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Research efforts over the last few decades produced multiple wireless technologies, which are readily avail-

able to support communication between devices in various dynamic Internet of Things (IoT) and robotics

applications. However, single radio technology can hardly deliver optimal performance across all critical

quality of service (QoS) dimensions under the typically varying environmental conditions or under varying

distance between communicating nodes. Using a single wireless technology therefore falls short of meeting

the demands of varying workloads or changing environmental conditions. Instead of pursuing a one-radio-

fits-all approach, we designARTPoS, anAdaptive Radio and Transmission Power Selection system, whichmakes

available at runtime multiple wireless technologies (e.g., WiFi and ZigBee) and selects the radio(s) and trans-

mission power(s) most suitable for the current conditions and requirements. The principal components of

ARTPoS include new empirical models of power consumption and packet reception ratio (the latter can also

be refined online) and online optimization schemes. We have implemented our system and evaluate it on

the physical testbed consisting of our new embedded platforms with heterogeneous radios. Experimental

results show that ARTPoS can significantly reduce the power consumption, while maintaining desired link

reliability, compared to standard baselines.
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1 INTRODUCTION

Diverse wireless technologies, produced by research over the years, are available to support com-
munication between devices in various Internet of Things (IoT) applications. However, each of
these technologies was originally designed with a different goal, such as high throughput, low
power consumption, low latency, and robustness to interference, and thus offers very different
characteristics. Single radio technology can hardly deliver optimal performance in all desirable
quality of service (QoS) dimensions, especially under varying environmental conditions. For in-
stance, WiFi can provide high throughput, but suffers from high power consumption. A consider-
able amount of energy can be wasted if aWiFi radio experiences irregular data transmission at low
data rate such that it stays longer in a power-hungry active mode, rather than in the power save
mode. On the other hand, ZigBee is power-efficient, but cannot support high data rate applications.
Using a single wireless technology therefore cannot meet the demands of varying workloads or

changing environmental conditions. This issue becomes further pronouncedwith emergingmobile
IoT applications that involve placing embedded devices on the user’s body or other mobile objects.
Monitoring and controlling mobile objects open up opportunities for novel and exciting IoT appli-
cations (e.g., assisted living, health monitoring, and multi-agent autonomous vehicular and robotic
systems), while also introducing the fundamental challenge of maintaining optimal wireless com-
munication between devices under the following uncertainties: Network Traffic Uncertainties:
The network traffic is subject to spontaneous changes. For instance, in a health monitoring appli-
cation, a wearable device may produce a low amount of data during some hours of the day, but
sporadically require rapid transmission of a large volume of data in response to a critical medi-
cal condition. Moreover, devices may have multiple sensors, with diverse traffic patterns, and the
system may turn ON or OFF any of the sensors at any given time [32]. Wireless Environment

Uncertainties: The wireless environment changes when the device moves around. At times, a
mobile device will need to be able to deal with a highly noisy environment; at other times it may
enjoy a clean environment [32]. A stationary device may also experience environment changes
due to changing ambient interference. Given the dynamic nature of communication in IoT appli-
cations, a traditional one-radio-fits-all approach cannot meet the challenges associated with the
dynamics and uncertainties in network traffic and operating conditions.
Fortunately, embedded system hardware and radio technologies have been seeing appreciable

advancement. Heterogeneous radios, e.g., WiFi, LTE, Bluetooth, and ZigBee, are becoming increas-
ingly available inmodern embedded ormobile devices. Most smartphones nowadays supportWiFi,
LTE, and Bluetooth. A majority of modern devices designed for IoT applications also support het-
erogeneous radios. For instance, Firestorm platform [1] supports Bluetooth low energy (BLE) and
ZigBee and uses a 32 bit low-power microcontroller with the duty cycling capability. TI CC2650
[34] integrates two radios (i.e., ZigBee and BLE) on a single chip. Raspberry Pi 3 model B [28] uses
a Broadcom single-chip radio supporting both WiFi and BLE. IOT-Gate-iMX7 [20] is an industrial
IoT gateway, which supports 4G/LTE, WiFi, Bluetooth, and Zigbee. The ZiFi device [39] supports
both WiFi and ZigBee. Recent hardware advancement offers new opportunities to use multiple
wireless technologies efficiently.
This article aims to address the previously stated networking challenges, while leveraging the

above-stated hardware advancements; specifically, it makes the following contributions:

—We design the Adaptive Radio and Transmission Power Selection (ARTPoS) system that
makes available multiple wireless technologies at runtime and selects the radio(s) and their
transmission power(s) that are best suited for the current network traffic and operating
conditions.
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—We develop new offline modeling approaches that allow the selection system to adapt to
large variance in power consumption and link reliability measurements.

—We formulate the problem of radio and transmission power selection as an optimiza-
tion problem1 and develop two practical (lightweight) online solutions; the latter solution
uniquely allows online updating of the link reliability models, to enable adapting to runtime
environments that deviate from the offline settings that were used to train the models.

—We implement the ARTPoS in Raspbian Linux and Contiki and evaluate it on a new em-
bedded platform supporting WiFi, ZigBee, and BLE; these efforts demonstrate the unique
benefits of adaptive runtime selection of radios and their transmission powers.

We show that our ARTPoS implementations clearly outperform two baselines (Fixed-power and
ART-WiFi) in terms of power consumption, while delivering similar link reliability. Expectedly,
ART-ZigBee registers the lowest power consumption, but fails to provide any meaningful link re-
liability for all data rates above 1,000 packets/period. Importantly, this advantage of the ARTPoS
implementations is shown to hold under various indoor and outdoor settings, and with and with-
out interference. Lastly, we show that the newer ARTPoS-irp version is able to exploit its special
(runtime) model adaptation capacity to provide, on average, a 3.7% better packet delivery rate and
13.5mW power savings, over the original ARTPoS implementation.
The remainder of the article is organized as follows. Section 2 reviews related work and Section 3

introduces our ARTPoS design. Section 4 presents the power consumption and link reliabilitymod-
eling and Section 5 introduces our problem formulation and solution strategy. Section 6 presents
our experimental evaluation. Section 7 concludes the article.

2 RELATEDWORKS

Bandwidth aggregation for a device with multiple network interfaces has been studied extensively
in the literature and many techniques are readily available [12]. Those early efforts are not directly
applicable to embedded wireless devices with power constraints since they were not designed to
provide energy-efficient wireless radio interfaces [17, 24]. There has also been increasing interest
in studying the energy-aware bundling or switching between WiFi and 3G/4G radios on smart-
phones [4, 35]. There exists software, e.g., VideoBee, Super Download Lite-Booster, MPTCP in iOS,
KT’s GiGA LTE, that support concurrent use of WiFi and cellular radios. More recently, research
efforts have begun to pay more attention to energy efficiency in the context of smartphones. Ex-
amples include generating energy models for smartphones [7, 9, 23, 37, 38] and WiFi/3G/LTE [2,
14, 31] and developing radio switching or bundling approaches [17, 23–25, 27]. These existing ap-
proaches are either limited to mainly WiFi and 3G/4G on smartphone platforms or unaware of
transmission power control, thus they are not directly applicable to support energy-efficient data
transfer using heterogeneous radios in various IoT embedded platforms. Generally speaking, it is
largely unknown how to energy-efficiently use radios with very different characteristics through
runtime radio and transmission power adaptation. To address this critical gap in the current state
of the art, this article investigates the joint impact of radio and transmission power selection on
energy efficiency and link reliability, and proposes a practical approach that intelligently uses a
high throughput radio (i.e., WiFi) and an energy-efficient radio (i.e., ZigBee). To our knowledge,
the ARTPoS system presented in this article is the first to support not only runtime bundling and
switching betweenWiFi and ZigBee but also adaptive transmission power control, that proactively
minimizes power consumption subject to given network traffic and operating conditions.

