
Journal of Materials Chemistry A

PAPER

View Article Online

View Journal | View Issue

Cite this: *J. Mater. Chem. A*, 2019, **7**, 13284

Zhe Chen, ab Jingxiang Zhao, at Lichang Yin*b and Zhongfang Chen **

The nitrogen electroreduction reaction (NRR) in aqueous solutions under ambient conditions represents an

reaction regions for nitrogen fixation†

B-terminated (111) polar surfaces of BP and BAs:

promising metal-free electrocatalysts with large

attractive prospect to produce ammonia, but the development of long-term stable and low-cost catalysts with high-efficiency and high-selectivity remains a great challenge. Herein, we investigated the potential of a new class of experimentally available boron-containing materials, *i.e.*, cubic boron phosphide (BP) and boron arsenide (BAs), as metal-free NRR electrocatalysts by means of density functional theory (DFT) calculations. Our results revealed that gas phase N_2 can be sufficiently activated on the B-terminated (111) polar surfaces of BP and BAs, and effective y reduced to NH₃ via an enzymatic pathway with an extremely low limiting potential (-0.12 V on PP and -0.31 V on BAs, respectively). In particular, the two proposed B-terminated (111) surfaces not on the alarge active region for N_2 reduction, but also can significantly inhibit the competitive hy program evolution reaction, and thus have rather high efficiency and selectivity for the NRR. Therefore, cut is BP or BAs with mainly exposed (111) facets may serve as promising metal-free NRR catalysts with superior performance.

Received 5th February 2019 Accepted 12th April 2019

DOI: 10.1039/c9ta01410a

rsc.li/materials-a

Introduction

Ammonia, one of the most important synthetic incinicals for human sustainable development, is not only carbon-free energy carrier but also of great significance for fertilizer production. In industry, NH₃ has been at timely produced by the Haber-Bosch process for more than 100 years, in which gaseous N₂ and H₂ molecules are first dissociated into atomic N and H species, followed by their bonding to form NH₃ conconventional Fe- or Ru-based catalysts. In this process, however, high temperature (about 300–500 °C) and high pressure to be at 150–300 atm) are required to directly split the inertial distrong N≡N bond. In addition, this conventional NH₃ synthesis process consumes more than 1% of the global energy, and is accompanied by huge greenhouse gas emission. See Thus, it is highly desirable to develop alternative strategies for NH₃ synthesis. Sec. 10,111

The electrochemical nitrogen vuction reaction (NRR) under ambient conditions is very attractive due to its much reduced energy input and favorable environmental

compatibility, ^{12,13} in which electrocatalysts are the core components to reduce the reaction overpotential and increase the reaction rate and selectivity of N₂ reduction. ^{14,15} Currently, transition in etal-based NRR electrocatalysts working under ambient on litions have been widely investigated both experiment. ¹V and theoretically, including metal nitrides and oxides or ¹L gle metal atoms anchored on various substrates. ¹⁶⁻²³ The ever, the practical application of these metal-based NRR electrocatalysts has been severely limited by their low selectivity, high overpotential, easy deactivation, and detrimental environmental impact. ^{9,13,24}

In recent years, emerging metal-free catalysts for the NRR have attracted increasing attention due to their intrinsic advantages, such as low cost, high reliability, good biocompatibility, and excellent sustainability. In particular, boronbased heterogeneous electrocatalysts have been demonstrated their strong potential to capture and convert N2 molecules to NH3 in aqueous solutions under ambient conditions based on the so-called "acceptance-donation" mechanism. 25,26 For example, Yu et al. experimentally confirmed that boron-doped graphene with a doping level of 6.2% could achieve a NH3 production rate of 9.8 μg hr⁻¹ cm⁻² and a Faradaic efficiency of 10.8% at -0.5 V versus the reversible hydrogen electrode.²⁷ Ling et al. proposed that a B atom anchored on graphitic-carbon nitride (g-C₃N₄) could be utilized as a metal-free NRR photocatalyst under visible light irradiation with a record low onset potential (-0.20 V). ²⁸ Qiu *et al.* revealed that boron carbide (B_4C) nanosheets could act as a metal-free catalyst for high-performance electrochemical nitrogen-to-ammonia fixation, and

[&]quot;College of Chemistry and C' mu at Engineering, Key Laboratory of Photonic and Electronic Bandgap Ma "u.'s, unistry of Education, Harbin Normal University, Harbin, 150025, Ching. 5-1, cil: xjz_hmily@163.com

bShenyang National L. horatory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China. E-mail: lcyin@imr.ac.cn
Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, 00931, USA. E-mail: zhongfangchen@gmail.com

[†] Electronic supplementary information (ESI) available. See DOI: 10.1039/c9ta01410a

could achieve a high ammonia yield of 26.57 μ g h⁻¹ mg⁻¹ and a fairly high Faradaic efficiency of 15.95% at -0.75 V *versus* the reversible hydrogen electrode.²⁹ Though significant progress has been made, it is still a big challenge to develop highly efficient electrocatalysts with large reaction regions (or high concentration of B species), to fully achieve their catalytic activity.

From this perspective, we intuitively speculate that the most common B-containing compounds in III-V semiconductors, such as cubic boron nitride (BN), boron phosphide (BP) and boron arsenide (BAs), may show possible NRR activity. Note that these cubic III-V semiconductors are experimentally available, and their applications as high thermal conductivity materials have attracted great attention. Moreover, cubic BP is a promising electronic material for application in harsh environments, due to its good stability at high temperatures, high mechanical hardness, modest band gap (2.00 eV), and a high dielectric constant.30,31 Recently synthesized high-purity cubic BAs32 has similar electronic properties to Si³³ with a moderate band gap (1.50 eV),³⁴ and thus it is promising for applications in electronics and photovoltaics. However, cubic BN is not suitable for electroreduction application because of its extremely large band gap of around 6 eV.35

Considering the high abundance of B species in cubic BP and BAs, an interesting question arises: can the experimentally available cubic BP and BAs be directly utilized as metal free electrocatalysts for the NRR? To address this question in this work, by means of comprehensive density functional theory (DFT) computations, we explored the cataly c r errormance of their (100), (110), and (111) surfaces towards the NRR. Our computations showed that among these three considered surfaces, the B-terminated (111) vultace exhibits the highest NRR catalytic activity with a lov limiting potential (-0.12 V for BP and -0.31 V for BP s respectively) via anenzymatic reduction mechanism. Meanwhile, the hydrogen evolution side reaction can be significantly inhibited, suggesting high selectivity towards the NRR. Therefore, D terminated (111) surfaces of cubic BP and BAs are quite promising metal-free electrocatalysts for the NRR with a 'arge active region and high efficiency and selectivity, which opens a new door for the advancement of sustainable NH3 production.

