(2π)−

1
2
x

= ℓ−ℓx+ 1
2
x2−xeℓx+εax−εbx

2
(2π)−

1
2
x.

Observe that if s3 = O(m2) for some m → ∞ with n then

(24)

(
m

s

)
=

ms

s!
exp

{
− s2

2m
+O

(
s3

m2

)}
.
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So, if ℓ ≫ j, n− ℓ+ j ≫ 1 and ℓ = o(n1/2) then

(25) η(j) ≈ nj(ℓ−(j−1)/2)e−3ℓ2j/2nϕ(ℓ− j)

ϕ(ℓ)
≈
(n
ℓ

)j(ℓ−(j−1)/2)
(2πℓ)−

1
2
jeℓj+3ℓ2j/2n+εaj−εbj

2
,

as desired.

As a consequence, we have:

Lemma 3.2. If µ0 ≥ µ1 ≫ ℓ2 then

ξ(j0, µ0) ≈
µj0+1
0

(j0 + 1)!η(j0)
≈ (µ0e)

j0+1(2π)
1
2
j0ℓj0(ℓ−

1
2
j0+1)

√
2πj0(j0 + 1)j0+1nj0(ℓ− 1

2
(j0−1))e(ℓ−

1
3
+ε0)j0

,

where ε0 = o(1).

Proof. Using (23), we compute

εaj0 − ε2bj
2
0 =

j20
2ℓ

− j30
6ℓ

− j40
24ℓ2

+O(j−1
0 )

=

(
1 +O

(
1

ω

))
−
(
j0
3

+O

(
j0
ω

))
+ o(1)

= −
(
1

3
− ε0

)
j0 where ε0 = o(1).

The lemma now follows by using (24) to deal with
(

µ0

j0+1

)
and Stirling’s approximation and (25) to

deal with η(j0). The factor e3ℓ
2j0/2n can be absorbed into the ε0j0 term.

Now choose µ0 as

µ0 :=
1

e

⎛⎝(j0 + 1)
1+ 1

j0 nℓ− 1
2
(j0−1)e

ℓ− 1
3
+ 4

3j0 j
1

2j0
0 n

b
j0

(2π)
j0−1
2j0 ℓℓ−

1
2
j0+1

⎞⎠
j0

j0+1

≈ j0

e
4
3

√
2πℓ

(
nℓ− 1

2
(j0−1)eℓ

ℓℓ−
1
2
(j0−1)

) j0
j0+1

(26)

=
(n
ℓ

)ℓ+o(ℓ)
.

Observe that with this choice, we have from Lemma 3.2,

(27) ξ(j0, µ0) ≈ nb.

We now compare µ0 and µ1.

Lemma 3.3.

(28) µ1 ≥ µ0(1− e−j0).
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Proof. Evaluating the exponents in (26), we see from (23) that

(ℓ− 1
2(j0 − 1))j0

j0 + 1
− (ℓ− j0) =

1
2(j

2
0 + j0)− ℓ+ j0

j0 + 1
=

2ℓ

(ω − 1)(j0 + 1)
−O(1).

In particular this says that

µ0 ≳
j0

e
4
3

√
2πℓ

(n
ℓ

)ℓ−j0+
2ℓ

(ω−1)(j0+1)
−O(1)

e
ℓj0

j0+1 .

It follows from this that

(29)
µ0(
n

ℓ−j0

) ≥ µ0ℓ
ℓ−j0ej0−ℓ

nℓ−j0
≳

j0

e
4
3

√
2πℓ

(n
ℓ

) 2ℓ
(ω−1)(j0+1)

−O(1)
e
j0− ℓ

j0+1 ≥

j0n
−O(1)

e
4
3

√
2πℓ

((n
ℓ

) 2
ω
e−1

) ℓ
j0+1

ej0 =
j0n

−O(1)e
ℓ

j0+1
+j0

e
4
3

√
2πℓ

≥ ej0 ,

and the lemma follows.

We now compare ξ(j0, µ0) and ξ(j0 − 1, µ0).

Lemma 3.4.

(30)
ξ(j0 − 1, µ0)

ξ(j0, µ0)
= Θ(1).

