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Endohedral metallofullerenes (EMFs) are fullerene cages enclosing various metallic species. The function-
alization of EMFs has remarkably blossomed in recent years, in contrast to early efforts that were mainly
devoted to their geometric and electronic structures as well as optical and magnetic properties. This
review presents an exhaustive survey of the important functionalization approaches of EMFs, mainly
focusing on the progress since 2014. The involved reactions include silylation and germylation, Diels–
Alder reaction, Bingel–Hirsch reaction, 1,3-dipolar cycloaddition, carbene addition, benzyne addition, free
radical reaction, hydroxylation, dimerization, coordination reaction, noncovalent complexation, as well
as numerous miscellaneous reactions. We summarize the main factors that affect the reactivity and
regioselectivity, focusing particularly on the intriguing interplay between the exohedral groups and inter-
nal species. This work highlights the established role of current theoretical studies in further understand-
ing the reactivity and regioselectivity of functionalization reactions. Finally, we discuss potential
applications of exohedrally modified EMFs.
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1. Introduction

Endohedral metallofullerenes (EMFs), with metallic species
(atoms or clusters) imprisoned in carbon cages, are novel metal–
carbon hybrid molecules with interesting core–shell structures
[1–6]. In the last three decades, the unique and tunable physico-
chemical properties of EMFs have garnered research interest from
various fields such as photovoltaics, materials science and
biomedicine.

An EMF molecule is commonly denoted by M@C2n, where the
symbol @ indicates that the left metallic species are within the
right carbon cage [7]. EMFs all feature substantial charges (up to
6e) donated by the enclosed metal atom/cluster to the fullerene
framework, and are thus commonly described by an ionic model
Mq+@C2n

q� [8–11].
The mutual stabilization of the metal core and carbon shell

endows EMFs a rather unique capability to encapsulate metal
atoms/clusters into the fullerene cage and stabilize the otherwise
unstable carbon cages. Various reactive metallic species with a
maximum atom number of seven (Sc4O3 [12]) have been success-
fully captured in EMFs due to the confinement effect and effective
metal-cage interaction. Therefore, the interior space of fullerenes
can serve as an ideal platform to study novel cluster structures.
The stability of empty fullerenes is governed by the well-known
isolated pentagon rule (IPR) [13], which states that each of the
twelve pentagons of a stable carbon cage should only have five
hexagons as near neighbors. However, the transfer of electrons
can efficiently convert an antiaromatic 8p-electron pentalene sub-
unit of a non-IPR fullerene cage to a local Hückel-aromatic 10p-
electron motif [14], thus the metal-to-cage charge transfer may
partly alleviate the high strain and instability caused by fused pen-
tagons. Encapsulation can therefore serve as an efficient approach
to achieve non-IPR fullerenes [15].

To date, more than two hundred EMF molecules have been
experimentally characterized. The interior metal mainly originates
from Groups I to V on the periodic table and is dominated by Sc, Y
and lanthanides with the cages covering a wide size range. In the
last two years, Th- or U-based actinide EMFs have emerged as bud-
ding stars with unique structures and properties [16–23].

EMFs are generally classified according to their encased compo-
sition. Monometallofullerenes (mono-EMFs, e.g., La@C82 [7]) and
dimetallofullerenes (di-EMFs, e.g., La2@C80 [24]) are two classical
types. Trimetallic nitride template (TNT) EMFs, typified by Sc3-
N@C80, represent a large family of the clusterfullerenes. Notably,
Sc3N@C80 can be obtained in rather high yield, only surpassed by
C60 and C70. Following the accidental production of Sc3N@C80 in
1999 [25,26], various pure or mixed-metal nitride EMFs containing
two or even three different metals have been extensively reported
[3]. Metal carbides (M2,3,4C1,2, e.g., Sc2C2@C84 [27]), hydrogenated
metal carbides (M3,4C1,2H, e.g., Sc3CH@C80 [28]), metal cyanides
(M1,3CN, e.g., Sc3CN@C80 [29,30]), metal carbide/cyanide alloyed
clusters (M3C2CN, e.g., Sc3C2CN@C80 [31]), metal oxides
(M2,4O1,2,3, e.g., Sc4O2@C80 [32]), metal sulfides (M2S, e.g., Sc2S@C82

[33]), and even pure tri-metal clusters (M3, e.g., Sm3@C80 [34])
have all been successfully encased in fullerene cages.

The rapid progress in isolation and purification of various EMFs
greatly facilitated the broad research on their diverse properties.
Compared with early efforts mostly devoted to the geometric and
electronic structures as well as optical and magnetic properties,
their chemical functionalization has remarkably blossomed in
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recent years for several reasons: (1) it benefits the purification
and separation of EMFs from fullerene mixtures; (2) it provides
an effective approach to stabilize the highly reactive small-
bandgap EMFs and make them obtainable; (3) the functionalized
derivatives are easy to crystallize and can help structural charac-
terization of the parent EMFs by using X-ray crystallography; (4)
external functional groups can be introduced, which can finely
modulate the physical and chemical properties of EMFs to engen-
der diversely applicable functional materials; (5) it assists in
increasing the solubility of EMFs by obtaining corresponding
water-soluble derivatives that have potential applications in bio-
medicine; (6) the location, configuration and dynamic behavior
of the internal metallic species can be effectively regulated for
the design of novel nanodevices and; (7) the relative position
and orientation of fullerene molecules can be precisely controlled
via exohedral modification to achieve self-assembled nano systems
with well-ordered structures. In previous years, several excellent
review articles focusing on the functionalization of EMFs have been
published [35–44]. Since the last dedicated contribution in 2014
[42], however, significant strides have been made in this field,
and a timely and comprehensive summary is thus highly desirable
to guide the future development of EMFs functionalization.

Herein, we present an exhaustive survey on the exohedral func-
tionalization of EMFs, mainly focusing on the new developments in
the last five years. Some early works missed in other reviews are
also covered. The structure for the remainder of the paper is as fol-
lows: Section 2 introduces the molecular structures of representa-
tive EMFs. Section 3 summarizes all kinds of reported
functionalization reactions, including both experimental and theo-
retical progress. Section 4 briefly introduces the potential applica-
tions of the modified EMFs in different fields, followed by
Section 5—concluding remarks.

2. Structures of typical EMFs

For convenience, we first introduce the structures of EMFs fre-
quently encountered in functionalization reactions. These include
La@C2v(9)-C82, La2@D2(10611)-C72, La2@D3h(5)-C78, La2@Ih(7)-C80,
Sc3N@D3(6140)-C68, Sc3N@D3h(5)-C78, Sc3N@D5h(6)-C80,
Sc3N@Ih(7)-C80, Sc3C2@Ih(7)-C80, Sc2C2@Cs(6)-C82, Sc2C2@C3v(8)-C82

and Sc2C2@C2v(9)-C82 (Fig. 1). The fullerene isomers are named
by the size and point group symmetry of the cage as well as the
number assigned by the spiral algorithm (when an IPR cage is con-
cerned, it is numbered by only counting all the IPR isomers) [45].
For example, La@C2v(9)-C82 indicates that a lanthanum atom is
encapsulated by the ninth C82 isomer obeying IPR, which has a
C2v cage symmetry.

Since its first isolation in 1991, La@C82 has been widely recog-
nized as the prototypical EMF molecule [7], and its major isomer
bears a C2v(9)-C82 outer cage. The jailed La atom is off-center posi-
tioned along the C2 axis of cage, and resides under a hexagon ring
[46,47]. The metal formally transfers 3e to the outer cage, resulting
in an electronic structure of La3+@C82

3�. There are 24 nonequivalent
carbon atoms for reactions in La@C2v(9)-C82 due to the intact cage
symmetry upon metal doping.

La2@C72 was first prepared and isolated in 1998 [48] and later
found to have a non-IPR cage structure by nuclear magnetic reso-
nance (NMR) measurements [49]. Theoretical calculations [50,51]
and X-ray structural characterization of its carbene adducts
[52,53] show that it has a D2(10611)-C72 cage isomer featuring a
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Fig. 1. Structures of typical EMFs marked with different carbon sites or bond types (fused pentagons in non-IPR ones are highlighted in red).
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pair of fused pentagons at each of the two poles, which coordinates
with a La atom along the C2 axis. The electronic structure of
La2@D2(10611)-C72 can be described as (La3+)2@C72

6�. It has 18 dif-
ferent types of carbon for exohedral functionalization due to the
high D2 symmetry.

La2@D3h(5)-C78 was isolated and preliminarily characterized
with the aid of NMR and UV–vis-NIR spectra in 2004 [54]. Later,
X-ray diffraction analysis on its adamantylidene (Ad) adduct con-
firmed its cage structure [55]. Theoretical calculations suggest its
electronic structure as (La3+)2@C78

6� [54]. The two La atoms, situated
on the C3 axis, lead to eight types of cage carbon in total.

La2@C80 [24] was identified to have an Ih(7)-C80 framework with
a (La3+)2@C80

6� electronic configuration by experimental and theo-
retical studies [56–60]. Interestingly, even at room temperature,
the two La ions can readily circulate in the cage due to the rather
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low energy barrier and flat electrostatic potential inside C80
6�

[57,61]. The Ih-C80 cage surface has two kinds of C–C bonds: one
is the [6,6] bond shared by two hexagonal rings, and the other is
the [5,6] bond between one pentagonal ring and one hexagonal
ring. Note that the reactive [6,6] pyracylene-type bond is absent
in the Ih-C80 cage, implying its distinctive chemical behavior.

Sc3N@C80 was first obtained in 1999 and has the same Ih(7)-C80

cage framework as that of La2@Ih-C80. It has an important isomer –
Sc3N@D5h(6)-C80, discovered in 2003, which has six types of carbon
atoms [62–64]. The D5h isomer can be converted to an Ih one by
splitting the cage along its rh plane into two parts, rotating the
top one by 36�, and then reconnecting them. They both
have a planar, rather flexible Sc3N cluster with a closed-shell
(Sc3+)3N3�@C80

6� electronic structure. A year after the discovery of
Sc3N@C80, Sc3N@C68 was isolated and confirmed to bear a

http://www.SolidDocuments.com/


Scheme 1. Typical functionalization reactions of EMFs.
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non-IPR D3(6140)-C68 outer cage with three pairs of fused
pentagons [65,66]. The Sc3N cluster is planar with each Sc atom
coordinated to the [5,5] bonds of equatorial pentalene moieties.
It has 12 kinds of carbon atoms with a (Sc3+)3N3�@C68

6� electronic
configuration. Another important TNT EMF is Sc3N@D3h(5)-C78,
which was isolated and unambiguously characterized in 2001
[67]. The three Sc ions are fixed on the horizontal mirror plane
of the cage and point to the [6,6] bonds of three pyracylene
patches. Therefore, it has eight nonequivalent carbon atoms due
to the preserved D3h symmetry with a (Sc3+)3N3�@C78

6� electronic
configuration [68].

htt
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 Metal carbide clusterfullerenes (MCCFs) were discovered during
the breakthrough reassignment of Sc2C86 (assumed to be Sc2@C86)
as Sc2C2@D2d(23)-C84 in 2001 [27]. Similarly, Sc3C82 is Sc3C2@Ih(7)-
C80 rather than the long-believed Sc3@C82 structure with an equiv-
alent Sc trimer [69,70]. The inner Sc3C2 cluster adopts a planar or
trifoliate configuration and can rotate freely inside the cage. Theo-
retical calculations suggested that it has an open-shell radical nat-
ure with (Sc3+)3(C2)3�@C80

6� electronic configuration [71]. Three
Sc2C84 isomers have been isolated thus far and confirmed to be
MCCFs: Sc2C2@Cs(6)-C82 [72], Sc2C2@C3v(8)-C82 [73,74] and Sc2C2@-
C2v(9)-C82 [75]. The Sc2C2 cluster prefers to adopt a butterfly shape

http://www.SolidDocuments.com/


Fig. 2. Silylation and germylation of EMFs. Product structures from Refs. [89,93–95,98,99,101,103].
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and formally donates four electrons to the C82 cage, giving rise to
an electronic structure of (Sc3+)2(C2)2�@C82

4�. The most abundant
Sc2C2@C3v(8)-C82 features a sumanene-type hexagon with high
local strain (highlighted by yellow in Fig. 1), which is very reactive
towards various reagents.

3. Functionalization reactions

The exohedral functionalization of EMFs involves plenty of reac-
tions. Scheme 1 summarizes the typical functionalization
reactions.

3.1. Silylation and germylation

The chemical transformation of EMFs was first introduced by
using activated organosilicon compounds to afford bis-silylated
derivatives [76]. In 1995, Akasaka et al. first found that La@C2v(9)-
C82 in toluene solution can reactwith 1,1,2,2-tetrakis(2,4,6-trimethyl
phenyl)-1,2-disilirane[(Mes2Si)2CH2; Mes = 2,4,6-trimethylphenyl]
when photo-irradiated or heated to afford a La@C82(Mes2Si)2CH2

monoadduct [77]. The high reactivity of La@C82 mainly stems from
its strong electron donating/accepting ability (indicated by smaller
ionization potential (IP) and larger electron affinity (EA) [78] or low
oxidation and reduction potentials [79]). Similar to the Si-Sir bond
in disilirane, the strained Ge-Ge bond in digermiranemay also serve
as an electron donor to react with EMFs. Indeed, La@C82 reacted
photochemically with 1,1,2,2-tetrakis(2,6-diethylphenyl)-1,2-diger
mirane [(Dep2Ge)2CH2; Dep = 2,6-diethylphenyl], and yielded at
least three isomeric monoadducts [80,81]. Notably, the reaction
also occurred thermally even at a temperature as low as 20 �C
due to the lower oxidation potential of digermirane.

So far, silylation/germylation has been realized for the mono-
EMFs M@C82 (M = Y, La, Ce, Pr, Gd) [77,80–87]; divalent Yb@D3h(1)-
C74 and Yb@C2(13)-C84 [88]; di-EMFs M2@D3h(5)-C78 (M = La, Ce)
[54,89,90], M2@Ih(7)-C80 (M = La, Ce) [91–95] and Ce2@D5h(6)-C80
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[96]; and clusterfullerenes M3N@Ih(7)-C80 (M = Sc, Lu) [97–105],
Sc2C2@C3v(8)-C82 [91] and Sc3C2@Ih(7)-C80 [106]. The structures
of their corresponding adducts have been characterized by single
crystal X-ray crystallographic analysis (Fig. 2).

