

Copper Dimer Supported on a C₂N Layer as an Efficient Electrocatalyst for CO₂ Reduction Reaction: A Computational Study

Jia Zhao, Tingxiang Zhao, Tengyu Li, and Zhongfang Chen Li, and Zhongfang Chen

Supporting Information

ABSTRACT: The carbon dioxide electrochemical reduction (CO2RR) to useful fuels and chemicals with renewable electricity offers a promising strategy for resolving energy security and environmental issues. Searching for low-cost catalysts with high efficiency and high selectivity is crucial to achieve this goal. Here, by means of comprehensive density functional theory computations, systematically investigated the potential of several transition metal dimes supported on a porous C₂N layer (Cu₂@C₂N) as the CO₂RR electrocetal refs. Our results revealed that the Cu dimer can be stably embedded in the perous C₂N monolayer because of the strong hybridization between Cu 3d c bitals and N 2p orbitals, thus ensuring its high stability. On the basis of the computed free energy changes, we found that Cu₂@C₂N exhibits superior by cormance for the CO_2RR with a small limiting potential of -0.23 V and $eCO_2 \rightarrow HCOO^* \rightarrow HCOO^*$ $\text{HCOOH*} \rightarrow \text{H}_2\text{COOH*} \rightarrow \text{H}_2\text{CO*} \rightarrow \text{H}_2\text{COH*} \rightarrow \text{Cr} \rightarrow \text{CH}_3^* \rightarrow \text{CH}_4$ route is the most favorable, among which the hya genation of HCOO* to

HCOOH* is the potential-determining step. In dition, C2H4 can also be yielded as the formed CO* provides active sites for the coupling with another CO species with the laming potential of -0.76 V. Then to e, Cu₂@C₂N layer is a quite promising biatom catalyst for the electrochemical reduction of CO₂ to hydrocarbons.

1. INTRODUCTION

In recent years, the CO₂ electroreduction reaction (CO₂RR) to useful fuels and value-added chemicals using electricity generated from renewable sources, such as sunlight and wind has gained considerable research interest since the ver increasing CO₂ emission from the unprecedented on bu tion of fossil fuels poses a severe threat to the global entire nment. However, efficient, stable, and inexpensive caraly to for the CO₂RR are highly desired because of the extremely thermodynamic stability of CO₂ molecule. P.st years have witnessed tremendous efforts toward developing efficient and less-energy-intensive CO₂RR catalysts To date, various transition metals (TMs) (i.e., Cu Fe, Ni, and Au) have been widely utilized as electroca at the for CO₂RR; especially the copper catalysts, firs pused by Hori et al.,9 have demonstrated their unique performance in reducing CO2 to hydrocarbons, mainly CH₄, C₂H₄, CO, and HCOOH. However, the electrocatalytic performance of Cu is still unsatisfactory colors of several fundamental challenges, such as the night overpotential (~1 V) and low faradaic efficiency as a result of the competitive hydrogen evolution reaction (HER). 10,11 Hence, during the last few decades, numerous studies have been devoted to enhance the CO2RR catalytic performance by tuning the structures of Cu electrocatalysts, including Cu-based alloys, 12,13 Cu nanowi. 25,14-17 O- or S-derived Cu, 18-22 and Cu nanoparticles s, ported on carbon-based nanostructures. 23,24 Nevertheless, he activity of the above Cu-based catalysts is strongly dependent on the size, shape, grain boundary, crystal facets, and so on,²⁵ which would impose extra difficulties in synthetic methods and mechanism analyses. Therefore, downsizing these metal nanostructures to singly dispersed metal atoms is highly desirable for maximizing the efficiency of catalytically active metal sites.

Depositing single metal atoms on a certain substrate with fine dispersion has been revealed to be highly active for a variety of catalytic reactions. 26-37 For example, Zhang and coworkers first demonstrated that the single Pt atom deposited on iron oxide surface can present remarkably high activity toward CO oxidation.²⁸ Afterward, the catalytic performance of the experimentally available single-atom catalysts on other metal oxides substrates, such as Ru₁/Co₃O₄, Au₁/CeO₂, Au₂, Au₁/CeO₂, Au₂, Au₂, A Ag₁/MgO,³⁴ has been extensively explored. The successful fabrication of single-atom catalysts also inspired many theoretical efforts to study the corresponding reaction mechanisms. 35-38 For example, Li et al. systemically examined

Received: July 6, 2018 Revised: August 1, 2018 Published: August 7, 2018

[†]College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China

^{*}School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China

[§]Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico 00931, United States

the stability and catalytic performance of various FeO_x-supported single-atom catalysts for CO oxidation.³⁵ Liang et al. demonstrated that Ni₁/FeO_x has a high catalytic activity at room temperature for CO oxidation.³⁶ In particular, single-atom catalysts have been widely employed for various electrochemical reactions,³⁹ as they not only minimize materials usage to meet the goal of cost-effective catalysis, but also possess outstanding activity because of their high ratio of low-coordinated metal atoms.

As compared to the single-atom catalysts, using a few metal atoms as active sites was revealed to possess improved catalytic performance because of the synergistic effect of two adjacent adsorption sites. 40,41 For example, Liu et al. showed that Cu₄ cluster supported on Al₂O₃ thin films may be an excellent and efficient catalyst for CO2 reduction in the presence of hydrogen.⁴⁰ Liu et al. theoretically proposed that Fe₃ cluster anchored on the θ -Al₂O₃(010) surface can be utilized as a promising heterogeneous catalyst for ammonia synthesis. 41 Similar improvements have also been observed in metal dimers anchored on an appropriate substrate. 42-45 For example, Matsushita et al. fabricated Mo dimers embedded within the rectangular-shaped expanded phthalocyanines (Pc). 42 He et al. successfully synthesized the Fe dimers embedded into graphene with adjacent single vacancies, 43 while Yan et al. fabricated Pt2 dimers on graphene using atomic layer deposition that exhibited a ~17- and 45-fold higher catalytic activity toward hydrolytic dehydrogenation of ammonia borane than isolated sites and nanoparticles.⁴⁴ Very recently, Tian et al. successfully synthesized highly dispersed Fe2 clusters that are supported on mesoporous carbon nitride (mpg-C₃N₄) and demonstrated that the obtained Fe₂/mpg-C₃N₄ sar plo had superior catalytic performance for alkene epoxic ion. Theoretically, Sun and co-workers revealed that the Cu dimers on graphene or Mn dimers on a phthalocyaning he t exhibit higher catalytic activity than their single-cto.n counterparts.46

Very recently, a novel nitrogenated by graphene, that is, C₂N, was successfully synthesized by a simple bottom-up wetchemical reaction.⁴⁹ Interestingly, a C₂N layer is featured with evenly distributed cavities terminated by sp²-bonded nitrogen atoms, which can provide coordination sites to anchor metal atoms, since the lone-pair electrons of N atoms can strongly couple with metal atoms and prohibit metal drift. 7. In addition, a C2N layer exhibits high thermal stability under air, and has a rather high kinetic stability⁵⁰ and high electric conductivity due to its continuous network circ tu e. 49 Quite recently, the catalytic performance of a ingl metal atom anchored on C2N monolayers began to attract attention. For example, Li et al. proposed that the ingle metal atoms anchored on a C2N monolayer are 0.200 sing oxygen evolution electrocatalyts⁵¹ and Ma et al. show a that the single Sc, Ti, V, Cr, and Mn atoms embedd 1 into a C2N monolayer are promising for CO oxidat on thile Mo@C₂N possesses good catalytic performance for the ammonia synthesis.⁵³

