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By means of density functional theory computations, we comprehensively investigated
the stability and electronic properties of the hybrid CH3NH3PbI3 (methylammonium
lead iodide, MAPI)/graphene heterojunctions, where the MAPI layer was adopted
with MAI (methylammonium iodide)-terminations. Our computations demonstrated
that the σ–π interfacial interactions make the contact very stable, and such inter-
actions lead to charge redistribution and concomitant internal electric field in the
interface, which is beneficial for the electron-hole separation. © 2018 Author(s).
All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.1063/1.5044453

The methyl ammonium lead halide (CH3NH3PbI3, MAPI) perovskites, as one organic metal
halide perovskite, are making record-breaking advances in the power conversion efficiency (PCE)
of nanostructured solar cells: the PCE value increased from 3.81% for the dye-sensitized solar
cells in 20091 to 10.1% for the Sn doped perovskite materials in 20142 and to 19.3% for the per-
ovskite heterojunction in 20143 and recently exceeded 20% for hybrid perovskite solar cells.4–6

It has been recognized that the interface structure is playing an important role in the PCE of
perovskite-based solar cells.7–17 In recent years, tremendous theoretical efforts have been devoted
to understanding the underlying mechanisms of the superior and the unique electronic properties
of perovskites and 2D heterojunctions.18–30 For example, density functional theory (DFT) stud-
ies of Volonakis and Giustino verified that the interfacial ferroelectricity of graphene-MAPbI3

interfaces originates from the interplay between the graphene plane and the MAPbI3’s octahe-
dral connectivity.22 Haruyama et al.24 examined the effects of vacancy defect on the interface of
anatase-TiO2(001) and tetragonal MAPbI3(110) and found that vacancies in the TiO2 layer create
hole trap states and recombination centers. DFT calculations of Hu et al. revealed that the band
edge modulations in the graphene/CH3NH3PbI3 heterojunctions are due to the interfacial charge
redistribution.30 Note that the 2D lateral heterostructures also hold a wide potential for device
applications.31

However, most theoretical investigations concentrated on the PbI2-terminated interfaces,22,24,30

and the interfaces of MAI (methylammonium iodide) terminations were scarcely explored. The
recent theoretical study of Wang et al. revealed that both the Pd atoms and the MA molecules
of the MA-terminated MAPbI3 surface play essential roles in the photocatalytic hydrogen evolution
reaction.32 Considering the availability of vast σ bonds in the MAI-terminated MAPI surfaces and the
strong effect of σ–π interfacial interactions (Fig.1) on the electronic structures of graphene, 33 here by
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FIG. 1. Top (up) and side (bottom) views of the MAPI bulk (a) and 2D single layer (b) models used in this work. Color scheme:
H, white; C, brown; N, blue; I, purple; Pb, dark gray. The PbI6 octahedron was highlighted in light blue. (c) Illustration of the
three types of σ–π interfacial interactions in the heterostructure of the MAI-terminated MAPI slab and graphene.

means of DFT computations, we studied the stability and electronic properties of the heterojunctions
of the MAPI with MAI terminations and graphene (MAPI/G).

Our DFT calculations were carried out using the Vienna ab initio simulation package (VASP)
code.34 Considering the weak interactions between MAPI and graphene monolayers, optPBE-vdW
functional35 was used for geometry optimizations. For the band structure computations, we employed
the PBE (Perdew-Burke-Ernzerhof) functional since it yields a 1.73 eV bandgap for MAPI bulk, in
good agreement with the experimental values of 1.5–1.7 eV.36,37 Based on recent studies using the
quasi-particle GW method,38,39 the good agreement between the computed PBE and the measured
bandgap is a result of error cancellation, i.e., an underestimation due to the standard DFT bandgap
error and an overestimation due to the exclusion of spin–orbit coupling (SOC). Recently, Agiorgousis
et al. found that the change in the calculated atomic forces is negligibly small when including the
SOC.40 From our test calculations on a MAPI slab, we found that including the SOC has non-ignorable
influence on the band structure of the MAPI slab (Fig.2). Thus, SOC was considered in our band
structure calculations for comparison.