Following their early study on the photoreaction of Lu3N@Ih(7)-
C80 with disiliranes [100], Akasaka et al. recently reported that the
digermirane more readily reacts with Lu3N@Ih(7)-C80 in toluene to
afford bis-germylated Lu3N@Ih-C80(Dep2Ge)2CH2 adduct in 59%
yield under the same condition [101]. The enhanced reactivity
stems from its higher HOMO (highest occupied molecular orbital)
energy level and stronger donor character than disiliranes as
well as weaker steric clash around the Ge-Ge bond. The exact
structures of Lu3N@Ih-C80(R2Si)2CH2 (R = Mes and Dep) and
Lu3N@Ih-C80(Dep2Ge)2CH2 were revealed by single-crystal X-ray
analysis to have the additions at the [1,4] sites. Their inner Lu
atoms are disordered, but all oriented away from the addition site.
It is worth noting that Lu3N@Ih-C80(Dep2Ge)2CH2 is reportedly the
first crystallographically characterized germylated fullerene
(Fig. 2). The thermal reactions of Lu3N@Ih-C80 with disilirane and
digermirane all failed as in the Sc3N@Ih-C80 case [97] due to the
similar LUMOs (lowest unoccupied molecular orbital) of the two
EMF molecules [64]. Very recently, they further isolated and
characterized the liable 1,2 adducts previously observed in the
photoreactions of disilirane with Sc3N@Ih-C80 [97,98] and
Lu3N@Ih-C80 [100,101] by using spectroscopic and electrochemical
measurements as well as density functional theory (DFT) calcula-
tions [105]. The obtained M3N@Ih-C80 (Mes2Si)2CH2 (M = Sc, Lu)
products may both have the [5,6] addition pattern. Theoretical
calculations reveal that they are higher in energy than the 1,4
counterparts, consistent with the observed isomerization of the
1,2-adducts to the 1,4-ones.

On the other hand, they also conducted the photochemical reac-
tions between M3N@Ih(7)-C80 (M = Sc, Lu) and silirane (silacyclo-
propane) containing 4-tert-butyl-2,6-dimethylphenyl (Dmt) or
Dep substituents, and obtained three isomeric carbosilylated
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Fig. 3. Product structures for Diels–Alder reactions of EMFs from Refs. [109–111,113]. Counteranions are omitted for clarity.
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derivatives including two [5,6]- and one [6,6]-adducts, respectively
[102–104]. Among them, the crystal structure of a [5,6]-Sc3N@Ih-
C80Dep2SiCH2CHtBp (tBp = 4-tert-butylphenyl) was firmly estab-
lished by X-ray crystallographic analysis, in which the internal Sc
atoms are disordered, whereas the N atom is fixed (Fig. 2).

Numerious studies reveal that the reduction potentials of EMFs
play a critical role in dictating their chemical reactivity toward
electron-donating siliranes and germiranes [107]. The classical
EMFs are generally more reactive than clusterfullerenes due to
their lower reduction potentials and higher electron affinities
[97]. Changing either the metal or the outer cage can dramatically
alter the chemical reactivity [77,84,86]. The charge state could also
affect the chemical reactivity of EMFs, and oxidation and reduction
can effectively increase and decrease reactivity of the EMF toward
the nucleophilic disilirane, respectively [87]. The flexible metal
motion in pristine di-EMFs may be hindered by the exohedral addi-
tion [93,94]. Besides the bis-silylation, carbosilylation is efficient to
introduce silicon into carbon systems as well, and one can finely
tune the electronic properties of EMFs by attaching different num-
bers of silyl groups [95].

3.2. Diels–Alder cycloaddition

The Diels-Alder (DA) reaction is the [4+2] cycloaddition
between a dienophile and a conjugated diene. The Woodward-
Hoffmann rules point out that the reaction occurs between the
LUMO of the former and the HOMO of the latter, and a small
energy gap between them generally makes the cycloaddition more
favorable. The reaction generates a six-membered ring linked to
the fullerene cage surface.
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As the first DA reaction of EMFs and also the first organic
derivatization of TNT EMFs, Dorn et al. reported in 2002 the ther-
mal reaction between Sc3N@Ih(7)-C80 and excess diene precursor
6,7-dimethoxyisochroman-3-one to afford a Sc3N@C80C8H6(OCH3)2
monoadduct [108]. Subsequent X-ray crystallographic characteri-
zation showed that the addition occurred at a [5,6] junction, which
protruded from the cage surface with an elongated C–C separation
of 1.626 Å (Fig. 3) [109]. Afterwards, the reported DA reactions
extended to Li+@C60 [110,111], La@C2v(9)-C82 [112–116],
La2@Ih(7)-C80 [116], Sc3N@D3h(5)-C78 [117], M3N@C80 (M = Sc, Gd,
Lu) [64,108,109,118], ScxY3-xN@Ih(7)-C80(x = 0–2) [119], and
M2@C79N (M = Y, Gd) [120].

Recently, Takano et al. reported the [4+2] cycloaddition reaction
of La@C2v(9)-C82 or La2@Ih(7)-C80 with reactive o-quinodimethanes
generated in situ by the thermolysis of sultine 4,5-benzo-3,
6-dihydro-1,2-oxathiin 2-oxide and its derivative [116]. Spectro-
scopic analysis suggest that both [5,6]- and [6,6]-adducts were
obtained for La2@C80, whereas the addition of La@C82 occurs at
the same C21-C23 site (Fig. 1) as that of cyclopentadiene
(Cp)/1,2,3,4,5-pentamethylcyclopentadiene (Cp*) [112,113].

Li+@C60 is expected to exhibit high reactivity with diene due to
its lowered LUMO energy level and activation energy by Li+ encap-
sulation than those of C60 and La@C82 [121]. Indeed, the DA reac-
tion of Cp with [Li+@C60]PF6� occurs very smoothly at room
temperature with an equilibrium constant more than 103-fold that
of C60 [110]. Among the obtained [Li+@C60Cp1,2]PF6� mono- and bis-
adducts, the monoadduct was successfully isolated and character-
ized by X-ray diffraction (XRD). Likewise, the reaction between
[Li+@C60]PF6� and 1,3-cyclohexadiene at 303 K proceeded about
2400 times faster than that of empty C60 and afforded a very stable
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monoadduct [111]. As indicated by the X-ray crystallographic data,
both additions occurred at the [6,6] bond (Fig. 3).

More M@C60-based DA reactions come from theoretical studies.
Recent DFT calculations revealed that the encapsulation of various
metal cations (M = Li+, Na+, K+, Rb+, Cs+, and Ca2+) makes the DA
cycloaddition of Cp to C60 both kinetically and thermodynamically
more favorable [122]. The DFT study on the DA reaction between
M@C60 (M = Li+, Na+, K+, Be2+, Mg2+, Al3+ and Cl�) and 1,3-
cyclohexadiene further reveals that the encapsulation of a cation
and an anion enhances and reduces the reactivity, respectively
[123]. Interestingly, compared to the usual concerted mechanism,
a stepwise pathway involving a zwitterionic intermediate was sug-
gested for M = Be2+, Mg2+ and Al3+ probably due to the highly
polarized C60 cage. Enhanced reactivity upon cation encapsulation
was also found for the reactions between Li+@C60, Mg2+@C60 and
2,4-butadiene [124] owing to the significantly reduced energy
gap between the HOMO of diene and the LUMO of fullerene.

Smaller fullerene cages are also considered in the computations.
Ravinder and Subramanian investigated the role of metal encapsu-
lation on the DA reaction between Na+@C32 and cis-1,3-butadiene
by DFT calculations [125]. C32 and Na+@C32 favor the attack at a
[5,5] bond both thermodynamically and kinetically, with the latter
exhibiting a dramatically decreased activation energy than the for-
mer (10.02 vs. 1.08 kcal mol�1). The charge transfer from the cage
to Na+ cation and the significantly lowered HOMO and LUMO levels
upon the encapsulation may account for the higher reactivity of
Na+@C32.

For the TNT EMFs with cages smaller than Sc3N@Ih(7)-C80,
Zhang et al. recently reported that the DA reaction
between Sc3N@D3h(5)-C78 and o-quinodimethane yielded four
Sc3N@C78(CH2)2C6H4 monoadducts with possible addition sites
suggested by calculations [117].

In recent years, Swart and Solà et al. systematically investigated
the DA reactions of 1,3-cis-butadiene with X@C78 (X = Sc3N, Y3N,
Ti2C2) [126–130] and X@C80(X = La2, Y3, Sc3N, Y3N, Gd3N, Lu3N,
Sc3C2, Sc3CH, Sc3NC, Sc4C2, Sc4O2, Sc4O3) [131,132] by analyzing
both the thermodynamics and kinetics via careful DFT calculations.
The additions to all nonequivalent bonds of the fullerene cages are
thoroughly surveyed, and various metal orientations are consid-
ered for the C80-based EMFs due to the flexible metal motion. EMFs
exhibit less regioselectivity and are generally less reactive toward
butadiene than their hollow counterparts mainly due to the
higher-lying LUMOs caused by the metal-to-cage charge transfer.
The LUMOs alter the structure of the carbon framework, which
activates certain types of unreactive bonds, and deactivates others.

Recently, Yang et al. theoretically studied the reaction of
1,3-butadiene with small non-IPR D3(6140)-C68 fullerene and its
Sc3N@D3(6140)-C68 derivative [133]. Since the metals are fixed
nearby the pentalenes, the two molecules both have 18 nonequiv-
alent C–C bonds (Fig. 1) and same symmetry. The additions to [5,5]
a-a and [5,6] a-b bonds of empty C68 are favored thermodynami-
cally and kinetically, respectively. The endohedral exhibits lower
reactivity and regioselectivity mainly due to the intramolecular
charge transfer, and the addition at the [5,5] a-a bond is both ther-
modynamically and kinetically most favored. Computational
results suggest that Sc3N@C68 may be more reactive toward
o-quinodimethane than 1,3-butadiene based on its larger reaction
energy and lower energy barrier.

The DA reaction of mixed-metal clusterfullerenes (MMCFs)
ScxY3-xN@Ih(7)-C80(x = 0–3) with o-quinodimethane was investi-
gated very recently [119]. For Sc3N@C80, Sc2YN@C80 and ScY2N@C80,
only one [5,6]-monoadduct was isolated. Y3N@C80, with the largest
endocluster yields one [5,6]- and one [6,6]-monoadducts probably
due to the decreased energy difference between its two adducts.

So far, DA addition to MCCFs has not been realized. The reaction
of 1,3-butadiene with Sc2C2@C3v(8)-C82 was predicted by DFT

Soli
d P

D

 

htt
p:/

/w
ww.S

oli
dD
calculations to occur at the [6,6] bond of the sumanene-type hexa-
gon in terms of both thermodynamics and kinetics [134]. The high
regioselectivity is accounted for by the shortest bond length, rela-
tively large POAV (p-orbital axis vector) [135] value and appropri-
ate LUMO shape at the addition site. The possible DA reaction of a
computationally characterized La2C2@C1(153491)-C94 isomer was
also proposed [136].

Besides the above mono-addition reactions, very recently, the
anthracene bis-cycloaddition of La@D5h-C70 was also investigated
by DFT calculations [137].

In summary, the encapsulation of metal clusters may induce
two opposite effects on the fullerene reactivity [126]. On one hand,
the resultant geometric deformation enhances the strain energy of
the carbon framework and therefore increases the reactivity. On
the other hand, the metal-to-cage charge transfer reduces the EA
of the cage and lowers the chemical reactivity. The efficient isola-
tion of considerable quantities of high-purity TNT EMFs from hol-
low fullerenes and classical EMFs in a short period of time was
achieved based on their diverse reactivities toward the DA addi-
tions [138].

3.3. Prato reaction

Various (metallo)fulleropyrrolidines can be prepared by Prato
reaction, namely the 1,3-dipolar cycloaddition occurring between
(metallo)fullerenes and azomethine ylides (formed in situ from
aldehydes and N-substituted glycines). This [3+2] cycloaddition
features the formation of a heterocyclic five-membered ring on
the cage surface.

In 2004, Akasaka and co-workers first reported the Prato reac-
tion of EMFs [139]. After heating a toluene solution containing
La@C2v(9)-C82 and excess N-methylglycine as well as
paraformaldehyde at 100 �C for 30 min, they successfully synthe-
sized and isolated a monoadduct and a bisadduct of La@C82 met-
allofulleropyrrolidines. So far, the experimentally realized EMFs
include La@C2v(9)-C82 [139,140], La@Cs(6)-C82 [141], M@C82

(M = Y, Gd) [142,143], M2@Ih(7)-C80 (M = La, Ce) [144–146],
Sc3N@D3h(5)-C78 [147], M3N@C80 (M = Sc, Y, Gd, Dy, Ho, Er, Lu)
[64,148–172], Sc3-xMxN@Ih-C80(M = Y, Gd, Dy; x = 1, 2)
[173–177], Sc2C2@Cs(6)-C82 [72], Sc2C2@C3v(8)-C82 [178],
Sc2C2@C2v(9)-C82 [75], Sc3C2@Ih-C80 [179–182] and Y2@C79N [183].

Unlike La@C2v(9)-C82, it has been hard to study the reactivity of
La@Cs(6)-C82, partly due to its low-symmetry, which causes poor
regioselectivity and consequent low yields in addition reactions
[184,185]. Recently, Akasaka and co-workers conducted its Prato
reaction by employing an azomethine ylide as 1,3-dipole and
o-dichlorobenzene (o-DCB) as the solvent [141]. By adding a dro-
plet of toluene into the solution before refluxing, they remarkably
improved the reaction selectivity, and obtained two adducts in rel-
atively high conversion yields. Surprisingly, the mass spectra of the
two products exhibit a molecular ion peak at 1285m/z, suggesting
that they are 1,3-dipolar cycloadducts with an unexpected
additional H atom. Subsequent NMR measurements for the main
product confirmed this simultaneous hydrogenation. The
adducts thus have a closed-shell configuration and are ESR silent.
The hydrogen atom was considered to stem from the toluene and
its addition occurred after that of the azomethine ylide. After a
careful theoretical investigation on several isomer candidates, the
reaction sites with large POAV values and spin density were
proposed for the cycloaddition and hydrogenation. The products
represent the first EMFs containing a cage surface-direct-linking
hydrogen atom.