2. Computational methods

Spin-polarized DFT computations we performed using the Vienna *Ab Initio* Simulation Package (VASP) unless stated otherwise. The exchange content energy was represented by the Perdew Borne-Ernzerhof (PBE) functional within the generalized gradient approximation (GGA) and the electron-ion intentic ions were described by the projector augmented wave (PAW) method. The (100), (110), and (111) surfaces of cubic BP and BAs were constructed to explore the possible NRR activity. All these surfaces consist of four BP/BAs atomic layers, which are thick enough for energy convergence based on the test calculations (Table S1†). The bottom two BP/BAs atomic layers were fixed, while atoms in

the other layers were fully relaxed during geometry optimizations. A 4 \times 4 supercell was used for the (100) and (111) surfaces, while a 3 \times 4 supercell was employed for the (110) surface in order to obtain a similar supercell size. Dipole correction was employed to correct potential spurious terms arising from the asymmetry of the slabs. 40 A Monkhorst-Pack k-point mesh of $3 \times 3 \times 1$ was used to sample the Brillouin zone, and the plane-wave cut-off energy was set to be 500 eV. All the structures were fully relaxed until the force on each atom (except for the fixed ones) was less than 0.03 eV Å^{-1} and the convergence criterion for the electronic structure iteration was set to be 10⁻⁵ eV. The van der Waals (vdW) interactions were described by using the empirical correction in Grimme's method (DFT+D3).41 The vacuum space was set to be 20 Å in the z direction, which was large enough to minimize the interactions between periodic images. The climbing image nudged elastic band (CI-NEB) method was used to find saddle points and minimum-energy paths. 42 Hirshfeld population analysis43 was performed using the PBE functional with a DNP basis set using the DMol³ program.⁴⁴

To investigate the thermodynamic stability of different surfaces under examination, we firstly calculated the surface energy (γ_s) following the definition $\gamma = \frac{1}{2A} E_{\text{surface}}^{\text{relax}} - N_{\text{atoms}} \times E_{\text{bulk}})$, where A is the surface area, $E_{\text{surface}}^{\text{relax}}$ is the energy of the released surface, N_{atoms} is the number of atoms in the slab, and F_{bulk} is the bulk energy per atom. According to this definition, the surface with a smaller γ_s value has a higher thermodynamic stability and higher probability of natural exposure To further evaluate the thermal stability of relevant surfaces, F_s initio molecular dynamics (AIMD) simulations were beformed in the canonical ensemble (NVT) with a Nose-Heaver thermostat at 500 K for a time period of 10 ps with f_s time step of 2 fs.^{45,46}

The adsorption energies $(E_{\rm ads})$ of the NRR intermediates were determined by $E_{\rm ads}=E_{\rm total}-E_{\rm slab}-E_{\rm adsorbate}$, where $E_{\rm total}$, $E_{\rm lab}$ and $E_{\rm adsorbate}$ represent the total energies of the species-adsorbed slab system, the clean slab, and the adsorbate, respectively. According to this definition, a more negative adsorption energy indicates a stronger adsorption.

The Gibbs reaction free energy change (ΔG) of each elementary step in the NRR process was calculated by using the computational hydrogen electrode (CHE) model proposed by Nørskov et al.,47 in which the chemical potential of the proton-electron pair in aqueous solution is equal to one-half of the chemical potential of a hydrogen molecule. Based on this model, the ΔG value can be obtained using $\Delta G = \Delta E +$ $\Delta ZPE - T\Delta S + \Delta G_{pH} + eU$, where ΔE is the reaction energy of the reactant and product species adsorbed on the catalyst surface directly obtained from DFT computations and Δ ZPE and ΔS are the changes of zero point energies and entropies between the adsorbed species and the gas phase molecules at 298.15 K, which were calculated from the vibrational frequencies. $\Delta G_{\rm pH}$ is the free energy correction of pH, which can be calculated using $\Delta G_{\rm pH} = K_{\rm B}T \times {\rm pH} \times {\rm ln}10$. Notably, the pH value was set to be zero in this work for simplicity; U was the applied potential.

3. Results and discussion

3.1. Structures, stabilities and properties of B-terminated surfaces

Since the crystal structures of cubic BP and BAs are identical except for the lattice constants, the atomic structures of their corresponding low-index surfaces, such as (100), (110), and (111), are also very similar. Thus, for simplicity, we chose BP as a representative when discussing the surface atomic structures, and Fig. 1 presents the atomic structures of the optimized (100), (110), and (111) surfaces of cubic BP, while the detailed data for BAs are given in Fig. S1 in the ESI.† Compared with the cleancut surfaces, obvious surface reconstructions and relaxations occurred upon geometry optimization in order to reduce the surface energies or saturate the surface dangling bonds. In detail, for the BP (100) surface, two adjacent B atoms form B2 dimers (bond length ca. 1.66 Å) to saturate the otherwise dangling bonds (Fig. 1a), while the bond between a surface B atom and its neighboring P atom is shortened to ca. 1.90 Å, which is slightly shorter than that (1.96 Å) in the bulk. In the case of the BP (110) surface (Fig. 1b), the surface B atoms take an obvious inward relaxation, leading to a shortened B-P bond of ca. 1.92 Å. On the BP (111) surface (Fig. 1c), the B and P atoms are located in slightly different planes: the B atoms are in the outermost layer, while the P atoms are in the inner layer, and the surface B-P bond length is ca. 1.89 Å due to the inwar. relaxation of surface B atoms. Note that almost the same surface reconstructions and/or relaxations can be observed for the (100), (110), and (111) surfaces of cubic BAs (Fig. S1⁺), and the surface relaxation behavior of cubic BP and BAs ic very similar to that of cubic BN.48-53