1In this article, we focus on minimizing the energy consumption on the link level and the sender side (IoT end devices),

since the IoT gateways are usually not or much less energy-constrained.
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Fig. 1. System architecture.

Transmission power control for a single radio has been extensively investigated in the litera-
ture of wireless sensor networks and wireless mesh networks. Indirect link quality metrics such
as received signal strength indication (RSSI) and link quality indicator (LQI) [18, 19] or direct link
quality metrics such as packet reception ratio (PRR) and packet error rate (PER) [10, 13] have been
used to measure the link quality. Heuristics [5, 11, 13] and control-theoretic approaches [10, 18, 19]
have been applied to achieve the desirable link quality by controlling the transmission power at
runtime. These existing approaches, designed to select the transmission power of a single radio, are
not directly applicable here, since the power consumptions have to be compared between different
radios and the link quality and power consumption of multiple radios have to be jointly consid-
ered. In contrast, this article employs a pragmatic integrated systems approach to optimize the
transmission power selection together with the radio selection. The performance of our ARTPoS
has been demonstrated via implementation and experiments on real hardware.

3 ARTPOS SYSTEM ARCHITECTURE

This section presents the design of ARTPoS. Figure 1 shows the system architecture. The Mod-

eling Engine generates the power consumption and link reliability models needed for the radio
and transmission power selection (Section 3.1). The Radio/Transmission Power Selection En-

gine selects the best-suited radio(s) and transmission power(s) based on the application specified
data rate and the throughput of each available link measured at runtime (Section 3.2). Multiple
Radio Controller modules (e.g., WiFi, BLE, and ZigBee controllers) exist in ARTPoS. Each radio
controller controls the state (i.e., On or Off) of a radio and sets its transmission power based on
the decision made by the Radio/Transmission Power Selection Engine, while the User Interface
supports the interactions with system users (Section 3.3).
To support the realization of ARTPoS, we have built a new embedded platform (as shown in

Figure 1) with heterogeneous radios consisting of WiFi, ZigBee, and BLE by instrumenting a Rasp-
berry Pi 3 Model B [28] with a TI CC2650 Development Kit [34], which is connected to the Rasp-
berry Pi through a USB port. Raspberry Pi integrates a Broadcom BCM43438 single-chip radio
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processor supporting WiFi and BLE, while CC2650 is the core wireless MCU supporting ZigBee
and BLE on a CC2650 Development Kit (currently, we use the BLE radio on Raspberry Pi since
the Contiki has not yet implemented the BLE stack in its master branch). The integrated emulator
(XDS100v3) on the CC2650 Development Kit enables the communication between the Raspberry
Pi and the CC2650 MCU through UART. To power the device, we use a USB battery to which a
Monsoon power meter [33] is connected to measure the power consumption.

We have realized ARTPoS in Raspbian Linux [29], a Debian based Linux system for Raspberry
Pi, and Contiki [8], an operating system for low-power wireless IoT devices. To support WiFi, our
ARTPoS implementation adopts the 802.11 MAC and physical layer implementations provided by
the Linux kernel and employs the libpcap library for sending and receiving packets to/from the
MAC layer. Similarly, our implementation adopts the Linux’s BLE implementations and HCI tools
to support BLE and uses the 802.15.4 physical layer implementations in Contiki to support Zig-
Bee. Our implementation also adopts the existing UART implementations in Raspbian and Contiki
to support the communication between Raspberry Pi and CC2650. In Figure 1, the existing im-
plementations in Raspbian Linux and Contiki adopted by ARTPoS are marked with dashed lines,
while our new designs are marked with solid lines. WiFi controller, BLE controller, and ZigBee
controller are three radio controllers that control WiFi, BLE, and ZigBee radios, respectively. We
intentionally implement all modules except the ZigBee Controller in Raspbian Linux, since Rasp-
berry Pi has richer hardware resources. The design of the major modules in ARTPoS are discussed
next.

3.1 Modeling Engine

The Modeling Engine generates the power consumption model and link reliability model to sup-
port runtime radio and transmission power selection. Most existing solutions for transmission
power control for a single radio use a simple power model assuming that using a lower transmis-
sion power level leads to lower power consumption. However, this simple model no longer works
for a device with multiple radios since the power consumptions have to be compared between
different radios. Hence, our Modeling Engine is designed to take real power consumption traces
as input and generate power models accordingly. As an example, Figure 2 shows the radio power
consumptions when the WiFi and ZigBee radios on our embedded platform turn on, respectively,
and transmit at the maximum speeds at all available transmission power settings. As shown in
Figure 2(a), the median power consumption increases from 789mW to 905mW to 1269mW when
WiFi is on and the transmission power increases from 1dBm to 19dBm to 21dBm, while the median
power consumption increases from 11.9mW to 18.5mW to 30mWwhen ZigBee is on and the trans-
mission power increases from −21dBm to 0dBm to 5dBm as shown in Figure 2(c). Large variances
can be seen in the boxplot in Figure 2(b) and (d), which show the 5-second power measurements
when WiFi and ZigBee transmit at 1dBm, respectively. The large variance is caused by the power
consumption differences when the radio hardware is at different states, making the first statistical
moments (e.g., mean or median) unsuitable to estimate the radio power consumption.
The Modeling Engine also generates the link reliability model based on the PRR measurements

at different distances between the sender and the receiver, and when the sender transmits at differ-
ent transmission power. PRR can be defined as the fraction of transmitted packets successfully re-
ceived by the receiver. Our Modeling Engine provides a feature that controls each radio to transmit
packets using a single transmission power, then proceeds to the next power in a round-robin fash-
ion. With this feature, the PRR measurements for all radios and transmission powers can be done
automatically at each distance. However, changing the distance between the sender and receiver
has to rely on human operators, introducing labor-intensive measurement overheads. Therefore,

ACM Transactions on Sensor Networks, Vol. 15, No. 4, Article 39. Publication date: July 2019.



39:6 D. Mu et al.