The extensive exploration of a single metal atom supported by a C_2N layer as low cost, high-performance catalysts and the outstanding catalytic activity of metal dimers inspires us to ask an interesting question: Can the metal dimer supported on a C_2N monolayer be utilized as a good bi-atom catalyst for CO_2RR ? Actually, very recent theoretical investigations showed that the dimers of C_2N and C_2N layer present much improved C_2N activity as compared with their single-atom counterparts⁵⁴ and the C_2N

dimer supported on a C_2N layer also exhibits much enhanced catalytic performance for CO oxidation. 55

However, to date the catalytic performance of a TM dimer on C_2N layers toward the CO_2RR has not been addressed experimentally or theoretically. Therefore, a theoretical study on this issue is highly desirable, which will open up a new strategy for developing efficient CO_2RR catalysts with the least metal atoms on porous low-dimensional materials, as the theoretical advances in recent years make it possible to search for efficient catalysts and to describe the corresponding catalytic mechanisms with adequate accuracy. 56,57

In this work, we systematically studied the potential of a Cu dimer on a C_2N layer $(Cu_2@C_2N)$ as the CO_2RR electrocatalyst under an acidic environment by means of comprehensive density functional theory (DFT) computations. $Cu_2@C_2N$ was selected to study because (1) it has moderate binding strength with the CO_2RR intermediates, as revealed by our screening computations; (2) Cu is the best metal catalyst for CO_2RR reported so far. Our computations demonstrated that $Cu_2@C_2N$ monolayer exhibits excellent CO_2RR catalytic activity with a low limiting potential, in which CH_4 and C_2H_4 are the main products. Therefore, $Cu_2@C_2N$ can be a promising a didate for the next generation of low-cost CO_2RR to the system of the selectivity.

2. OI IPUTATIONAL METHODS

Our spin-polarized DFT computations were performed by using the DMol³ code. S8,59 The electron interactions were described by Perdew—Burk—Ernzerhof exchange—correlation functional within the per eralized gradient approximation. The empirical correction in Grimme's scheme (i.e., DFT + D2)⁶¹ was utilized to treat the (possible) van der Waals interactions be very CO₂RR intermediates and catalysts. The relativistic effects of transition metals were considered through the density functional semicore pseudopotential, ⁶² in which a single purpose the core electrons, while the double numerical plus polarization basis set was used for other elements. Self-consistent field computations were performed with a convergence criterion of 10⁻⁶ au on the total energy and electronic computations. To ensure high quality results, the real-space global orbital cutoff radius was chosen as high as 5.2 Å in all of the computations.

The $Cu_2@C_2N$ -based catalysts were built by depositing a Cu dimer on a 2×2 C_2N supercell containing 24 C, 12 N, and 2 Cu atoms. The vacuum space was set to 20 Å, which was enough to avoid the interactions between periodic images. The Brillouin zone was sampled with a Monkhorst—Pack mesh with a $5 \times 5 \times 1$ grid in reciprocal space during geometry optimizations. The Hirshfeld charge analysis was employed to compute the charge transfer. 63

The free energy diagrams in the CO₂RR were computed using the computational hydrogen electrode model, ^{64,65} in which the chemical potential of (H⁺ + e⁻) at pH = 0 is related to the chemical potential of 1 bar H₂ in the gas phase at 298 K. The adsorption energies of CO₂RR intermediates ($E_{\rm ads}$ or ΔE) were first determined according to the following expression: $E_{\rm ads} = E_{\rm T} - E_{\rm catalyst} - E_{\rm species}$, where $E_{\rm T}$, $E_{\rm catalyst}$, and $E_{\rm species}$ are the total energies of an adsorbed system, catalyst, and isolated CO₂RR species, respectively. Furthermore, the Gibbs free energy change (ΔG) can be derived from these adsorption energies as follows: $\Delta G = \Delta E + \Delta Z P E - T \Delta S + \Delta G_{\rm U}$, where ΔE is obtained directly from DFT calculations, $\Delta Z P E$ is the

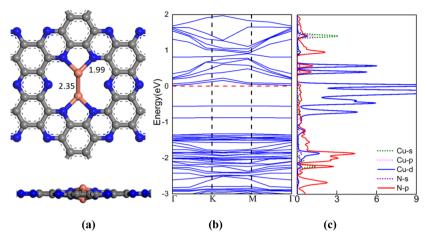


Figure 1. (a) Optimized structure, (b) band structure, and (c) partial density of states (PDOS) of a Cu dimer supported on a porous C_2N layer. The Fermi level was set at 0.

Scheme 1. Proposed Reaction Paths for CO_2 Electrochemical Reduction on Cu-Based Catalysts, Producing Methane (CH_4) and Methanol $(CH_3OH)^a$

^aThe (H⁺ + e⁻) reactant and H₂O product are left out for bre ity.

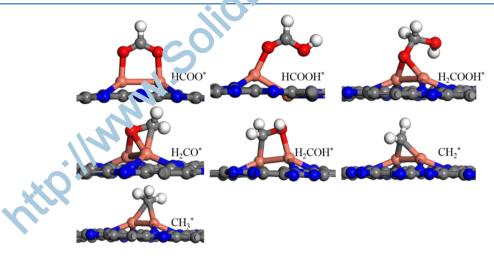


Figure 2. Optimized geometric structures of various states (HCOO*, HCOOH*, H_2COOH^* , H_2COO^* , H_2COOH^* , CH_2^* , and CH_3^*) along the most favorable reaction path of the CO_2RR proceeded on a $Cu_2@C_2N$ monolayer.

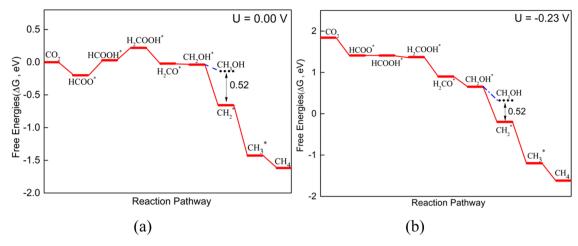
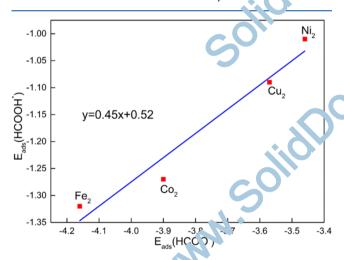



Figure 3. Free energy profile for the CO₂RR to CH₃OH and CH₄ on Cu₂@C₂N at (a) 0.00 V and (b) −0.23 V.

change in zero-point energies, and $T\Delta S$ is the entropy change at room temperature ($T=298.15~\rm K$), $\Delta G_{\rm U}$ is the contribution of electrode potential (U) to ΔG . The zero-point energies and entropies of the $\rm CO_2RR$ species were computed from the vibrational frequencies, in which only the adsorbate vibrational modes were computed explicitly, while the catalyst was fixed. The entropies of the free molecules gas-phase molecules were obtained from the standard thermodynamic database. To simulate the real $\rm H_2O$ solvent environment, a conductor-like screening model was used, in which the dielectric constant was set as $78.54~\rm for~H_2O$ solvent.