The Monkhorst-Pack scheme41 of 8 × 8 × 1 (4 × 4 × 1) k-point mesh was applied for unit cell
(2× 2× 1 supercell) geometry optimizations, while a larger grid (25× 25× 1) was used for electronic

FIG. 2. Calculated band structures of (a) the MAPI bulk (unit cell), (b) the MAPI monolayer without SOC, and (c) the MAPI
monolayer with SOC along the high-symmetry lines in the first Brillouin zone using PBE. The Fermi level was set to be zero
as denoted by the green dashed line.
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structure computations. The kinetic energy cutoff for the plane-wave basis set was chosen to be
500 eV. The MAPI monolayer model was built based on the experimentally measured lattice constants
of the tetragonal bulk MAPI (I4/mcm) [a = b = 8.86 Å, c = 12.66 Å; Fig.1(a)]. 42 The vacuum along
the c-axis was set larger than 20 Å, which is sufficient to avoid the interaction between neighboring
slabs.

In our study, the binding energy between MAPI and graphene monolayers, Eb, is defined as
Eb = E(MAPI/G) − E(MAPI) − E(G), where E(MAPI/G), E(MAPI), and E(G) are the total ener-
gies of MAPI/G and the energies of MAPI and graphene single layers, respectively. According to
this definition, a more negative binding energy indicates a more energetically favorable interaction
between MAPI and graphene.

We first studied the free-standing MAPI slab. For the MAI-terminated slab, each [PbI6]4− octa-
hedron is connected with four neighbors at the halide in the periodic plane, and the PbI2-plane is
sandwiched between two MAI layers (Fig.1). The lengths of two Pb−−I dangling bonds (3.26, 3.27 Å)
are slightly longer than those four in the plane (3.18, 3.20, 3.21, 3.22 Å) due to the Jahn-Teller effect.43

Both surfaces are terminated with CH3NH3
+ and I atoms.

The energy difference between spin-polarized and spin-nonpolarized calculations is less than
0.5 meV per unit cell (C4N4H24Pb2I8), and the magnetic moment is 0.00µB; thus the spin-
nonpolarized computations were used for the electronic properties of the MAPI monolayer and
MAPI/graphene hybrids.

To evaluate the stability of MAPI with MAI termination, we calculated the cohesive energy
per atom (Ec) using the following definition: Ec = (iEC + jEN + kEH + mEI + nEPb − EMAPI )/
(i + j + k + m + n), where EC , EN , EH , EI , EPb, and EMAPI represent the total energies of the
isolated atoms (C, N, H, I, and Pb) and MAPI slab, respectively, and i, j, k, n, and m correspond
to the number of isolated atoms in the slab. Previous theoretical studies revealed that the 2D MAPI
surfaces with the stable vacant termination and the PbI2-rich flat termination have quite comparable
stability.19 For our model with MA termination, the cohesive energy (3.32 eV/atom) is larger than
that of the PbI2-rich flat terminations (3.02 eV/atom), indicating the higher thermodynamic stability
of the MAI-terminated MAPI slab. Our results are in good agreement with the DFT finding of
Quarti et al.25

The calculated band structures of the MAPI slab and bulk along high symmetry directions in
the Brillouin zone are shown in Fig.2. Both systems are direct-bandgap semiconductors with the
minimum bandgap at the Γ symmetry point. The PBE bandgap of the 2D MAPI slab with MAI
termination (2.17 eV) is wider than that of the bulk (1.73 eV) and also wider than that of the PbI2-
terminated slabs at the same theoretical level with similar settings (1.50 eV in Ref.26, 1.56 eV in
Ref.19, 1.64 eV in Ref.30, and 1.79 eV in Ref.22). In comparison, the PBE + SOC yields a narrower
gap value of 1.35 eV for the 2D MAPI slab.