Proof. We have that
ξ(j0 − 1, µ0)

ξ(j0, µ0)
=

(
µ0

j0−1

)(
n

ℓ−j0+1

)(
µ0

j0

) .

Using (24) and applying Stirling’s formula to (ℓ− j0 + 1)!, we get that

ξ(j0 − 1, µ0)

ξ(j0, µ0)
≈ j0(ne)

ℓ−j0+1

√
2πℓµ0(ℓ− j0 + 1)ℓ−j0+1

≈ j0(ne)
ℓ−j0+1

√
2πℓ(ℓ− j0 + 1)ℓ−j0+1

· e
4
3

√
2πℓ

j0
·

(
ℓℓ−

1
2
(j0−1)

nℓ− 1
2
(j0−1)eℓ

) j0
j0+1

,

where at the end we have used (26). Now

(ℓ− j0 + 1)ℓ−j0+1 = ℓℓ−j0+1

(
1− j0 − 1

ℓ

)ℓ−j0+1

= ℓℓ−j0+1 exp

{
−(ℓ− j0 + 1)

(
j0 − 1

ℓ
+

(j0 − 1)2

2ℓ2
+O

(
j3

ℓ3

))}
≈ ℓℓ−j0+1e−j0 .

So, we can write

ξ(j0 − 1, µ0)

ξ(j0, µ0)
≈ e

4
3

(
ℓ

ne

)(ℓ− 1
2
(j0−1))

j0
j0+1

−(ℓ−j0+1)

e
j0− 1

2
(j0−1)

j0
j0+1
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= e
4
3 e

j0(j0+3)
2(j0+1)

(
ℓ

ne

) 2ℓ
(ω−1)(j0+1)

+O(1)

.

Our choice of ω implies that
2ℓ

ω − 1
log
(ne

ℓ

)
=

2ℓ(ω + 1)

ω − 1
.

And then we see that

ξ(j0 − 1, µ0)

ξ(j0, µ0)

≈ e
4
3 · exp

{
1

2(j0 + 1)

(
j0(j0 + 3)− 2ℓ

ω − 1
log
(ne

ℓ

)
+O(log n)

)}
≈ e

4
3 · exp

{
1

2(j0 + 1)

(
j0(j0 + 3)− 2ℓ(ω + 1)

ω − 1

)}
= Θ(1).

Here we have used (23).

3.3. Expected occupancies. Now we analyze the random variables Xj,t and Yj,t in expectation. The
next lemma helps us deal with the recurrences (20), (21).

Lemma 3.5. Let α−1 = β−1 = 1.

(a) Let xj,t satisfy (i) x0,t ≤ α0 + t, (ii) xj,0 ≤ αj, (iii) xj,t − xj,t−1 ≤ βj−1xj−1,t−1 for j ≥ 1,
where βj ≥ 0 for j ≥ 0. Then when j ≥ 1 we have

(31) xj,t ≤
j+1∑
i=0

αj−i

(
t

i

) j−1∏
s=j−i

βs.

(b) Let yj,t satisfy (i) yj∗,t ≥ αj∗, (ii) yj,0 ≥ 0 for j > j∗, and (iii) yj,t − yj,t−1 ≥ βj−1yj−1,t−1 for
j > j∗, t ≥ 1. Then for j ≥ j∗ we have

(32) yj,t ≥ αj∗

(
t

j − j∗

) j−1∏
s=j∗

βs.

Proof. (a) Now we have

x1,t ≤ α1 + β0

t∑
τ=1

(α0 + τ − 1) = α1 + α0β0t+ β0

(
t

2

)
.

So equation (31) is true for j = 1. Assume inductively that it is true for j − 1 where j ≥ 2. Then

xj,t ≤ αj + βj−1

t∑
τ=1

xj−1.τ−1

≤ αj + βj−1

t∑
τ=1

j∑
i=0

αj−1−i

(
τ − 1

i

) j−2∏
s=j−i−1

βs
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= αj + βj−1

j∑
i=0

αj−1−i

(
t

i+ 1

) j−2∏
s=j−i−1

βs

= αj +

j∑
i=0

αj−1−i

(
t

i+ 1

) j−1∏
s=j−i−1

βs

= αj +

j+1∑
i=1

αj−i

(
t

i

) j−1∏
s=j−i−1

βs.