3. RESULTS AND DISCUSSION

3.1. Structures and Stability of Cu₂@C₂N. We first examined the structures and stability of the Cu dimer

Figure 4. Correlation between F_{3s} (HCOO*) and E_{ads} (HCOOH*) for $TM_2@C_2N$.

supported on 1 layer, and two initial structures were considered, in which the two Cu atoms are located on the same side (labeled as Con-1) and different sides (labeled as Con-2) of the C₂N surface, respectively. After full atomic relaxations, however, we found that Con-1 is not stable as it would be optimized to Con-2, which is well consistent with previous theoretical report. As shown in Figure 1a, each Cu atom in Cu₂@C₂N interacts strongly with two N atoms with

the bond length of 1.99 Å and the Cu–Cu bond length is 2.35 Å

To evaluate the structural stability of a Cu dimer on a C_2N layer, we computed the corresponding adsorption energy. The computed action ption energy (-3.58 eV) is larger than the Cu bulk collective energy (-3.38 eV), indicating the high stability and an elemental feasibility for the anchoring of Cu on a core is C_2N layer. Meanwhile, the local charge density of Cu $@C_2N$ mainly localizes on the Cu dimer $(+0.62 \text{ e}^-)$, while the Cu-bonded N atoms (-6.19 e^-) are slightly polarized. In general, adsorption sites with large charges typically have strong interactions with relation intermediates. Thus, the anchored Cu bi-atom, ar expected to be the active sites for CO_2RR .

The electronic structures can provide a good description of electron distations in molecules and solids, which are useful tools for a mical bond classification. Thus, we computed the band there and partial density of states (PDOS) of Cu₂@ C₂N (Figure 1), and in particular examined its band gap and charge distribution in the bands near the Fermi level, since the bands are active in the CO2RR and will interact with eaction intermediates. Our computed band gap of a pristine C₂N layer is 1.77 eV. A Cu₂@C₂N layer does not contain any magnetic moment. Because the occupied d bands of the Cu atoms lie in the gap of the band structures of C2N, the band gap of a Cu₂@C₂N layer is greatly reduced to 0.58 eV, suggesting an improved electroconductivity. Furthermore, the computed PDOS suggested strong hybridization between Cu 3d and N 2p orbitals, further testifying the strong interaction of a Cu dimer with the C₂N layer.

3.2. CO₂ Electrocatalytic Reduction. After examining the geometric structures, stabilities, and electronic structures of the Cu dimer supported on a porous C_2N layer, we investigated the CO_2RR catalytic activity on $Cu_2@C_2N$. Two possible pathways, namely the C_1 and C_2 pathways, have been considered. Special attention was given to identify the kinetically most favorable reaction routes (the lowest-energy pathway) on $Cu_2@C_2N$, which has the lowest positive elementary free energy change between any two elementary steps, and to determine the thermodynamic limiting potential, the least-negative potential at which all of the elementary steps become exergonic (downhill in free energy).

3.2.1. C₁ Pathway. We first studied the C₁ pathway and considered different possible channels (Scheme 1), in which various C1 products, such as CH₄, CO, HCOOH, and

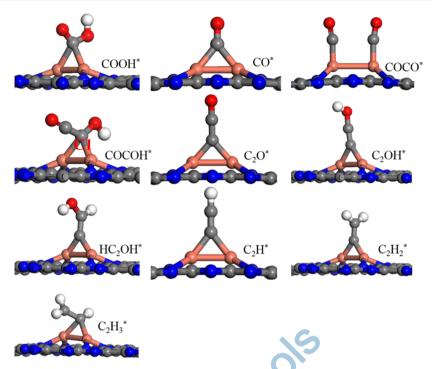
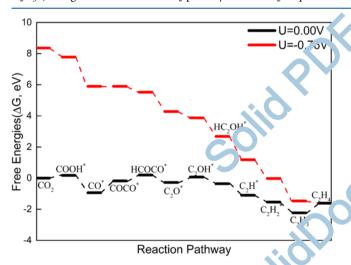



Figure 5. Optimized geometric structures of various states (COOH*, CO*, CO \bigcirc , \bigcirc , \bigcirc OCOH*, C_2O *, C_2OH *, HC_2OH *, HC_2O

Figure 6. Free energy profile for the CO_2RR to C_2H_4 C_2N at 0.00 and -0.76 V.

CH₃OH, could be formed. For brevity the proton–electron couple $(H^+ + e^-)$ was omitted. Figure 2 displays the atomic configurations at various states along the lowest-energy pathway, and the key structure prameters are summarized in Table S1. In addition, the corresponding free energy profiles are presented in Figure 3.

As shown in Schom 1, the CO₂RR starts by the

As shown in Schom 1, the CO_2RR starts by the hydrogenation of CC o form either adsorbed carboxyl (COOH*, path 1) or formate (HCOO*, path II) on the catalyst, which is rucial to determine or influence the entire reaction path ays. It is well established that the hydrogenation of COOH* species will produce CO^* , which can then either release from the catalyst surface ($CO^* \rightarrow * + CO$) or be further protonated to CHO* (path Ia)/COH* (path 1b) ($CO^* + H^+ + e^- \rightarrow CHO^*/COH^*$). Once the CO_2RR proceeds along the HCOO* pathway, the adsorbed HCOO*

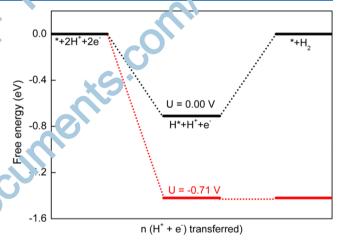


Figure 7. Free energy profile for the HER on $Cu_2@C_2N$ at 0 and -0.71~V.

species can be hydrogenated to HCOOH*, which could be further hydrogenated (path IIa) or desorb off from the catalyst surface (path IIb).

For the COOH* species on $Cu_2@C_2N$, we found that it prefers to adsorb on the Cu–Cu bridge site, resulting in the formation of two C–Cu bonds with the bond length of 2.03 Å. On the contrary, the HCOO* species prefers to adopt a bidentate adsorption mode, forming two O–Cu bonds with the distance of 1.94 Å (Figure 2). Meanwhile, the adsorption of COOH* and HCOO* species pulls the two Cu atoms out the C_2N plane. Remarkably, the HCOO* formation is exothermic in the free energy profile by 0.20 eV (Figure 2), while the COOH* formation is endothermic by 0.18 eV, suggesting that energetically the formation of HCOO* is more favorable than that of COOH*.