Fig. 2. Radio power consumptions when WiFi and ZigBee turn on, respectively, and transmit at the maxi-
mum speed. The traces are measured by a Monsoon power meter [33]. In the boxplot, the central red mark
in the box indicates median; the bottom and top of box represent the 25th percentile (q1) and 75th per-
centile (q2); crosses indicate outliers (x > q2 + 1.5 · (q2 − q1) or x < q1 − 1.5 · (q2 − q1)); whiskers indicate
range excluding outliers.

it is important to use a frugal set of distance samples that will produce a training dataset suitable
for effective (subsequent) model development.
Therefore, the Distance Sample Generator is designed to generate suitable distance samples

based on a feasible communication range and the desired number of distance samples. The desired
number of distance samples is decided by the total time allowed for PRR measurements divided by
the measurement execution time at each distance. A statistical design of experiments approach,
commonly used in Engineering optimization, is employed to generate the distance samples. For
instance, the communication range considered, 0−200m (based on our observedmaximum commu-
nication range ofWiFi/ZigBee/BLE), is divided into three zones. Zone 1, 0 < x ≤ 30m, corresponds
to the spatial range in typical home or office-space IoT applications, where a low-power radio like
ZigBee is seeing increasing popularity; Zone 2, 30 < x ≤ 100m, corresponds to the spatial range in
typical commercial/residential buildings as well as factories and warehouses (i.e., industrial IoT or
IIoT applications) where ZigBee becomes progressively less effective, and WiFi is expected to be-
come more dominant; and Zone 3, x > 100m, corresponds to the spatial range (typical of emerging
cloud robotic and multi-robot applications) where WiFi with greater range capacity will typically
dominate. In each of these ranges, we use the Latin hypercube sampling (LHS) method to generate
10 distance samples. LHS is a popular approach to generate near-random samples that can pro-
vide a relatively uniform coverage of an input space or a probability space [21]. Unlike factorial
design or simple Monte Carlo simulations, the size of the sample set yielded by LHS does not scale
exponentially with the number of input parameters, thereby making LHS more suitable to design
frugal set of experiments (as needed here). A LHS containing n sample points (between 0 and 1)
overm dimensions is a matrix of n rows andm columns. Each row corresponds to a sample point.
The values of n points in each column are randomly selected, one from each of the intervals,
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(0, 1/n), (1/n, 2/n), . . . , (1 − 1/n, 1). We use the optimal LHS implementation, which maximizes
the minimum Euclidean distance between the samples [26]. To demonstrate the PRR measure-
ment process, we collect a series of PRR traces by varying the distance between the sender and
receiver following the 30 distance samples generated by LHS. Section 4.2 will discuss the method
that is used to train models of PRR as functions of the respective radio transmission power settings
based on our collected PRR traces.

3.2 Radio/Transmission Power Selection Engine

The Radio/Transmission Power Selection Engine implements ARTPoS core logic. It is designed to
facilitate the identification of the best-suited radio(s) and transmission power(s) at runtime. The
Model Container stores the power consumption model and link reliability model generated by
the Modeling Engine. With these two models, the Optimizer selects the best radio (or a set of
radios) and their optimal transmission power(s) based on the application specified data rate and
the throughput of all available links measured by the radio controllers. Section 5 will discuss the
problem formulation and optimization in detail.

3.3 Radio Controllers and User Interface

The Radio Controllers are important design constructs of ARTPoS. Their main purpose is to for-
ward data packets between the application and the radio stacks. The Radio Controllers are re-
sponsible for switching on the radio(s) selected by the Radio/Transmission Power Selection Engine,
keeping the unselected radio(s) off, applying the selected transmission power(s), and routing data
packets between the application and the radio stack(s) of the selected radio(s). The Link Moni-

tor gathers the runtime link statistics (i.e., throughput and PRR) and feeds them to the Optimizer.
To support WiFi, BLE, and ZigBee on our embedded platform, we have implemented three Radio
Controllers (i.e., WiFi Controller, BLE Controller, and ZigBee Controller as shown in Figure 1).

The User Interface supports the interactions between our ARTPoS and its user. First, it allows
the system user to reveal the debugging and operation logs through a SSH connection. Second, it
notifies the user to move the device to the next distance when the Modeling Engine finishes the
PRR measurements at the current distance. Third, it allows the application to set its desired data
rate at runtime.

4 MODELING

This section presents the development of tailored regression models with specialized smoothing
characteristics, to represent the (uncertain) nodal power consumption and PRR variations as func-
tions of the radio transmission power settings. This modeling approach is aimed to facilitate robust
radio and transmission power selection decisions (failure to address these uncertainties under-
mines radio selection processes, as demonstrated later in Section 5.2).

4.1 Power Consumption Modeling

The measurements from Section 3.1 are used to develop quantitative models of power consump-
tion, as functions of the transmission power setting (p) of the concerned radio. As evident from
Figure 2, significant variations, which cannot be solely attributed to change in radio transmission
power, are inherent in the measurements. We therefore represent the platform base power con-
sumption with all radios Off (Ep (V )), and the respective platform power consumption with only
Bluetooth on (Eb (V ,pb )), only Zigbee on (Ez (V ,pz )), and only WiFi On (Ew (V ,pw )) as functions
of uncertain parameters V and the respective transmission power of the Bluetooth, ZigBee, and
WiFi radios (pb , pz , and pw , respectively).
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Here, the quantity of interest (QoI), i.e., total power consumption, is a function of the design
variable (radio transmission power setting) and a vector of uncertain parameters V , where the
latter can be assumed to be outside the control of the designer and not practically measurable in
the current context (e.g., radio backOffs caused by failed clear channel assessment and inaccurate
power meter reading). Considering the availability of dedicated QoI data (Section 3.1), it can be
assumed that the uncertainty therein is quantifiable. However, given the observed large variance
and non-normal distribution of the platform power consumption data (Figure 2), using the first
statistical moments (e.g., mean or median) is deemed not suitable. Secondly, since battery capacity
is currently a critical bottleneck in most wireless IoT and embedded system devices, and radios
can be a major contributor to power consumption in such devices, we argue that energy over-
expenditure (and the uncertainty associated with it) should be perceived as a risk—one that can
lead to significantly reduced device uptime and/or frequent switching to low performance modes
for the concerned device. Hence, we propose to use the notion of s-risk [36], to provide a robust
or uncertainty-aware scalar measure of the risk associated with this expense under any given radio
setting.
The notion of s-risk, also known as “conditional-value-at-risk,” originated in the Finance domain

[15, 30]. Among risk metrics, the s-risk model is well established as a more generalizable model
[15] (requires minimal assumptions w.r.t. the underlying process), and thus considered to be a
suitable choice in this nascent application setting. We use the example of the platform power
consumption with only WiFi On (Ew ), to further describe the s-risk concept. Assuming that Ew
follows a continuous probability distribution, for a given risk-aversive parameter γ (0 <= γ <= 1),
the s-risk of Ew can be defined as the average value of Ew over its worst 1 − γ outcomes. Therefore,
assuming N samples of Ew are available, s-risk can be expressed as

Sγ (Ew (V ,pw )) =
1

(1 − γ ) N

∑

∀k ∈Γ

[

Ew (V ,pw )k
]

,

Γ = set of the highest (1 − γ )100% values of Ew .

(1)

It is readily evident from Equation (1) that higher values of γ leads to greater aversion of (en-
ergy expenditure) risk or more conservative decisions, in determining the optimal radio settings
(optimization approach is described in the next section). From a practical perspective, this “risk-
aversive parameter” γ can be designed to be adaptive to the battery state—e.g., the system will
use increasingly greater value of γ when the device goes from normal to low and low to critical
battery states. Such heuristics could preserve operational feasibility albeit at the cost of reduced
data transfer rates. Owing to its ability to consider tails of probability distributions (with the help
of higher values of γ ) and ease of interpretation and computation, s-risk provides a tractable sto-
chastic measure of the worst-case scenarios. Based on the definition in Equation (1), we compute
the following:

—s-risk value of the platform baseline power consumption (Sp ) when all radios are Off;
—s-risk value of the platform power consumption with only BLE on (Sb ) (Raspberry Pi only
supports single transmission power for BLE.);

—s-risk values of the platform power consumption with only ZigBee On (Sz ) at the following
different transmission power settings: pz ∈ {−6,−3, 0, 1, 2, 3, 4, 5} dBm;

—s-risk values of the platform power consumption with only WiFi On (Sw ) at the following
different transmission power settings: pw ∈ {1, 2, . . . , 20, 21} dBm.