The only new study on the Prato reaction of di-EMFs is from
theoretical prediction. Recently, the exact structure of Sc2@C66

[186] was confirmed to bear a C2v(4059)-C66 cage [187]. Subse-
quent DFT calculations suggest that Sc2@C2v(4059)-C66 may exhibit

 Too
ls

cu
men

ts.
co

m/ 

http://www.SolidDocuments.com/


Fig. 4. Product structures for Prato reactions of EMFs from Refs. [72,75,144,147,150,152–154,158,178] (Trt = triphenylmethyl).

Fig. 5. Product structures for Bingel–Hirsch reactions of EMFs from Refs. [195,201,203].

P. Jin et al. / Coordination Chemistry Reviews 388 (2019) 406–439 413

Soli
d P

DF Too
ls

 .S
oli

dD
oc

um
en

ts.
co

m/ 
high reactivity but low regioselectivity toward the Prato reaction
[188].

In contrast to the most pyrrolidino-ring Prato derivatives, Lu
et al. recently synthesized a rather stable pyrazole-ring fused
derivative of Sc3N@Ih(7)-C80 by using diphenylnitrilimine (DPNI,
generated in situ from N-phenylbenzenecarbohydrazonoyl chloride
in the presence of triethylamine) as the reagent at elevated tem-
peratures [153]. For the stable pyrazole-ring fused monoadduct
Sc3N@C80(C13H10N2), UV–vis-NIR spectrometry and single-crystal
data show that the reaction occurs at a [5,6] junction, exhibiting
a local close-cage structure (Fig. 4). The internal metal cluster
slightly deviates from planarity, with two Sc atoms facing the car-
bon atoms in para position to the attacked carbons. The free Sc3N
motion in Ih-C80 is severely hampered upon the exohedral
functionalization.
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 Later, they further reported the 1,3-dipolar cycloaddition reac-

tion of Sc3N@Ih-C80 with 3,5-dichloro-2,4,6-trimethoxybenzonitrile
oxide [154]. Regarding the obtained Sc3N@Ih-C80(C10H9O4NCl2)
derivative, XRD studies revealed that the isoxazoline ring is fused
to the cage at a [5,6] bond (Fig. 4). Visible-near-IR spectra and elec-
trochemical measurements show that the electronic structures and
redox properties of Sc3N@Ih-C80 are altered by chemical modifica-
tion. Since isoxazoline derivatives are well known to have biologi-
cal activities, the corresponding derivatives of EMFs may show
promising biological applications.

The paramagnetic properties of functionalized EMFs are intrigu-
ing. Very recently, M3N@Ih(7)-C80(M = Sc, Y, Dy) was linked to the
nitroxide radical via Prato reaction and afforded [5,6] and [6,6]
adducts [163]. The ESR intensity of the [5,6] Dy3N@C80 adduct is
higher than that of the [6,6] one due to different distances and
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relative positions between the nitroxide radical and Dy3N@C80,
which lead to stronger dipole–dipole interaction in the latter. The
spin-paramagnet interactions between DyxSc3-xN@C80 (x = 1, 2)
and the nitroxide radical were also investigated [173]. The adducts
may have potential applications as a molecular compass with
position-sensitive magnetoreception ability.

Osuna and Yamakoshi et al. systematically studied the different
effects of endohedral clusters and three types of exohedral func-
tional groups (glycine derivatives with bis-ester, bis-ether, and
ethyl substituents) on the regioisomeric ratios of the M3N@C80

(M = Sc, Lu, Y, Gd) fulleropyrrolidines [170]. Although both the
metal cluster size and exohedral groups affect the [6,6] to [5,6] iso-
merization rates, the [6,6]/[5,6] regio ratio depends only on the for-
mer, namely 0:100, ca. 10:90 and 50:50 for M = Sc/Lu, Y, and Gd,
respectively. The isomerization was confirmed to proceed via a
[1,5]-sigmatropic rearrangement rather than a retrocycloaddition
one by experiment and DFT calculated energy barriers.

The metal motion is also tunable by exohedral functionaliza-
tion. Recently, Wang et al. performed a systematic study on the
internal dynamic behaviour of Sc3N@Ih-C80 with the aid of 45Sc
NMR spectroscopy, and found that the inner cluster motion can
be finely tuned by chemically modifying the cage [171]. Sc3N@C80

fulleropyrrolidine and Sc3N@C80-PCBM (PCBM = phenyl-C81-
butyric acid methyl ester), which are a [5,6]-closed isomer (from
Prato reaction) and a [6,6]-open metallofulleroid (from carbene
addition) respectively, exhibit distinct 45Sc NMR spectral patterns
different from that of pristine Sc3N@C80 (a single 190 ppm peak
at room temperature). At 273 K, two distinctive signals for the for-
mer and a broad one for the latter were observed, indicating a
more hindered metal motion in the former. The NMR spectra at
low temperatures clearly show two lines with an intensity ratio
of 1:2, indicating two of the three Sc atoms are equal. It also shows
that the Sc3N cluster in Sc3N@C80-PCBM may have oscillating
motions, which is consistent with the single crystal structures of
M3N@C80-PCBM (M = Sc, Y) [172].

The single molecule magnet (SMM) DySc2N@C80 and its [5,6]-
C4H9Nderivative synthesized via the Prato reaction exhibit different
magnetic propertieswith the hysteresis loop of the latterwider than
that of the former [176]. Interestingly, both of them can be
entrapped in the cage-shaped pores of a metal–organic framework
(MOF-177) and show an increased remanent magnetization at zero
field. The strong p–p interactions between DySc2N@C80 and the
pores of the MOF are responsible for the suppressed quantum tun-
neling of magnetization. The behavior of the Prato mono-adduct of
DySc2N@C80 on a gold surface was also studied by molecular
dynamics simulations [189]. Very recently, DySc2N@Ih(7)-C80 and
Dy2ScN@Ih(7)-C80 were successfully functionalizedwith a thioether
–S-CH3 group via Prato reaction [177]. The low-temperature SMM
properties of the obtained [5,6]-monoadducts are obviously
improved and worsened compared to DySc2N@Ih(7)-C80 and Dy2-
ScN@Ih(7)-C80, respectively. The self-assembledmonolayers formed
by their deposition onto the Au(1 1 1) surface show magnetic hys-
teresis at 2 K.

Systematic theoretical calculations at the DFT level were
conducted for the Prato reaction of the recently discovered
LaSc2N@Cs(hept)-C80, whose cage contains one heptagon fused to
two pentalene units, 13 pentagons and 28 hexagons [190,191].
Among the 64 inequivalent C–C bonds, LaSc2N@Cs(hept)-
C80(CH2)2NH cycloadduct (even bis-adduct) thermodynamically
tends to form at the [5,5] bonds in the heptagon-pentagon-fused
region, probably due to the large POAV value. A similar addition pat-
ternwas also theoretically suggested for Sc3N@D3(6140)-C68, imply-
ing an enhanced Prato reactivity of [5,5] bonds of non-IPR EMFs.

There are very few reports on the effects of exohedral function-
alization on the nonlinear optical properties of EMFs. By using
time-dependent DFT methods, Wang et al. studied the multipho-
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ton absorption of N-methyl-2-ferrocenyl-[5,6]-pyrrolidine-Sc3
N@Ih(7)-C80, and found red-shifted peaks and increased cross sec-
tions in comparison with pristine Sc3N@C80 [192].

Very recently, Wang et al. covalently linked the triptycene rotor
to Sc3C2@C80 to construct an intriguing coupled system between
spin flip and molecular rotor [182]. Temperature-dependent EPR
measurements revealed that the spin relaxation and spin-metal
hyperfine couplings of the EMF part could be remotely controlled
by the rotation of the triptycene rotor. Such controllable molecular
paramagnetism induced by chemical functionalization may find
great applications in the design of future nanodevices.

In summary, the metal position, motion and spin density distri-
bution could be affected by the exohedral addition
[144,145,159,171,193]. The encased metal cluster could control
the reactivity and addition pattern of TNT EMFs [156,167]. The size
of endohedral clusters may affect the product isomer distribution
[169,170,174,175]. Endohedral clusters could affect the electro-
chemical properties of EMF derivatives [162]. 1,3-Dipolar reactions
can also be applied in the construction of applicable systems [140].
The corresponding retro-cycloaddition reactions were also
reported, and may be a promising non-HPLC approach to separate
EMFs from hollow fullerenes [164–166].

3.4. Bingel–Hirsch reaction

The Bingel–Hirsch (BH) reaction is an important nucleophilic [2
+1] cycloaddition to generate a three-membered ring on the fuller-
ene surface. Typically, the dehydrogenation of bromomalonate
with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) first forms a car-
banion, which then attacks double bond of fullerene to generate
the intermediate. The intermediate then converts to the cyclo-
propanated derivatives. The product is either closed-cage metha-
nofullerene or methanofulleroid.

The first reported BH addition to EMFs (Gd@C60) appeared in
2003 [194]. To date, the reaction has been successfully extended
to M@C2v(9)-C82 (M = La, Gd) [195–200], M3N@Ih(7)-C80(M = Sc, Y,
Er, Lu) [155,156,201–204], Sc3N@D5h-C80 [205], Gd3N@C2n(2n = 80,
82, 84) [206–208], TiM2N@Ih-C80 (M = Sc, Y) [209,210], Sc3N@D3-
h(5)-C78 [211], Sc3N@D3(6140)-C68 [212], M2C2@Cs-C82 (M = Sc, Y)
[213], and Gd2@C79N [120] (Fig. 5).

For mono-EMFs, Bickelhaupt and Solà et al. carried out an
exhaustive DFT investigation involving all 65 possible pathways
of the BH reaction between dimethyl bromomalonate and La@C2-
v(9)-C82 through all 24 nonequivalent reaction sites [214]. They
found that the BH reaction is not as regioselective as the DA reac-
tion, and proposed that the attack at bond C2-C3 leads to the full-
eroid product, whereas the initial attacks at C2, C19, C21, and C23
result in the four singly bonded ones.

Similar to the mono-EMFs, the reported BH reaction of di-EMFs
is also limited to a recent theoretical study on Sc2@C2v(4059)-C66

[188]. The reaction would occur at a [6,6] junction close to the
unsaturated linear triquinanes under kinetic control and lead to a
closed methanofullerene product.

Recently, an azidomalonate monoadduct of Sc3N@C80 was syn-
thesized via BH reaction and covalently connected with a [5:1]
hexakisadduct of C60 (with a terminal alkyne group) using a cop-
per–catalyzed ‘‘click” reaction to generate the first EMF-based
dumbbell [204].

Yang et al. have found that, although TiSc2N@Ih-C80 is different
from unreactive Sc3N@Ih-C80 by replacing one Sc with a Ti atom, it
reacts with diethyl bromomalonate at room temperature in the
presence of DBU to afford two isolable monoadducts [209]. Zhao
et al.’s recent DFT calculations further suggest that they are kinet-
ically favored [6,6,6] and thermodynamically favored [5,6,6] regioi-
somers, respectively [215]. Similarly, TiY2N@Ih-C80 was found to be
more reactive than Y3N@Ih-C80, and its BH derivative is a singly
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Fig. 6. Product structures for carbene addition reactions of EMFs from Refs. [52,53,55,69,73,224,225,227,235,236,239,240,243–247,249].
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bonded product similar to that of La@C82 [195] rather than the
common cyclopropane adducts of Y3N@Ih-C80 [210]. The addition
site is a [5,6,6] junction, which has the lowest electron density
and large local strain. The comparable adducts for TiY2N@C80 and
La@C82 imply a common reaction mechanism due to their similar
radical nature, which may greatly stabilize the singly bonded inter-
mediate anion first generated in the reaction by oxidization and
thus impede the formation of cyclopropane.

The BH reaction of the nonconventional LaSc2N@Cs(hept)-C80 to
afford CH2 adduct was theoretically suggested [191] to have a simi-
lar addition preference to the [6,6] bond adjacent to pentalene units
as that of Sc3N@C68 [203] and Gd3N@C82,84 [208]. The regioselectiv-
ity canbe rationalizedby the largest LUMOcoefficients of the related
carbon atoms in pristine LaSc2N@Cs(hept)-C80, whose sites are
favorable for the formation of [LaSc2N@C80CH2Br]� intermediates.
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In summary, the BH reactivity depends on the metal type [156].
In addition to the complete change of the metal species, partial
substitution may also considerably affect the reactivity and even
addition pattern [209,210]. The reactivity may substantially
decrease with increasing cage size [206,207]. The local cage aro-
maticity may determine the chemical reactivity and regioselectiv-
ity of EMFs [205,216–218]. Significantly, insoluble EMFs can be
utilized through preparing the corresponding Bingel adducts, and
could be employed as a magnetic resonance imaging (MRI) con-
trast agent [219,220].

3.5. Carbene addition

Carbenes are the reactive intermediates featuring a neutral
divalent carbon atom with two unshared valence electrons. The
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Fig. 7. Product structures for [2+2] cycloaddition of benzyne to EMFs from Refs.
[258–260].
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carbene additions are important for both synthesizing new deriva-
tives and clarifying the chemical reactivity of fullerenes/EMFs
[221].