Providing that the CO₂RR proceeds along the path I, the COOH* species can be hydrogenated to form CO* species by



Figure 8. Projected density of states (PDOS) c the 1 Ce₂@C₂N and 2 Ce₂ with 2 Ce bed HCOO and HCOOH species. The Fermi level is referenced at 0 eV.

reacting with a proton coupled with an electron transfer. Remarkably, this reaction, that is, $COOH^* + H^+ + e^- \rightarrow CO^* + H_2O(g)$, is exothermic in the free energy profile by 1.12 eV Following the production of CO, the next key step is the hydrogenation of the adsorbed CO to form either a look be CHO* (path Ia) or COH* (path Ib). However, these two processes are uphill in the free energy profile by 1... 6 and 1.44 eV, respectively, suggesting that the further hy rogenation of the adsorbed CO species to CHO* or CCH* is energetically unfavorable on $Cu_2@C_2N$. Thus, the following hydrogenation of CHO* or COH* species was not considered. In addition to the formation CHO* and COH* species, the adsorbed CO* could couple with another CO to g_{ab} rate C2 products, which will be discussed in Section 3.2.3.

On the other hand, on the HCOO* species is formed along path II, it can be further hydrogenated to form various products. Thus, we carefully investigated these hydrogenation steps to determine the lowest-energy pathway and the product selectivity. On the basis of the computed free energies of each elementary sep at zero potential (Figure 3a), our results revealed that the $CO_2 \rightarrow HCOO^* \rightarrow HCOOH^* \rightarrow H_2COOH^* \rightarrow H_2COOH^* \rightarrow H_2COH^* \rightarrow CH_2^* \rightarrow CH_3^* \rightarrow CH_4$ path is the most favorable path from a purely thermodynamic perspective. Note that there is also a thermodynamically less favorable pathway from H_2COH^* ,

leaving to the CH₃OH formation (H₂COH* \rightarrow CH₃OH). During the whole 8e transfer process, the hydrogenation of HCOO* to HCOOH* is the potential-determining step (PDS), since this step has the most positive free energy change ($\Delta G = +0.23$ eV), and the limiting potential of the whole process is -0.23 eV (Figure 3b). Such a preferable reaction pathway and the PDS are different from those on Cu(111) surface⁶⁷ or Cu₅₅ nanoparticles supported defective graphene,⁶⁸ in which a gas-phase CO₂ molecule is reduced to CH_4 via the following pathway: $CO_2 \rightarrow COOH^* \rightarrow CO^* \rightarrow$ $CHO^* \rightarrow CH_2O^* \rightarrow CH_3O^* \rightarrow CH_4$, and the formation of CHO* species is the PDS. The difference between $Cu_2@C_2N$ and Cu₅₅/graphene may be ascribed to the stronger adsorption on $Cu_2 @ C_2 N$ (-2.01 eV), which makes the free energy barrier required to surmount this step (1.16 eV) much higher than that on Cu₅₅/graphene (0.68 eV).⁶⁸

According to our above discussions, the computed overpotential for $\mathrm{CH_4}$ production on $\mathrm{Cu_2@C_2N}$ is -0.23 V, which is much lower than that on $\mathrm{Cu}(111)$ surface $(-0.97\ \mathrm{V})^{67}$ and the graphene-supported $\mathrm{Cu_{55}}$ cluster $(-0.68\ \mathrm{V}).^{68}$ The obvious decrease in the free energy barrier results in an about 0.45–0.74 V reduction in the applied potential, making the whole reaction step exothermic, in other words, smaller overpotential and less power consumption. Therefore, $\mathrm{Cu_2@C_2N}$ exhibits

much higher catalytic activity for the CO_2RR than the Cu_{55} / graphene or Cu(111) surface.

Another interesting question is the product distribution, that is, CH₄ vs CH₃OH, which is greatly dependent on the adsorption energy of O on catalyst surfaces. On Cu₂@C₂N surface, the significantly strong O adsorption ($E_{ads} = -1.86 \text{ eV}$, evaluated by using half of the O2 molecule as a reference) makes it more difficult for Cu-O bond dissociation (leading to CH₃OH formation), as compared with the C-O bond breakage (leading to CH₄ formation). Therefore, CH₄ production is ~0.52 eV more favorable than that of CH₃OH (Figure 3). To estimate the distribution of CH₄ vs CH₃OH, the Boltzmann distribution formula $\exp[-(\Delta G)/(k_B T)]$ can be utilized according to the computed free energy difference, where ΔG is -0.52 eV and T is 298.15 K. Thus, the CH₄/ CH₃OH molecular ratio is $\sim (6.2 \times 10^8)$:1 at ambient temperature, suggesting a high selectivity of Cu₂@C₂N toward CH₄ production.

Note that the Ni, Fe, or Co atoms supported on N-doped carbon nanostructures have been widely used as nonprecious electrocatalysts for the CO₂RR.⁶⁹⁻⁷¹ For example, Li et al. demonstrated that the Ni-N₄-C structure exhibits excellent activity for electrochemical reduction of CO2 with particularly high selectivity and high faradaic efficiency (over 90%) for CO production.⁶⁹ Zhang et al. synthesized atomic iron dispersed on nitrogen-doped graphene as an efficient electrocatalyst for CO₂ reduction to CO, which has a low reduction overpotential with high faradaic efficiency up to 80%. 70 Pan et al demonstrated that single-atom Co-N₅ site anchored on polymer-derived hollow N-doped porous carbon spleres exhibits a robust electrocatalytic activity for CO₂ r du ther with nearly 100% CO selectivity.71 Then, the to owing interesting questions arise naturally: Can the Fe, To, and Ni dimers on a C₂N layer (Figure S1) be used as CO₂R ?? If yes, as compared with Cu₂@C₂N, will these three daners exhibit similar catalytic activity for the CO2RP2

To answer these questions, we can ited the CO_2RR pathways on Fe, Co, and Ni dimers supported on a C_2N layer, in which we determined only the free energy of the hydrogenation of HCOO* to HCOOH* since it is the potential-determining step on $Cu_2@C_2N$. Our computations showed that the free energies of the above step are 0.81, 0.50 and 0.34 eV, respectively, on these three catalysts, which are all larger than that on $Cu_2@C_2N$ (0.23 eV). Thus, we need cted that a C_2N -supported Cu dimer exhibits higher C_2N catalytic activity than Fe, Co, and Ni dimensions on ported on a C_2N layer.

To gain deeper insight into the difference of the CO₂RR catalytic activity on Fe, Co, Ni, and C. mers, we computed their adsorption strengths with 1 CCO* and HCOOH* species that are two important in mediates in the PDS. A good correlation exists between the adsorption energies of these two intermediate in our TM dimers (Figure 4). Remarkably, Cu₂@C₂N e. hoits a relatively moderate binding ability to HCOO* (c_{ac} : -3.57 eV) and HCOOH* (-1.09 eV), relatively we kee than those on Fe₂@C₂N (-4.17 and -1.32 eV) and C. wC₂N (-3.90 and -1.27 eV) but stronger than those o. N.₂@C₂N (-3.16 and -0.79 eV, respectively, for HCOO* and HCOOH*). According to the Sabatier principle, Cu₂@C₂N with a moderate adsorption strength with HCOO* and HCOOH* should have higher CO₂RR catalytic activity than other three TM₂@C₂N, which is well consistent with their limiting potentials for the CO₂RR (-0.81, -0.50,

-0.34, and -0.23 V on Fe, Co, Ni, and Cu dimers supported by C_2N).

