ARTICLE IN PRESS

Catalysis Today xxx (xxxx) xxx-xxx

Contents lists available at ScienceDirect

Catalysis Today

journal homepage: www.elsevier.com/locate/cattod

Coordination tailoring towards efficient single-atom catalysts for N2 fixation: A case study of iron-nitrogen-carbon (Fe@N-C) systems

Xiangyu Guo^a, Jinxing Gu^b, Xuemin Hu^c, Shengli Zhang^{c,*}, Zhongfang Chen^{b,*}, Shiping Huang^{a,*}

- ^a State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- b Department of Chemistry, University of Puerto Rico, Rio Piedras, San Juan, PR 00931, USA
- c MIIT Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, Institute of Optoelectronics & Nanomaterials, Nanjing University of Science and Technology, Nanjing, 210094, China

ARTICLE INFO

Keywords: Density functional theory (DFT) No fixation Single-atom catalyst

ABSTRACT

N₂ fixation using electrochemical methods of e grand challenge to efficiently produce NH in varge scale due to the low activity and poor selectivity of the current electrocatalysts. Herein, by mean of lensity functional theory (DFT) computations, we systematically explored the great potential of two-d mensional (2D) single-atom catalysts (SACs), namely carbon-based ironnitrogen systems (Fe@N_x, x = 0.4) for ...2 electroreduction. Significantly, the catalytic activity and selectivity of Fe@Nx systems are influenced by the coordination environment of tingle Fe atom. Among all the proposed configurations, Fe@N2-or o, ir which two N atoms are located at the opposite coordination sites of single Fe atom, exhibits the high a fivity and selectivity for N₂ electry. To tion, with a limiting potential of -0.63 V. By examining the scaling elations for the single vacancy and double vacancy-based SACs, we constructed a volcano plot to describe decatalytic activity of carbon-base d.S. Cs and proposed an optimal nitrogen adsorption energy for N₂ electoreduction. This work calls for more attention to the coordination effect to the single-atom active site, a d helps provide guidance for further 'explosing more effective carbon-based SACs for N2 fixation.

1. Introduction

Ammonia (NH₃) is not only essential for producing various chemicals, like fertilizers, but also is an important carbon-free energy carrier and energy storage intermediate [1-3]. Nowadays, increasing amount of NH₃ is required to meet the growing needs of economic developmen. Thus, it is of great importance to develop a sustainable and receive strategy to produce NH_3 from N_2 by the so-called N_2 firsting process [4-6]. Industrial N₂ fixation is currently dominated by the traditional Haber-Bosch process, which requires extreme reaction cor ditions and consumes large quantity of energy. On the contrary case trochemical N₂ reduction reaction (NRR), which can be performed at ambient conditions using energy from renewable solar and it is sources, is regarded as a green and sustainable strategy for N2 fix. ion. However, NRR in aqueous media has some elementary sees with high reaction barriers and is competed by hydrogen evolution reaction (HER), which lead to low activity and poor selectivity of the electrocatalysts. Nevertheless, tremendous efforts have been divided to improving the yield of NH₃, such as developing more effective NRR electrocatalysts [7,8] and using non-aqueous electrolyte 9,10].

Requires catalysts with specific electronic structures that could activate N_2 and bind intermediates not too weak nor too strong [11,12]. bufirst principles computations, Nørskov and co-workers found volono plots between the nitrogen adsorption energy and the catalytic activity of various metal surfaces [13,14]. And several metals, such as Ru, Rh, Mo, and Fe, have been identified as potential catalysts. Particularly, Fe and Fe-based electrocatalysts have attracted much attention due to the potential high catalytic activity, along with its low cost and abundance [15]. However, even though the metal Fe is near the top of the volcano plot, the sizable overpotential and sluggish rates associated with NRR are limiting its application as NRR electrocatalyst. Thus, it is highly desirable to tune the electronic properties of Fe-based electrocatalysts to improve their activity and selectivity for N2 reduction.

The emerging single-atom catalysts (SACs), which have dispersed single atoms supported on substrates, such as two-dimensional (2D) graphene [16-18], C₃N₄ [19,20], MoS₂ [21] and BN [22] monolayers, provide the possibility to explore the relationship between structure and catalytic activity. Especially, with high electrical conductivity and excellent chemical stability, metal-nitrogen-doped (M@N_x) carbons represent a unique class of SACs, and caught great attentions [23-26].

E-mail addresses: zhangslvip@njust.edu.cn (S. Zhang), zhongfangchen@gmail.com, zhongfang.chen1@upr.edu (Z. Chen), huangsp@mail.buct.edu.cn (S. Huang).

https://doi.org/10.1016/j.cattod.2019.06.014

Received 11 February 2019; Received in revised form 21 May 2019; Accepted 2 June 2019 0920-5861/ © 2019 Published by Elsevier B.V.

^{*} Corresponding authors.

Catalysis Today xxx (xxx

X. Guo, et al.

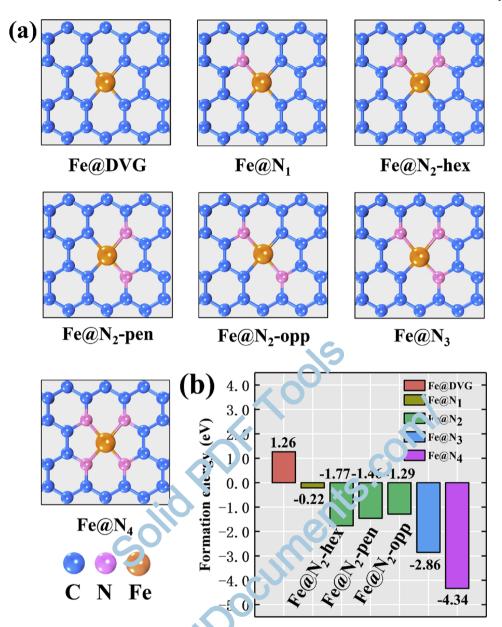


Fig. 1. (a) Geometric structures of single Fe atom embedded in do ble v.cancy graphene and N-doped double vacancy graphene (Fe@N_x, x = 0–4). (b) The calculated formation energy (E_f) of Fe@N_x systems.