In 1995, Suzuki et al. first conducted the reaction between
La@C82 with excess diphenyldiazomethane (Ph2CN2) in a toluene
solution at 60 �C [222]. They observed several peaks in the FAB
mass spectrum corresponding to the La@C82(CPh2)n (n = 1–3)
adducts. To date, carbene addition has been applied to Li+@C60

[223–225], M@C2v(9)-C82 (M = Sc, Y, La, Ce, Pr, Gd, Tb)
[80,222,226–234], La@Cs(6)-C82 [184], Yb@C2v(3)-C80 [235],
Yb@C2(13)-C84 [236], M2@D2(10611)-C72 (M = La, Pr) [52,53,237],
La2@D3h(5)-C78 [55], M2@Ih(7)-C80 (M = La, Ce) [238–240], Lu2@C3-
v(8)-C82, Lu2@C2v(9)-C82 [241], M3N@C80 (M = Sc, Y, Lu) [241–246],
Sc3N@D3-C68 [246], Sc2C2@C2v(5)-C80 [247,248], Sc2C2@C3v(8)-C82

[73,249], Sc3C2@Ih(7)-C80[69,250], Sc2C2@D2d(23)-C84 [251] and
Tb2C2@D2(35)-C88 [252].

Since 2004, Akasaka and co-workers have carried out a series of
room-temperature photochemical reactions between M@C82

(M = Sc, Y, La, Ce, Gd) and 2-adamantane-2,3-[3H]-diazirine
(AdN2) [184,227–231]. All the metal ions are positioned inside
the cavity provided by the bond cleavage upon Ad addition.
Recently, Lian et al.’s X-ray crystallography (for the major one of
two isolated isomers) revealed that, although the internal Pr atom
in the photochemically-yielded Pr@C2v(9)-C82Ad adduct is disor-
dered, it mainly resides in the same cavity as well (Fig. 6)
[232,233].

The first spiroannelated Li+@C60 derivative, [6,6]-
[Li+@C60(fluoreno)]TFSI� (TFSI = bis(trifluoromethanesulfonyl)imid
e), was recently synthesized by the reaction of 9-diazofluorene
and [Li+@C60]TFSI� [224]. The crystal structure shows that Li+ dis-
persedly occupies three different positions, implying weak metal-
cage coordination interactions at the addition sites due to the
through-space periconjugation in the derivative (Fig. 6). The
room-temperature reaction of [Li+@C60](TFSI�) with 1.1 equiv of
Ph2CN2 in dichloromethane afforded the mono-diphenylmethano
compounds [5,6]- and [6,6]-[Li+@C61Ph2]TFSI� and bisadducts
[225]. Single crystals confirm that the two monoadducts are
[5,6]-open and [6,6]-closed structures. The former kinetic product
can be converted to the latter thermal product via thermal treat-
ment ([5,6] one shown in Fig. 6). It is the first successful crystal
structure characterization of the [5,6]-open methano[60]fullerene
(fulleroid) structure.

Pristine Pr2@D2(10611)-C72 was synthesized and isolated
recently [237]. Its photochemical reaction with excess AdN2 yields
a major mono-adduct and minor bis-adduct. DFT calculations sug-
gested that the mono-addition most likely takes place at a [5,6]
bond in the pentagon adjacencies.

The Ad additions to Sc3N@D5h(6)-C80 and M3N@Ih(7)-C80

(M = Sc, Lu) were achieved recently via the photochemical
reactions with 2-adamantyl-2,30-[3H]-diazirine [243]. For
M3N@Ih-C80, the major and minor isomers are [6,6]-open fulleroid
and [5,6]-open fulleroid, respectively. The reaction led to three
major monoadducts (all are [6,6]-open) for Sc3N@D5h-C80, showing
high regioselectivity. Single-crystal XRD analyses unambiguously
determined the exact structures of all the seven Ad monoadducts
(one [6,6] isomer for M3N@Ih-C80 and Sc3N@D5h-C80 shown in
Fig. 6). The stepwise Ad addition to the more reactive
Lu3N@Ih-C80 affords several bisadducts, one of which was success-
fully characterized by XRD to feature the second Ad group close to
one Lu atom (Fig. 6). The addition pattern was rationalized by
calculating the relative energies of isomers, charge density and
local strain of the cage carbons.

In contrast to the various carbon-based Lewis bases such as
N-heterocyclic carbene (NHC), carbon-based Lewis acids are scarce
and have been recently extended to hollow fullerenes such as C60

and C70 [253–255]. Interestingly, despite bearing a negatively
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charged outer cage, Lu et al. found that Sc3N@Ih-C80 exhibits excel-
lent Lewis acidity and it can react with 1,3-bis(diisopropylphenyl)-
imidazol-2-ylene at 90 �C to afford a Lewis acid-base pair [244].
Differing from the common [1+2] cycloaddition of carbene, single
crystal X-ray data show that the abnormal carbene (with C5 as
its active center) is singly connected (C–C bond length: 1.515 Å)
to an otherwise inert [6,6,6] junction with the Sc3N plane perpen-
dicular to the N-heterocyclic ring (Fig. 6). Theoretical calculations
reveal that the unprecedented addition pattern is kinetically con-
trolled as a result of the steric hindrance between the congested
diisopropylphenyl groups of the normal NHC and large C80 cage.
The high regioselectivity is due to the low electron density and rel-
atively large LUMO distribution at the [6,6,6] site [256]. This is the
first example of carbon-based Lewis acid-base pair formed by
EMFs.

Normal NHC adducts of M3N@Ih-C80 (M = Sc, Lu) were recently
achieved by introducing a tiny amount of oxygen in the same reac-
tion (Fig. 6) [245]. Joint experimental and computational studies
reveal that the oxygenmay first be activated by the carbene to gen-
erate a dioxirane product, which then reacts with Sc3N@Ih-C80 to
form a Sc3N@C80O intermediate. The intermediate reacts with
NHC to yield the final normal NHC-Sc3N@Ih-C80O product. It is very
interesting that the attachment of an oxygen atom to the cage
framework leads to a totally different NHC adduct. It is noteworthy
that the NHC addition was further extended to MCCFs such as
Sc2C2@C3v(8)-C82 by Lu et al., and a normal C2-binding [5,6,6]
monoadduct was obtained despite it bearing a larger carbon
cage than Sc3N@Ih(7)-C80 with stronger steric clash (Fig. 6) [249].
Quite recently, they further conducted the reactions between
the less strained 3-dimesityl-1H-imidazol-3-ium-2-ide and
Lu3N@Ih(7)-C80, Lu2@C3v(8)-C82, or Lu2@C2v(9)-C82 [241]. X-ray
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data revealed that Lu3N@C80 also gives rise to a normal-bonding
epoxide adduct under ambient conditions, whereas an abnormal-
bonding adduct is obtained in a pure argon atmosphere. In con-
trast, each Lu2@C82 yields one normal adduct regardless of the
reaction conditions. DFT calculations thus clarify that the high
regioselectivity and addition types are mainly determined by the
molecular orbitals and electrostatic interactions of the carbon
cages rather than the previously assumed steric clash.

Recently, the first derivatives of diterbium fullerenes
were achieved via the photochemical reaction of Tb2C90 (the
structure was tentatively assigned to Tb2C2@D2(35)-C88) with
2-admantane-2,3-[3H]-diazirine, and an Ad monoadduct was
successfully isolated [252]. Its similar optical absorption spec-
trum as that of pristine one suggests that the Ad addition takes
place at the [6,6] ring junctions with local open-cage structure.

For the reported reactions, high regioselectivity is frequently
found due to strong metal-cage interactions [184,227–231]. Charge
density distribution, local cage stain and relative energies are often
analyzed to explain the observed high regioselectivity, and the car-
bon atoms close to the metal are possible reaction sites. The differ-
ent amounts of metal-to-cage charge transfer could lead to diverse
reactivity and regioselectivity [235,236]. Since direct XRD
structural characterization is difficult due to the rapid rotation of
spherical EMFs in the crystal lattice, one may employ their corre-
sponding carbene derivatives, whose crystallizations are more
feasible [69,73,247,248].

3.6. Benzyne cycloaddition

The [2+2] cycloaddition of benzyne is well known for empty
fullerenes. The first application to EMFs is reported by Lu et al. in
2004 for Gd@C2v-C82, and two Gd@C82(C6H4) monoadducts domi-
nate the reaction products [257]. The reported cases are limited
to M@C2v(9)-C82 (M = La, Gd) [257,258] and Sc3N@Ih-C80

[259,260] thus far.
The cycloaddition of benzyne to Sc3N@Ih-C80 afforded two

stable monoadducts and multiple adducts with up to 10 benzene
addends [259]. One monoadduct is a symmetric [5,6] isomer,
whereas the other is an unsymmetrical [6,6] one (Fig. 7). Recent
DFT calculations reveal that the [5,6] isomer is thermodynamically
more favorable that the [6,6] one [261]. The two cycloaddition
patterns lead to diverse metal cluster dynamics, with a more flex-
ible mode in the [6,6] isomer [262]. Their monoanion radicals
were generated by the reaction between the two cycloadducts
and cobaltocene Co(Cp)2, and show very different hyperfine pat-
terns in ESR spectra and spin density distributions for the metal
cluster. The benzyne adduct may be further functionalized by por-
phyrin and tetrathiafulvalene to achieve variable electronic prop-
erties [261].

A deep understanding of complicated reactions surely needs
theoretical insights. Very recently, systematic DFT calculations
were performed by Yang et al. to disclose the reaction mechanism
of [2+2] cycloaddition of benzyne with M3N@C80 (M = Sc, Y) [263].
The benzyne ring is first singly linked to the [5,6,6] or [6,6,6] site to
form a singlet diradical intermediate, which is rather flexible and
readily rotates on the cage surface to reside over the [5,6] or
[6,6] bond. It then undergoes a ring-closing step to form the major
[5,6] or minor [6,6] adducts. Y3N@C80 may exhibit higher reactivity
due to a lower reaction barrier and larger reaction energy than
Sc3N@C80. The yields of the two adducts become competitive and
both of them may exhibit a two-atom-bridging open-cage struc-
ture. Therefore, the open or close of the cage can be controlled
by only altering the internal metal species. The regioselectivity is
explained in terms of the local strain of EMFs. Li et al. found that
the structure, electronic and optical properties of M3N@C80(M = Sc,
Y) may be affected by the addition of a benzyne group [264].
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3.7. Radical reaction

Generally, in the radical reactions, an even and odd number of
addends are singly bonded to the diamagnetic and paramagnetic
EMFs, respectively, to achieve a closed-shell electronic configura-
tion. The high reactivity of reactions leads to a low selectivity. The
involved EMFs are Sr@C50,60 [265], M@C60 (M = La, Gd) [266],
M@C2n (M = Y, Gd or Dy; 2n = 60, 70, 72, or 74) [267],
La@D5h-C70 [268], M@C2(10612)-C72 (M = La, Pr) [269–273],
M@D3h-C74(M = La, Pr) [273–277], La@C76 [273], La@C2v(3)-C80

[278], Ce@C80 [279], M@C82 (M = Y, La, Ce, Gd) [185,279–288],
M2@C80 (M2 = Y2, La2, Gd2, Dy2, Tb2, Ho2, Er2, TbY, TbGd)
[283,288–292], M2@C82 (M = Y, Er) [288,293], M3N@C80 (M = Sc,
Er, Lu) [265,294–304], Y2C2@Cs(6)-C82 [305], Sc3C2@Ih(7)-C80 [70],
YCN@Cs(6)-C82 [306], YCN@D2d(23)-C84 and YCN@C2(13)-C84 [307].

Recently, five isomers of M@C82CH2-3,5-C6H3Me2 (M = La or Ce)
were synthesized via photoirradiation of M@C82 in the presence of
mesitylene [287]. XRD analysis reveals that the 3,5-dimethyl-
benzyl group in one Ce@C82CH2-3,5-C6H3Me2 isomer (Fig. 8) is
added to the same C10 site as that of the benzyl adduct of
La@C82 [280]. One isomer for each metal is suggested to have addi-
tion at the C23 site due to their similarity in absorption spectra
with La@C82CBr(COOEt)2 [195]. DFT calculations suggest the addi-
tion sites based on large spin density and positive charge. Signifi-
cantly, the paramagnetic shifts of the 1H NMR peaks (due to the
anisotropic magnetism of the Ce-f electron) can be employed to
probe the location of other adduct isomers to be C9, C14 and C18.

Exohedral modification may greatly alter the bonding state of
the trapped species to achieve covalent metal–metal bonds
[308,309]. Generally, to obtain a closed-shell adduct, an odd and
even number of benzyl radicals are needed to attach open-shell
and closed-shell EMFs, respectively. However, in a recent report
on the photo-irradiation reaction of benzyl bromide with La2@Ih-
C80, an open-shell La2@Ih-C80CH2C6H5 monoadduct was unexpect-
edly achieved [289]. XRD revealed that the benzyl mono-addition
takes place at a [5,6,6] cage carbon (Fig. 8). The average internal
La-La separation is comparable to that of the metal–metal covalent
bond in the La2@C80

� anion (3.71 Å vs. 3.723 Å), confirming the for-
mation of a direct La-La bond. EPR measurements and DFT calcula-
tions revealed that the r-bonding orbital of the La2 pair accepts an
unpaired electron. The localized spin density on the metals thus
causes the extreme stability of this fullerene radical. The formation
of the fullerene radical dramatically modified the vis/NIR absorp-
tion spectrum owing to the introduction of an unpaired electron.
The first reduction and oxidation potentials are negatively shifted
by 510 and 410 mV, respectively. Stable benzyl monoadducts
M2@Ih(7)-C80(CH2Ph) (M2 = Y2, Gd2, Tb2, Dy2, Ho2, Er2, TbY, TbGd)
were soon synthesized [290,291]. As the La2@Ih-C80 adduct, EPR
and DFT calculations indicate that they all bear an unpaired elec-
tron located between the two metal atoms, resulting in the forma-
tion of a single-electron metal–metal bond. Significantly, the
strong interactions between the unpaired electron and metal ions
in Dy2@C80(CH2Ph) and Tb2@C80(CH2Ph) give rise to single-
molecule magnetism with a rather high blocking temperature of
magnetization.

Very recently, Hada et al. theoretically proposed the stable
structures of Gd2@Ih-C80-CF3 and Gd2@Ih-C80-C3N3Ph2 adducts,
and predicted the magnetic properties of their corresponding
Dy2@Ih-C80 derivatives [310].