We further examined the partial charge densities associated with the valence band maximum
(VBM) and conduction band minimum (CBM) of the MAPI monolayer. As shown in Fig.3, both
the VBM and CBM consist mostly of I-5p and Pb-6p orbitals, exhibiting very similar electronic

FIG. 3. Top views of VBM (a) and CBM (b) of the MAPI monolayer. Color scheme: H, white; C, light gray; N, blue;
I, brown; Pb, dark gray.
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FIG. 4. Top (upper) and side (bottom) views of optimized structures of the MAPI/G bilayer in the stacking pattern of I (a),
II (b), and III (c). Color scheme: H, white; C, light gray; N, blue; I, brown; Pb, dark gray.

characteristics as the bulk phase18 and the MAPI slabs with the stable vacant termination and the
PbI2-rich flat termination.20

For the hybrid MAPI/G bilayer, the heterojunction contains a 2 × 2 MAI-terminated MAPI slab
(C16N16H96Pb8I32) and a 4

√
3 × 7 graphene monolayer (C112). The lattice of graphene is stretched

by less than 4% to match that of MAPI. Considering the asymmetry of the two MAPI surfaces, we
examined three different stacking patterns (Fig.4). To achieve a more stable interface, more σ–π
interfacial interactions are desired. Thus the MAPI slab and graphene are stacked with as much as
C−−H/N−−H/Pb−−I bonds pointing to the C6 centers: In patterns I and II, the graphene is stacked
under MAPI with as much as σ–π interfacial interactions; in pattern III, the MAPI is adjusted under
the graphene with as much as σ–π interfacial interactions. The difference between I and II is the
individual numbers of C−−H and Pb−−I bonds pointing to the C6 centers, but the total number of such
bonds in the two configurations are comparable.

To get the lowest-energy configuration for each stacking pattern, we plotted the binding energy
(Eb) curves of the three staking patterns (Fig.5). The optimal distances between the outmost H layer
and graphene are 2.27, 2.28, and 2.33 Å, respectively, for I, II, and III patterns. The lengths of two
Pb−−I dangling bonds (3.20–3.24 Å) are shortened up on contacting with the graphene.

FIG. 5. Binding energy curves of the MAPI/G bilayer with three different stacking patterns.
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The binding energies of these three patterns are close: I is energetically most favorable
(Eb = −9.90 eV), which is closely followed by II (Eb = −9.86 eV), while III (Eb = −9.44 eV)
is 0.46 eV higher in energy than I. The average binding strength (given by Eb/A, where A is the
surface area) between the MAPI slabs with MAI termination (3.01–3.15 eV/nm2) is much stronger
than that of PbI2-terminated slabs (1.38–1.47 eV/nm2),30 suggesting even stronger interfacial contact
between the MAI-terminated MAPI slab and graphene. Note that both the equilibrium interlayer
distances and the binding energies in MAPI/G bilayers are very close to the corresponding values in
the graphene/C4H bilayers,33 where considerable C−−H. . .π interactions between graphene and its
partially hydrogenated counterpart (C4H) exist.

According to the Hirshfeld charge analysis, there is a charge transfer of 0.36, 0.35, and 0.32 |e|
from the graphene to the MAPI slab in systems I, II, and III, respectively, i.e., the graphene gains
electrons and the MAPI loses electrons at the interface. This finding resembles the previous DFT
findings that the π-conjugated Lewis base44 and C60

25 can extract electrons from the perovskite
layers. We further analyzed the electron localization function (ELF).45 Since the three MAPI/G
bilayers have very similar electronic properties, here we used only bilayer I as the representative.
As shown in Figs.6(a)and6(b), there are more electrons distributed on the free termination of the
MAPI slab than on the MAPI termination of the MAPI/graphene interface, in line with the result of
the Hirshfeld charge analysis.