All s-risk values are computed at a prescribed γ = 0.8, which here calls for averaging over the
worst 50 values in each case.
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The s-risk values of the platform power consumptionwith onlyWiFi On and only ZigBee On are
then separatelymodeled as linear regressions of their respective transmission settings. A piecewise
linear regression is used in the case of WiFi, and a single linear regression is used in the case of
ZigBee. The linear regressions provide a smoothing of the large variations in the power traces,
while also yielding a monotonically increasing (instead of oscillatory) trend w.r.t. transmission
power—which promotes a more robust template for selecting transmission settings (guided by
power savings). The trained regression functions can be expressed as

Sz,0.8 = 2.05pz + 1.89e03, −6 ≤ pz ≤ 5,

Sw,0.8 =

⎧⎪⎨⎪⎩
1.14e01pw + 2.64e03, 1 ≤ pw ≤ 19

2.18e02pw − 1.27e03, 20 ≤ pw ≤ 21.

(2)

The s-risk models were fitted based on actual power data (collected in the offline experiments).
Illustration of the training data and resulting curve fits can be found in [40], demonstrating the
predictability of the s-risk parameter that captures the energy expenditure risk.

4.2 Link Reliability (PRR) Modeling

The PRRmeasurements from Section 3.1 are used to train models of PRR as functions of the respec-
tive radio transmission power settings. Here, we particularly develop the PRR models for ZigBee
and WiFi, since multiple transmission power settings are available for these two radios on our
platform, and they are the ones also considered in the optimal radio and transmission selection
process (Section 5).

We observe large variations in PRR measurements, especially when the links are in the transi-
tional region. The radio control scheme in practice will usually be unaware of the exact distance
between the sender and receiver, as well as of the other uncertain environmental factors affecting
the PRR. Instead, what is measurable at runtime are the PRR values being experienced by the in-
dividual radios. With this perspective, we propose the state of the system associated with the PRR
recordings to be segregated into different performance categories. In this context, the PRR and
throughput of an individual radio can also be simultaneously considered, where the categories
will then represent the state of the goodput (i.e., PRR × throughput) in that case.
In the current implementation, four categories, namely, “poor,” “low,” “medium,” and “high”

performing states, are defined w.r.t. PRR. For every transmission power setting of a radio
(WiFi/ZigBee), the top 25% PRR measurements are assigned to the “high” state, the next 25% are
assigned to the “medium” state, the subsequent 25% are assigned to the “low” state, and the bottom
25% are assigned to the “poor” state. Although the recorded (sample) distance between the sender
and receiver is not explicitly considered when making these state-category assignments (i.e., all
PRRmeasurements under a given radio setting are pooled together), the assignments are implicitly
sensitive to the distance—this is because the sender-receiver distance has a strong adverse impact
on PRR. The mean of the PRR values categorized under each state for a given transmission set-
ting is then computed to serve as the representative bounding value of the PRR for that state (to
be referred to as the PRR state or state-representative PRR values in the remainder of this article).
Regression functions are subsequently used to fit the high,medium, low, and poor state PRR values
of a radio as four separate functions of its transmission settings.
The PRR state values were observed to present S-shaped trends w.r.t. the corresponding radio

transmission power settings. This observation led to the choice of logistic regression to model the
“PRR-p” relationships between PRR values and transmission power settings. An implementation,
called L4P [6], of the four-parameter logistic function is used, with the PRR expressed as a function
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Fig. 3. Regression plots of PRR as functions of radio transmission settings; PRR data segregated into poor,
low, medium, and high states.

of the radio transmission power, p, as given by

PRR (p) = d + (a − d )/(1 + (p/c )b ). (3)

Here, the four parameters a, b, c , and d respectively represent the minimum asymptote, the stiff-
ness of the curve, the inflection point, and the maximum asymptote. The estimated values of the
eight sets of these four parameters are not listed here, since they are subjective to our recorded
PRR measurements, and do not add significant generalized value. Instead, the four logistic func-
tions, that are trained on the high/ medium/low/poor state PRR values of ZigBee and WiFi, are
respectively shown in Figures 3(a) and (b). It is readily evident from Figure 3 that while capturing
the nonlinear S-shaped “PRR-p” relationship, the logistic regression also provides monotonically
increasing “PRR-p” functions. Such a positive “PRR-p” correlation is imperative to promoting ro-
bust transmission setting modulation—where an optimal scheme should seek to increase the radio
transmission power, in response to the need to increase PRR, over the entire range of available
transmission power settings.

5 OPTIMIZATION

5.1 Problem Formulation

As stated before, the generalized objective of the radio and transmission selection is to adapt to the
current needs of the application (under the current environment) in a way that restricts packet
loss to within a small/acceptable bound, while platform power consumption attributed to

the radios is minimized. These two criteria, packet loss and power consumption, can be per-
ceived as the state parameters; and the choice of the radio type (ZigBee, WiFi, BLE, or any of
their combinations) and their transmission power setting can be perceived as action variables. This
perspective lends to formulating the radio and transmission selection process as an optimization
problem, that given the current state of the radio performance chooses the optimum action. The
Raspberry Pi only supports single transmission power for BLE; we therefore only consider ZigBee
and WiFi in our problem formulation. (We plan to implement our own CC2650 BLE driver under
Contiki and include BLE into our optimization as our future work.)
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In the remainder of the article, the PRR of WiFi and ZigBee, at given transmission settings (pw
and pz ), will be respectively represented by rw (pw ) and rz (pz ) or simply as rw and rz , where
0 ≤ rw , rz ≤ 1; the throughput of WiFi and ZigBee will be expressed in terms of the number of
packets transmitted, and represented by hw and hz , respectively. The packet size for WiFi and
ZigBee is considered to be 64 bytes. The aggregated goodput (Gw,z ) of the radios is then given by

Gw,z (pw ,pz ) = hwrw (pw ) + hzrz (pz ). (4)

If only one of the radios is on, the aggregated goodput reduces to the individual goodput of that
radio. The power consumption of the transmitting platform can then be expressed as a function
of the data rate (D), the aggregated goodputGw,z , the platform baseline power consumption (Ep ),
and the estimated platform power consumption when radios operate at the given transmission
settings (Ew and Ez ). The time-averaged power consumption of the platform is approximated by

fE = min
(

1,D/Gw,z
)

(

Ew + Ez − 2Ep
)

+ Ep , (5)

where (Ew + Ez − 2Ep ) gives a measure of the power consumption attributable to the active radios.
This measure is multiplied by the fraction of the time when the radios need to be active in a given
interval; the latter is given by the “data rate/goodput” ratio (min

(

1,D/Gw,z
)

). When the WiFi is
off, Ew (Off ) = Ep and rw (Off ) = 0; similarly, when the ZigBee is off, Ez (Off ) = Ep and rz (Off ) = 0.
It is also important to note that Equation (5) assumes that the data is split between the two radios
based on the ratio of their individual goodputs, and retransmission of lost packets is enabled in
the system.
The generalized optimization problem, with the WiFi and ZigBee transmission settings (pw and

pz , respectively) serving as the decision variables, can therefore be defined as follows:

min
pw ,pz

fE (pw ,pz ,hw ,hz )

s.t.