Missing small-gap metallofullerenes can be stabilized and
obtained with CF3 modification. Recently, Shinohara et al. used a
modified arc-discharge method to effectively produce a series of
trifluoromethyl derivatives of insoluble EMFs with the aid of poly-
tetrafluoroethene [267]. The M@C2n(CF3)1,3 (M = Y, Gd or Dy;
2n = 60, 70, 72, or 74) derivatives can be dissolved in common
organic solvents and subjected to further separation/purification.
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Fig. 8. Radical reactions of EMFs. Product structures from Refs. [70,268,280,266,269,275,278,286,287,289,292,294,297,303,305,306,307].
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They also observed the existence of Y2@C80CF3. DFT calculations
show that Y2@Ih-C80 has a triplet ground state and exhibits high
chemical reactivity towards CF3 addition due to its unpaired elec-
tron on the cage. Similar chemical properties were also suggested
for M2@Ih-C80 (M = Gd, Lu) by theoretical calculations [311]. The
same in situ trifluoromethylation method was recently used to iso-
late the long-sought small-bandgap La@C70 [268]. Single-crystal
XRD for one of the two obtained isomers revealed that
La@C70(CF3)3 is the first D5h-C70-based rare-earth EMF with the
La atom and three CF3 substituents residing on the same side of
the C70 long axis (Fig. 8). DFT calculations found that it is greatly
stabilized owing to the enlarged HOMO-LUMO gap upon trifluo-
romethylation. DFT calculations predicted that Y@C2v(4348)-C66

could be greatly stabilized by trifluoromethylation [312]. Recent
calculations for La@C60(CF3)m (m � 5) also found that the attach-
ment of an odd number (m = 1, 3 or 5) of CF3 radicals is energeti-
cally favored due to the stabilization of extra electrons (3e
donated by La) on the cage and achievement of closed-shell config-
urations [313]. Indeed, small-gap M@C60 endohedrals can be
macroscopically obtained in their trifluoromethylated forms
Gd@C60(CF3)3,5 and La@C60(CF3)3,5 due to the widened energy gap
(one M@C60(CF3)5 isomer shown in Fig. 8) [266].

Recently, the addition reactions of 1,2,4-trichlorobenzene (TCB)
to Pr@C72 and Pr@C74 were continually reported by Zhao et al. and
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one isomer for each was successfully prepared and isolated
[272,277]. Their structures should be Pr@C2(10612)-C72(C6H3Cl2)
and Pr@D3h-C74(C6H3Cl2) respectively based on the similar UV–
vis-NIR spectra as that of La@C72(C6H3Cl2) and La@C74(C6H3Cl2)
as well as theoretical calculations.

However, it was argued that TCB is not an ideal radical precur-
sor due to the simultaneous yield of three regioisomers, namely
2,4-, 2,5-, and 3,4-dichlorophenyl radicals. When iodobenzene
was used, the insoluble missing La@C2n (2n = 72–76) was success-
fully extracted as corresponding phenyl adducts La@C2(10612)-
C72(C6H5), La@D3h-C74(C6H5) (I, II) and La@C76(C6H5) (I, II) with
remarkably reduced isomer number [273].

In general, fullerenyl radicals are rather reactive and hard to be
isolated. Recently, Akasaka and co-workers reported the synthesis
of isolable stable fullerenyl radicals by the thermal reaction of
La2@Ih-C80 or La2@D5h-C80 with excess 3-chloro-5,6-
diphenyltriazine in 1,2-dichlorobenzene (1,2-DCB) solution [292].
The mass spectra indicate the formation of radical coupled prod-
ucts La2@C80-C3N3Ph2, which are air-stable. EPR spectra similar
to that of the La2@C80 anion radical as well as calculated SOMO dis-
tribution suggest that the unpaired electron is confined in the La-
La r-bonding orbital within the protective cage, accounting for
the remarkable stability of the radical products. The electronic con-
figuration is thus (La2)5+@(C80-C3N3Ph2)6�. X-ray analysis of the
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two La2@C80-C3N3Ph2 products shows that both additions took
place at the [5,6,6] carbon site (Fig. 8). In addition, La2@Ih-C80-
C3N3Ph2 can further react with toluene under thermal conditions
to afford a diamagnetic benzylated derivative La2@Ih-
C80�(C3N3Ph2)(CH2Ph) in solution, which will dimerize to form a
diradical in the crystal structure with the unpaired electrons again
localized in the metal moieties (Fig. 10).

Addition pattern may also affect cluster conformation. Yang
et al. obtained four isomeric trifluoromethyl derivatives
Y2C2@Cs(6)-C82(CF3)16 very recently [305]. Interestingly, despite
being trapped in the same C82 cage, the Y2C2 cluster exhibits varied
butterfly-shaped geometry dependent on the addition pattern of
the exohedral CF3 groups (one shown in Fig. 8). This phenomenon
is well understood: different trifluoromethylation patterns
determine various relative positions of two cage pentagons
coordinating with the two Y atoms, thus resulting in different
internal cluster structures. They also reported that the trifluo-
romethylation of the monometallic cyanide cluster fullerene
YCN@Cs(6)-C82 with gaseous CF3I at 430 �C afforded a mixture of
YCN@Cs(6)-C82(CF3)14-20 [306]. X-ray diffraction reveals two iso-
lated products: YCN@Cs(6)-C82(CF3)16 and YCN@Cs(6)-C82(CF3)18,
whose additions both occur at 11 pentagons with the
Y-coordinated pentagon remaining intact (Fig. 8). DFT calculations
suggest that the CF3 groups enhance the localized electron density
within the conjugated patch coordinating with the metal atom.
They further obtained YCN@D2d(23)-C84(CF3)18 and three isomers
of YCN@C2(13)-C84(CF3)16 using a similar procedure [307]. An
XRD study revealed that the Y atom is coordinated by one and
two neighboring pentagons in YCN@C2(13)-C84(CF3)16 and
YCN@D2d(23)-C84(CF3)18 (one isomer shown in Fig. 8), respectively,
suggesting that only these pentagons should escape from CF3 addi-
tion. However, the isomer III of YCN@C2(13)-C84(CF3)16 (Fig. 8) is
special and features a second pentagon free from the CF3 attach-
ment. Note that the resultant different CF3 distribution led to a
much smaller endohedral Y-C-N angle (90� vs. >100� in others) in
this isomer, indicating a pronounced communication between
the inner and outer moieties.

Significantly, directly fluorinated EMFs such as Sc3N@C80Fn
(n = 1, 2) and even small Sr@C50F and Sr@C60F can be obtained under
gas-phase conditions of metallofullerene plasma synthesis [265].

Experimental studies for the radical reaction of mixed-metal
and metal oxide clusterfullerenes have not been reported.
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However, calculations reveal that the addition of multiple trifluo-
romethyl groups to ScxY3-xN@Ih-C80 (x = 1–3) and Sc4O2@C80 could
decrease their HOMO-LUMO gap energies [314–317].

The radical addition can change the electronic structure of the
internal cluster and subsequently affect its configuration [70].
The additions could influence the cluster conformation [305–307]
and motion [297–300]. The addition sites could have large local
cage stain and high spin density because of the neighboring metal
atom, thus confirming the critical role of metals in regioselective
derivatization.

3.8. Polyhydroxylation

Hydrophilic groups are used to solubilize the EMFs and improve
their biocompatibility for application in medical science. The sim-
plest and most efficient modification method is polyhydroxylation
to yield various metallofullerenols. Among them, extensive studies
are focused on Gd-metallofullerenols (Fig. 9). Gadolinium holds a
half-filled 4f subshell (4f7) with strong paramagnetic properties.
The extremely stable carbon cage can prevent metallic species
leakage under physiological conditions and enlarge the surface of
the Gd ion. The polyhydroxyls transmit the paramagnetic effect
of the Gd ion to the bulk water by fast proton exchange. Therefore,
the conflict between toxicity and relaxation efficiency is perfectly
solved in Gd-metallofullerenols, which are thus very attractive
MRI contrast agents. Compared with various commercial Gd3+

ion-chelated compounds, exohedrally modified gadofullerenes fea-
ture much higher spin coupling between inner Gd and outer water
protons. They not only exhibit 10–40 times improvement as MRI
contrast agents, but also have excellent biosafety [318]. The effi-
ciency of an MRI contrast agent is gauged by its proton relaxivity,
r1. The relaxivities are highly dependent on the functional group
type and aggregate size.

In 1997, Zhang et al. prepared the first water-soluble EMF
derivatives, gadolinium fullerenols Gd@C82(OH)�20, via the reac-
tion of gadolinium fullerenes with potassium [319]. Gd@C82(OH)20
exhibits an excellent r1 relaxivity of 47.0 ± 1.0 mM�1 s�1 at room
temperature, much higher than the common contrast agents such
as Gd(DOTA), Gd(DTPA), Gd(HP-DO3A) and Gd(DTPA-BMA). There-
after, various types of Gd-metallofullerenols were reported, most
of which were based on Gd@C82. Herein, for the sake of clarity,
we ignore the tedious description of the synthesis procedure, and
only summarize all types of reported polyhydroxylated EMFs spe-
cies in Table 1.

With the increasing number of OH groups, the isomer number
of adducts grows dramatically, which severely impedes the exper-
imental purification and characterization. Thus, systematic theo-
retical calculations play a critical role in disclosing the formation
mechanism and exact addition pattern of OH groups on the EMF
cage surfaces. Owing to high symmetry, Gd@C2v-C82 and its
hydroxylated derivative are theoretically predicted to favor simul-
taneous attack by four hydroxyls [320]. For the lowest-energy
Gd@C82(OH)x (x = 4–24), the OH groups are homogeneously dis-
tributed and they reside at either para-position of the hexagon
rings or the meta-position of the pentagon rings and tend to
enclose more uncovered hexagons. The binding energy of each
OH unit essentially increases with the increasing number of
hydroxyls.

The formation of Gd@C60/82 metallofullerenols using O2 or H2O2

as oxidizing agents under alkaline aqueous conditions was investi-
gated by means of DFT calculations [321]. The O2 oxidation ener-
getically favors generating hydroxyls and carbonyls on the cage
surface, whereas the H2O2 one most likely forms hydroxyl, car-
bonyl, hemiacetal and deprotonated vic-diol groups.

DFT calculations suggest that La@C60(OH)32 and La@C82(OH)20
favor the formation of small isolated OH domains and a segregated
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Table 1
Summary of reported metallofullerenols.

Classical EMFs Ref. Classical EMFs Ref. Clusterfullerenes Ref.

Li@C60(OH)18 [327] Gd@C82(OH)16O6(NHCH2CH2COOH)8 [328] Sc3N@C80OH [329]
Gd@C60(OH)x [330] Gd@C82(OH)18 [331] Sc3N@C80(OH)10O10 [332]
Gd@C80(OH)22 [333] Gd@C82(OH)18O8 [334] Sc3N@C80(OH)33(CH2CH2COOH)19 [335]
La@C82(OH)x [336,337] Gd@C82(OH)20 [319] Gd3N@C80OH [329]
Ce@C82(OH)x [336] Gd@C82(OH)20O2 [338] Gd3N@C80(OH)10O12(NH2)7(NO2)2 [339]
Pr@C82(OH)10O10 [340] Gd@C82(OH)21O7 [338] Gd3N@C80(OH)21O11 [341]
Gd@C82(OH)2 [342] Gd@C82(OH)22 [343–

345]
Gd3N@C80(OH)26(CH2CH2COOM)16(M = Na, H) [335,346]

Gd@C82(OH)5(NHCH2COOH)9 [343] Gd@C82(OH)24(CH2CH2COOH)22 [347] Gd3N@C80(OH)30 [348]
Gd@C82(OH)6(NHCH2CH2SO3H)8 [343] Gd@C82(OH)26 [349] Gd3N@C80(OH)30(CH2CH2COOH)20 [350]
Gd@C82(OH)12 [351] Gd@C82(OH)30 [352] Gd3N@C80-Rx, R = [N(OH)(CH2CH2O)nCH3]x, n = 1, 3, 6

and X = 10–22)
[353]

Gd@C82(OH)12(C
(COOH)2)3(DOTA)1

[354] Gd@C82(OH)30O8 [355] Gd3N@C80[DiPEG(OH)x] [356,357]

Gd@C82(OH)12(C
(COOH)2)8(DOTAM)1

[354] M@C82(OH)40(M = Eu, Gd, Dy, Er,
Lu2)

[358–
361]

ScGd2N@C80(OH)26O12 [355]

Gd@C82(OH)13(NHCH2CH2COOH)6 [349] Dy@C82(OH)x [336] Sc2GdN@C80(OH)26O12 [355]
Gd@C82O14(OH)14(NH2)6 [362] 166Ho1,2@C82(OH)x [363] Gd3N@C84(OH)28O6 [341]
Gd@C82(OH)15O14(C6H5C

(CH2)3COOH
[364] Er@C82(OH)x [336]

Gd@C82(OH)16 [365] Gd2@C80(OH)18O8 [334]
Gd@C82(OH)16O10 [366] Gd2@C80(OH)22 [333]
Gd@C82(OH)16O2(C(PO3Et2)2)10 [200]
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OH array on one side respectively, on the cage surface with hydro-
gen bonds between neighboring OH groups [322]. The different
addition patterns affect the metal position, and the La atom is
apt to be attached to the internal cage surface and resides close
to the electron-rich uncovered regions. When positively charged
(+2, +4, +6, +8), some C–C bonds may be broken and lead to sizable
holes in the C60 framework, whereas no C–C bond breakage was
found for the C82 cage. In all cases, the inner La atom is rather
stable and does not escape from the polyhydroxylated cage.

It was theoretically proposed that only the EMF multi-adducts
with large first excitation energy and HOMO-LUMO gap are chem-
ically inert and can survive in experiments. They are easily identi-
fied: their sp2 carbons should form local aromatic ionic patches
isolated by sp3 carbons [323,324]. In addition, the global molecular
aromaticity may also affect the energy stability of polyhydroxy-
lated derivatives [325].