(b) We have yj∗,t ≥ αj∗ and so equation (32) is true for j = j∗. Assume inductively that it is true
for j − 1 where j > j∗. Then,

yj,t ≥ βj−1

t∑
τ=1

xj−1.τ−1

≥ βj−1

t∑
τ=1

αj∗

(
τ − 1

j − 1− j∗

) j−2∏
s=j∗

βs

= αj∗

(
t

j − j∗

) j−1∏
s=j∗

βs.

3.3.1. Upper Bound. To use Lemma 3.5 for an upper bound on E(Xj,τ0+t), j ≥ 0 we use the
definition of the stopping time τ0 to define

αj = |Ok+j,τ0 | ≤ ζ(j, µ0) =

(
µ0

j0+1

)
j0
(

µ0

j0−j

)
η(j)

and βj =
1(
n

ℓ−j

) for j ≥ 0.

Thus, for 0 ≤ j ≤ j0 and µ1 ≤ t ≤ µ0,

E(Xj,τ0+t) ≤
j+1∑
i=0

|Ok+j−i,τ0 |
(
t

i

) j−1∏
s=j−i

1(
n

ℓ−s

)
≤

j+1∑
i=0

ζ(j − i, µ0)

(
t

i

) j−1∏
s=j−i

1(
n

ℓ−s

)
=

j+1∑
i=0

(
µ0

j0+1

)
j0
(

µ0

j0−j+i

)
η(j − i)

(
t

i

) j−1∏
s=j−i

1(
n

ℓ−s

)(33)

≲

(
µ0

j0+1

)(
µ0

j0

) (t
j

) j−1∏
s=0

1(
n

ℓ−s

)(34)

= ξ(j, t).

To go from (33) to (34) we let ui denote the summand in (33) and observe that

(35)
ui+1

ui
=

t− i

i+ 1
· j0 − j + i+ 1

µ0 − j0 + j − i
.
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This implies that

uj
ui

≥

(
1−

ω1

(
n

ℓ−j0

)
µ1

)j0

= 1− o(1),

whenever i < j. Here we have used (28). Furthermore, (35) implies that uj+1 ≲ uj for j ≤ j0. This
verifies (34).

So:

Lemma 3.6. We have

(36) E(Xj0,τ0+µ1) ≲ ξ(j0, µ1) ≈ ξ(j0, µ0) ≈ nb

and

(37) E(Xj0−1,τ0+µ1) ≲ ξ(j0 − 1, µ0) ≈ ξ(j0, µ0)×Θ(1) = Θ(nb).

Proof. These come from (27), (28), (30) and (34).

3.3.2. Lower Bound. To use Lemma 3.5 for a lower bound on E(Yj,t), j ≥ 0 we use yj,t = Yj,t for
j ≥ j∗, and take

αj∗ = |Ok+j∗,τ0 | ≥ ζ(j∗, µ0) and βj =
1(
n

ℓ−j

) ,
to get:

Lemma 3.7. For j ≥ 0,

E(Yj,t) ≥ ζ(j∗, µ0)

(
t

j − j∗

) j−j∗−1∏
s=0

1(
n

ℓ−j∗−s

) =

(
µ0

j0+1

)
j0η(j)

(
t

j−j∗

)(
µ0

j0−j∗

) .
3.4. Concentration. We can obtain w.h.p. upper bounds on the sizes of sets Oj0+j,t by applying
Markov’s inequality to the random variables Xj,t. In this section, we obtain suitable w.h.p. lower
bounds on the random variables Yj,t. Let

Nj =

(
n

ℓ− j

)
and Lj =

(
µ0

j0+1

)
j0η(j)

(
µ0

j0−j∗

) for j ≥ 0.

Observe from Lemma 3.7 that we have

E(Yj+1,t) ≥
(

t
j+1−j∗

)
Lj

Nj
.

We will establish lower concentration of the level sizes inductively, starting from level j∗ + 1. For
each level j > j∗, there will be a time tj past which we have a good w.h.p. lower bound on the level
size, which can then be used inductively for the next level.
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We define t̂j , j
∗ + 1 ≤ j ≤ j0 − 1 by

t̂j = min

{
t :

Lj

(
t

j−j∗

)
Nj

≥ n

}
.