1 −min

(

1,
D

Gw,z (pw ,pz )

)

≥ ϵ,

where

pw ∈ {Off, 1, 2, . . . , 20, 21},

pz ∈ {Off,−6,−3, 0, 1, 2, 3, 4, 5},

(6)

where the tolerance parameter ϵ represents a safety margin in the “data rate/goodput” ratio; e.g.,
ϵ = 0.1 indicates a safety margin of 10% in the “data rate/goodput” ratio. It is important to note that
both the objective function, fE (Equation (5)), and the “data rate/goodput” (Equation (6)) constraint
are nonlinear, since the PRR is a nonlinear function of the radio transmission power (as seen from
Figure 3). In addition, owing to the uncertainties in the PRR and throughput of the radios, and
uncertainties in the power consumption of the platform, both the objective and constraint func-
tions are also uncertain. As a result, we have an integer non-linear programming (INLP) problem
with uncertainties. Although the INLP problem is NP-hard [16], the relatively limited number of
transmission power settings that the two radios can assume (WiFi: 22 and ZigBee: 9) alleviates
the computational burden of solving this optimization at runtime. Instead of formulating the op-
timization under uncertainty as a classical (computationally costly) reliability based optimization
problem, uncertainties are addressed a priori using the combination of s-risk measures of power
consumption and regression modeling of PRR and s-risk measures (as presented in Section 4). The
online execution time of solving this optimization problem is presented in Section 6.1.
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Fig. 4. Offline study (without smoothing measures or regression models): Top: Optimal transmission power
settings of WiFi and Zigbee when operating together. Bottom: success (=1) or failure (=0) in meeting the
“data-rate/goodput” ratio constraint for different distance and data-rate combinations.

An offline optimization study illustrating the impact of the PRR and power consumption un-
certainties (when left untreated) on the radio selection decisions, and the design of our online
optimization scheme for runtime radio and transmission selection, are discussed next.

5.2 Study on the Impact of Uncertainties

An offline optimization study is set up to investigate how the radio selection is affected by the envi-
ronmental uncertainties (that cause ill-predictable PRR variations) and systemic uncertainties (that
cause power consumption variations). Hence, in this study, we deliberately neither employ any
smoothing operation on the empirical data nor use the regression models developed in Section 4.

Optimization is performed for different sample combinations of distance between sender
and receiver (X ) and data rate (D), where X ∈ {10, 20, 30, . . . , 150}m and D ∈ {25, 50, 75 . . . ,
150}packets/s. A conservative safety margin of 20% (ϵ = 0.2) is imposed on the data rate/goodput
ratio. For a given distance, data rate, and radio transmission settings (pw ,pz ), the objective function
is evaluated by directly computing the s-risk value of fE (Equation (5)) from the platform power
measurements data pertaining to the stated radio transmission settings and the PRRmeasurements
data pertaining to given distance and radio transmission settings (Section 3); a risk-aversive pa-
rameter of β = 0.8 is used here. Considering the comparatively smaller variance in the throughput
measurements and the focus of the article on dynamic systems (where distance variation mainly
affects PRR), the throughput of ZigBee and WiFi is fixed at their respective measured median val-
ues (hw = 800 packets/s and hz = 225 packets/s).

Since only a small set of radio settings are available—i.e., 22 × 9 possible combinations of
(pw ,pz )—those violating the data rate/goodput ratio constraint are first filtered out; then a simple
min-search is employed to identify the optimal feasible setting, p∗w ,p

∗
z , that yields the minimum

power consumption. This process is performed for all the sample combinations of sender-receiver
distance and data rate. The radio transmission setting decisions yielded by this uncertainty-
sensitive optimization is shown in Figure 4. For illustration purposes, the results for three data
rates (150, 175, and 200 packets/s) are shown. In Figure 4, the X -axis and Y -axis respectively rep-
resent the sender-receiver distance and the data rate; in the top two plots, the color of the circles
represent the optimal WiFi and ZigBee transmission settings in dBm; and a missing circle indi-
cates that particular radio was set to “OFF” (for the given data rate/distance sample). The last plot

ACM Transactions on Sensor Networks, Vol. 15, No. 4, Article 39. Publication date: July 2019.



Robust Optimal Selection of Radio Type and Transmission Power for Internet of Things 39:13

in Figure 4 indicates whether the optimal radio setting succeeded (=1) or failed (=0) to satisfy the
data-rate/goodput ratio constraint (in Equation (6)).
The impact of noise/uncertainty of the empirical data (driving the nominal decisions) is apparent

in the offline optimization results as shown in Figure 4. For example, it can be seen that when in-
creasing the sender-receiver distance, the radios often switch back and forth between higher and
lower settings (instead of a more robust monotonic variation); secondly, no feasible/successful
radio setting combination is found for distances of 90m and 110m, although feasible/successful
settings were found for higher distances of 120–140m. These observations highlight the detri-
mental impact that directly using recorded data (with their associated uncertainties) can

have on any empirical decision-making strategy. This directly motivates (1) the uncertainty-
aware power consumption and PRR models developed in Section 4, and (2) the design of the two
online algorithms that use these models to offer robust solutions, which will be described in the
next subsections.

5.3 Fast Online Optimization (ARTPoS)

The ARTPoS online optimization artifact is developed to serve as a first foray into training a light-
weight solution for runtime selection of radio and transmission power under an energy-scarce and
uncertain/dynamic environment—typical of application domains such as home/commercial area
networks or highly mobile networks. The online scheme should be able to process, interpret, and
optimally respond to the uncertainties, without resorting to expensive uncertainty quantification
and typical reliability-based optimization techniques. These latter techniques are generally not
suited to be executed at runtime on embedded systems with humble computing capacities.
Our approach aims to construct a novel runtime scheme with the following desirable character-

istics: (i) lightweight execution, (ii) uncertainty-awareness, and (iii) promotion of a power-

saving radio/transmission selection policy. It is important to reiterate that the unique models
of power consumption (s-risk models) and PRR (logistic regressions), presented in Section 4, are
particularly aimed at enabling this lightweight runtime scheme. Drawing parallels to robust con-
trol and Markov Decision Processes, the overall objective of the online scheme can be stated as
follows: to maintain/accomplish desirable values of the state parameters (e.g., goodput and plat-
form power consumption) under a dynamic and uncertain environment, by optimally modulating
the action variables (i.e., selection of radio(s) and transmission setting(s)).
A lookup table system (radio-settings-table) is first generated. Each row (i) and each column (j) of

this table respectively corresponds to a WiFi and a ZigBee transmission setting (p
j
z ,p

i
w ); the table

thus comprises a total of 22 × 9 cells (see Equation (6)), where each cell Ci j contains one scalar
value and two 4-tuples, as shown below:

Ci j = {E (pz, j ,pw,i ), R (pz, j ),R (pw,i )},

E (p
j
z ,p

i
w ) = Sz,0.8

(

p
j
z

)

+ Sw,0.8

(

piw

)

− 2Sp,0.8,

R (pz, j ) =
(

r
high
z, j , r

medium
z, j , r lowz, j , r

poor
z, j

)

,

R (pw,i ) =
(

r
high
w,i , r

medium
w,i , r loww,i , r

poor
w,i

)

,

where i = 1, 2, . . . , 22; j = 1, 2, . . . , 9.