Theoretical calculations could also give insights into potential
biofunction of metallofullerenols. For instance, Gao et al.’s recent
molecular dynamics simulations and DFT calculations reveal that
Gd@C82(OH)13,21 can reside in the same pocket of the dimer of
tumor necrosis factor-a (TNF-a) as a SPD304 inhibitor [326]. The
calculated binding free energies suggest that they have larger
affinities and may be employed as new inhibitors of TNF-a.
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3.9. Dimerization reaction

There are only a few reports on the dimerization of EMFs and
their derivatives, and the former includes Li@C60 [367], M@C82

(M = Y, Ce, Nd, Gd, Tb, Er) [368–378], and M3N@Ih-C80 (M = Sc,
Lu) [379–381], whereas the latter include the BH bisadduct of
La@C82 [197], La@C2v(9)-C82Cp* [113] and La2@Ih-C80-C3N3Ph2

[292].
Recent studies show that the metallic species determine the

reactivity towards dimerization. In contrast to M@C2v(9)-C82

(M = Sc, Y, La, Gd, Sm, Yb) which all retain monomer form in their
co-crystals with Ni(OEP), Ce@C2v(9)-C82 dimerizes via a C–C single
bond in a centrosymmetric fashion (Fig. 10) [375]. The reaction site
holds the highest POAV value among all the cage carbons. DFT cal-
culations reveal that the dimer is energetically more favorable than
the two monomers by 22.6 kcal mol�1. With the similar geometry
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and metal-to-cage electronic transfer for M@C82(M = Sc, Y, La, Ce),
it is interesting to further understand the underlying reaction
behind their remarkable reactivity difference.

Cage isomerization also affects the reactivity towards dimeriza-
tion. For example, Y@Cs(6)-C82 forms a dimeric structure via a C–C
single bond in the crystalline state, whereas Y@C2v(9)-C82 does not
dimerize under identical conditions [376]. In the single crystal
structure (Fig. 10), the Y atom resides under a [6,6] bond and devi-
ates slightly from the mirror plane of the cage. Dimerization takes
place at a carbon site far from the metal with rather high spin den-
sity, endowing the Cs(6) cage with considerable radical character to
facilitate the radical coupling reaction. The situation is a sharp
contrast to the even distribution of spin density on the cage carbon
of Y@C2v(9)-C82. Similar phenomena were also observed for
Er@Cs(6)-C82 and Er@C2v(9)-C82, and only the former dimerizes in
the crystalline state due to the localized high spin density at the
addition site, although identical crystallization conditions were
used for both of them [377].

Li+@C60
�� radical anion was recently isolated by the electrochem-

ical reduction of ionic Li+@C60 salt [367]. Although Li@C60 exists
mainly as a monomer in solution, it can form a stable dimer in
trans conformation in the co-crystal with nickel octaethylpor-
phyrin by coupling of the spin center on the cage (Fig. 10). The
metal resides close to a carbon atom adjacent to the bridging site
due to the electrostatic attraction.

The cage orientation may determine the dimerization reactivity.
Koshino et al. reported the dimerization reaction of Er@C82 within
the narrow space of nanotubes [378]. By using HRTEM, they
observed that more intermolecular bonds are formed when the
EMF molecules are packed with their apse lines along the tube axis
and in a head to tail contact.

The mixed triazine/benzyl derivative of EMF, namely
La2@Ih-C80-C3N3Ph2, can react with toluene under thermal
conditions to afford a diamagnetic benzylated derivative
La2@Ih-C80�(C3N3Ph2)(CH2Ph) in solution, which dimerizes to form
a diradical in the crystal with the unpaired electrons localized on
the metals (Fig. 10) [292].

Heterodimers suchas Li@Ih-C60-Y@C2v(9)-C82, Li@C60-Y2@Ih(7)-C80
and Y@C2v(9)-C82-Y2@Ih(7)-C80 were also theoretically designed
[382]. They are linked via a weak C–C single bond, and exhibit
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Fig. 10. Product structures for dimerization reactions of EMFs from Refs. [113,197,292,367,375,376,380,381].
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enhanced first hyperpolarizability than their respective monomers.
Therefore, dimerization could effectively improve the nonlinear
optical properties of EMFs.

The anionic TNT EMFs may be more prone to dimerize. Recent
systematic DFT calculations by Popov et al. focused on the possible
dimerization reactions of several anionic TNT EMFs and
their derivatives [383,384]. They found that the most stable
dimers of non-IPR Sc3N@D3(6140)-C68

� , Y3N@C2(22010)-C78
� and

Y3N@Cs(51365)-C84
� could all be obtained by connecting the

peripheral carbon atoms of the pentalene units. In the most stable
dimeric structure of Sc3N@C80

� , the bridge carbon atoms are at the
[5,6,6] sites, which are between the coordination sites of two
equivalent Sc atoms and near the Sc3 plane. As a matter of fact,
the [5,6,6] and [6,6,6] dimers can form simultaneously due to their
slight energy difference, as confirmed by the single crystal {cryp-
tand[2,2,2](Na+)}2(Sc3N@Ih-C80

� )2�2.5C6H4Cl2 salt (Fig. 10) [380].
They both exhibit trans-orientation with intercage C–C bond
lengths of 1.642 and 1.636 Å, respectively. The most stable (Sc3-
N@Ih-C80(CF3)2)22� favors the [6,6,6] carbons far from the CF3
groups as the binding sites, which also reside between two Sc
atoms and close to the metal plane. The dimerization of [5,6] N-
methyl pyrrolidine adduct Sc3N@Ih-C80(C3H7N)� may occur at the
[6,6,6] site next to the pentagon ring where the pyrrolidine unit
is attached, whereas that of the [6,6] adduct may be related to
the [5,6,6] site far from the pyrrolidine ring. In contrast to Sc3N@C80-
�, Y3N@Ih-C80

� favors the dimeric bonding via [6,6,6] carbon atoms.
The most stable [5,6] Y3N@Ih-C80(C3H7N)� dimer is very similar to
that of Sc3N@Ih-C80(C3H7N)�. For the [6,6] Y3N@Ih-C80(C3H7N)�

dimer, however, the two monomeric units are bonded via [6,6,6]
carbon atoms with one Y atom in each monomer pointing
directly to the bridging site as a result of releasing the strain expe-
rienced by the large Y3N cluster in the C80 cage. In addition,
Y3N@D3(19)-C86 most likely prefers the [6,6,6] site for the
dimerization, and the most stable (Y3N@D2(35)-C88)22� has the P

D

Fig. 11. Coordination reactions of EMFs. Product structures from Refs.
[388,390,391].

Soli
d

 

htt
p:/

/w
ww.S

oli
dD

o

[5,6,6] carbon atoms as the bridging site. From the above, the
authors concluded that the carbon atoms with the largest spin
density distribution in the anion-radicals are generally the bonding
sites in the corresponding dimers if other factors such as steric hin-
drance are ignored. In contrast to the cases of empty fullerenes, the
dianionic EMF dimers formed via [5,6,6] sites are energetically
comparable with those by [6,6,6] ones. The dimers may become
more stable in solvent and the results correlate well with the
observed irreversible reduction steps for the nonderivatized ones
in electrochemical studies.

The relative stability and orientation of the dimer can be con-
trolled by the nature of the endohedral cluster. Voevodin et al.
reported that the anionic Lu3N@C80 fullerenes form dimers in the
[Ni12Te12(PEt3)8]2[(Lu3N@C80)2] superatomic crystal forming
through the reaction between Ni9Te6(PEt3)8 and Lu3N@C80 [381].
DFT calculations reveal that, compared to (Sc3N@Ih-C80

� )2 [380],
which have similar energies for the [5,6,6] and [6,6,6] isomers,
the latter one is energetically more favorable for (Lu3N@Ih-C80

� )2.
The results are consistent with the single crystal structure, which
only has the [6,6,6] intercage connectivity (Fig. 10).

Sc3O@C80 was recently prepared but its structure failed to be
fully characterized due to a rather low isolated amount [385].
Detailed DFT calculations suggest that it may bear an Ih(7)-C80

outer cage with an unpaired electron in the Sc ions. The radical
character indicates that it readily forms a dimer and further poly-
merizes, which may account for its difficult extraction by an
organic solvent.

Theoretical studies are also focused on the various properties of
EMF dimers. Ono and Hirose studied the electron-conduction prop-
erty of a Li@C60 dimer suspended between electrodes by DFT
method, and found that it had improved conductivity than the
C60 dimer due to the filled unoccupied state around the molecule
junction [386]. Recently, Zhao et al. investigated the electronic
transport properties of Li@C60 dimers under finite biases by com-
bining DFT and the nonequilibrium Green function method [387].
The I-V curve shows that the Li@C60 dimer exhibits obvious nega-
tive differential resistance (NDR) behavior: there is a quick
increase followed by a decrease of current with increasing applied
bias.

3.10. Coordination reaction

Coordinationwith transitionmetals has been reported for Li+@C60

[388], Sc2@C3v(8)-C82 [389], Sc3N@C80 [390], Sc2C2@C3v(8)-C82 [391],
Sc2C2@C2v(5)-C80 [389] and Sc2O@Cs(6)-C82 [389].

The coordination of Li+@C60 toward transition metals is
expected to afford very stable complexes due to its higher
electron-accepting ability than C60. The room-temperature reac-
tion between [Li+@C60](PF6�) and [IrCl(CO)(PPh3)2] in o-DCB
afforded a [{g2-(Li+@C60)}IrCl(CO)(PPh3)2](PF6�) mononuclear com-
plex [388]. In addition, [Li+@C60](PF6�) can react with [(g2-C2H4)Pt
(PPh3)2] and first yield polynuclear complexes [(Li+@C60){Pt
(PPh3)2}n](PF6�) (n � 2), which further react with undissolved
[Li+@C60](PF6�) to give mononuclear [(Li+@C60)Pt(PPh3)2](PF6�). By
adding 1,10-bis(diphenylphosphino)ferrocene (dppf) to an o-DCB
solution of [(Li+@C60)Pt(PPh3)2](PF6�), phosphine ligands were
exchanged to give [{g2-(Li+@C60)}Pt(dppf)](PF6�). X-ray crystal
structure analysis reveals that the Ir or Pt is coordinated to a
[6,6] cage bond in a g2 fashion with the Li+ staying adjacent to
them (Fig. 11). The Li+ ion enhances the p back-donation from
the transition metal center to the carbon cage, and it resides close
to the transition metals due to the electrostatic attraction from the
negatively charged carbons near the outer metals. Recent DFT cal-
culations found that the g2[6,6]-addition pattern is energetically
favorable for the coordination of Li+@C60 with M(Cl)(CO)(PPh3)2
(M = Rh, Ir) or M(PPh3)2 (M = Pd, Pt) fragments [392]. The

 Too
ls

cu
men

ts.
co

m/ 

http://www.SolidDocuments.com/


Fig. 12. (a)-(j) Molecules employed to form noncovalent systems with EMFs from Refs. [395,396,399,402,413–415,418,419] (k) cyclo-[PCu]2 � La@C82 and cage-[PCu]2 -
� La@C82 from Ref. [420] (l) Li+@C60-TTF-C4P from Ref. [400] (m) Li+@C60 � [10]CPP from Ref. [409] (n) La@C82 � [11]CPP from Ref. [424] (o) supramolecular nanocapsule
from Ref. [23](p) complex of Sc3N@C80 with cyclic porphyrin dimer from Ref. [428](q) hemicarceplexe Sc3N@C80 in cyclotriveratrylene-based molecular cage [431](r) complex
formed by cyclic porphyrin trimer receptor and Y@C82 from Ref [422]. Reprinted with permission from Ref. [422]. Copyright 2018 American Chemical Society (r).
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reaction between [CpRu(CO)2]2 or Re2(CO)8(PMe3)2 with Li+@C60 is
theoretically predicted to yield novel g1-coordinated metal-
fullerene complexes [393].
The photo-induced mononuclear coordination reaction of either
Sc3N@Ih-C80 or Sc3N@D5h-C80 with excess W(CO)4(Ph2PC2H4PPh2)
affords only one monoadduct with high regioselectivity [390].

http://www.SolidDocuments.com/


424 P. Jin et al. / Coordination Chemistry Reviews 388 (2019) 406–439

F

o

XRD reveal that the tungsten center coordinates to a [6,6] bond of
the cage far from the inner metals in ag 2 fashion, forming a closed
three-membered ring on the Sc3N@C80 cage for the first time
(Fig. 11). The two organometallic EMF complexes are air-stable
despite weak p back-donation from the W center to the fullerene
ligand.

An air-stable complex [(l-H)3Re3(CO)9-(g2, g2,
g2-Sc2C2@C3v(8)-C82)] was obtained by treating Sc2C2@C3v(8)-C82

with [(l-H)3Re3(CO)11-(NCMe)] in chlorobenzene [391]. The addi-
tion took place at the sumanene-like hexagonal ring in a highly
regioselective manner (Fig. 11). Afterwards, the analogue com-
plexes for Sc2@C3v(8)-C82, Sc2C2@C2v(5)-C80, and Sc2O@Cs(6)-C82

were also synthesized [389].

3.11. Noncovalent modification

The formation of EMF-based supramolecular systems is very
attractive due to the possible presence of electron and energy
transfer [394]. The reported EMFs include Li+@C60 [395–412],
M@C82 (M = Y, La, Gd, Dy, Ho, Tm, Lu2) [413–426], M2@Ih(7)-C80

(M = La, U) [427], M3N@Ih-C80 (M = Sc, Lu) [428–432], Sc2CU@Ih(7)-
C80 [23], DySc2N@C80 [176], Sc3C2@C80 [433] and Y2@C79N
[434,435].

Recently, stable [K+(18-crown-6)][M@C2v(9)-C82]� (M = Y and
Ho) complexes were synthesized by the redox reaction of
M@C2v-C82 with potassium perchlorotriphenylmethide
[K+(18-crown-6)][C(C6Cl5)3]� salt as a result of the electron transfer
from the [C(C6Cl5)3]� anion to the EMF [416,417]. Li+@C60 was
found can form inclusion complexes with the benzo- and
dithiabenzo-crown ether functionalized monopyrrolotetrathiaful-
valene (Fig. 12j) [395].