In order to identify which surface is more dominantly exposed for both cubic BP and BAs, we call the ted the surface energies of these three low-index crystol surfaces. Our results revealed that the B-terminated (100), (110), and (111) surfaces have similar surface energies in both BP and BAs, implying their similar thermodynamic stabilities and almost the same possibility to be exposed. In addition, we also explored the P or a second control of the property of the property

terminated (100) and (111) surfaces. We found that the P/Asterminated surfaces generally have higher surface energies than B-terminated ones, suggesting that the B-terminated surfaces have a higher thermodynamic stability and higher probability of natural exposure. Thus, we only focus on the NRR process on B-terminated surfaces in the following discussion.

Since electronic properties play an important role in the adsorption, activation, and subsequent reduction of N2 on corresponding surfaces, we examined the local density of states (LDOS) of surface B atoms on the three considered low-index surfaces for both BP and BAs (Fig. 1 and S1†). The (111) surfaces are greatly spin-polarized with rather high spin magnetic moments (7.92 and 7.84 $\mu_{\rm B}$ for BP and BAs, respectively), which are mainly contributed from the surface B atoms (Fig. S2†). Note that previous studies revealed that surface spin polarization facilitates the activation of N₂ molecules; 3,16,54 thus, the surface B atoms on the (111) surfaces may also have potential to activate inert N2 molecules. In contrast, the (100) and (110) surfaces of BP and BAs have almost no spin polarization due to the formation a B-B dimer and the inward relaxation of surface B atoms, respectively. Note that the same polarization/nonpolarization correcteristics are observed in the corresponding surfaces in N. 53,55 Interestingly, the LDOS of BP (111) (Fig. 1f) is obvicusi higher than those of the BP (100) and BP (110) su. faces (Fig. 1d and e) around the Fermi level. Similar results were also observed for cub; b.\ (Fig. S1d-f†). Thus, the B atoms on the BP (111) and LAs (111) surfaces may accumulate more electrons around the Fermi level, which could be easily transferred into the anti-bonding orbitals of N2, facilitating the activation of the i or N_2 molecule. Meanwhile, each B atom on the (111) surface, forms three covalent bonds with neighboring P or As atom. leaving one empty orbital to accept the lone pair electrons (1)₂ molecules, which is very similar to the proposed "acceptance-donation" process observed in B-decorated g-C₃N₄ names heets.28 All these analyses suggest that the (111) surfaces in a possess higher chemical activity toward N₂ molecules than the (110) and (100) surfaces, which will be further discussed in the following sections.

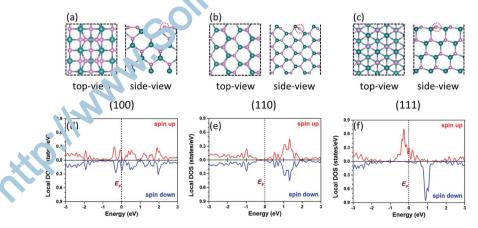


Fig. 1 Schematic atomic structures of (a) the (100) surface, (b) the (110) surface, and (c) the (111) surface of cubic BP. The local density of states (LDOSs) of surface B atoms marked with red dashed circles on (d) the (100) surface, (e) the (110) surface, and (f) the (111) surface of cubic BP. The Fermi level (E_F) was set to be zero and denoted by the black dashed line.

3.2. Adsorption of N2 on B-terminated surfaces

The adsorption of N₂ on the catalyst surface is the first step in the NRR pathway, which is crucial for the subsequent reaction steps. Two different adsorption configurations, including endon and side-on patterns, were considered for N2 adsorption on all the relevant surfaces of BP (Fig. 2) and BAs (Fig. S3†). After full structural relaxation, the calculated N₂ adsorption energies are summarized in Table 1, while the corresponding free energies are given in Table S3.†

For simplicity, we took the (111) surface of BP as a representative to describe N2 adsorption behavior. The adsorption energies of N_2 molecules on the BP (111) surface are -0.53 and -0.64 eV for the side-on and the end-on patterns, respectively. Thus, the end-on pattern is more favorable thermodynamically than the side-on one. Furthermore, the newly formed B-N bond lengths are ca. 1.47 Å (end-on) and 1.62 Å (side-on), respectively (Fig. 2c and d), which are shorter than that of BH₃NH₃ (1.65 Å), indicating strong adsorption of N2 molecules on the (111) surface. Due to this strong adsorption, the B atoms adsorbed by N₂ extrude from the original plane by ca. 0.21 Å (side-on) and 0.16 Å (end-on), respectively.

Remarkably, the N≡N bond is elongated from 1.12 Å in a free N₂ molecule to 1.24 Å upon adsorption via the side-on manner. For comparison, for the end-on case, the N≡N bond of the adsorbed N₂ molecule is only slightly elongated to 1.13 Å. The difference in N₂ bond elongation can be well understood 'y the different amounts of charge transfer from the substruction. the N₂ molecule. According to Hirshfeld population coal vsic, charge transfer (0.16 electrons) in the side-on pattern is more significant than that (0.05 electrons) in the end-on case, which leads to the obvious elongation of the N-N bond in the side-on pattern. Note that similar bond elongation occurs for N₂ molecules on the BAs (111) surface (Fig. 33)

To get a deeper insight into the observed \mathcal{V}_2 activation on the BP (111) surface, we further examined the charge density difference of N₂ adsorbed on the BP (111) (Fig. 3) and BAs (111) surfaces (Fig. S4†). Interestingly, the charge transfer is a "tw)way" process, and N₂ adsorption follows the "acce₁ tance donation" process:28 charge accumulation and depletical call be observed for both N₂ molecules and terminated B names, in which B atoms accept the lone-pair electrons and simultaneously donate electrons to the anti-bonding of N_2 . Such an "acceptance-donation" process con be further confirmed by comparing the LDOS of the 52 (111) and BAs (111)

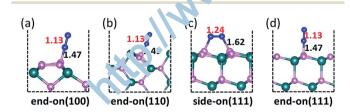


Fig. 2 Schematic diagram of all stable nitrogen adsorption configurations on (a) the (100) surface, (b) the (110) surface, (c) and (d) the (111) surface of BP, in which the value in red is the N-N bond length and the value in black is the B-N bond length (Å).