(7)

In Equation (7), the scalar E (pz, j ,pw,i ) represents the power consumption attributed to the active

radios, when operating at the associated transmission setting combination (p
j
z ,p

i
w ); it is derived

from the s-riskmeasures of power consumption (Section 4.1), where the s-risk value of the platform
baseline power consumption with both radios Off (Sp,0.8) is estimated to be 1831mW; the s-risk
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values of the platform power consumption with ZigBee on (Sz,0.8) and that with WiFi on (Sw,0.8)
are estimated from the linear regressions in Equation (2).
The two 4-tuples in Equation (7), R (pz, j ) and R (pw,i ), represent the four PRR values correspond-

ing to the high, medium, low, and poor operational (or performance) states of ZigBee and WiFi,
respectively, at the corresponding transmission settings. These state values are given by the PRR
regression functions developed in Section 4.2 (Figure 3(a) and (b)).

It is important to note that in practice, the lookup table is stored/loaded in a more compact
form, instead of the 22 × 9 table (described here for ease of illustration). Since the WiFi and ZigBee
settings (i, j) are essentially independent of each other, the lookup table can be stored in the actual
test bed in a form that yields a frugal set of “1 + (5 × (22 + 9))” floating point values, making it
highly effective for fast runtime decision-making on embedded devices.
The runtime radio and transmission selection algorithm/program, that uses this lookup table, is

designed as a four-step process: sense→classify→predict→search. A pseudocode of this runtime
program is given in Algorithm 1, and the individual steps are described below.
• Sense: The online process measures PRR (reported by the receiver) and throughput of each

radio at a desired sampling frequency; it computes the data rate/goodput ratio (Dt/Gt ) based on
the time-averaged values of PRR and throughput over the last time window t . If the constraint,
1 − Dt/Gt ≥ ϵ , is violated, it invokes the succeeding steps; otherwise, no change is made. In addi-
tion, the process computes and checks if the relative change in the D/G ratio is greater than 10%,
i.e., |Dt/Gt − Dt−1/Gt−1 | > 0.1. If this criteria is met, the succeeding steps are again invoked; other-
wise no changes are made. The frequency of the constraint computation and theD/G change com-
putation depends on the designer’s preferences. More risk-aversive strategies will call for higher
frequency of the former, and more energy-conscious strategies will demand higher frequency of
the latter. Too frequent changes, however, may not be recommended, as it might entail unnecessary
computing overhead on the system.
• Classify: If the sense process invokes the succeeding steps, first, the current state of each

radio’s performance, (ptw , r
t
w ) and (ptz , r

t
z ), is classified into the high, medium, low, and poor (or in-

between) state categories. This is accomplished by the following rule: Classify the current state of

the WiFi into lying at one or between the two categories, whose associated PRR values immediately

bound the measured PRR. For example (using Figure 3(b)), if the PRR ofWiFi transmitting at 14dBm
is 70%, then its performance/operation is classified to currently lie between the “medium” and “low”
states; or if the PRR ofWiFi transmitting at 4dBm is 90%, then its operation is classified into purely
“high” state. A similar rule applies to ZigBee as well. More sophisticated classification schemes,
such as using Bayes rule, can also be readily implemented within this process. This being the first
implementation of this novel online scheme, the simpler interval based classification is instead
employed here.
• Predict: After the classification step, the D/G constraint (where G = htwr

t
w,i j + h

t
zr

t
z,i j ) and

the energy objective function (fE ) are evaluated for each cell of the radio-settings table, where the
latter is given by

f t
E,i j
= min �

�
1,

Dt

htwr
t
w,i + h

t
zr

t
z, j

�
	
E
(

p
j
z ,p

i
w

)

+ Sp,0.8,

where i = 1, 2, . . . , 22; j = 1, 2, . . . , 9,

(8)

where the PRR values of ZigBee and WiFi for each cell of the lookup table (r tw,i j , r
t
z,i j ) correspond

to the classified category. More specifically, a linear interpolation is used. Taking the previous
example of PRR of WiFi transmitting at 14dBm to be 70%, where its operational state is estimated
to lie between the “medium” and “low” categories, the expected PRR of WiFi (at that time point)
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ALGORITHM 1: ARTPoS

1: Read: x, y, prrw, prrz, Dt, hw, hz;� Input of current state variables from receivers, Sense stage
2: function FindNearest(prrx, x) � Classify stage

3: if min(

prrArray − prrx

) > prrLimit then
4: prrState = min(

prrArray − prrx 

);
5: refitArray = RefitData(prrArray, x, prrx); � ARTPoS-new refit
6: return min(refitArray) satisfying 

refitArray − prrx

;
7: else

8: return min(prrArray) satisfying 

prrArray − prrx

;
9: end if

10: end function

11: function SearchFunc(x, y, prrw, prrz, Dt, hw, hz);
12: return Dt/((hw * FindNearest(prrw, x)) + (hz * FindNearest(prrz, y)));
13: end function

14: exclude← powerTable[x+1, y+1]; � Power values to omit in search
15: for (a, b) in powerTable do;
16: if powerTable[a, b] in exclude then
17: continue;
18: else

19: currentSettings = SearchFunc(a, b, prrw, prrz, Dt, hw, hz); � Search stage

20: if currentSettings > 0.9 then
21: continue;
22: else

23: append (a, b) to feasibleSettings;
24: append powerTable[a, b] to feasiblePower;
25: end if

26: end if

27: end for

28: return feasibleSettings[index of min(feasiblePower)] � Predict stage;

Algorithm Nomenclature:

prrw, prrz: Packet reception ratio of WiFi and ZigBee radios.

Dt : Data rate.

prrArray: Array of pre-generated PRR values that prrw and prrz are classified against.

refitArray: Array of PRR values including new prrw and prrz that violates the prrLimit threshold (only in

ARTPoS-new).

SEARCHFUNC: function implementing Search stage to evaluate the datarate to goodput ratio.

powerTable: pre-computed lookup table from Predict stage.

feasibleSettings: array of WiFi and Zigbee dBm values that satisfy search conditions.

feasiblePower: array of power values (from lookup table) that satisfy search conditions.

for say 12dBm will be given by

r tw,12 = r
low
w,12 +

r tw,14 − r
low
w,14

rmedium
w,14 − r loww,14

(

rmedium
w,12 − r loww,12

)

. (9)

For purely high or purely poor states, 100 and 0 are used as the respective upper and lower bounds
for the interpolation.
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• Search:Once the expected power consumption (fE,i j ) and theD/G constraint have been com-
puted for all 22 × 9 ZigBee/WiFi settings, those violating the D/G constraint are first filtered out.
A min-search is then executed to identify the optimal ZigBee/WiFi setting, (i, j )∗, as the one that
yields the smallest value of fE,i j . The system immediately switches to this new setting. This step
can be expressed as

min
i, j

f t
E,i j

subject to 1 −
Dt

htwr
t
w,i j + h

t
zr

t
z,i j

≥ ϵ,

where i = 1, 2, . . . , 22; j = 1, 2, . . . , 9.