It has been reported before that La@C82 can also form a stable
1:1 complex with a cyclic porphyrin trimer in toluene, which is
the first record of EMFs’ binding to a molecular receptor [421].
The receptor exhibits a high binding affinity for La@C82 with three
porphyrins simultaneously chelated to the same EMF molecule.
Two cyclic porphyrin trimers can be further connected by a rigid
linker (features a central butadiyne) to form a two-site receptor
and encapsulate two Y@C82 with a center-to-center distance of
5.0 nm (Fig. 12r) [422].

Supramolecular complexes composed of Li+@C60 and sulpho-
nated meso-tetraphenylporphyrin (MTPPS4�: M = Zn, H2)
(Fig. 12i) were reported, and show strong binding due to the favor-
able cation–anion and p–p interactions [396–398]. Metallopor-
phyrins linked with the 1,3-dithiol-2-ylidene subunits of
tetrathiafulvalene, e.g. ZnTTFP (Fig. 12h), have been prepared and
complexed with Li+@C60 [399]. The donor–acceptor complexes of
Li+@C60 with tetrathiafulvalene calix[4]pyrrole (TTF-C4P, Fig. 12l)
[400], and supramolecular triad composed of Li+@C60, a porphyrin
anion and the radical cation of tetrathiafulvalene calix[4]pyrrole
were also achieved [401]. A supramolecular complex was also
formed by combining Li+@C60 and anionic zinc chlorin carboxylate
(ZnCh�) (Fig. 12f) [402,403]. Different phthalocyanines possessing
carboxylate groups can form supramolecular complexes with
Li+@C60 [404]. A free base and nickel complex of a cyclic porphyrin
dimer (M-CPDPy, M = H4 and Ni2) can host Li+@C60 to form stable
supramolecules (Li+@C60 �M-CPDPy) in benzonitrile [405]. The
complexation of Li+@C60 with a phenothiazine-bridged cyclic
free-base porphyrin dimer was also reported and exhibits a rather
long charge-separated lifetime [406]. The supramolecular com-
plexes between Li+@C60 and free base porphyrin polypeptides are
successfully constructed, and feature multiple photosynthetic
reaction centres [407]. Efficient charge separation can be realized
in these Li+@C60-based noncovalent systems due to the enhanced
reactivity of Li+@C60 in photoinduced electron-transfer reduction
with various electron donors [408].
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An EMF can be selectively extracted from a metallofullerene
mixture in solution by complexing with extended p -conjugated
systems such as cycloparaphenylene (CPP) [423]. For example,
Mx@C2v-C82(M = Gd, Tm, Lu, x = 1 or 2) can be strongly captured
by the [11]CPP nanoring due to the perfect size matching. Clearly,
the selectivity is insensitive to the inner species. La@C82 � [11]CPP
is the first host–guest complex comprising an EMF and a metal-
free organic molecule whose structure was established by X-ray
single crystal analysis (Fig. 12n) [424]. Electrochemical analysis
and DFT calculations revealed that a partial charge-transfer occurs
due to the strong electron-acceptor properties of La@C82, leading to
the formation of (La@C82)d��[11]CPPd+ polar complex. It is also
theoretically suggested that Tb@C2v(4348)-C66 can form a stable
p- p complex with [10]-CPP for its efficient isolation [436].

Li+@C60 is also a potential guest to complex with [10]CPP featur-
ing strong intermolecular charge-transfer interactions. Recently,
Itami et al. synthesized an ionic donor–acceptor supramolecule
Li+@C60 � [10]CPP�X� complex (X = bis(trifluoromethanesulfonyl)i
mide (NTf2) or tetrakis[3,5-bis(trifluoromethyl)-phenyl]borate
(TFPB)) for the first time [409]. X-ray crystallography unambigu-
ously characterized the structure of 1:1 complex and formation
of the ionic crystal from the cationic complex and TFPB�

(Fig. 12m). The binding constant in dichloromethane was
estimated to be 4.8 	 104(±6.6 	 103) M�1. Their electrochemical
measurement and spectroscopic study reveal that there is strong
charge-transfer interaction between the [10]CPP and Li+@C60 com-
ponents, resulting in totally delocalized positive charge on the
whole complex. The unique ionic compound may find applications
as an electrolyte, dielectric substance, and single-molecular mem-
ories. Li+@C60 can bind with (P)-(12,8)-[4]cyclo-2,8-chrysenylene in
oDCB at room temperature with a binding constant (log Ka) of 9.2,
which is slightly smaller than that of C60 (log Ka = 9.6) [410]. The
weakened binding affinity is explained by the metal’s expanding
effect on the cage size. The intriguing three-body molecular inter-
action in the finite single-wall carbon nanotube could be finely
tuned by changing the metal species. In addition, its complex with
corannulene, namely [Li@C60@C20H10]+ was observed in benzoni-
trile [411], and may have applications in nonlinear optical materi-
als [437]. In the hypothetical [Li@C60@(C6H4)10]+ Saturn-like
complex, [Li@C60]+, C60 accepts ca. 0.12 e from the ring due to
the substantial donor–acceptor interactions between the p orbitals
of phenyl groups and the p* orbitals of the carbon cage [438].

Graphene oxide (GO) was also used for the formation of non-
covalent systems. A donor–acceptor composite was constructed
by combining Li+@C60 with GO in neat water [412]. DFT calcula-
tions reveal that the association was mainly due to the electrostatic
interactions between Li ion and electron-rich oxygen functional
groups of GO. Electron transfer from GO to the triplet state of
Li+@C60 under photoirradiation enhanced the photocurrent gener-
ation of the OTE/SnO2 electrode. Water-soluble GO-Gd@C82

nanohybrids were also synthesized with strong p–p stacking inter-
actions between GO and the cage surface [425,426]. The GO-
Gd@C82 exhibits relaxation effects even higher than Gd@C82(OH)x
probably due to the spin electron transfer from the Gd3+ ion to
the hydrophilic groups on the GO nanosheet. The 2D planar struc-
ture of GO and large number of hydrophilic groups on its surface
also induce slow rotational correlation times.

The stable complexes of Sc3N@C80 and tweezers-like bis-
tetraphenylporphyrin conjugates were reported to form bis-
prophyrin�+-Sc3N@C80

�� charge separation states in organic and
aqueous media with lifetimes of ca. 400 ps [430].

DFT calculations on the M3N@C80(M = Sc, Y)-Zntetraphenyl por-
phyrin dyads formed mainly via van del Waals interactions reveal
small amounts of charge transfer from the ZnTPP to the EMF parts
[439]. The internal cluster orientation does not affect the ground
state charge transfer, whereas the charge transfer excitation
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Fig. 13. Functionalized EMFs reported in Refs. [456,446,457,447,448].
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energy increases from Sc3N@C80-ZnTPP to Y3N@C80-ZnTPP. The
ground and exited states of the non-covalent complexes of
Sc3N@C80 with metal-free and zinc-phthalocyanine chromophores
were also investigated at the DFT level [440]. Sc3N@C68 and/or
Sc3N@C80 supported on the graphene nanoflakes and various
concave receptors were predicted by theory as well [441,442].

Sc3N@Ih-C80 and Sc3N@D5h-C80 can be readily differentiated by
1H and 13C NMR spectroscopy via their formation of hemicarce-
plexes with cyclotriveratrylene-based molecular cages (Fig. 12q)
[431]. A Cu(II)-based tetragonal prismatic supramolecular
nanocapsule was prepared and used to purify the two Sc3N@C80

isomers from EMFs soot in a single step via forming host–guest
complexes [432]. Very recently, U2@Ih(7)-C80 and the first mixed-
metal actinide-based EMF Sc2CU@Ih(7)-C80 were isolated stepwise
and purified from a crude soot (also containing other EMFs such as
Sc3N@Ih(7)-C80) by using a similar nanocapsule (Fig. 12o) [23]. It is
very interesting to see that the nanocapsule can distinguish EMFs
with identical outer cages but different internal species.

Besides DySc2N@C80 [176], paramagnetic Sc3C2@C80 was suc-
cessfully incorporated into the aromatic pores of MOF-177 via an
absorption method [433]. The EPR signals of Sc3C2@C80 show ani-
sotropic properties due to the restricted motion of Sc3C2@C80

caused by strong p–p interaction. The spin-active Y2@C79N was
also incarcerated into the pores of MOF-177 crystals via a
bottom-up approach [434,435]. In the formed host–guest
complex, Y2@C79N tends to situate along the c-axis of the crystal
lattice due to the p–p interactions between its N-containing
hexagonal ring and the triphenylbenzene in the MOF. It exhibits
axisymmetric paramagnetic properties at low temperatures. This
solid spin system may have potential applications in quantum
information storage.
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3.12. Miscellaneous reactions

Several other reactions have been previously reported. Liu et al.
conducted the ion–molecule reactions between EMFs and
small organic cations in gas phase and reported the production
of [M@C82-C2H3O]+, [M2@C80-C2H3O]+, [M@C82-C6H6]+ and
[M@C82-COCH3]+ (M = Ce, Nd or Tb) adducts [443–445]. Li et al.
reported the reaction of Dy@C2v(9)-C82 with triphenylphosphine
(PPh3) and dimethyl acetylenedicarboxylate (DMAD) (Fig. 13)
[446]. Akasaka et al. reported the thermal [3+2] cycloaddition
reaction between La2@Ih-C80 and tetracyanoethylene oxide
(TCNEO) (Fig. 13) [447]. Sc3N@Ih-C80 can undergo thermal and
photochemical reactions with 4-isopropoxyphenyl azide to afford
azafulleroids Sc3N@Ih-C80-p-NC6H4OC3H7 (Fig. 13) [448]. By using
the electrosynthetic method, Li et al. found that [Lu3N@Ih-C80]2�

or [Sc3N@Ih-C80]3� can react with excess electrophile benzal
bromide (PhCHBr2) [449,450]. The selective reactivity of metallo-
fullerenes with Lewis acids was used to effectively separate EMFs
and their derivatives from empty fullerenes [267,451–453], and
even other EMFs [454,455].

Huang et al. reported that the reaction of Gd@C2v(9) C82

with excess morpholine in the presence of
N-fluorobenzenesulfonimide affords an isomerically pure hepta-
amino adduct, Gd@C82(morpholine)7 [456]. As indicated by the
X-ray structure (Fig. 13), the additions occurred at [5,6,6] sites in
a 1,4-pattern with the morpholine groups forming a continuous
ribbon of edge-sharing para-C6(C4H8NO)2 hexagons.

Recently, Akasaka et al. conducted the thermal reaction of non-
IPR La2@D2(10611)-C72 with excess 5,6-diphenyl-3-(2-pyridyl)-1,
2,4-triazine and obtained two products [457]. The adsorption and
NMR spectra suggest that they have the same addition patterns.
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Fig. 14. Some EMF-based donor � acceptor conjugates. (a) Lu3N@C80-PCBH from Ref. [481] (b) Lu3N@C80-PDI from Refs. [479] (left) and [480] (right) (c) Sc3N@C80-
pyrrolidine-ferrocene from Ref. [474] (d) two Sc3N@C80-pyrrolidine-TPA dyads from Ref. [477] (e) La2@Ih(7)-C80-POZ from Ref. [485] (f) Sc2C2@C3v(8)-C82-DDPA (g)
Sc2C2@C3v(8)-C82-TCAQ from Ref. [489] (h) La2@C80-TCAQ from Ref. [471] (i) EMF-pyrrolidine-exTTF from Ref. [466] (j) EMF-Py-ZnP from Ref. [476] (k) Sc3N@Ih(7)-C80-Zn(II)
Pcs from Ref. [486] (l) La2@C80–SubPc from Ref. [484] (m) Sc3N@C80-corrole conjugate from Ref. [487] (n) La@C82-H2Por from Ref. [472] (o) EMF-ZnP conjugate (p) Sc3N@C80-
pyrrolidine-ZnP dyads from Ref. [478].
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X-ray analysis of one isomer shows that the addition occurs at the
[5,5] bond junction of one end in a highly regioselective manner
and the derivative is a bisfulleroid with three seven-membered
ring orifices on the elongated cage (Fig. 13).

On the theoretical side, Zhao and co-workers studied the
addition of methyl azide to Sc2@C2v(4059)-C66 by means of DFT
calculations [458]. They found that the [5,5] bond located on the
unsaturated linear triquinane moiety is the best reaction site due
to high local steric strains caused by fused pentagons. Similar

htt
p
 regioselectivity was also suggested for the addition of 1,3-dipolar

4-isopropoxyphenyl azide. To find new anticancer inhibitors,
Gutiérrez-Flores et al. theoretically explored the [2+2] cycloaddi-
tion reaction of epoxide of oestradiol for Sc2C2@C72, Sc2@C76 and
Sc2@C80, and proposed the possible reactive sites with the aid of
molecular electrostatic potential (MEP) analysis [459].

Oxygen adducts were among the first fullerene derivatives,
but are scarcely reported for EMFs [460]. The first oxide derivative
of clusterfullerene, Lu3N@C80O, was recently synthesized by
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photochemical reaction, and preliminary characterization con-
firmed its oxygen bridge structure [461].

The covalent bonding between Sc3N@C80 and pristine graphene
(not common GO) was successfully achieved quite recently. The
graphite was first subjected to potassium intercalation, and the
negatively charged sheets were exfoliated using ultrasonication
to obtain activated graphene. It then reacted with the diazonium
salts of Sc3N@C80 obtained by Prato reaction and diazotization to
get the final graphene-EMF hybrid structures [462].
F

c

4. Potential applications

4.1. Photovoltaics

The application of EMFs in photovoltaic materials will be intro-
duced here through some recent examples, except for those men-
tioned above (e.g., the Li+@C60-based systems). The reported
photoinduced electron transfer and long-lived charge separation
state promise their potential towards high-efficiency organic solar
cells [463–465].