Table 1 The calculated adsorption energies (eV) of N₂ molecules with side-on and end-on patterns on the (100), (110) and (111) surfaces of BP and BAs

Configuration	ВР			BAs		
	(100)	(110)	(111)	(100)	(110)	(111)
Side-on End-on	-0.19 -0.54	-0.12 -0.44	-0.53 -0.64	-0.07 -0.55	-0.11 -0.68	-0.56 -0.76

surfaces before and after N2 adsorption (Fig. S5†), for both BP (111) and BAs (111) surfaces; the LDOS of surface B atoms clearly decreases and the spin polarization has been significantly quenched after N2 adsorption with the side-on pattern (Fig. S2†). Overall, the above results reveal that an inert N₂ molecule can be sufficiently activated on the BP (111) and BAs (111) surfaces, which would facilitate its subsequent reduction reactions.

In addition, we also explored N2 adsorption behavior on the (100) and (110) surfaces. For these two surfaces, N₂ molecules prefer to be corrbed via the end-on pattern (Fig. 2a and b) with adsorption energies ranging from -0.44 to -0.68 eV, while only weak 20.30 ption is observed for the side-on pattern with a solution energies ranging from -0.07 to -0.19 eV (Table 1). Thus, in the following sections only the end-on pattern of N_2 molecules on the (100) and (11) surfaces was focused on for its

3.3. Reaction mechanism and free energy for the NRR

The NRR process involves six net coupled proton and electron transfer step which can be simply written as: $N_2(g) + 6H^+ + 6e^ \rightarrow$ 2NH₃. Furing the NRR process, an N₂ molecule is gradually hydro en ted by the protons from the solution and electrons from the electrode, producing various N_xH_y intermediates, in b ding N_2H^* , $N_2H_2^*$, $N_2H_3^*$, $N_2H_4^*$, N^* , NH^* , NH_2^* and NH_3^* . As will understood, the N₂ molecule can be reduced to NH₃ through three reaction pathways, namely, enzymatic, distal, and alternating pathways. 9,23,28 In general, the side-on adsorbed N2 can be reduced to NH3 through an enzymatic mechanism, in which its two N atoms are hydrogenated alternately, and the second NH₃ will be generated immediately after the first one is released. For the end-on adsorption configuration, the NRR



Fig. 3 Difference charge density of the BP (111) surface with the adsorption of N₂ via (a) side-on pattern and (b) end-on pattern, where the isosurface value is set to be 0.005 e $\mbox{\normalfont\AA}^{-3}$ and cyan and yellow regions represent positive and negative charges, respectively.

proceeds following either the distal or the alternating pathway. In the distal pathway, the remote N atom is firstly hydrogenated to release NH₃, while the two N atoms will be hydrogenated simultaneously in the alternating pathway. To evaluate the NRR catalytic activity, we computed the free energy changes (ΔG) of each elementary step in the NRR via the enzymatic, distal, and alternating mechanisms.

The computed Gibbs free energy diagrams of the NRR on the (111) surfaces of BP and BAs through the enzymatic pathway are presented in Fig. 4a and b, together with the corresponding adsorbed species structures. The free energy diagrams of distal and alternating pathways are listed in Fig. S6 \dagger (BP) and Fig. S7 \dagger (BAs) with the corresponding structures of the reaction intermediates. Notably, for the computation of free energies of each elementary step in the NRR, the involved vibrational frequencies, zero point energies, and entropic corrections of all intermediates are summarized in Table S4. \dagger

Following the enzymatic pathway, on the BP (111) surface, the activated N₂ molecule with the side-on pattern will be firstly hydrogenated to N_2H^* species with a ΔG value of -0.44 eV. Subsequently, the formed N2H* species is further reduced to $NHNH^*$, $NHNH_2^*$, $NH_2^* + NH_2^*$, NH_2^* and NH_3^* . In this case, all the elementary steps are downhill in the free energy profiles, except for the formation of the second NH₃ $(NH_2^* + H^+ + e^- \rightarrow NH_2^*)$ with a ΔG value of +0.12 eV (Fig. 4a). Thus, this step is the potential-determining step (PDS) for the whole NRR with a rather low limiting potential (-0.12 V). Remarkably, the direct desorption of NH₃ formed from the BP or BAs surface could be difficult due to its large free energy (1.20-1.60 eV). However, NH₃ desorption is not a problematic obstacle due to the following reasons: (1) the released energy (about 3.40 eV, Fig. 4) at the corresponding hydrogenation steps is large enough to overcome the required energy for the release of the formed NH₃ (1.20–1.60 eV); 28,29 (2) the formed NH *_3 can be

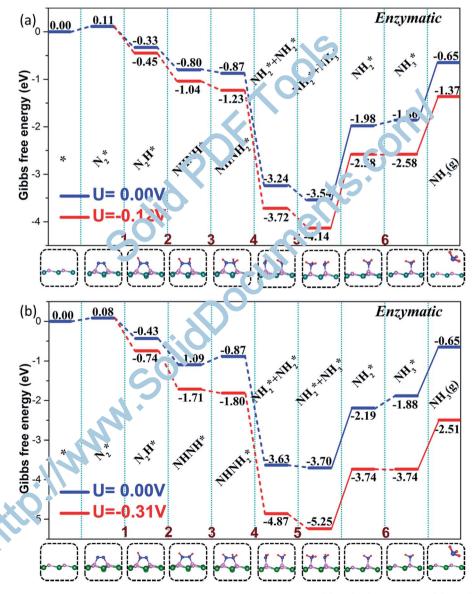


Fig. 4 Gibbs free energy diagrams for N_2 reduction through enzymatic mechanisms on (a) BP (111) surface and (b) BAs (111) surface at zero and applied potentials, together with the corresponding adsorbed species structures.