(10)

In practice, the filtering of feasible solutions and searching for the optimal solution are both per-
formed in computationally efficient ways, e.g., the filtering is initiated by searching from the high-

est setting, (p
j
z ,p

i
w ) = (5, 21)dBm, andmoving somewhat diagonally, until a setting (k, l ) is reached

where the constraint is violated; all other lower settings (i.e., ∀(i ≤ k, j ≤ l )) are filtered out with-
out computing the constraint.
The median execution time of ARTPoS online optimization is 49ms on an ARM processor. Sec-

tion 6.1 will present our micro-benchmark evaluations in detail.

5.4 Online Optimization with In situ Refinement of PRR Models (ARTPoS-irp)

ARTPoS-irp is our first step toward a system that is also capable of judging how far the real envi-
ronment (during operation) deviates from the offline training environment, and adapts its models
online in order to provide more reliable decisions. The modified algorithm mainly extends the
Classify step in the ARTPoS system (see Section 5.3) with the aim of increasing the reliability with
which the radio’s performance ((ptw , r

t
w ) and (ptz , r

t
z )) is classified into the high, medium, low, poor

state categories. This is achieved by identifying significant deviations (from the offline trends)
and responding to it by dynamically refitting the PRR regression models used in the Classify step.
As the radio’s performance now seeks to be reflective of the environment in which the system
operates, the algorithm is expected to become more robust in its adaptation.
The refit is invoked by consistent over/underestimation of the PRR state compared to the clas-

sified curves (given in Figure 3). In ARTPoS-irp, the measure of over/underestimation is through
the observation of the difference between the measured PRR value and the PRR value at the given
transmission setting (dBm) based on the state it is classified under. If the difference exceeds a cer-
tain threshold, rTH = 0.3 for n consecutive timesteps, the refit is performed; e.g., perform refit of
the WiFi PRR curve if

|r classifiedw,i − rmeas
w,i | > rTH , for n consecutive timesteps. (11)

Here, n is set at 5, and r classifiedw,i is the PRR given by the curve into which the current state has
been classified, and rmeas

w,i is the online measured PRR value. If the difference does not exceed the
threshold, the refit is not invoked and ARTPoS-irp behaves identically to ARTPoS.
Next, the violating PRR values are added to the existing dataset, and the refit is performed using

the logistic regression [6] described in Equation (3). In order to prevent ever-growing size of the
dataset during operation, a forgetting strategy can be used (after a threshold size is exceeded)
where every time new data is added for refit the oldest data at the corresponding transmission
dBm can be removed from the set.
To illustrate the role played by this online updating strategy, we provide a representative exam-

ple in Figure 5. Here, the leftmost plot (Figure 5(a)) shows the original offline trained PRR models
for WiFi. The next plot (Figure 5(b)) shows the PRR models after one round of updating invoked
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Fig. 5. WiFi PRR Models: showing how the offline trained model gets updated online in response to new
PRR data that deviate from the offline fits.

by new deviating data at 7dBm classified under the “medium” category PRR model (note that the
blue curve fit, corresponding to “Model - med” has gotten updated). The rightmost plot (Figure 5(c))
shows the PRR models after another round of updating, in this case invoked by new deviating data
at 1dBm classified under the “high” category (note that the green curve fit, corresponding to “Model
- high” has gotten updated). It is important to note from Figure 5 that the observed effectiveness of
adapting the PRR models to the varying runtime environment is attributed to both the new online
updating scheme in ARTPoS-irp and the original choice of the (logistic) regression fitting.

6 EVALUATION

To examine the efficiency of ARTPoS and ARTPoS-irp, we perform a series of experiments on
our embedded platform presented in Section 3. We first measure the overhead of the key opera-
tions such as the time duration of the optimizer selecting the best radio(s) and needed transmis-
sion power(s) and the overhead attributed to turning the radio(s) On and Off. We then evaluate
ARTPoS/ARTPoS-irp’s impact on power consumption and link reliability, and compare their per-
formance against three baselines. A power meter fromMonsoon Solutions [33] is connected to the
sender to measure the power consumption.

6.1 Micro-Benchmark Experiments

We first evaluate the time duration taken by the two online optimal approaches to select the best
radio(s) and minimum needed transmission power(s). We record the time of the events when the
input is fed into the optimizer and the output (i.e., radio and transmission power selection) is
generated. For this experiment, we repeat the measurement 10,000 times for both ARTPoS and
ARTPoS-irp (with refit), using randomly generated inputs, on our 1.2GHz 64-bit quad-core ARMv8
CPU platform. In order to show the difference to ARTPoS, we force ARTPoS-irp to invoke its refit
every time by feeding in randomized inputs, since ARTPoS-irp’s behavior is identical to ARTPoS’s
without invoking its refit. The difference of the execution time between the two methods rep-
resents the time taken to perform the refit triggered by estimation errors. Figure 6 compares the
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Fig. 6. CDF of the time duration for ARTPoS and ARTPoS-irp to determine the optimal radio and transmis-
sion power.

Fig. 7. Radio activities when the WiFi controller manages packet transmission in a 10s period; averaged
power consumption over the first three time periods, T1 → T2, T2 → T3, and T3 → T4, respectively, are
2.09mW, 2.61mW, and 2.03mW.

cumulative probability density (CDF) of the algorithm execution time of ARTPoS and ARTPoS-irp.
As shown in Figure 6, the median execution time of ARTPoS is 49ms (consuming 13.5mJ more en-
ergy than CPU idling), where 90% and 99% of the experimental runs finish within less than 225ms
and 456ms, respectively. In comparison, the median execution time of ARTPoS-irp is 1,273ms,
where 90% of the experimental runs finish within 2,675ms; this additional computing burden can
be directly attributed to the refitting of the PRR function (via logistic regression) performed in
situ in ARTPoS-irp. This burden can be alleviated by increasing the deviation threshold and/or
the number of consecutive timesteps for which deviation is allowed (refer to Equation (11)) before
invoking the refit; future work would explore how computational efficiency trades off with energy
and link reliability performance in this context.
We also measure the time duration and energy consumption of other key operations in

ARTPoS and ARTPoS-irp. Figure 7 shows an example power consumption trace where the WiFi
controller switches On the WiFi radio, transmits 1,000 packets, and then switches Off the radio.
The platform takes T2 −T1 = 0.44s and consumes 0.92J of energy to turn On the radio and set its
transmission power. Transmitting 1,000 packets takesT3 −T2 = 1.38s, while turning Off the radios
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takes T4 −T3 = 1.02s. The platform consumes 3.60J and 2.07J of energy to transmit the data and
turn Off the radio, respectively. The radios are kept Off for the rest of the period T5 −T4 = 7.16s.
These results demonstrate the efficiency of the optimizer and the radio controllers, as well as
the advantage of turning the radios Off after transmissions in each period, and also illustrate the
significant need of developing new low-power platforms for IoT applications to achieve lower
baseline power consumption.