Recently, a series of $M@N_x$ moieties have been spaces fully anchored on graphene monolayer using different methods such as wet-chemical routes and mass-selected soft-landing techniques [27–32]. Experimental studies revealed that the catalytic activation of $M@N_x$ are strongly correlated with the coordination number [35–35]. Following the experimental synthesis of $Fe@N_4$ moiety of the types of $Fe@N_x$ moieties have been proposed for catalyzing and gen reduction reaction (ORR) [36–39] and NRR [40]. Unforting the dependence of catalytic activity and selectivity on the coordination environment, which also plays an important role for NRR, regarding and the scaling relations cannot be well used to predict note efficient NRR catalysts.

Herein by meal. of density functional theory (DFT) computations, we examined a series of SACs with atomically dispersed Fe atom anchored on N-doped 2D graphene monolayer and investigated their catalytic performance towards NRR. Our results revealed that the catalytic activity and selectivity of Fe@N $_{\!_{X}}$ are significantly affected by the coordination environment of the single Fe atom. Fe@N $_{\!_{2}}$ -opp moiety, in which two N atoms are located at the opposite coordination sites of the

single Fe atom, presents the highest catalytic activity and selectivity. On the basis of linear scaling relation, we also constructed an activity volcano plot using well-described adsorption energy of nitrogen atom (ΔE_{N^*}), which helps guide further design of carbon-based SACs for N_2 fixation.

2. Computational methods

All the spin-polarized DFT computations were performed using the Vienna ab initio simulation package (VASP) [41]. A kinetic energy cutoff of 400 eV was used for plane wave expansion. Projector-augmented-wave (PAW) potentials [42] were employed to represent the electron-ion interactions, and the electron exchange-correlation interactions were treated using generalized gradient approximation (GGA) in the form proposed by Perdew, Burke and Ernzerhof [43]. The dispersion correction was carried out using the DFT-D3 method with the standard parameters programmed by Grimme and co-workers [44].

For adsorption energy calculations, a supercell of 6×6 lateral size was used. To avoid artificial interactions between periodic images, the

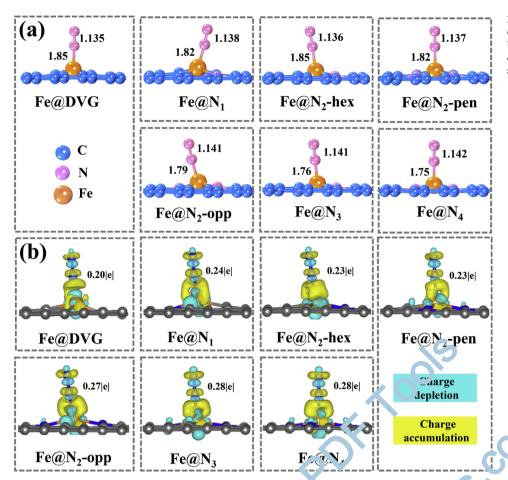


Fig. 2. (a) Optimized structures of N_2 molecules adsorbed on Fe@N_x surfaces. The key bond lengths (Å) are given. (b) Charge density difference for N_2 molecule adsorbed on Fe@N_x surface. The isosurface is set to 0.006 e/Å³.

interlayer vacuum distance was set to 20 Å. The bein will zone was sampled with a $3 \times 3 \times 1$ Monkhorst-Pack k-point. Fid. Geometry optimizations were carried out using energy and force convergence limits below 10^{-5} eV and 0.02 eV/Å, respectively. The Gibbs free energy of adsorption was corrected from the electronic energy with zeropoint energy (Δ ZPE) and entropy (Δ S) contributions estimated using the harmonic approximation. For gases, the translational, rotational, and vibrational entropy terms were taken into account, whereas for the zero-point energies and entropies of the NRR species were conducted from the vibrational frequencies, in which only the ads representational modes were calculated explicitly, while the substrate along were rigidly constrained. Here, solvation effects were not conducted since solvation-induced stabilization of NRR adsorbates are within 0.1 eV [14].

All the Gibbs free energy values for the NR Laction pathways were referenced to the computational hydrog rejectrode (CHE) model as proposed by Nørskov and co-workers The chemical potential of the H^+/e^- pair is equal to half of Lagas-phase H_2 under standard reaction conditions (pH = 0, T = .98.15 K, P = 1 atm)

$$H^{+} + e^{-} \rightleftharpoons 1/2 H_{2} (g)$$
 (1)

and the electrode of the U was considered by shifting the electron energy by -eU. Thus, the change in Gibbs free energy (ΔG) for each reaction step was given by Eq. (2).

$$\Delta G = \Delta E + \Delta Z P E - T \Delta S - e U \tag{2}$$

The good agreement between the computed thermodynamic quantities for free $\mathrm{N}_2,\ \mathrm{H}_2,\ \mathrm{NH}_3$ molecules with the experimental values (Table S1 of Supporting Information) illustrates the reliability of our DFT computations.

3. Results and discussion

3.1. S 10 models and N_2 adsorption

. The single Fe atom is embedded in double vacancy graphene (DVG) of N-doped double vacancy graphene, and SACs with different N coordination numbers in the range of 0°4 can be obtained, namely Fe@ DVG, Fe@N $_1$, Fe@N $_2$, Fe@N $_3$ and Fe@N $_4$ (Fig. 1a). Note that there are three possible configurations for the Fe@N $_2$ system: a) two N atoms at the opposite sides of Fe atom (Fe@N $_2$ -opp), b) Fe and its adjacent N atoms are in the same hexagonal ring (Fe@N $_2$ -hex), and c) two N atoms in the same pentagonal ring (Fe@N $_2$ -pen).