hydrogenated into NH₄⁺ under strongly acidic conditions, which has been observed in previous reports on electrochemical reduction of nitric oxide.56

When the NRR proceeds through the distal or alternating pathways (Fig. S6†), the potential-determining step is located at the formation of the first NH3 or the N2H* species due to the maximum ΔG value (0.99 or 0.49 eV), which is much higher than that of the enzymatic pathway (0.12 eV), suggesting that nitrogen reduction on the BP (111) surface prefers to take place through the enzymatic pathway. Similarly, on the BAs (111) surface, the enzymatic pathway is also the most favorable for the NRR (Fig. 4b), and the reaction step of $NH_2^* \rightarrow NH_3^*$ is the PDS with a free energy change of 0.31 eV, which is about two times higher than that of BP (0.12 eV).

Notably, though the side-on pattern is slightly less favorable than the end-on pattern for N₂ adsorption on the (111) surfaces, the free energies of the formed N₂H* species in the side-on pattern in the enzymatic pathway are more stable by about 0.84 eV (BP) and 0.81 eV (BAs) than those in the end-on pattern. The activation barrier for N₂H* to transfer from the end-on to sideon pattern is rather small (0.02 eV for BP and 0.01 eV for BAs) (for details, see Fig. S8 in the ESI†).

Thus, we also considered a mixed catalytic pathway, i.e., N₂ is firstly adsorbed on the catalyst surface in the end-on pattern, followed by its hydrogenation to N2H* species with a side-on pattern, and the subsequent elementary steps follow the enzy matic pathway (Fig. S9 in ESI†). Note that in the actual reac tions, this mixed pathway is the most favorable. Since the YDS i the formation of the second NH₃, the limiting potent al n this preferred mixed catalytic pathway is the same as that in the enzymatic pathway (-0.12 V).

In addition, we explored the catalytic perior nance of the (100) and (110) surfaces of BP and BAs. Sir to only the end-on pattern is stable for N2 adsorption on bac surfaces, the NRR prefers to occur through the distal or the alternating pathway. We first studied the hydrogenation of the adsorbed N₂ molecule to N₂H* species, and found that the free energy of N₂H formation on the (100) and (110) surfaces of BP or BAs is at least 0.66 eV, which is much larger than that of the correstor diag (111) surfaces (0.12 eV for BP and 0.31 eV for BAS, Thu, the NRR activity of the (100)/(110) surfaces of BP and bas is much lower than that of the corresponding (111) swales. Ind will not be further studied.

Our above studies revealed that the BP (111) surface exhibits the highest catalytic activity towards NRR among all the considered surfaces and its limiting \downarrow tential (-0.12 V) is even lower than that of recently reported B-decorated g-C₃N₄ with a record low limiting potential (0.20 V).28

3.4. Stability again the soning

The hydrogen volution reaction (HER) is one of the competing electrochemical nactions against the NRR, since the adsorbed H could block the effective active sites and thus reduce the Faradaic efficiency. For the HER, due to the strong interaction between H and B atoms, the HER process is hindered by the Heyrovsky step ($H^* + H^+ + e^- \rightarrow H_2$) with computed free energy

barriers of 1.38 and 1.52 eV, respectively (Fig. 5), which are much larger than that of the NRR (0.12 and 0.31 eV, Fig. 4) suggesting that the BP and BAs (111) surfaces exhibit outstanding catalytic performance for the NRR than the HER.

In addition, we also compared the difference in the adsorption strength between H* and N2H* species, because the formation of N₂H* species is the first hydrogenation step and its adsorption strength on catalyst surfaces usually determines the overpotential requirement on catalysts. Thus, a promising NRR catalyst should be able to stabilize N₂H species.^{57,58}

Note that electrochemical ammonia synthesis usually involves associative or dissociative pathways. 57,58 In both pathways, two hydrogenation mechanisms exist: (1) a Tafel-type mechanism,59 in which the solvated protons from the solution first cover the catalyst surface and couple with electrons. Subsequently, the hydrogen adatoms react with N_2H_x or NH_x to vield NH₃. Notably, this mechanism is very slow at room temperature because the activation barriers $H^* + NH_r^* \rightarrow NH_{r+1}^*$ reactions are generally larger than 1.00 eV. In particular, an applied bias can indirectly affect the thermochemical barrier by varying the concentrations of the reactants. 60,61 (3) A Heyrovsky-type mechanism, 62 in which the adsorbe (NH_x) or NH_x species will be hydrogenated by direct at ac im nt of protons from the solution and electrons from the ele trode, and the applied bias has a direct influence on the energy barrier. In this study to Heyrovsky-type mechanism was considered for the synthesis of ammonia from the NRR at room temperature, and the same assumptions have been widely employed in the electron emical reaction of CO₂ and O₂.63,64 The computed adsorption energies of N₂H* in the side-on pattern are -3.38 eV ($\frac{\text{CP}}{\text{Pand}}$ -3.49 eV (BAs), respectively, much more negative that of H^* (-1.69 and -1.83 eV, respectively). Therefore the N₂H* species is energetically favored to be adso by don the electrocatalysts rather than the H species, and hydrogen poisoning is not a big concern).