To what extent does the bi-atom catalyst $Cu_2@C_2N$ improve the CO_2RR catalytic performance with respect to the single-atom catalyst? To address this question, we investigated the single-atom catalyst, $Cu@C_2N$, in which an individual Cu atom is adsorbed on a C_2N layer. However, checking the first few steps of CO_2 electroreductions on $Cu@C_2N$ can already eliminate it as a good catalyst: the free energy changes for the formation of $COOH^*$ and $HCOO^*$ are 1.18 and 0.83 eV, respectively (Figure S2), which are much larger than the maximum free energy change of the CO_2RR on Cu dimer (0.23 eV). Obviously, the bi-atom catalyst $Cu_2@C_2N$ has much better catalytic performance for the CO_2RR than its single-atom counterpart.

3.2.2. C_2 Pathway. Previous theoretical studies showed that the C_2 hydrocarbon species could be generated on Cu-based catalysts, which generally begins from the CO* dimerization. Can C_2 species be generated on $Cu_2@C_2N$? To address this question, we examined C_2 species formation pathway.

Figure 5 presents the atomic configurations at various states along the C_2 athway, and the corresponding free energy profiles at a summarized in Figure 6. Our results demonstrated that the C tom in the CO* species, which can be yielded from ne CC OH* hydrogenation, has formal three-coordination (Figure 5), making it highly active to couple with another CO molecule to form COCO* fect is. In the formed COCO* species (Figure 5), the two CO species are separately adsorbed on the Cu sites with the Cu-C bond length of 1.81 Å and the C-C distance between two CO species is 2.79 Å. Remarkably, at zero potential, this reaction from $(CO^* + CO) \rightarrow COCO^*$ is uphill by $0.7 \cdot evi$ the free energy profile (Figure 6), which is lower than that of CO* hydrogenation to CHO* (1.16 eV) or COH* (1.44 eV).

Subsequently, the hydrogenation of O atoms in COCO* species could produce COCOH* species, in which one C atom (a.m. ted as C1) is adsorbed on the Cu–Cu bridge, while the cber C atom binds with C1 atom with the length of 1.34 Å, uggesting the formation of a stable C–C bond. The approach of a second hydrogen induces the dissociation of COCOH* species into C_2O^* and H_2O . The C_2O^* would be further hydrogenated to the final product C_2H_4 by six hydrogenation steps. During the whole C_2 pathway, the formation of COCO* species is the PDS because of its maximum positive free energy change (0.76 eV), suggesting the high catalytic activity of $Cu_2@C_2N$ for the CO_2RR to C_2H_4 .

3.2.3. Side Reaction Analyses. In addition to CH_4 and C_2H_4 production, the occurring CO_2RR in an aqueous solution would compete with the hydrogen evolution reaction (HER) because H^* can also adsorb on the catalysts under the same reaction conditions by consuming the same proton–electron pair $(H^+ + e^-)^{.74}$ Clearly, the HER greatly affects the faradaic efficiency at low pH region. Thus, an effective CO_2RR catalyst should exhibit poor activity for the competitive HER. 75,76

To examine the effect of the HER on the CO₂RR, we studied the free energy changes (ΔG) of the HER on Cu₂@ C₂N. Our results showed that a free energy barrier of 0.71 eV is required in the H₂ gas desorption step (H* + H \rightarrow H₂) (Figure 7), which is larger than that of CH₄ production in the CO₂RR (0.23 eV) and is only slightly lower than that of C₂H₄ generation (0.76 eV). Notably, compared to the free energy barrier of the HER on a typical metal electrode (0.05–0.15

meV),⁷⁷ the free energy barrier of the HER on $Cu_2@C_2N$ is rather high. Considering that adjusting the electrolyte pH and adopting nonaqueous solutions are capable of effectively suppressing the HER,⁷⁸ it is possible to minimize the influence of this side reaction on the CO_2RR under real experimental adjustments.

3.2.4. Electronic Structures Analyses. On the basis of the aforementioned analyses, it is clear that the Cu_2 dimer supported on a C_2N layer exhibits high catalytic activity for the CO_2RR because of its moderate interaction with the CO_2RR species. To deeply understand the remarkable difference in the CO_2RR catalytic activity among different $TM_2@C_2N$, we investigated the electronic structures of $TM_2@C_2N$.

Figure 8 shows the calculated partial density of states (PDOS) of two key CO_2RR intermediates, that is, HCOO* and HCOOH*, on the deposited TM dimers on C_2N surface, where the Cu and Fe dimers were chosen as the representative, since the Cu dimer shows the lowest limiting (-0.23~V) and the Fe dimer has the highest limiting potential (-0.81~V) for CH_4 production. To facilitate their comparison, the PDOS were plotted for the same energy window from -10 to 4 eV.

Our results show that on Fe₂@C₂N, the 2p states of the adsorbed HCOO* species are delocalized and have a strong hybridization with Fe 3d states in a rather broad energy range from -8.54 to -3.78 eV. In contrast, the Cu₂@C₂N layer and HCOO* have much weaker hybridization in a limited range between -8.13 and -7.33 eV. The similar phenomenon was also found in the case of the HCOOH* adsorption on Cu₂@C₂N and Fe₂@C₂N surfaces (Figure 8). The machpronounced hybridization on Fe₂@C₂N indicates and the interaction with the CO₂RR species is too strong, resuring in a higher limiting potential.

4. CONCLUSIONS

In summary, by means of DFT simulations, we studied the possible pathways for electrochemica. red iction of CO₂ on several TM dimers supported on C₂N. Our results showed that Cu₂@C₂N exhibits a moderate adsorption ability to CO₂RR species intermediates, endowing its higher catalytic performance for the reduction of CO₂. Remarkably, Cu₂@C₂N ¹... a high selective generation of CH₄ rather than CH₃OH, in thick the hydrogenation of HCOO* to HCOOH* is identifica as the potential-determining step with the limiting pereceptial of -0.23 V. In addition, the effective coupling $\frac{1}{2}$ treen CO species leads to the generation of C2H4. These fidings not only offer theoretical insights into the reduction pathways of CO₂RR, but also open a new avenue to design metal-dimerbased and related bi-atom electrocata y s for CO₂ electroreduction. Note that the cooperative effects of the metal dimer in the bi-atom catalysts may grater improve the activity and selectivity of a catalytic read on. Further studies on the deposition of different n et. l a pant pairs or alloys on porous nanomaterials would lead to even better improvement of the CO₂RR activity.

■ ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.8b06494.

Some key structural parameters, optimized structures of other $TM_2@C_2N$, and the free energy profiles of the first

few steps of the CO_2RR on $Cu@C_2N$ and the involved intermediates (PDF)

AUTHOR INFORMATION

Corresponding Authors

*E-mail: xjz_hmily@163.com (J.Z.).

*E-mail: zhongfangchen@gmail.com (Z.C.).

ORCID ®

Jingxiang Zhao: 0000-0001-6023-8887 Zhongfang Chen: 0000-0002-1445-9184

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was financially supported in China by the Natural Science Funds for Distinguished Young Scholar of Heilongjiang Province (No. JC2018004), the Excellent Young Foundation of Harbin Normal University (Grant No. XKYQ201304), and National Natural Science Foundation of China (No. 11704203), and in United States by NSF-CREST Center for Innovation, Research and Education in Environmental Na. occhnology (CIRE2N) (Grant Number HRD-1736093).