And then define tj , j
∗ + 1 ≤ j ≤ j0 − 1 by

tj = max
{
t̂j , ω2tj−1

}
, ω2 = nc.

We also let tj∗ = τ0.

Our definition ensures that tj ≪ tj+1 for all j∗ < j < j0 − 1. The following Lemma shows that the
tj ’s don’t grow to large.

Lemma 3.8. For j∗ + 1 ≤ j ≤ j0 − 1,

(38)
(n
ℓ

)ℓ−O(j0)
≤ tj ≤ ωj−j∗

2

(
ℓ

n

)j0/3

µ0 ≪ µ0.

Proof. We will first need to bound t̂j from above and below. Thus we estimate

Lj

Nj
=

(
µ0

j0+1

)
j0η(j + 1)

(
µ0

j0−j∗

)
≈ µj∗+1

0 (j0 − j∗)!

j0(j0 + 1)!η(j + 1)

≈ (j0 − j∗)!

j0(j0 + 1)!

⎛⎝ j0

e
4
3
+o(1)

√
2πℓ

(
nℓ− 1

2
(j0−1)eℓ

ℓℓ−
1
2
(j0−1)

) j0
j0+1

⎞⎠j∗+1

×
(
ℓ

n

)(j+1)(ℓ−j/2)

(2πℓ)
1
2
(j+1)e−ℓ(j+1)−3ℓ2(j+1)/2n−εa(j+1)+εb(j+1)2

≤
(
ℓ

n

)ℓ(j−j∗)+ 1
2
(j0j∗−j2)−O(j0)

.

Thus,

tj ≥ t̂j ≥
(n
ℓ

)ℓ− j2−j0j
∗

2(j−j∗) −O(j0)
≥
(n
ℓ

)ℓ−O(j0)
,

since clearly j2−j0j∗

j−j∗ ≤ j0.

On the other hand, because t̂j is large we can write

n ≈
Lj

( t̂j
j−j∗

)
Nj

≈

(
t̂j
µ0

)j−j∗
Lj

(
µ0

j−j∗

)
Nj

=

(
t̂j
µ0

)j−j∗

ξ(j0, µ0)η(j0)

j0η(j + 1)
≈
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t̂j
µ0

)j−j∗

nb

j0

j0−1∏
i=j+1

(
n

ℓ− i

)
.

We see from this that

µ0

t̂j
≳

⎛⎝nb−1

j0

j0−1∏
i=j+1

(n
ℓ

)ℓ−i

⎞⎠1/(j−j∗)

=

(
nb−1

j0

)1/(j−j∗) (n
ℓ

)(j0−j−1)(ℓ− 1
2
(j0+j))/(j−j∗)

≥
(n
ℓ

)j0/3
.

Consequently,

tj ≤ ωj−j∗

2 t̂j ≤
(
ℓ

n

)j0/3

µ0,

which completes the proof of the lemma.

Our next task is to obtain a high probability lower bound on the random variables Yj∗+1,t. Define,
for j∗ ≤ j ≤ j0 − 1,

(39) δj =
j − j∗

ω2

We define Ej to be the event that there is a τ ∈ [tj , µ0] such that Yj,τ < (1− δj)Lj

(
τ

j−j∗

)
.

Lemma 3.9. For all j∗ ≤ j ≤ j0 − 1, we have

(40) Pr (Ej) ≤
j − j∗

n2
.

Moreover, we have that w.h.p.

(41) Yj0,µ1 ≳
ξ(j0, µ0)

j0
.

Proof. We prove (40) by induction. The base case j = j∗ is trivial because all we assume is that
Yj∗,t ≥ Lj∗ = ζ(j∗, µ0) for t ≥ τ0.

Assume now that j∗ + 1 ≤ j + 1 ≤ j0 − 1. We write

L̃j =
⋃
j′≥j

Lj′

and

Ñj = |L̃j | =
∑
j′≥j

(
n

ℓ− j′

)
.