We firstly examined the formation energy (E_f) to evaluate the relative stability of Fe@N_x systems. The E_f was calculated by the equation of $E_f = E_{Fe@N_x} + n\mu_C - (E_{gra} + x\mu_N + E_{Fe})$, where $E_{Fe@N_x}$, E_{gra} , and E_{Fe} are the total energies of Fe@N_x, pristine 6 × 6 graphene supercell, and single Fe atom, respectively. μ_C is the chemical potential of a single C atom in graphene, and μ_N is defined as a half of the nitrogen molecule energy in gas phase. x is the number of N atoms in Fe@N_x systems, and n represents the number of carbon atoms replaced by Fe and N atoms. According to this definition, a lower (more negative) E_f indicates a higher thermodynamic stability of the examined SAC.

As illustrated in Fig. 1b, the E_f values of Fe@N_x systems depend on both doping concentration and doping configuration of N atoms. With increasing the number of coordinated N atoms, the E_f of Fe@N_x systems decreases, leading to the much higher possibility to observe the thermodynamically most favorable Fe@N₄ moiety in experiments. For Fe@N₂ system with three different configurations, Fe@N₂-hex has the lowest formation energy (-1.77 eV), closely followed by Fe@N₂-pen (-1.46 eV) and Fe@N₂-opp (-1.29 eV). Since the Co@N₂-opp and Fe@N₂-opp have been synthesized in experiments [34,36,46], we expect

that the Fe@N $_2$ -hex and Fe@N $_2$ -pen could also be formed under the proper conditions.

We then investigated the adsorption of N2 molecule on Fe@Nx surfaces in both side-on and end-on configurations. Our computations showed that N2 prefers adsorption onto the Fe@Nx via end-on configuration (Fig. 2a), with adsorption energies of between -0.41 to -0.60 eV (Table S2). The N \equiv N bond is elongated from 1.12 Å in a free N₂ molecule to 1.135 ~ 1.142 Å when adsorbed on Fe atom, which is a sign of the N₂ activation. Bader charge analysis revealed that there exist strong charge transfers between the adsorbed N2 molecules and Fe@Nx surfaces, where N2 acts as the electron acceptor and the underlying Fe@ N_x systems transfer about 0.20 ~ 0.28 |e| to the adsorbed N_2 molecule. Note that the activation of N≡N bond is primarily associated with socalled "acceptance-donation" process in which the metal atom provides unoccupied d-orbital to accept electrons from N2, at the same time, the occupied d-orbital of metal atom backdonate electrons into $2\pi^*$ antibonding orbitals of N_2 . The latter process, termed π backdonation, leads to the elongated and electronically depleted N≡N bond. Thus, the bond length of adsorbed N2 presents an approximately linear relation with the amount of transferred charges (Fig. S1). The charge density difference (Fig. 2b) indicates that upon adsorption, the transferred charges accumulate on 2π* orbital of N2, resulting in the redistribution of charge density.

3.2. N₂ reduction mechanism

The electrochemical NRR can undergo four possible pathways, named distal [47], alternating [48], enzymatic [49] and mixed mechanisms [50,51]. Since N_2 molecule prefers the end-on adsorption only distal, alternating and mixed mechanisms (depicted in Fig. 3) were considered to evaluate the catalytic activity of the Fe@ N_x syr.ems Moreover, since the NH_3^* can be easily protonated to NH_4^+ c. a. released into solution under the electrochemical conditions [5,5], the further protonation of NH_3^* into NH_4^+ was not considered. The geometric structures of the key intermediates are summarized a Fig. S2, and their Gibbs free energies are listed in Table S3.

According to our computations, all the Fe@N_x sys ems follow very similar reaction steps. Among them, Fe@N₂ proximits the best catalytic activity towards NRR. Therefore, we take $^{\text{F}}$ -@N₂-opp as the example to elucidate the specific mechanism and the origin of its high activity for N₂ electroreduction.

Fig. 4a presents the free energy diagram of NRR on Fe@N₂-op₁. Firstly, a proton coupled with an electron (H⁺/e⁻) attacks the piper N atom of the adsorbed N₂ molecule. This reaction step is slightly. Ph. III in the free energy profile by 0.63 eV, which indicates that the transfer of the first H⁺/e⁻ pair to the adsorbed N₂ is a nonspontane up thermodynamic process. Subsequently, the protonation of N₂H (G transfer of the H⁺/e⁻) can proceed via two reaction pathways: (a) 1N₂H* + H⁺/e⁻ → NNH₂* (Distal Mechanism) and (b) N₂H* + H⁺/e⁻ → NHNH* (Alternative mechanism). Comparing the Gibbs free energy change of these two reaction steps, we found that Fe v₁ opp prefers to catalyze

NRR via distal mechanism, since the protonation of N₂H* to form NNH₂* intermediate is only 0.04 eV uphill, while the corresponding value for the NHNH* formation is 0.61 eV. Following the distal mechanism, once NNH2* is formed, all the other elementary steps are downhill in the Gibbs free energy profile. Further protonation of NNH2* leads to the release of the first NH3 molecule, leaving the N* intermediate on the catalyst surface, and the step is downhill in the free energy profile by 0.26 eV. The remaining N* is continuously hydrogenated to NH*, NH2*, and NH3*, and the free energy changes for these subsequent steps are -0.26, -0.81 and 0.06 eV, respectively. Finally, the second NH₃ molecule can be desorbed from the Fe@N₂-opp surface after overcoming a positive free energy change of 0.07 eV. Note that for the mixed mechanism, the required energy to protonate NNH₂* to NHNH₂* is 0.19 eV, much higher than that of releasing NH₃ following the distal pathway (-0.26 eV). Thus, from the thermodynamic aspect, the distal mechanism could be mostly preferred on the Fe@N2-opp

The Fe@N₂-opp catalyzed NRR is not spontaneous at a bias potential of 0 V (Fig. 4a, red line). Tuning the bias potential in electrochemical reactions could help overcome the potential barriers. We plotted free energy vs. applied bias potential (Fig. 4b and c) and found that the formation of NNH* species is the potential determining step (PDS) due to the maximum ΔG values (+0.63 eV) among all the elementary step, Thus, the limiting potential (U_L), which is the applied potential required to eliminate the energy barrier of PDS, is determined to be -1.6, V following the equation $U_L = -\Delta G/e$, where ΔG is the free the gy of PDS.