NEFERENCES

- (1) Olah, G. A.; Prakash, G. W. C. Goeppert, A. Anthropogenic Chemical Carbon Cycle for a vist inable Future. J. Am. Chem. Soc. 2011, 133, 12881–12898.
- (2) Jhong, H.-R. M.; A., J.; Kenis, P. J. A. Electrochemical Conversion of CO₂ to U of I Chemicals: Current Status, Remaining Challenges, and Future Opportunities. *Curr. Opin. Chem. Eng.* **2013**, 2, 191–199.
- (3) Coster in, C., Robert, M.; Saveant, J.-M. Catalysis of the Electroche ... c. Reduction of Carbon Dioxide. *Chem. Soc. Rev.* **2013**, 42, 2423-46.
- (4) Var. 3, W.; Wang, S.; Ma, X.; Gong, J. Recent Advances in Cata vtic Hydrogenation of Carbon Dioxide. *Chem. Soc. Rev.* **2011**, 10, 203–3727.
- (5) Qiao, J.; Liu, Y.; Hong, F.; Zhang, J. A Review of Catalysts for the Electroreduction of Carbon Dioxide to Produce Low-Carbon Fuels. *Chem. Soc. Rev.* **2014**, 43, 631–675.
- (6) Zhu, D. D.; Liu, J. L.; Qiao, S. Z. Recent Advances in Inorganic Heterogeneous Electrocatalysts for Reduction of Carbon Dioxide. *Adv. Mater.* **2016**, *28*, 3423–3452.
- (7) Benson, E. E.; Kubiak, C. P.; Sathrum, A. J.; Smieja, J. M. Electrocatalytic and Homogeneous Approaches to Conversion of CO₂ to Liquid Fuels. *Chem. Soc. Rev.* **2009**, *38*, 89–99.
- (8) Kuhl, K. P.; Hatsukade, T.; Cave, E. R.; Abram, D. N.; Kibsgaard, J.; Jaramillo, T. F. Electrocatalytic Conversion of Carbon Dioxide to Methane and Methanol on Transition Metal Surfaces. *J. Am. Chem. Soc.* **2014**, *136*, 14107–14113.
- (9) Hori, Y.; Murata, A.; Takahashi, R. Formation of Hydrocarbons in the Electrochemical Reduction of Carbon Dioxide at a Copper Electrode in Aqueous Solution. *J. Chem. Soc., Faraday Trans.* 1 1989, 85, 2309–2326.
- (10) Nie, X.; Esopi, M. R.; Janik, M. J.; Asthagiri, A. Selectivity of CO₂ Reduction on Copper Electrodes: the Role of the Kinetics of Elementary Steps. *Angew. Chem., Int. Ed.* **2013**, *52*, 2459–2462.
- (11) Schouten, K. J. P.; Kwon, Y.; van der Ham, C. J. M.; Qin, Z.; Koper, M. T. M. A New Mechanism for the Selectivity to C1 And C2 Species in the Electrochemical Reduction of Carbon Dioxide on Copper Electrodes. *Chem. Sci.* **2011**, *2*, 1902–1909.
- (12) Zhang, B.; Zhang, J. Rational Design of Cu-Based Electrocatalysts for Electrochemical Reduction of Carbon Dioxide. *J. Energy Chem.* **2017**, *26*, 1050–1066.

- (13) Lee, C. W.; Dong, Y. K.; Dae-Hyun, N.; Ho, J. J.; Heon, C. N.; Won, I. S.; Tae, N. K. Defining a Materials Database for the Design of Copper Binary Alloy Catalysts for Electrochemical CO₂ Conversion. *Adv. Mater.* **2018**, No. 1704717.
- (14) Raciti, D.; Livi, K. J.; Wang, C. Highly Dense Cu Nanowires for Low-Overpotential CO₂ Reduction. *Nano Lett.* **2015**, *15*, 6829–6835.
- (15) Huang, P.; Ci, S.; Wang, G.; Jia, J.; Xu, J.; Wen, Z. High-Activity Cu Nanowires Electrocatalysts for CO₂ Reduction. *J.* CO₂ *Util.* **2017**, 20, 27–33.
- (16) Cao, L.; Raciti, D.; Li, C.; Livi, K. J. T.; Rottmann, P. F.; Hemker, K. J.; Mueller, T.; Wang, C. Mechanistic Insights for Low-Overpotential Electroreduction of CO₂ to CO on Copper Nanowires. *ACS Catal.* **2017**, *7*, 8578–8587.
- (17) Raciti, D.; Cao, L.; Livi, K. J. T.; Rottmann, P. F.; Tang, X.; Li, C.; Hicks, Z.; Bowen, K. H.; Hemker, K. J.; Mueller, T.; Wang, C. Low-Overpotential Electroreduction of Carbon Monoxide Using Copper Nanowires. *ACS Catal.* **2017**, *7*, 4467–4472.
- (18) Mandal, L.; Yang, K. R.; Motapothula, M. R.; Ren, D.; Lobaccaro, P.; Patra, A.; Sherburne, M.; Batista, V. S.; Yeo, B. S.; Ager, J. W.; et al. Investigating the Role of Copper Oxide in Electrochemical CO₂ Reduction in Real Time. ACS Appl. Mater. Interfaces 2018, 10, 8574–8584.
- (19) Lum, Y.; Yue, B.; Lobaccaro, P.; Bell, A. T.; Ager, J. W. Optimizing C–C Coupling on Oxide-Derived Copper Catalysts for Electrochemical CO₂ Reduction. *J. Phys. Chem. C* **2017**, *121*, 14191–14203
- (20) Verdaguer-Casadevall, A.; Li, C. W.; Johansson, T. P.; Scott, S. B.; McKeown, J. T.; Kumar, M.; Stephens, I. E. L.; Kanan, M. W.; Chorkendorff, I. Probing the Active Surface Sites for CO Reduction on Oxide-Derived Copper Electrocatalysts. *J. Am. Chem. Soc.* **2015**, 137, 9808–9811.
- (21) Shinagawa, T.; Larrazábal, G. O.; Martín, A. J.; Krumeich Pérez-Ramírez, J. Sulfur-Modified Copper Catalysts for the El. trochemical Reduction of Carbon Dioxide to Formate. ACS Co. al. 2019, 8, 837–844.
- (22) Zhao, Z.; Peng, X.; Liu, X.; Sun, X.; Shi, J.; Han, L. Li, G., Luo, J. Efficient and Stable Electroreduction of CO₂, o Ch on CuS nanosheet arrays. *J. Mater. Chem. A* **2017**, *5*, 2023, -27243.
- (23) Hossain, M. N.; Wen, J.; Chen, A. Jinkue Copper and Reduced Graphene Oxide Nanocompo ite to and the Efficient Electrochemical Reduction of Carbon Dioxid. Sci. Rep. 2017, 7, No. 3184.
- (24) Baturina, O. A.; Lu, Q.; Padilla, M. A.; Xin, L.; Li, W.; Serov, A.; Artyushkova, K.; Atanassov, P.; Xu, F.; Epshteyn, A.; et al. CO₂ Electroreduction to Hydrocarbons on Carbon-Supported Cu N., 2-particles. *ACS Catal.* **2014**, *4*, 3682–3695.
- (25) Yang, W.; Dastafkan, K.; Jia, C.; Zhao, C. Do on of Electrocatalysts and Electrochemical Cells for Carbon Di xide Reduction Reactions. *Adv. Mater. Technol.* **2018**, No. 17, 25, 77.
- (26) Yang, X.-F.; Wang, A.; Qiao, B.; Li, J.; Liu, I.; Z nan, T. Single-Atom Catalysts: A New Frontier in Heterogener Catalysis. *Acc. Chem. Res.* **2013**, *46*, 1740–1748.
- (27) Liang, S.; Hao, C.; Shi, Y. The Power of Sir gle-Atom Catalysis. ChemCatChem 2015, 7, 2559–2567.
- (28) Qiao, B.; Wang, A.; Yang, X.; All, d, L. F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J.; Zhang, T. Single-Aton Coalysis of CO Oxidation Using Pt₁/FeO_x. Nat. Chem. **2011**, 3, 6
- (29) Bayatsarmadi, B.; Z. et 3, 1.; Vasileff, A.; Qiao, S. Z. Recent Advances in Atomic Metal Do ing of Carbon-based Nanomaterials for Energy Conversion *Conall* **2017**, *13*, No. 1700191.
- (30) Liu, J. Catal, is v upported Single Metal Atoms. ACS Catal. 2017, 7, 34–59.
- (31) Li, Z.; Van, L.; Wu, Y.; Li, Y. Recent Advances in the Precise Control of Isola ed Single Site Catalysts by Chemical Methods. *Natl. Sci. Rev.* **2018**, No. nwy056.
- (32) Wang, L.; Zhang, S.; Zhu, Y.; Patlolla, A.; Shan, J.; Yoshida, H.; Takeda, S.; Frenkel, A. I.; Tao, F. Catalysis and In Situ Studies of Rh₁/Co₃O₄ Nanorods in Reduction of NO with H₂. ACS Catal. **2013**, 3, 1011–1019.