We define a new random variable Zj+1,t = θj+1,tj + θj+1,tj+1 + · · · + θj+1,t, where the θj+1,τ ’s are
independent {0, 1} random variables where

(42) E(θj+1,τ ) =

⌈
(1− δj)Lj

(
τ

j−j∗

)⌉
Ñj

≳
(1− δj)Lj

(
τ

j−j∗

)
Nj
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We will define these variables so that

(43) ¬Ej implies Yj+1,t ≥ Zj+1,t for t ∈ [tj , µ1].

For each τ ≥ tj , we define Sj,τ to be the lexicographically first subset of L̄j among subsets of size⌈
(1− δj)Lj

(
τ

j−j∗

)⌉
for which a maximum possible number of vertices at level j are occupied. (In

particular, ¬Ej implies that Sj,τ is full.) We let θj+1,τ be the indicator random variable for the
event that the path ρτ used at step τ intersects Sj,τ . Observe that the θj+1,τ ’s are independent for
τ ≥ tj and also that (42) and (43) hold.

Now for t ≥ tj+1 we have

E(Zj+1,t) ≳
(1− δj)Lj

Nj

t−1∑
τ=tj

(
τ

j − j∗

)

=
(1− δj)Lj

Nj

((
t

j − j∗ + 1

)
−
(

tj + 1

j − j∗ + 1

))
≥

(1− δj)Lj

(
t

j−j∗+1

)
Nj

(
1−

(
tj + 1

t

)j−j∗+1
)

≥
(1− δj)Lj

(
t

j−j∗+1

)
Nj

(
1−

(
1

ω2

)j−j∗+1
)

≥

(
1− δj − 1

2ω2

)
Lj

(
t

j−j∗+1

)
Nj

And applying Hoeffding’s theorem, we see that

(44) Pr

(
∃t ∈ [tj+1, µ1] : Zj+1,t ≤

(1− δj+1)Lj

(
t

j+1−j∗

)
Nj

)
≤

µ1∑
t=tj+1

exp

{
−
Lj

(
t

j+1−j∗

)
10ω2

2Nj

}

≤ µ1 exp

{
− n

10ω2
2

}
=
(n
ℓ

)ℓ+o(ℓ)
exp

{
−n1−2c

10

}
.

Thus

Pr(Ej+1) ≤ Pr(Ej) +
(n
ℓ

)ℓ+o(ℓ)
exp

{
−n1−2c

10

}
≤ j − j∗ + 1

n2
,

completing the inductive proof of (40).

Evaluating just the t = µ1 term from (44) with j = j0 − 1, δj0 = n−c/4 gives

Pr

(
Yj0,µ1 ≤

(1− δj0)Lj0−1

(
µ0

j0−j∗

)
Nj0−1

)
≤ Pr

(
Zj0,µ1 ≤

(1− δj0)Lj0−1

(
µ0

j0−j∗

)
Nj0−1

)
+Pr(Ej0−1)

≤ exp

{
−
Lj0−1

(
µ0

j0−j∗

)
10nc/2Nj0−1

}
+ o(n−1) = exp

{
−ξ(j0, µ0)

10j0nc/2

}
+ o(n−1)

≤ exp

{
− nb

20n(c+a)/2

}
+ o(n−1) = o(n−1).
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(Notice we only proved concentration for one value of t in the j0 case, as opposed to an interval as
in (44).) So we have that w.h.p.

Yj0,µ1 ≳
Lj0−1µ

j0−j∗

0

Nj0−1(j0 − j∗)!
≈

(
µ0

j0+1

)
µj0−j∗

0

j0
(

µ0

j0−j∗

)
η(j0)(j0 − j∗)!

≈
(

µ0

j0+1

)
j0η(j0)

=
ξ(j0, µ0)

j0
,

giving (41).

So now let τ∗0 ≤ µ1 be the first time that level k + j0 is non-empty. Equation (41) shows that τ∗0
exists w.h.p. Now consider the next ω1

(
n

ℓ−j0

)
particles. We argue that w.h.p. these particles create

an isolated path from level k + j0 to the top.

Observe that we have w.h.p. that

|Ok+j0,τ∗0
| = 1 and |Ok+j0−1,τ∗0

| ≤ nb log n.