3.3. (rig. of catalytic activity of Fe@ N_x systems

1) understand the origin of catalytic activity of $Fe@N_x$ systems, we a alyzed the effect of doping concentration and doping configuration of N atoms on limiting potential U_L . The intrinsic NRR activity of $Fe@N_x$ is highly correlated to the doping concentration (Fig. 5a), since the U_L values on $Fe@N_x$ vary significantly with augmenting the N contents. Note that with the same N doping concentration, $Fe@N_2$ with different configurations also exhibit different activities, confirming the important effect of doping configuration to the catalytic activity.

On the other hand, the first protonation of N_2^* to form N_2H^* is identified as the PDS, which means that the adsorption energy of N_2H^* could be set as a descriptor. We plotted the scaling relation between U_L values and the adsorption energy of N_2H^* ($\Delta E_{N_2H^*}$) (Fig. 5b), and found

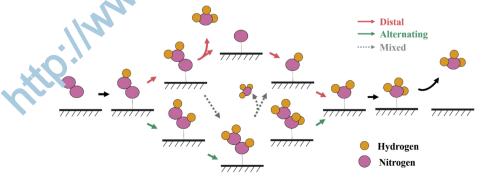


Fig. 3. Schematic illustration of the distal, alternating and mixed mechanisms for NRR on Fe@ N_x surfaces.

X. Guo, et al.

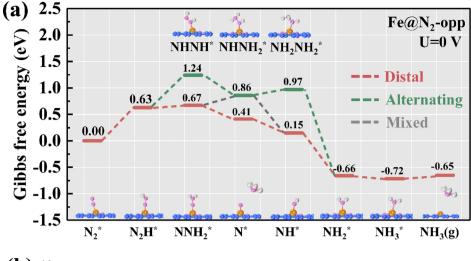
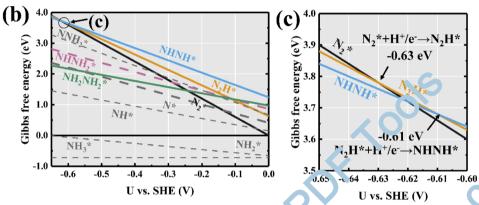



Fig. 4. (a) Gibbs free energy profile for N_2 electroreduction on $Fe@N_2$ -opp surface at zero potential. The bias potential is relative to the standard hydrogen electrode (SHE). Different intermediates following the distal and alternative mechanisms are denoted by red and green lines, respectively. (b) and (c) are the potential-dependent NRR phase diagram for $Fe@N_2$ -opp system. The zero value on the free energy axis is referenced to N_2 and H_2 in gas phase.

a good linear relation, $U_L = -0.98 \Delta E_{N_2H^*} - 0.86$. An only the SACs under investigation, Fe@N₂-opp exhibits the strongest adsorption ability to N₂H* and acts as the best catalyst, which a₆rees with the consensus that the optimal NRR catalyst should scientificately stabilize N₂H* [22].

In general, the different adsorption behaviors of N₂H* on Fe@N_x can be rationalized by either the charge transfer, a non-covalent interaction, and/or the band hybridization, a covalent interaction. According to Bader charge analysis, there are about 0.21 ~ 0 26 $_{\rm I}$ transferred from the substrates to the adsorbed N₂H (Ta le S²). Checking the relation between $\Delta E_{N_2H^*}$ and the amount of truns irred

charge (Fig. C2) realed that no good linear relationship exists between ΔE , and the transferred charge, suggesting that covalent interaction by een the N_2H intermediate and attached single Fe atom could ala, a more important role in N_2H adsorption.

Thus, we examined the partial density of states (PDOS) of N_2H adopt d on Fe@ N_x surface (Fig. 6). The 2π and 3σ orbitals of N_2H intermediate strongly hybridize with the Fe-3d band, forming bonding states below the Fermi level. Note that for the $2\pi^*$ antibonding orbital, the band hybridization is significantly affected by the substrates, leading to partial occupation of the formed d- $2\pi^*$ orbitals.

To further elucidate the bonding nature of the N₂H intermediate, we

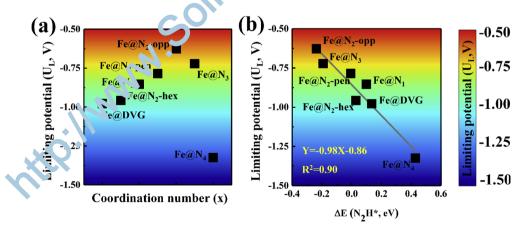


Fig. 5. (a) Calculated limiting potential U_L for nitrogen reduction reaction (NRR) on Fe@N_x surfaces. (b)The scaling relation for limiting potential U_L versus the adsorption energy of N₂H* (ΔE_{N_2H} *).