Clearly, the (111) surfaces of BP and BAs possess an atremely excellent catalytic activity and selectivity for the NRR. However, are these two surfaces stable under ambient conditions? To address this question, we performed AIMD

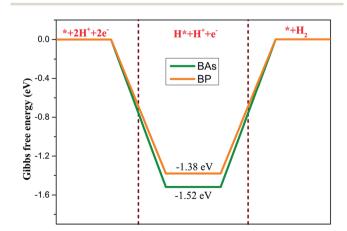


Fig. 5 Gibbs free energy diagrams of the HER on the BP and BAs (111) surfaces

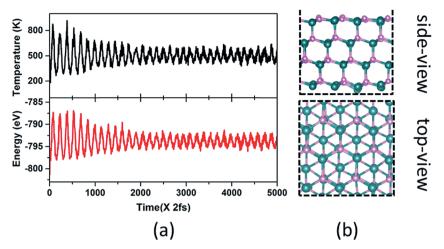


Fig. 6 (a) Variations of temperature and energy against the time for AIMD simulations of BP; the simulation is run at 500 K for 10 ps with a time step of 2 fs. (b) Schematic diagram of the structure after dynamics simulation.

simulations at 500 K for 10 ps with a time step of 2 fs. Taking the BP (111) surface as an example (Fig. 6), the temperature and energy oscillate near the equilibrium state. The atomic structure of the BP (111) surface remains intact without any obvious structural distortion during the AIMD simulation period, indicating the high stability of BP (111) surfaces. Such a high stability is also observed for the BAs (111) surface (Fig. S10°). With high stability at 500 K as demonstrated by AIMD signal tions, we believe that the (111) surfaces of BP and BAs can be utilized as a highly efficient NRR electrocatalyst under a nbient conditions (300 K).

Since the NRR generally proceeds in an eque vis solution, the proposed B-terminated (111) surfaces in our work could interact with environmental water. Thus, we also considered the adsorption of H₂O molecules on the BP and BAs (111) surfaces to evaluate their stability in practical applications. Our results demonstrated that H2O could be adsorbed on the surfaces of the two catalysts with an adsorption energy of -0.95 eV, which is slightly more negative than that of the N₂ molecule (abo it -0.76 eV), indicating that the B-terminated catalysts part to be covered with H_2O . However, the adsorbed H_2O verily easily react with free N₂ molecules with the help of pretons and electrons to form N_2H species (i.e., $H_2O^* + N_2 + W_3 + W_4 - W_4 + W_5 + W_5$ + H_2O) with a free energy of -0.06 eV on BP (111) and -0.16 eV on BAs (111) surfaces, as N₂H* species e h bits a much stronger adsorption strength (about -3.40 eV) on the two catalysts than H_2O (-0.95 eV). Thus, the cataly is performance of the two Bterminated catalysts can be well preserved in an aqueous solution, which has been obser 'ec' in a recent experimental study.65 Remarkably, the ionic liquids that have high N₂ solubility was recently adopted to replace water as the electrolyte to achieve a high conversion effectively for N₂ electroreduction to ammonia under ambient conditions, which could suppress the unwanted HER and H₂O poisoning effects.66

Finally, we investigated the interaction between our newly proposed catalysts with O_2 . Similar to the well-known black phosphorene^{67,68} and silicene,⁶⁹ the two proposed B-terminated

surfaces also exhibit high chemical reactivity towards O₂ molecules being to the formation of oxide units. Thus, chemisor: the induced oxidation will be a major cause for the degradation of BP and BAs catalysts. A promising solution to 2 oid problematic oxidation is to develop passivation and ence psulation by an inert material, in the same way as we used BN,70 polymethyl methacr late (PMMA),71 and alumina or AlO_x, ^{72,73} to protect the other wise unstable phosphorene and silicene. Among thes encapsulation techniques, AlO_x encapsulation using atomic layer deposition is probably the most appealing in trans of industrial application and scalability, which can make the encapsulated phosphorene stable for more than 2 we reand withstand more than 5000 bending cycles. 72,73 On the C hand, the whole NRR process could be performed under o ygen-free conditions, as Wang and coworkers recently dem instrated in their experiments using black phosphorus nanosheets to selectively catalyze the NRR under ambient conditions.74 Overall, though BP and BAs could be unstable in air, we strongly believe that their superior NRR catalytic performance can be achieved in the quite near future by encapsulation techniques or under oxygen-free conditions. We also hope that our theoretical studies could inspire experimental studies to explore the potentials of B-terminated surfaces for the NRR and other important reactions.

4. Conclusions

In this work, we explored the NRR properties of the (100), (110), and (111) surfaces of cubic BP and BAs using DFT calculations. Our computations revealed that the (111) surfaces have comparable surface energies with those of the (100) and (110) surfaces, and are stable under ambient conditions. Among all the considered surfaces, the (111) surfaces of BP and BAs exhibit superior catalytic performance for the NRR due to their rather low limiting potential (-0.12 and -0.31 V for BP and BAs, respectively) and strong ability to inhibit hydrogen evolution reactions. Therefore, cubic BP and BAs with mainly exposed

(111) surfaces are a new class of metal-free low-cost electrocatalysts with a large active region for N2 reduction, and can be utilized as highly efficient electrocatalysts for sustainable NH3 production.

Conflicts of interest

Paper

There are no conflicts to declare.

Acknowledgements

This work was financially supported in China by the National Natural Science Fund of China (No. 51472249), the Natural Science Funds for Distinguished Young Scholar of Heilongjiang Province (No. JC2018004), and the Excellent Young Foundation of Harbin Normal University (Grant No. XKYQ201304), and in the USA by the NSF-CREST Center for Innovation, Research and Education in Environmental Nanotechnology (CIRE2N) (Grant Number HRD-1736093). Most computations were performed on TianHe-1(A) at the National Supercomputer Center in Tianjin, and a portion of this research used computational resources at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.