- (33) Qiao, B.; Liu, J.; Wang, Y.-G.; Lin, Q.; Liu, X.; Wang, A.; Li, J.; Zhang, T.; Liu, J. Highly Efficient Catalysis of Preferential Oxidation of CO in H₂-Rich Stream by Gold Single-Atom Catalysts. *ACS Catal.* **2015**, *5*, 6249–6254.
- (34) Huang, Z.; Gu, X.; Cao, Q.; Hu, P.; Hao, J.; Li, J.; Tang, X. Catalytically Active Single-Atom Sites Fabricated from Silver Particles. *Angew. Chem., Int. Ed.* **2012**, *51*, 4198–4203.
- (35) Li, F.; Li, Y.; Zeng, X. C.; Chen, Z. Exploration of High-Performance Single-Atom Catalysts on Support M_1/FeO_x for CO Oxidation via Computational Study. *ACS Catal.* **2015**, *5*, 544–552.
- (36) Liang, J.-X.; Yang, X.-F.; Wang, A.; Zhang, T.; Li, J. Theoretical Investigations of Non-Noble Metal Single-Atom Catalysis: Ni₁/FeO_x for CO oxidation. *Catal. Sci. Technol.* **2016**, *6*, 6886–6892.
- (37) Long, B.; Tang, Y.; Li, J. New Mechanistic Pathways for CO Oxidation Catalyzed by Single-Atom Catalysts: Supported and Doped Au₁/ThO₂. *Nano Res.* **2016**, *9*, 3868–3880.
- (38) Yang, T.; Ryoichi, F.; Saburo, H.; Tsunehiro, T.; Shigeyoshi, S.; Masahiro, E. A Theoretical Investigation on CO Oxidation by Single-Atom Catalysts M_1/γ -Al₂O₃ (M = Pd, Fe, Co, and Ni). *ChemCatChem* **2017**, *9*, 1222–1229.
- (39) Zhu, C.; Fu, S.; Shi, Q.; Du, D.; Lin, Y. Single-Atom Electrocatalysts. *Angew. Chem., Int. Ed.* **2017**, *56*, 13944–13960.
- (40) Liu, C.; Yang, B.; Tyo, E.; Seifert, S.; DeBartolo, J.; von Issendorff, B.; Zapol, P.; Vajda, S.; Curtiss, L. A. Carbon Dioxide Conversio. C. Yethanol over Size-Selected Cu₄ Clusters at Low Pressures J. In. Chem. Soc. 2015, 137, 8676–8679.
- (41) L u, .-C.; Ma, X.-L.; Li, Y.; Wang, Y.-G.; Xiao, H.; Li, J. Fet rog neous Fe₃ Single-Cluster Catalyst for Ammonia Synthesis via a Associative Mechanism. *Nat. Con. nun.* **2018**, *9*, No. 1610.
- (4.) Matsushita, O.; Derkacheva A.; Muranaka, A.; Shimizu, S.; Uchiyama, M.; Luk'yanets, E. A.; Yobayashi, N. Rectangular-Shaped Expanded Phthalocyanines A.; Two Central Metal Atoms. *J. Am. Chem. Soc.* **2012**, *134*, *34*, 1, 3418.
- (43) He, Z.; He, K.; Revert on, A. W.; Kirkland, A. I.; Kim, D.; Ihm, J.; Yoon, E.; Lee, G. D.; Warner, J. H. Atomic Structure and Dynamics of Metal Dopan. Page 1 Graphene. Nano Lett. 2014, 14, 3766–3772.
- (44) Yan, H., Yin, Y.; Wu, H.; Zhang, W.; Sun, Z.; Cheng, H.; Liu, W.; Wang C., Li, J.; Huang, X.; Yao, T.; et al. Bottom-Up Precise Synthesis (1) table Platinum Dimers on Graphene. *Nat. Commun.* 2017 8, No. 1070.
- (4.) Tan, S.; Fu, Q.; Chen, W.; Feng, Q.; Chen, Z.; Zhang, J.; Chong, W.-C.; Yu, R.; Gu, L.; Dong, J.; et al. Carbon Nitride Supported Fe₂ Cluster Catalysts with Superior Performance for Alkene Epoxidation. *Nat. Commun.* **2018**, *9*, No. 2353.
- (46) Zhu, G.; Li, Y.; Zhu, H.; Su, H.; Chan, S. H.; Sun, Q. Enhanced CO₂ Electroreduction on Armchair Graphene Nanoribbons Edge-Decorated with Copper. *Nano Res.* **2017**, *10*, 1641–1650.
- (47) Li, Y.; Su, H.; Chan, S. H.; Sun, Q. CO₂ Electroreduction Performance of Transition Metal Dimers Supported on Graphene: A Theoretical Study. *ACS Catal.* **2015**, *5*, 6658–6664.
- (48) Shen, H.; Li, Y.; Sun, Q. CO₂ Electroreduction Performance of Phthalocyanine Sheet with Mn Dimer: a Theoretical Study. *J. Phys. Chem. C* **2017**, *121*, 3963–3969.
- (49) Mahmood, J.; Lee, E. K.; Jung, M.; Shin, D.; Jeon, I.-Y.; Jung, S.-M.; Choi, H.-J.; Seo, J.-M.; Bae, S.-Y.; Sohn, S.-D.; et al. Nitrogenated Holey Two-Dimensional Structures. *Nat. Commun.* **2015**, *6*, No. 6486.
- (50) Sahin, H. Structural and Phononic Characteristics of Nitrogenated Holey Graphene. *Phys. Rev. B* **2015**, 92, No. 085421.
- (51) Li, X.; Cui, P.; Zhong, W.; Li, J.; Wang, X.; Wang, Z.; Jiang, J. Graphitic Carbon Nitride Supported Single-Atom Catalysts for Efficient Oxygen Evolution Reaction. *Chem. Commun.* **2016**, *52*, 13233–13236.
- (52) Ma, D. W.; Wang, Q.; Yan, X.; Zhang, X.; He, C.; Zhou, D.; Tang, Y.; Lu, Z.; Yang, Z. 3d Transition Metal Embedded C₂N Monolayers as Promising Single-Atom Catalysts: a First-Principles Study. *Carbon* **2016**, *105*, 463–473.
- (53) Wang, Z.; Yu, Z.; Zhao, J. Computational Screening of a Single Transition Metal Atom Supported on the C₂N Monolayer for