X. Guo, et al.

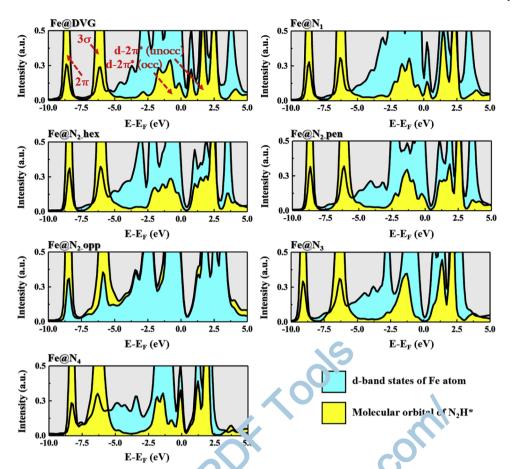


Fig. 6. Calculated partial density of states (PDOS) o. N₂H intermediate adsorbed on Fe@N_x surrace. The Fermi level is set to 0 eV.

examined the bonding and antibonding states of N_2H a s rb d on Fe@ N_x by crystal orbital Hamilton population (COHP) a a y sis [55,56]. Fig. 7a presents the -COHP curves of the covalent 1 yH. 3e interaction in the adsorption configurations. The N_2H adsorption is characterized by massively bonding states below the Fermi level, whereas the antibonding states are found above the Fermi level. Clearly the $2\pi^*$ of N_2H^* are partially occupied. Integrating the -COHP up to the Fermi level gives a bonding energy (-ICOHP). Interestingly, the $\Delta E_{N_2H^*}$ values by a rather good linear relation with the -ICOHP ($R^2 = 0.84$), as sl. while Fig. 7b. Note that a more negative -ICOHP value indicates a y-rower covalent interaction between N_2H and Fe atom, which the adsorption of N_2H intermediate and decreases of the potential Larrier of NRR.

Notably, though Fe@N₄ displays superior abil. In I backdonation to N₂, its interaction with N₂H*, which determines the limiting potential, is not that strong. This can be well un intood by checking its -ICOHP value. Fe@N₄ displays a more postive value relative to other Fe@N_x systems (Fig. 7), which indicates a weaker binding between N₂H* and Fe atom. As a result, the Interpretation intermediate in N₂ reduction, presents in w stability on Fe@N₄, thus resulting in the poor catalytic performance for N₂ reduction.

Overall, we proposed t¹... a COHP analysis can be used to quantitatively describe the 1 nc. ¹ ybridization, which highlights the important role of the pariany occupied $d\text{-}2\pi^*$ state of N_2H^* in the adsorption of N_2H in rm diate.

3.4. Catalytic selectivity of Fe@ N_x for NRR

After studying the catalytic activity of Fe@ N_x for NRR, it is important to consider the competing hydrogen evolution reaction (HER) during the whole NRR process in aqueous media, since the HER might

greatly impere he raradaic efficiency.

Thus, who computed the free energy diagram of HER on Fe@N_x (Fig. 8°, the detailed adsorption configurations and Gibbs free energies, see Fig. S4). For Fe@DVG surface, due to the strong interaction between the hatom and catalyst surface, the HER process is limited by H* and catalyst surface, the HER process is limited by H* and catalyst surface, the HER process is limited by H* and catalyst surface, the HER process is limited by the Hatom adsorption step (H* + (H*/e^-) \rightarrow H*) on the N-doped analogues: for Fe@N1, Fe@N2, Fe@N3 and Fe@N4 systems, and the HER potential barriers are 0.22, 0.34, 0.13, 0.45, 0.29 and 0.38 eV, respectively. Thus, by applying a bias potential of -0.13 to -0.45 V, the Hadsorption free energy can go downhill, and the H2 production can be feasible. Among Fe@Nx systems, Fe@N2-opp presents the highest potential barrier for HER, indicating that Fe@N2-opp could suppress HER during the N2 electroreduction process, and the selectivity limitation is the least severe.

Moreover, previous investigations showed that the catalytic selectivity of NRR/CO₂RR can be estimated by the difference between the limiting potentials for NRR/CO $_2$ RR and HER [14,16,57,58]. Thus, we examined the difference between the limiting potentials for NRR and HER (U_L(NRR) - U_L(HER)) to evaluate the catalytic selectivity of Fe@ $N_{\nu_{t}}$ (Fig. 8b). The less negative value of $U_{L}(NRR)$ – $U_{L}(HER)$ corresponds to higher selectivity towards NRR. Significantly, the computed $U_L(NRR) - U_L(HER)$ value for Fe@N₂-opp is only $-0.18 \, \text{V}$, which is much better than that of metal-based benchmark (ca. -0.5 V) [14]. We also investigated the free energy diagram of HER on Ru₁-N₃ (see Fig. S5). The $U_L(NRR) - U_L(HER)$ value for Ru_1-N_3 (-0.43 V) is more negative than that of Fe@N₂-opp (-0.18 V), which suggests that Fe@N₂opp has a better selectivity towards NRR than Ru₁-N₃. Thus, the high catalytic activity (as reflected by the NRR limiting potential) and selectivity render Fe@N2-opp as the most distinguished NRR electrocatalyst.

Catalysis Today xxx (xxx

X. Guo, et al.

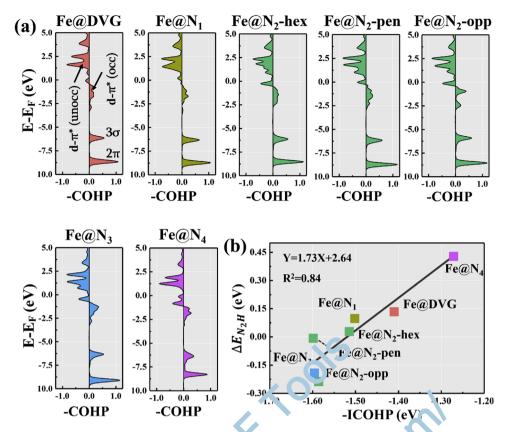


Fig. 7. (a) Crystal orbital Hamilton population (COHP) bonding analysis of $1.2 \,\mathrm{K}$ H adsorbed on Fe@N_x. The bonding interactions between the N₂H and single Fe atom are shown in the right and left sides of the diagram, respectively. (b) Calculated -ICOHP vers. $8.2 \,\mathrm{J}_{N_2H^*}$ for N₂H adsorbed on Fe@N_x.