Some potential systems are recently proposed, such as: the
electron donor–acceptor conjugates of La@C2v-C82/La2@Ih-C80 with
p-extended tetrathiafulvalene (exTTF) (Fig. 14i) [466–468]; the
Ce2@Ih-C80-ZnP conjugate (ZnP = zinc tetraphenylporphyrin)
(Fig. 14o) [469] and its La2@Ih-C80 analogue [470]; La2@C80 linked
with the electron-withdrawing 11,11,12,12-tetracyano-9,10-anthr
a-p-quinodimethane(TCAQ) (Fig. 14h) [471]; 5,10,15,20-tetraphe
nylporphyrin (H2Por)–La@C82 hybrids (Fig. 14n) [472] and similar
systems of Ce2@Ih-C80 [473]; [5,6] ferrocenylpyrrolidine adduct of
Sc3N@Ih-C80 (Fig. 14c) [474]; dyads composed of M3N@C80(M = Sc,
Y) with exTTF, Fc or phthalocyanine (Pc) derivatives [475]; 1:1
hybrid of ZnP with La@C2v-C82Py and La2@Ih-C80Py (Py = pyridyl
functional group) (Fig. 14j) [476]; triphenylamine(TPA)-Sc3N@Ih-
C80 conjugates (Fig. 14d) [477]; Sc3N@Ih-C80-ZnP dyads with long
center-to-center distances (Fig. 14p) [478]; Lu3N@C80 and
1,6,7,12-tetrachloro-3,4,9,10-perylenediimide (PDI) donor–accep-
tor conjugate (Fig. 14b left) [479]; linear Lu3N@Ih-C80-PDI conju-
gate (Fig. 14b right) [480]; Lu3N@C80-PCBX (X = M(methyl), B
(butyl), H(hexyl), O(octyl)) (Fig. 14a) [481,482] and 1-[3-(2-ethyl)
hexoxy carbonyl]propyl-1-phenyl-Lu3N@C80 [483].

Subphthalocyanines (SubPcs) are aromatic chromophores and
their light adsorption covers most of the visible part of the spec-
trum. Based on the electron-donating character of La2@C80, Feng
et al. synthesized two conjugates comprising La2@C80 and
electron-deficient (dodecafluoro)/hexa(pentylsulfonyl)SubPc by
the Prato reaction (Fig. 14l) [484]. 1H NMR and COSY measure-
ments as well as DFT calculations suggest that the reaction site is
the [5,6] junction. While the ground state electronic interactions
between the two moieties are negligible, the La2@C80-SubPc conju-
gates exhibit intramolecular electron transfer in the excited state.

Recently, a [5,6]-La2@Ih(7)-C80-phenoxazine (POZ) conjugate
with possible folded conformation was prepared using the Prato
reaction (Fig. 14e) [485]. Time-resolved absorption spectroscopic
studies confirmed that the low-lying (La2@C80)��(POZ)�+ radical-
ion-pair state is formed due to ultrafast through-space electron
transfer under photoexcitation.

N-pyridyl-substituted Sc3N@Ih(7)-C80 was prepared and axially
connected to electron-deficient or electron-rich Zn(II)phthalocya-
nines (Zn(II)Pcs, Fig. 14k) [486]. Depending on the electronic nat-
ure of the Zn(II)Pcs supramolecular counterpart, the formed
phthalocyanine � Sc3N@Ih � C80 complexes show unprecedented
bidirectional photoinduced electron transfer.

Liu et al. first synthesized a Sc3N@C80-corrole conjugate (in 38%
yield) by the 1,3-dipolar reaction of Sc3N@C80 with corrole and sar-
cosine in o-DCB at 130 �C (Fig. 14m) [487]. 1H NMR spectroscopy
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and electrochemical results suggest that the reaction most likely
occurs at a [5,6] double bond. A [Sc3N@C80]��-[corrole]�+ radical
ion pair state was formed from the fast electron transfer deactiva-
tion of the photoexcited corrole.

The photoinduced charge separation (CS) of TPA-M@Ih(7)-C80

(M = Sc3N, Sc3CH, Sc3NC, Sc4O2, and Sc4O3) were systematically
investigated by theoretical calculations [488]. The driving force
for the CS reaction, defined as the energy difference between the
lowest locally excited (LE1) and charge-separated (CS1) states, is
highly cluster-dependent and the process is energetically favorable
for M = Sc3N, Sc3CH, and Sc4O3.

By using the Prato reaction, Wu et al. synthesized Sc2C2@C3v(8)-
C82-2,20-(anthracene-9,10-diylidene)dimalononitrile (Sc2C2@C3-
v(8)-C82-TCAQ, Fig. 14g) and Sc2C2@C3v(8)-C82-5,10-dimethyl-5,10
-dihydrophenazine (Sc2C2@C3v(8)-C82-DDPA, Fig. 14f) as electron
acceptor- and electron donor-engrafted examples, respectively
[489]. Using ultrafast transient absorption spectroscopy, the sub-
stituent effects on the visible-light photoexcited electron dynamics
were then investigated. Modifying the fullerene cage with an
electron-donor group made long-lived triplet excitons possible.

4.2. Nanomaterials

In recent years, EMF peapods have rendered more complex
electronic structures when compared with single-walled carbon
nanotubes (SWNTs) filled with empty fullerenes [490–494], owing
to the charge transfer and hybridization between metal and cages.
EMF peapods are generally prepared by the gas phase doping reac-
tion [495], and the nanotube ends opened by heat treatment to
accommodate the EMF molecules.

There are also numerous reports for functionalized EMFs.
La@C82Ad can be aligned to form a nanorod with p-type FET prop-
erty [496]. It also forms semi-metallic single crystals with high
electron mobility of 10 cm2 V�1 s�1, showing its potential as an
organic conductor [497,498]. Subsequently, the prepared nanorods
were greatly extended to M@C82 (M = La, Ce), M@C82Ad (M = Ce, Y),
La2@C80Ad, and Sc3C2@C80Ad [499]. Interestingly, under a magnetic
field all the nanorods are aligned with the axis perpendicular or in
parallel to the field, suggesting a novel approach toward the fabri-
cation of EMFs-based low-dimensional nanomaterials (Fig. 15a).
Note that La@C82 (perpendicular) and its Ad adduct (parallel) show
different orientations with the magnetic field. Thus the exohedral
modification may switch the magnetic anisotropy of the EMF
nanorods.

Gimenez-Lopez et al. synthesized N-methyl-2-(4-(liponyloxy)-
benzyl)- [5,6]-Sc3N@C80 fulleropyrrolidine, inserted it into nan-
otubes at room temperature, and imaged the structures with
aberration-corrected high-resolution transmission electron micro-
scopy (AC-HRTEM). [500,501].The functionalized Sc3N@C80 form a
cage-to-tail chain within the SWNT with folded functional groups
(Fig. 15 b-d). Xu et al. fabricated the hexagonal nanorods of
Sc3N@Ih(7)-C80 contained in zinc meso-tetra(4-pyridyl) porphyrin
(ZnTPyP) via a supramolecular approach [502].

Metallofullerene polymeric derivatives have been rarely
reported. In 2010, Sun et al. first synthesized several
Gd@C82-containing copolymers through radical bulk copolymer-
ization [503]. The polymerization reaction was conducted at
65 �C by dissolving Gd@C82 in styrene with benzoyl peroxide as
the radical initiator to obtain black Gd@C82-styrene copolymers.
UV–vis, FTIR spectra and 13C NMR confirmed that Gd@C82 has been
successfully attached to the polymer chains. With a higher EA than
C60, Gd@C82 exhibited a stronger radical-scavenging ability and
was more reactive during the polymerization. In 2012, Ruan
et al. first synthesized the Gd@C82-grafted poly(N-vinylcarbazole)
(PVK) via free radical polymerization [504]. Absorption spectra
confirmed that the fullerene has been covalently connected to
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Fig. 15. (a) SEM evidence for the magnetic orientation of La@C82(Ad) nanorods from Ref. [496]. (b) Experimental AC-HRTEM image, (c) simulated image and (d) structural
diagram of N-methyl-2-(4-(liponyloxy)-benzyl)- [5,6]-Sc3N@C80@SWNT (scale bars = 1 nm). Copyright 2008 American Chemical Society (a). Adapted from Ref. [500] with
permission of The Royal Society of Chemistry (b)-(d).
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the PVK and grafted to its backbone. The grafted fullerenes affected
the fluorescence properties of the polymer, because of the forma-
tion of electron donor–acceptor systems. Recently, they further
used Gd@C82-PVK in the ITO/Gd@C82-PVK/Al sandwich structures
to fabricate the first metallofullerene-based memory device
[505]. Interestingly, DFT calculations suggest that the metal in
Gd@C82 may accept electrons from the VK group through the cage,
rendering Gd@C82-PVK a novel charge-transfer complex which
integrates conventional organic and inorganic charge transfer
complexes.

Toth et al. synthesized the first TNT-EMF-based liquid crystal by
linking Y3N@C80 to two oligo(phenylene ethynylene) (OPE) arms
[506]. The Bingel addition was conducted by the reaction of
Y3N@C80 with malonate bearing double OPE units (dOPE) or
mono-brominated dOPE. The product should be a [6,6]-bridged
fulleroid, and it can self-organize into liquid-crystalline mesophase
during heating.

4.3. Biomedicine

Since the application of functionalized EMFs in the biomedical
field has been reviewed very recently [507,508], we only selec-
tively introduce some examples (see Subsection 3.8 for others).

Water-soluble Gd-based EMF derivatives can be employed as
excellent MRI contrast reagents. For example, Gd@C82(OH)40 shows
a much higher r1 value than the commonly used Gd-DTPA
(DTPA = diethylenetriaminepentaacetic acid) (81 mM�1 s�1 vs.
3.9 mM�1 s�1) [361].

Gd@C82(OH)22 nanoparticles can inhibit lipid peroxidation,
scavenge free radicals, , and have the potential for cell protection
[509]. They exhibit excellent antitumor activity [510,511].
Gd@C82 forms a transparent complex (diameter: ca. 20–30 nm)

Soli
d P

 

htt
p:/

/w
ww.S

oli
dD
with poly(ethylene glycol)-block-poly(2-(N,N-diethylamino)ethyl
methacrylate) (PEG-b-PAMA), which acts as a surfactant to solubi-
lize Gd@C82 via the interaction between the fullerene surface and
hydrophobic PAMA segment [512]. The complex can be used in
neutron capture therapy due to the high neutron capture cross sec-
tions of Gd. The tumor vascular-targeting therapeutic technique
was realized by triggering the radiofrequency induced phase tran-
sition of (Gd@C82)m(OH)n nanocrystals penetrated into the leaky
tumor blood vessels [513].

Ho-based EMFs such as 166Hox@C82(OH)y can be used as radio-
tracers and therapeutic radiopharmaceuticals [363]. The malonic
ester derivatives of 212Pb@C60 were recently prepared [514]. Com-
pared to the ployhydroxylated radiofullerenes and conventional
polyaminocarboxylate chelators for 212Pb, the lead in C60 did not
accumulate in bone, indicating a tight bond to the fullerene cage,
which is favorable for targeted delivery of 212Pb.

Gd3N@C80 functionalized by hydroxyl and carboxyl groups
was radiolabeled by 177Lu and tetraazacyclododecane tetraacetic
acid (DOTA) to prepare 177Lu-DOTA-f-Gd3N@C80, which can
serve as a novel theranostic agent [515,516]. Recently,
radioactive 177LuxLu(3�x)N@C80 was first functionalized to
177LuxLu(3�x)N@C80-PCBM, which was then conjugated with
mPEG(5000)–NH2 [517]. The 177LuxLu(3�x)N@C80–PCBPEG deriva-
tive shows remarkable affinity toward tumors in mice and can
be metabolized at a reasonable rate, rendering itself a promising
tumor-targeted theranostic agent.

The amino-functionalized Gd3N@C80 (Gd3N@C80-NH2) and PEG
were conjugated to the surface of PDA (polydopamine) NPs to con-
struct a radionuclide-64Cu-labeled doxorubicin (DOX)-loaded
PDA–Gd3N@C80 core. This satellite nanotheranostic is promising
for MR/photoacoustic/positron emission tomography and multi-
modal imaging-guided combination cancer therapy [518].
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5. Concluding remarks

In summary, compared with empty fullerenes, which are
mainly electron acceptors, EMFs are attractive and can serve as
electron donors or acceptors. Their rich functionalizations not only
help stabilize the missing members [519], but also confer tunable
properties and turn them into versatile materials. The detailed
structure and properties of an EMF derivative are determined by
the delicate interplay between metal cluster, carbon cage and exo-
hedral addends. The presence of internal metals and intramolecu-
lar electron transfer induces chemical properties dramatically
different from those of empty fullerenes.

Several aspects affect the reactivity of EMFs in functionalization
reactions: (1) the type of endohedral metal cluster; (2) the size of
the metal cluster; (3) the size and isomerism of the outer cage; (4)
the charge state of the EMF and (5) the reaction types and reagents.

High regioselectivity is frequently observed due to strong
metal-cage interactions. Theoretically, the candidate addition sites
usually feature: (1) short C–C bonds; (2) high pyramidalization
angles; (3) appropriately shaped HOMOs/LUMOs; (4) more posi-
tive/negative charges, (6) suitable MEP distribution and/or (6)
large spin density (for open-shelled systems). These calculated
results, together with the consideration of aromaticity, are useful
for interpreting/predicting the regioselectivity of a certain reaction.
A more reliable approach (but very time-consuming) is to perform
thorough thermodynamic and kinetic analysis for all the possible
reactive sites. Occasionally, a reaction may afford different kinetic
and thermodynamic products, whose interconversion can be tuned
by temperature.

The cluster-addend mutual communication is intriguing: the
type, composition, position, orientation and electron transfer of a
metal cluster largely affect the regioselectivity and addition pat-
tern. In turn, the exohedral modification will regulate the location,
configuration, orientation, motion, electronic state and bonding
state of the internal metallic species.

Compared to the well-established C60 chemistry, however, EMF
research is still in its infancy. Particularly for actinide EMFs
[16–23], their reactivity in various functionalization reactions
remains untouched thus far. The design and synthesis of various
EMF derivatives via exohedral modification are essential to achieve
applicable materials. It can be foreseen that functionalized EMFs
involving novel metal clusters, new carbon cages and chemical
reactions will be achieved soon, and will deepen our understand-
ing of the mysterious EMF world.
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