- Electrochemical Ammonia Synthesis. Phys. Chem. Chem. Phys. 2018, 20, 12835-12844.
- (54) Li, X.; Zhong, W.; Cui, P.; Li, J.; Jiang, J. Design of Efficient Catalysts with Double Transition Metal Atoms on C₂N Layer. J. Phys. Chem. Lett. 2016, 7, 1750-1755.
- (55) Li, F.; Chen, Z. Cu Dimer Anchored on C2N Monolayer: Lowcost and Efficient Bi-atom Catalyst for CO Oxidation. Nanoscale 2018. DOI: 10.1039/C8NR03394C.
- (56) Nørskov, J. K.; Bligaard, T.; Rossmeisl, J.; Christensen, C. H. Towards the Computational Design of Solid Catalysts. Nat. Chem. 2009, 1, 37.
- (57) Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I.; Nørskov, J. K. Computational High-Throughput Screening of Electrocatalytic Materials for Hydrogen Evolution. Nat. Mater.
- (58) Delley, B. An All-Electron Numerical Method for Solving the Local Density Functional for Polyatomic Molecules. J. Chem. Phys. **1990**, 92, 508-517.
- (59) Delley, B. From Molecules to Solids with the Dmol3 Approach. J. Chem. Phys. 2000, 113, 7756-7764.
- (60) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
- (61) Grimme, S. Semiempirical GGA-type Density Functional Constructed with a Long-Range Dispersion Correction. J. Comput. Chem. 2006, 27, 1787-1799.
- (62) Delley, B. Hardness Conserving Semilocal Pseudopotentials. Phys. Rev. B 2002, 66, No. 155125.
- (63) Hirshfeld, F. L. Bonded-Atom Fragments for Describing Molecular Charge Densities. Theor. Chim. Acta 1977, 44, 129-138.
- (64) Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J. Phys. Chem. B 2004 108, 17886-17892.
- , inents.com (65) Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Ro, me.sl, 1.; Nørskov, J. K. How Copper Catalyzes the Electroreduction of Carbon Dioxide into Hydrocarbon Fuels. Energy Environ. Sci. 271, 3, 1311-1315.
- (66) Klamt, A.; Schuurmann, G. COSMO: 2 Nev Approach to Dielectric Screening in Solvents with Explicit Expressions for the Screening Energy and Its Gradient. J. Con., Perkin Trans. 2 **1993**, *5*, 799–805.
- (67) Nie, X.; Luo, W.; Janik, M. J.; Asthagiri, A. Reaction Mechanisms of CO₂ Electrochemical Reduction on Cu(111) Determined with Density Functional Theory. J. Catal. 2014, 312 108 - 122
- (68) Lim, D.-H.; Jo, J. H.; Shin, D. Y.; Wilcox, J.; Ham, H. C.: Var, S. W. Carbon Dioxide Conversion into Hydrocarbon (ue. on Defective Graphene-Supported Cu Nanoparticles from Fi. t rrinciples. Nanoscale 2014, 6, 5087-5092.
- (69) Li, X.; Bi, W.; Chen, M.; Sun, Y.; Ju, H.; Yan, V. Zhu, J.; Wu, X.; Chu, W.; Wu, C.; et al. Exclusive Ni-N₄ Sites Regize Near-Unity CO Selectivity for Electrochemical CO₂ Reduction. J. Am. Chem. Soc. 2017, 139, 14889-14892.
- (70) Zhang, C.; Yang, S.; Wu, J.; Liu N.; L.zdi, S.; Ren, M.; Sha, J.; Zhong, J.; Nie, K.; Jalilov, A. S.; et al. F. scarochemical CO₂ Reduction with Atomic Iron-Dispersed of Vitrogen-Doped Graphene. Adv. Energy Mater. 2018, No. 170, 407
- (71) Pan, Y.; Lin, R.; Chen, Y. Liu, S.; Zhu, W.; Cao, X.; Chen, W.; Wu, K.; Cheong, W.-C. Wang, Y.; et al. Design of Single-Atom Co-N₅ Catalytic Site: 1 but Electrocatalyst for CO₂ Reduction with Nearly 100% CO Sea chaity and Remarkable Stability. J. Am. Chem. Soc. 2018, 1-7 4.18 -4221.
- (72) Xiao, H., Cheng, T.; Goddard, W. A. Atomistic Mechanisms Underlying Selectivities in C1 and C2 Products from Electrochemical Reduction of CO on Cu(111). J. Am. Chem. Soc. 2017, 139, 130-136.
- (73) Goodpaster, J. D.; Bell, A. T.; Head-Gordon, M. Identification of Possible Pathways for C-C Bond Formation during Electrochemical Reduction of CO2: New Theoretical Insights from an

- Improved Electrochemical Model. J. Phys. Chem. Lett. 2016, 7, 1471-1477.
- (74) Ooka, H.; Figueiredo, M. C.; Koper, M. T. M. Competition between Hydrogen Evolution and Carbon Dioxide Reduction on Copper Electrodes in Mildly Acidic Media. Langmuir 2017, 33, 9307-9313.
- (75) Hirunsit, P. Electroreduction of Carbon Dioxide to Methane on Copper, Copper-Silver, and Copper-Gold Catalysts: A DFT Study. J. Phys. Chem. C 2013, 117, 8262-8268.
- (76) Peterson, A. A.; Nørskov, J. K. Activity Descriptors for CO₂ Electroreduction to Methane on Transition-Metal Catalysts. J. Phys. Chem. Lett. 2012, 3, 251-258.
- (77) Kong, D.; Cha, J. J.; Wang, H.; Lee, H. R.; Cui, Y. First-Row Transition Metal Dichalcogenide Catalysts for Hydrogen Evolution Reaction. Energy Environ. Sci. 2013, 6, 3553-3558.
- (78) Kim, K.-S.; Kim, W. J.; Lim, H.-K.; Lee, E. K.; Kim, H. Tuned Chemical Bonding Ability of Au at Grain Boundaries for Enhanced Electrochemical CO₂ Reduction. ACS Catal. 2016, 6, 4443-4448.