3.5. Prospect for designing the carbon-based SACs

Usually, the Gibbs free energies for the adsorption of Lirogen and nitrogen-involving intermediates on various metals, races change in the same direction. This phenomenon is known as scaling relation between the nitrogen containing intermediates [1],14]. Using the adsorption energy of nitrogen atom(ΔE_{N^*}) as the activity descriptor, previous studies proposed a scaling relationship between the ΔE_{N^*} and the limiting potential U_L , and identified three crucial elementary steps fo NRR: a) the reductive adsorption of N_2 to form N_2H^* , b) the N_1 protonation to form NH_2^* , and c) the desorption of NH_2^* to form NH_2^* to form NH_2^* and c) the desorption of NH_2^* to form NH_2^* to form NH_2^* to form NH_2^* and c) the desorption of NH_2^* to form NH_2^*

unexplored. Here, w developed potentially far-reaching scaling relations by using $\operatorname{th} \Delta \mathbb{Z}_{N^*}$ to help select the best SAC for N_2 fixation.

Fig. 9 dis_lay the volcano plot of theoretical limiting potential U_L as a func ir r of ΔE_{N^*} for the Fe@N_x systems. As a comparison, the cataly it convities of single Fe atom embedded in single vacancy and N-dop 1 single vacancy graphene, namely Fe@SVG, Fe@N₁-SV, Fe@N₂-SV, and Fe@N₃-SV, are also plotted (for details, see Table S6 and Figs. S6 7). Clearly, SACs that bind nitrogen too weakly are limited by the adsorption of N₂ to form N₂H* in the first NRR elementary step, whereas those with too strong binding are limited by either the protonation of NH* to form NH₂* or the desorption of NH₂* to form NH₃ molecule.

For single vacancy-based SACs (single Fe atom embedded in single vacancy and N-doped single vacancy graphene), the central Fe metal

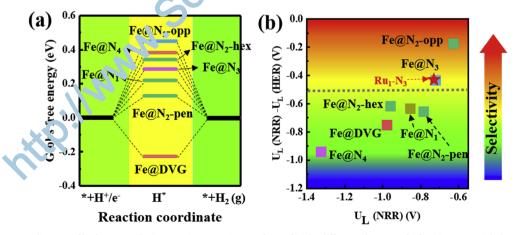


Fig. 8. (a) The free energy diagram of hydrogen evolution reaction on Fe@N_x surfaces. (b) The difference between the limiting potentials for NRR and HER ($U_L(NRR)$ – $U_L(HER)$) versus $U_L(NRR)$. In comparison, the corresponding value for Ru_1 - N_3 is highlighted by asterisk.

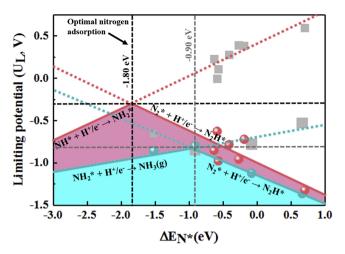


Fig. 9. Activity volcano plot of limiting potential (U_L) for N₂ reduction as a function of ΔE_{N^*} . The scaling relations for the single vacancy and double vacancybased single-atom catalysts are depicted by cyan and red, respectively. The ΔE_{N^*} is calculated by the equation: $\Delta E_{N}^* = E_{N}^* - E_* + E_{NH_3} - E_{N_2} - 3/2 * E_{H_2}$, where the E_{N^*} and E_* are the total energies of catalyst with and without the adsorbed nitrogen atom, E_{NH_3} , E_{N_2} and E_{H_2} are the total energies of free NH₃, N₂ and H₂, respectively.

atom combines with three neighboring atoms, forming the non-planar $M@N_x$ moiety (Fig. S6). The decreased coordination number results in more unoccupied orbitals of the metal atom, which provides an extra degree of stabilization for the NH2* intermediate. We found that the optimal ΔE_{N^*} for these single vacancy-based SACs should be about -0.90 eV. When ΔE_{N^*} is less than -0.90 eV, NRR could be limited. the desorption of NH₂* to form NH₃ molecule, resulting in low rield rates for NH₃ production.

On the other hand, the metal atom at double vacancies (our tudied Fe@N_x systems) allows intermediates to interact with up port plane due to the less protrusion of the metal atom. The approximately planar configuration and decreased unoccupied orbitals of the metal atom reduce the binding strength of NH* and NH2*, rave ring the removal of NH₂* as NH₃. Hence, the optimal activity towards \(\) RR occurs when the binding strength of nitrogen is neither too strongly nor too weakly, which can balance the formation of N₂H* and the protonation of NH*. The optimal ΔE_{N^*} for the double vacancy-based single-atom catalysts i found to be around -1.80 eV, and the corresponding liming poter $\frac{1}{100}$ estimated by $-0.30 \,\mathrm{V}$. This result has been demonstrated by a recent work [1], as V@N₄, and V@N₃-DVG displayed the exceller the excelle mance with U_L of -0.41, and -0.35 V, respectively [59]

4. Conclusions

In summary, by means of systematic DFT corputations, we showed that rationally modifying particular physics handal characteristics of carbon-based two-dimensional SACs can help achieve NRR catalysts with performance exceeding the metal ba. d benchmark. We identified that Fe@N₂-opp moiety, in which two 1, atoms are at the opposite sides of a single Fe atom, has a high catalytic activity for NRR with a limiting potential of -0.63 V. Especially Fe@N₂-opp can also well suppress HER during the N2 electr recuction process, and has the highest selectivity for NRR a. 51.7 1 of the considered Fe@Nx moieties. Furthermore, based on the linear scaling relations, we proposed a design strategy to optimize the catalytic activity of carbon-based SACs for NRR. Our computations suggest that the limiting potential of divacancy-based SACs can be further reduced by tuning the adsorption energy of nitrogen atom, and SACs with ca. -1.80 eV nitrogen atom adsorption energy could have even higher NRR catalytic activity. This study highlights that controlling the coordination environment of the single metal atom is an important method to achieve high performance SACs, and provides guidelines to further improve the activities of the carbon-based single-atom catalysts for N2 fixation.