References

- 1 H. Hirakawa, M. Hashimoto, Y. Shiraishi and T. Hirai, J. An. Chem. Soc., 2017, 139, 10929-10936.
- 2 H. Li, J. Shang, Z. Ai and L. Zhang, J. Am. Chem. Eoc. 20.5, 137, 6393-6399.
- 3 X.-F. Li, Q.-K. Li, J. Cheng, L. Liu, Q. Yan, Y. Wu X. H. Zhang, Z.-Y. Wang, Q. Qiu and Y. Luo, J. Am. Chem. Sc., 2016, 138, 8706-8709.
- 4 S. Licht, B. Cui, B. Wang, F.-F. Li, J. La and S. Liu, Science, 2014, 345, 637-640.
- 5 M. Kitano, Y. Inoue, Y. Yamazaki, F. Hayashi, S. Kanbara, S. Matsuishi, T. Yokoyama, S.-W. Kim, M. Hara ara H. Hosono, Nat. Chem., 2012, 4, 934.
- 6 M. A. van Kessel, D. R. Speth, M. Albertsen, P. H. Nickson, H. J. O. den Camp, B. Kartal, M. S. Jetten and S. Licker, Nature, 2015, 528, 555.
- 7 S. J. Li, D. Bao, M. M. Shi, B. R. Wulan, J. M. Yana id Q. Jiang, Adv. Mater., 2017, 29, 1700001.
- 8 M. Kitano, S. Kanbara, Y. Inou, N. Kuganathan, P. V. Sushko, T. Yokoyama, M. Hara and H. Hosono, Nat. Commun., 2015, 6, 6731.
- 9 X. Cui, C. Tang and Q. Zhang Auv. Energy Mater., 2018, 8,
- 10 T. Spatzal, M. Akseye'glu, L. Zhang, S. L. Andrade, E. Schleicher, S. Weber, D. C. Rees and O. Einsle, Science, 2011, 334, 940.
- 11 L. M. Azofia T. Ji, D. R. MacFarlane and C. Sun, Energy Environ. Sci., 2016, 9, 2545-2549.
- 12 L. Zhang, Z. J. Zhao and J. Gong, Angew. Chem., Int. Ed., 2017, 56, 11326-11353.
- 13 M. Li, H. Huang, J. Low, C. Gao, R. Long and Y. Xiong, Small Methods, 2018, 2, 1800388.

- 14 Y. Liu, Y. Su, X. Quan, X. Fan, S. Chen, H. Yu, H. Zhao, Y. Zhang and J. Zhao, ACS Catal., 2018, 8, 1186-1191.
- 15 Q. Qin, T. Heil, M. Antonietti and M. Oschatz, Small Methods, 2018, 2, 1800202.
- 16 Z. Wei, Y. Zhang, S. Wang, C. Wang and J. Ma, J. Mater. Chem. A, 2018, 6, 13790-13796.
- 17 X. Wang, W. Wang, M. Qiao, G. Wu, W. Chen, T. Yuan, Q. Xu, M. Chen, Y. Zhang, X. Wang, J. Wang, J. Ge, X. Hong, Y. Li, Y. Wu and Y. Li, Sci. Bull., 2018, 63, 1246-1253.
- 18 M. Nazemi, S. R. Panikkanvalappil and M. A. El-Sayed, Nano Energy, 2018, 49, 316-323.
- 19 S. Hu, X. Qu, J. Bai, P. Li, Q. Li, F. Wang and L. Song, ACS Sustainable Chem. Eng., 2017, 5, 6863-6872.
- 20 Á. B. Höskuldsson, Y. Abghoui, A. B. Gunnarsdóttir and E. Skúlason, ACS Sustainable Chem. Eng., 2017, 5, 10327-10333.
- 21 H. Liu, L. Wei, F. Liu, Z. Pei, J. Shi, Z.-j. Wang, D. He and Y. Chen, ACS Catal., 2019, 9, 5245-5267.
- 22 J. Wang, L. Yu, L. Hu, G. Chen, H. Xin and X. Feng, Nat. Commun., 2018, 9, 1795.
- 23 Z. Chen, J. Zhao, C. R. Cabrera and Z. Chen, Small Methods, 2018, 2, 1800 368.
- 24 K. It isi phalap, H. Zhang, L. Guo, Q. Yang, H. Yang and G W 1, Small Methods, 2018, 2, 1800352.
- 25 M.-A. Légaré, G. Bélanger-Ch. bot, R. D. Dewhurst, E. Welz, I. Krummenacher, B. Engy (s and H. Braunschweig, Science, 2018, 359, 896-900.
- 26 D. L. Broere and P. J. Helland, Science, 2018, 359, 871.
- 27 X. Yu, P. Han, Z. Vei L. Huang, Z. Gu, S. Peng, J. Ma and G. Zheng, Jou 2 2018, 2, 1610-1622.
- 28 C. Ling, X N. Q. Li, A. Du and J. Wang, J. Am. Chem. Soc., 2018, 140, 14161-14168.
- 29 W. Oil X-Y. Xie, J. Qiu, W.-H. Fang, R. Liang, X. Ren, X. Ji, G Cui, A. M. Asiri and G. Cui, Nat. Commun., 2018, 9, 3485.
- 30 C. Theng, S. Li, C. Li, Y. Lv, X. Liu, P. Y. Huang, D. A. Broido, Lv and D. G. Cahill, Adv. Funct. Mater., 2018, 28, 1805116.
- L. Shi, P. Li, W. Zhou, T. Wang, K. Chang, H. Zhang, T. Kako, G. Liu and J. Ye, Nano Energy, 2016, 28, 158-163.
- 32 J. S. Kang, M. Li, H. Wu, H. Nguyen and Y. Hu, Science, 2018, 361, 575-578.
- 33 S. Chae, K. Mengle, J. T. Heron and E. Kioupakis, Appl. Phys. Lett., 2018, 113, 212101.
- 34 T.-H. Liu, B. Song, L. Meroueh, Z. Ding, Q. Song, J. Zhou, M. Li and G. Chen, Phys. Rev. B, 2018, 98, 081203.
- 35 N. Izyumskaya, D. O. Demchenko, S. Das, Ü. Özgür, V. Avrutin and H. Morkoç, Adv. Electron. Mater., 2017, 3, 1600485.
- 36 G. Kresse, Phys. Rev. B: Condens. Matter Mater. Phys., 1996, 54, 11169.
- 37 J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh and C. Fiolhais, Phys. Rev. B: Condens. Matter Mater. Phys., 1992, 46, 6671.
- 38 P. E. Blöchl, Phys. Rev. B: Condens. Matter Mater. Phys., 1994, **50**, 17953.
- 39 J. P. Perdew and Y. Wang, Phys. Rev. B: Condens. Matter Mater. Phys., 1992, 45, 13244.