For the second bound we have used the Markov inequality and (37) from Lemma 3.6. Note that
we have Oj,τ∗0

= ∅ for j > k + j0. Next let τ∗i , i ≥ 1 be the time when the first particle occupies
Lk+j0+i. We observe that

(45) Pr

(
τ∗i − τ∗i−1 ≥ ω1

(
n

k + j0 + i− 1

))
≤

(
1− 1(

n
k+j0+i−1

))ω1( n
k+j0+i−1)

≤ e−ω1 .

We observe next that for i ≥ 0 we have

(46) ω1

n−k−j0∑
r=i

(
n

k + j0 + r

)
≤ 2ω1

(
n

k + j0 + i

)
This implies that for i ≤ n− k − j0 we that w.h.p.,

(47) τ∗i ≤ τ∗0 + 2ω1

(
n

k + j0

)
≪ µ0.

For the final inequality we used (29).

In particular, tend−τ∗0 = τ∗n−k−j0
−τ∗0 ≪ µ0. Finally, let us consider the probability that |Oj,tend | ≥ 2

for some i ≥ 0, j ≥ k + j0. At a fixed time t ∈ [τ∗0 , µ0], the probability that a particle lands on

level k + j0 is at most nb logn

( n
k+j0−1)

and the probability that a particle at time t ∈ (τ∗i , tend] lands at

level k + j0 + i (i > 0) by colliding with the first particle which landed at level k + j0 + i− 1 is at
most 1

( n
k+j0+i−1)

. Thus, using (45), (46) and (47), the probability the particle at time t ∈ [τ∗0 , tend]

becomes the second particle to occupy a level j ∈ [k + j0, n] is at most

(48) 2ω1

(
n

k + j0

)
nb log n(

n
k+j0−1

) + n−k−j0−1∑
i=1

2ω1

(
n

k + j0 + i

)
1(
n

k+j0+i−1

) + o(1) = o(1).
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4. Further Questions. In some sense, our theorems characterize the beginning and end of the
process under consideration. Understanding the behavior of the process in the middle of the cube
seems like a major challenge. On the other hand, it is likely to be a prerequisite for an understanding
of some basic parameters of the model. For example, from empirical evidence, the following seems
likely:

Conjecture 4.1. tend = o(2n).

Of course an extremely natural target is the following:

Question 4.2. How large can the parameter a be in Theorem 1.5?

There are also some interesting modifications of the model to consider. For example, what happens
if the random walks are not monotone? In the Boolean lattice this may seem a bit unnatural. It
may be interesting to consider hypercubes [m]n, in which case the behavior of the process relative
to the relationship between m and n can be explored.
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APPENDIX A: CONCENTRATION INEQUALITY

In this section we derive Lemma 2.3. Recall the statement:

Lemma A.1 (Lemma 2.3). Let X1, . . . , XN be independent random variables such that, for all i,
E(Xi) ≤ E and Xi ∈ [0, C] almost surely. Then for SN =

∑N
i=1Xi, EN = E(SN ), and for all

t ≤ NE, we have that

Pr (|SN − EN | > t) < 2 exp

(
− t2

4NEC

)
.

This is an immediate consequence of Bernstein’s inequality (see, e.g., [2]):
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Lemma A.2 (Bernstein). Let X1, . . . , XN be independent random variables and V,C be constants
such that

N∑
i=1

E(X2
i ) ≤ V

and for all q ≥ 3,

N∑
i=1

E(max(Xq
i , 0)) ≤

q!

2
V Cq−2.

Then for SN =
∑N

i=1Xi, EN = E(SN ), we have that

Pr (SN − EN > t) < exp

(
−t2

2(V + Ct)

)
.

Proof of Lemma 2.3. In the setting of Lemma 2.3, the conditions of Lemma A.2 hold for the
random variables Xi (as well as for the random variables −Xi) by taking C as given, and taking
V = NCE, since 0 ≤ Xi ≤ C. So we have that

Pr (SN − EN > t) < exp

(
−t2/2

NCE + Ct

)
≤ exp

(
−t2/2

2NCE

)
,

assuming t ≤ EN . The analogous statement holds for −SN also, giving the Lemma.
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