Acknowledgments

This work is supported in China by the National Natural Science Foundation of China (Grant No. 21776004), the Fundamental Research Funds for the Central Universities (No. 30916015106) and in USA by the National Science Foundation-Centers of Research Excellence in Science and Technology (NSF-CREST Center) for Innovation, Research and Education in Environmental Nanotechnology (CIRE2N) (Grant No. HRD-1736093) and NASA (Grant No. 80NSSC17M0047). This research used resources of the High Performance of Computational facility (HPCf), University of Puerto Rico, which is partially supported by an Institutional Development Award (IDeA) INBRE Grant Number P20GM103475 from the National Institute of General Medical Sciences (NIGMS), a component of the National Institutes of Health (NIH), and the Bioinformatics Research Core of the INBRE. Its contents are solely the responsibility of the authors and do not necessarily represent the official view of NIH. A portion of this research used computational resources at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.

Appendix A supplementary data

Supr ementary material related to this article can be found, in the or lir e v rsion, at doi:https://doi.org/10.1016/j.cattod.2019.06.014.

References

- [1] J.G. Chen, R.M. Crooks, L.C. Se fedt, K.L. Bren, R.M. Bullock, M.Y. Darensbourg, P.L. Holland, B. Hoffma, M. L. anik, A.K. Jones, M.G. Kanatzidis, P. King, K.M. Lancaster, S.V. Ly, var, P. Pfromm, W.F. Schneider, R.R. Schrock, Science 360 (2018) 6611.
- S.L. Foster, S.I.P. P. .. vic, R.D. Duda, S. Maheshwari, R.D. Milton, S.D. Minteer,
- M.J. Janik, J.A. Re., ier, L.F. Greenlee, Nat. Catal. 1 (2018) 490–500.

 J. Guo, P., the Chem 3 (2017) 709–712.

 A.R. Singh, H. Montoya, B.A. Rohr, C. Tsai, A. Vojvodic, J.K. Nørskov, ACS Catal. 8 (2018) 4 17–4024.
- [5] C. G. N. J. Ran, A. Vasileff, S.Z. Qiao, Energy Environ. Sci. 11 (2018) 45–56.
 [6] C. M. Van der Ham, M.T.M. Koper, D.G.H. Hetterscheid, Chem. Soc. Rev. 43 (2014) 183-5191.
- [7] D. Bao, Q. Zhang, F.L. Meng, H.X. Zhong, M.M. Shi, Y. Zhang, J.M. Yan, Q. Jiang, X.B. Zhang, Adv. Mater. 29 (2017) 1604799.
- [8] M. Nazemi, S.R. Panikkanvalappil, M.A. El-Sayed, Nano Energy 49 (2018) 316–323.
- [9] B.L. Sheets, G.G. Botte, Chem. Commun. 54 (2018) 4250-4253.
- [10] B.H.R. Suryanto, C.S.M. Kang, D. Wang, C. Xiao, F. Zhou, L.M. Azofra, L. Cavallo, X. Zhang, D.R. MacFarlane, ACS Energy Lett. 3 (2018) 1219–1224.
- [11] Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov, T.F. Jaramillo, Science 355 (2017) 4998.
- Y. Wang, W. Qiu, E. Song, F. Gu, Z. Zheng, X. Zhao, Y. Zhao, J. Liu, W. Zhang, Sci. Rev. 5 (2017) 327-341.
- [13] E. Skulason, T. Bligaard, S. Gudmundsdottir, F. Studt, J. Rossmeisl, F. Abild-Pedersen, T. Vegge, H. Jonsson, J.K. Norskov, Phys. Chem. Chem. Phys. 14 (2012) 1235-1245.
- [14] J.H. Montoya, C. Tsai, A. Vojvodic, J.K. Nørskov, ChemSusChem 8 (2015) 2180-2186.
- B. Cui, J. Zhang, S. Liu, X. Liu, W. Xiang, L. Liu, H. Xin, M.J. Lefler, S. Licht, Green Chem. 19 (2017) 298-304.
- [16] K. Jiang, S. Siahrostami, A.J. Akey, Y. Li, Z. Lu, J. Lattimer, Y. Hu, C. Stokes, M. Gangishetty, G. Chen, Y. Zhou, W. Hill, W.B. Cai, D. Bell, K. Chan, J.K. Nørskov, Y. Cui, H. Wang, Chem 3 (2017) 950-960.
- [17] Z. Wang, J. Zhao, J. Wang, C.R. Cabrera, Z. Chen, J. Mater. Chem. 6 (2018) 7547-7556.
- [18] X. Guo, S. Huang, Electrochim. Acta 284 (2018) 392-399.
- [19] Y. Zheng, Y. Jiao, Y. Zhu, Q. Cai, A. Vasileff, L.H. Li, Y. Han, Y. Chen, S.Z. Qiao, J. Am. Chem. Soc. 139 (2017) 3336-3339.
- [20] C. Ling, X. Niu, Q. Li, A. Du, J. Wang, J. Am. Chem. Soc. 140 (2018) 14161-14168.
- [21] G. Liu, A.W. Robertson, M.M.J. Li, W.C.H. Kuo, M.T. Darby, M.H. Muhieddine, Y.C. Lin, K. Suenaga, M. Stamatakis, J.H. Warner, S.C.E. Tsang, Nat. Chem. 9 (2017)
- [22] J. Zhao, Z. Chen, J. Am. Chem. Soc. 139 (2017) 12480-12487.
- [23] Y. Peng, B. Lu, S. Chen, Adv. Mater. (2018) 1801995.
- [24] S. Mitchell, E. Vorobyeva, J. Pérez-Ramírez, Angew. Chem. Int. Ed. 57 (2018)
- [25] C. Ling, X. Bai, Y. Ouyang, A. Du, J. Wang, J. Phys. Chem. C 122 (2018)