- 40 J. Neugebauer and M. Scheffler, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 1992, **46**, 16067.
- 41 S. Grimme, J. Comput. Chem., 2006, 27, 1787-1799.
- 42 G. Henkelman, B. P. Uberuaga and H. Jónsson, *J. Chem. Phys.*, 2000, **113**, 9901–9904.
- 43 F. L. Hirshfeld, Theor. Chim. Acta, 1977, 44, 129-138.
- 44 B. Delley, J. Chem. Phys., 1990, 92, 508-517.
- 45 S. Nosé, J. Chem. Phys., 1984, 81, 511-519.
- 46 G. Bussi, D. Donadio and M. Parrinello, *J. Chem. Phys.*, 2007, **126**, 014101.
- 47 J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard and H. Jonsson, *J. Phys. Chem. B*, 2004, 108, 17886–17892.
- 48 K. Kádas, G. Kern and J. Hafner, Surf. Sci., 2000, 454, 494-497.
- 49 N. Ooi and J. B. Adams, Surf. Sci., 2005, 574, 269-286.
- 50 M.-F. Ng, M. K. Teo, K. H. Lim, L. Zhou, M. B. Sullivan and S.-W. Yang, *Diamond Relat. Mater.*, 2008, 17, 2048–2053.
- 51 J. Yamauchi, M. Tsukada, S. Watanabe and O. Sugino, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 1996, **54**, 5586.
- 52 M.-H. Tsai and C. Liu, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 2001, **63**, 073305.
- 53 G. Cappellini, G. Satta, M. Palummo and G. Onida, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 2002, **66**, 115412.
- 54 X. Guo and S. Huang, Electrochim. Acta, 2018, 284, 392-399.
- 55 K. Kadas, G. Kern and J. Hafner, *Phys. Rev. B: Condens. Matte Mater. Phys.*, 1998, **58**, 15636.
- 56 H.-J. Chun, V. Apaja, A. Clayborne, K. Honkala and J. G. eley *ACS Catal.*, 2017, 7, 3869–3882.
- 57 J.-H. Montoya, C. Tsai, A. Vojvodic and J. K. Narskov, ChemSusChem, 2015, 8, 2180–2186.
- 58 E. Skulason, T. Bligaard, S. Gudmundschar, F. Studt, J. Rossmeisl, F. Abild-Pedersen, T. Veg; e, H. Jonsson and J. K. Nørskov, *Phys. Chem. Phys.*, 2012, 14, 1235–1245.
- 59 J. Tafel, Z. Phys. Chem., Stoechiom. Verwandtschaftsl., 1905, 50, 641.

- 60 K. Honkala, A. Hellman, I. N. Remediakis, A. Logadottir, A. Carlsson, S. Dahl, C. H. Christensen and J. K. Nørskov, *Science*, 2005, 307, 555–558.
- 61 S. Wang, V. Petzold, V. Tripkovic, J. Kleis, J. G. Howalt, E. Skúlason, E. M. Fernandez, B. Hvolbaek, G. Jones, A. Toftelund, H. Falsig, M. Björketun, F. Studt, F. AbildPedersen, J. Rossmeisl, J. K. Nørskov and T. Bligaard, *Phys. Chem. Chem. Phys.*, 2011, 13, 20760–20765.
- 62 J. Heyrovsky, Recl. Trav. Chim. Pays-Bas, 1927, 46, 582.
- 63 A. A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl and J. K. Nørskov, *Energy Environ. Sci.*, 2010, 3, 1311–1315.
- 64 J. Rossmeisl, Z.-W. Qu, H. Zhu, G.-J. Kroes and J. K. Nørskov, *J. Electroanal. Chem.*, 2007, **607**, 83–89.
- 65 M. Wang, S. Liu, T. Qian, J. Liu, J. Zhou, H. Ji, J. Xiong, J. Zhong and C. Yan, *Nat. Commun.*, 2019, **10**, 341.
- 66 F. Zhou, L. M. Azofra, M. Ali, M. Kar, A. N. Simonov, C. McDonnell-Worth, C. Sun, X. Zhang and D.-R. MacFarlane, Energy Environ. Sci., 2017, 10, 2516–2520.
- 67 L. Kou, C. Chen and S. C. Smith, *J. Phys. Chem. Lett.*, 2015, 6, 2794–2805.
- 68 A. Carvalbo, M. Wang, X. Zhu, A. S. Rodin, H. Su and A. H. C. Netr., Nat. Rev. Mater., 2016, 1, 16061.
- 69 L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. F. nciulli, M. Dubey, A. Molle and D. Akinwande, *Nat. Vanotechnol.*, 2015, 10, 227.
- 70 R. A. Doganov, S. P. Voering, Y. Yeo, K. Watanabe, T. Taniguchi and B. Özvilmaz, *Appl. Phys. Lett.*, 2015, **106**, 083505.
- 71 V. Tayari, N. Hem worth, I. Fakih, A. Favron, E. Gaufrès, G. Gervais, R. Mortel and T. Szkopek, *Nat. Commun.*, 2015, 6, 7702.
- 72 J. Na, Y 1. Lee, J. A. Lim, D. K. Hwang, G.-T. Kim, W. K. Choi and Y. W Song, ACS Nano, 2014, 8, 11753–11762.
- 73 J S. Kim, Y. Liu, W. Zhu, S. Kim, D. Wu, L. Tao, Dodabalapur, K. Lai and D. Akinwande, *Sci. Rep.*, 2015, 5, 8989.
- 74 L. Zhang, L. Ding, X. Yang and H. Wang, *Angew. Chem., Int. Ed.*, 2019, **131**, 2638–2642.