The aforementioned charge redistribution on the MAPI-G hybrid should lead to an internal elec-
tric field along the direction pointing from the free-standing of the MAPI slab to the graphene.
As expected, our computations showed that an electrostatic potential difference (∆ϕ) between
the free-standing MAPI surface and the graphene surface of 0.21 eV is introduced [Fig.6(c)],
which is beneficial for electron-hole separation. The SOC included PBE gives very close ∆ϕ value
(0.22 eV).

Furthermore, we carried out the electronic band structure calculations of the MAPI/G bilayer. For
comparison, we also calculated the band structure of free-standing graphene (a 4

√
3 × 7 supercell).

As shown in Fig.7, the Dirac point falls inside of the bandgap of the MAPI slab, implying that
the MAPI/G bilayer is a Schottky junction. By comparing the band structures of the MAPI slab
[Fig.2(b)], we found that the contact with graphene has negligible influence on the bandgap of the
MAPI slab (∼2.17 eV before and after contact). The band bending (∆) can be estimated by the energy
difference between the Fermi levels of the MAPI/G bilayer and the free-standing MAPI slab, i.e.,
∆ = ∆EF = WMAPI/G − WMAPI, where ∆EF is the difference of the Fermi level and WMAPI/G and

FIG. 6. The ELF (electron localization function) of the MAPI slab (a) and MAPI/G bilayer (b). (c) The surface potential
difference of the MAPI/G bilayer. Color scheme: H, white; C, light gray; N, blue; I, brown; Pb, dark gray.
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FIG. 7. PBE band structures of the (a) MAPI/G bilayer and (b) free-standing graphene. The Fermi level was assigned at 0 eV.

FIG. 8. PBE energy diagrams for the free-standing MAPI layer and graphene in the MAPI/G bilayer before and after contact.

WMAPI are the work functions of the MAPI/G bilayer and free-standing MAPI slab, respectively.
The work function of the MAPI slab and graphene is 4.70 and 4.48 eV, respectively, which indicates
that the Fermi level of MAPI shifts up, while the Fermi level of graphene shifts down to reach the
same value in the MAPI/G complex. Meanwhile the conduction band (CB) and valence band (VB)
of the MAPI slab are both pulled downward slightly, and both form a band bending of 0.21 eV at
the interface. The energies of the VB maximum (EV) and the CB minimum (EC) of the free-standing
MAPI slab are −5.20 and −3.03 eV, respectively, relative to the vacuum level. Interfacing graphene
with the MPAI slab introduces the upshift of 0.11 eV for VB and CB of MAPI. Therefore, the p-type
Schottky barrier height (SBH) is 0.60 eV, and the corresponding n-type SBH is 1.57 eV (Fig.8).
Since the stacking patterns only slightly affect the work function,30 we did not illustrate the energy
diagrams of the MAPI/G bilayer of II or III contacts here.

For the PBE + SOC calculations, the work function of the free-standing MAPI slab is 4.89 eV,
and the EV and EC are 5.02 and 3.67 eV, respectively. In the MAPI/G complex, the work function,
EV, and EC of MAPI turn out to be 4.68, 4.81, and 3.46 eV, respectively, and the p-type and n-type
SBH will be 0.34 and 1.01 eV, respectively. The PBE method with and without SOC included gives
the same trend that the p-type SBH is lower than the n-type SBH, and we only illustrate the PBE
energy diagrams in Fig.8.

In summary, by means of DFT computations, we comprehensively investigated the structural
stability and electronic properties of the heterojunctions of the graphene and MAPI slab with MAI
terminations. The considerable σ–π interfacial interactions endow the MAPI/G interface more stable
than the contact of the PbI2-terminated MAPI and graphene, and the concomitant charge redistribution
introduces an internal electric field in contact, which is beneficial for electron-hole separation. Though
the low p-SBH obtained in the contact of the graphene and MAI-terminated MAPI slab is smaller
than that of the PbI2-terminated interface (0.85 eV in Ref.22), the introduction of σ–π interfacial
interactions may provide some guidelines for experimentalists in fabricating more stable MAPI-
graphene interfaces.
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