- 16842-16847.
- [26] T. He, S.K. Matta, A. Du, Phys. Chem. Chem. Phys. 21 (2019) 1546-1551.
- [27] W. Chen, J. Pei, C.T. He, J. Wan, H. Ren, Y. Zhu, Y. Wang, J. Dong, S. Tian, W.C. Cheong, S. Lu, L. Zheng, X. Zheng, W. Yan, Z. Zhuang, C. Chen, Q. Peng, D. Wang, Y. Li, Angew. Chem. Int. Ed. 129 (2017) 16302-16306.
- [28] J. Xie, J.D. Kammert, N. Kaylor, J.W. Zheng, E. Choi, H.N. Pham, X. Sang, E. Stavitski, K. Attenkofer, R.R. Unocic, A.K. Datye, R.J. Davis, ACS Catal. 8 (2018) 3875-3884.
- [29] H. Fei, J. Dong, Y. Feng, C.S. Allen, C. Wan, B. Volosskiy, M. Li, Z. Zhao, Y. Wang, H. Sun, P. An, W. Chen, Z. Guo, C. Lee, D. Chen, I. Shakir, M. Liu, T. Hu, Y. Li, A.I. Kirkland, X. Duan, Y. Huang, Nat. Catal. 1 (2018) 63-72.
- [30] H. Wang, Q. Wang, Y. Cheng, K. Li, Y. Yao, Q. Zhang, C. Dong, P. Wang, U. Schwingenschlögl, W. Yang, X.X. Zhang, Nano Lett. 12 (2012) 141-144.
- [31] H.J. Qiu, Y. Ito, W. Cong, Y. Tan, P. Liu, A. Hirata, T. Fujita, Z. Tang, M. Chen, Angew. Chem. Int. Ed. 54 (2015) 14031-14035.
- [32] Y. Chen, S. Ji, Y. Wang, J. Dong, W. Chen, Z. Li, R. Shen, L. Zheng, Z. Zhuang, D. Wang, Y. Li, Angew. Chem. Int. Ed. 129 (2017) 7041-7045.
- [33] P. Yin, T. Yao, Y. Wu, L. Zheng, Y. Lin, W. Liu, H. Ju, J. Zhu, X. Hong, Z. Deng, G. Zhou, S. Wei, Y. Li, Angew. Chem. Int. Ed. 55 (2016) 10800-10805.
- [34] X. Wang, Z. Chen, X. Zhao, T. Yao, W. Chen, R. You, C. Zhao, G. Wu, J. Wang, W. Huang, J. Yang, X. Hong, S. Wei, Y. Wu, Y. Li, Angew. Chem. Int. Ed. 130 (2018)
- [35] F. Li, G.F. Han, H.J. Noh, S.J. Kim, H.Y. Jeong, Z. Fu, J.B. Baek, Energy Environ. Sci. 11 (2018) 2263-2269.
- [36] H. Shen, E. Gracia-Espino, J. Ma, H. Tang, X. Mamat, T. Wagberg, G. Hu, S. Guo, Nano Energy 35 (2017) 9-16.
- Solid Political Property of the Property of th [37] H. Tan, Y. Li, X. Jiang, J. Tang, Z. Wang, H. Qian, P. Mei, V. Malgras, Y. Bando, Y. Yamauchi, Nano Energy 36 (2017) 286-294.
- [38] C. Santoro, A. Serov, R. Gokhale, S. Rojas-Carbonell, L. Stariha, J. Gordon, K. Artyushkova, P. Atanassov, Appl. Catal. B-Environ. 205 (2017) 24-33.

- [39] X. Chen, L. Yu, S. Wang, D. Deng, X. Bao, Nano Energy 32 (2017) 353-358.
- [40] X.F. Li, Q.K. Li, J. Cheng, L. Liu, Q. Yan, Y. Wu, X.H. Zhang, Z.Y. Wang, Q. Qiu, Y. Luo, J. Am. Chem. Soc. 138 (2016) 8706-8709.
- [41] G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6 (1996) 15-50.
- [42] G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758-1775.
- [43] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865-3868.
- [44] S. Grimme, J. Comput. Chem. 27 (2006) 1787-1799.
- [45] J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jónsson, J. Phys. Chem. B 108 (2004) 17886-17892.
- [46] H.R. Byon, J. Suntivich, Y. Shao-Horn, Chem. Mater. 23 (2011) 3421-3428.
- [47] J. Chatt, J.R. Dilworth, R.L. Richards, Chem. Rev. 78 (1978) 589-625.
- [48] L.C. Seefeldt, B.M. Hoffman, D.R. Dean, Annu. Rev. Biochem. 78 (2009) 701-722.
- [49] B. Hinnemann, J.K. Nørskov, Top. Catal. 37 (2006) 55-70.
- [50] J. Rittle, J.C. Peters, J. Am. Chem. Soc. 138 (2016) 4243-4248.
- [51] J.S. Anderson, J. Rittle, J.C. Peters, Nature 501 (2013) 84.
- [52] H.-J. Chun, V. Apaja, A. Clayborne, K. Honkala, J. Greeley, ACS Catal. 7 (2017) 3869-3882.
- [53] V. Rosca, M.T.M. Koper, J. Phys. Chem. B 109 (2005) 16750-16759.
- [54] Z. Geng, Y. Liu, X. Kong, P. Li, K. Li, Z. Liu, J. Du, M. Shu, R. Si, J. Zeng, Adv. Mater. (2018) 1803498.
- V.L. Deringer, A.L. Tchougréeff, R. Dronskowski, J. Phys. Chem. A 115 (2011)
- [56] S. Maintz, V.L. Deringer, A.L. Tchougréeff, R. Dronskowski, J. Comput. Chem. 37 (2016) 1030-1035.
- C. Shi, H.A. Hansen, A.C. Lausche, J.K. Nørskov, Phys. Chem. Chem. Phys. 16 (2014) 4720-4727.
- [58] S. Siahrostami, K. Jiang, M. Karamad, K. Chan, H. Wang, J. Nørskov, ACS Sustain.
- [59] C. Ling, Y. Ouyang, Q. Li, X. Bai, X. Mao, A. Du, J. Wang, Small Methods (2018)