6.2 Impact on Power Consumption and Link Reliability

To understand how the proposed methods impact power consumption and link reliability, we
performed a set of experiments comparing the performance of ARTPoS and ARTPoS-irp with
three baselines. In all experiments, we deploy a benchmark application on top of the ARTPoS and
ARTPoS-irp by generating data packets periodically. ARTPoS and ARTPoS-irp are configured to
perform the radio and transmission power selection in each period (i.e., 10s) based on themeasured
PRR and throughput of the ZigBee andWiFi links. If the then-active radio and transmission power
setting is found to be the best-suited, it is retained; else the ARTPoS/ARTPoS-irp switches to a new
best-suited setting. Non-overlapping channels are used for ZigBee and WiFi to avoid interference.
Radios are turned Off after the last transmission in each period and the unselected one is kept
Off to reduce power consumption for our approaches and the baselines. If both radios are selected
for use, packets are partitioned based on their throughput ratio, allowing the platform to sleep
earlier and save energy. Due to the lack of a baseline that jointly optimizes the selection of both
radio and transmission power, we extend the ART [13], a practical state-of-the-art transmission
power control approach designed for ZigBee, and create three baselines: one with only ZigBee ra-
dio on running ART (ART-ZigBee), one with only WiFi radio on running ART (ART-WiFi), and one
with both radios on operating at their default powers, i.e., 21dBm for WiFi and 5dBm for ZigBee
(Fixed-power).
We performed five experimental runs, respectively, with Fixed-power, ART-WiFi, ART-ZigBee,

ARTPoS, and ARTPoS-irp, in a round-robin fashion to minimize the temporal effects of the dy-
namic wireless environment (for fair comparison). Figure 8 shows the power consumption and
packet delivery rate (PDR) comparisons between our approaches and the baselines. To explore
ARTPoS-irp’s performance under different traffic demands, we repeated the experiments by con-
trolling the application to generate data at different rates. Under each data rate and approach, we
repeat the experiments five times and present the confidence intervals in Figure 8.
As shown in Figure 8(a), both of our proposed methods, ARTPoS and ARTPoS-irp, provide

significant power savings compared to the Fixed-power and ART-WiFi baselines. For example,
our ARTPoS-irp reduces the average power consumption by 114mW and 102mW over Fixed-
power and ART-WiFi, respectively, when the data rate is 1,000 packets/period. Similarly, ARTPoS-
irp achieves significant power savings over Fixed-power and ART-WiFi at higher data rates
(60.1mW and 66.2mW at 3,000 packets/period, 86.5mW and 104mW at 5,000 packets/period, and
125mW and 126mW at 7,000 packets/period). As a comparison for power saving values, the
CC2650 radio consumes 30mW power when transmitting at 5dBm [34]. The original ARTPoS
demonstrates significant improvements over the baselines (Figure 8). It is, however, important
to note that ARTPoS-irp does outperform ARTPoS, by providing 0.4% to 6.4% greater PDR (3.7%
increase on average), while consuming 8.7mW to 17.3mW less power (13.5mW decrease on aver-
age) than ARTPoS for each data rate. These observations provide direct evidence for the conceived
benefits of the in situ (PRR model) refinement incorporated in ARTPoS-irp.
Compared to ART-ZigBee, ARTPoS-irp consumes 8.5mW more power at the lowest data rate

since it initially turns on the WiFi and ZigBee radios to measure their channel conditions. More
importantly, although ARTPoS-irp consumes more power than ART-ZigBee, the latter is not able
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Fig. 8. Power consumption and PDR differences between our approaches (ARTPoS and ARTPoS-irp) and the
baselines (Fixed-power, ART-WiFi, and ART-ZigBee) at different data rates.

to deliver satisfactory PDRs at high data rates because of the ZigBee’s limited bandwidth (i.e., the
average PDRs under ART-ZigBee are 68.7%, 44.6%, 31.0%, and 25.0% when the data rate is 3,000,
5,000, 7,000, and 9,000 packets/period, respectively, i.e., significantly inferior to ARTPoS-irp and
ARTPoS (as seen from Figure 8(b)). Neither WiFi nor ZigBee alone can support the data rate of
9,000 packets/period, while our ARTPoS-irp and ARTPoS provide satisfactory PDRs by bundling
the WiFi and ZigBee radios.
In order to examine ARTPoS-irp’s performance under different environments, we set the data

rate to 7,000 packets/period and performed a set of experiments comparing the performance of
ARTPoS-irp with ARTPoS and two baselines (Fixed-power and ART-WiFi)2 at different indoor and
outdoor locations. The transmitters and receivers are placed in different rooms in an indoor of-
fice environment and in an outdoor open space. Figure 9 shows the power consumption and PDR
comparisons between our approaches and the baselines. At each location, we repeat the experi-
ments with each approach five times and present the confidence intervals in Figure 9. As shown
in Figure 9(a), both of our proposed methods, ARTPoS and ARTPoS-irp, provide significant power

2We did not run experiments to evaluate ART-ZigBee because the data rate (7,000 packets/period) is beyond ZigBee’s

capacity.

ACM Transactions on Sensor Networks, Vol. 15, No. 4, Article 39. Publication date: July 2019.



Robust Optimal Selection of Radio Type and Transmission Power for Internet of Things 39:21

Fig. 9. Power consumption and PDR comparison between our approaches (ARTPoS and ARTPoS-irp) and
the baselines (Fixed-power, ART-WiFi, and ART-ZigBee) at different locations.

savings compared to Fixed-power and ART-WiFi baselines. For example, ARTPoS-irp reduces the
average power consumption by 105mWand 136mWover Fixed-power andART-WiFi, respectively,
when performed indoors, and saves 118mW and 148mW when performed outdoors. As shown in
Figure 9(b), ARTPoS and ARTPoS-irp achieve average PDRs over 95% at both indoor and outdoor
locations, which are very close to that of Fixed-power and ART-WiFi.
To evaluate ARTPoS-irp’s performance under different interference conditions, we set the data

rate to 7,000 packets/period and performed a set of experiments comparing the performance of
ARTPoS-irp with ARTPoS and two baselines (Fixed-power and ART-WiFi) with and without inter-
ference. We run JamLab [3] on a TelosB mote [22] to generate controlled interference. The jammer
is placed 1 meter away from the receiver. Figure 10 shows the power consumption and PDR com-
parisons between our approaches and the baselines. Under each channel condition, we repeat the
experiments with each approach five times and present the confidence intervals in Figure 10. As
shown in Figure 10(a), ARTPoS and ARTPoS-irp provide significant power savings compared to
Fixed-power and ART-WiFi baselines. For example, ARTPoS-irp reduces the average power con-
sumption by 131mW and 146mW over Fixed-power and ART-WiFi, respectively, when performed
without interference, and saves 246mW and 109mW with interference. It is notable that more en-
ergy is consumed by the WiFi radio when the WiFi channel is interfered, especially for ART-WiFi
which uses the WiFi radio only. As shown in Figure 10(b), the average PDRs of all approaches are
over 95% without interference and decrease to the range between 81% and 85% with interference.
Finally, we examine the performance of ARTPoS-irp when new nodes join the network. When

multiple senders transmit data to a single receiver, the nework is configured to run a TDMA-based
MAC to avoid packet collisions. In the experiment, we configure three senders to join the network
one by one with the data rate of 3,000 packets/period. Specifically, only node 1 sends data to the
receiver during the first 10 periods (200s). Node 2 begins to transmit at the 11th period, while
node 3 joins the network at the 21st period. Figure 11 plots the power consumption and PDR
during the experiment. Each node runs ARTPoS-irp to select its radios and transmission powers.
As Figure 11(a) shows, each node consumes slightly more power when multiple nodes are present
because of the idle listening. For example, the median power consumption of node 1 during the
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Fig. 10. Power consumption and PDR comparison between our approaches (ARTPoS and ARTPoS-irp) and
the baselines (Fixed-power and ART-WiFi) with and without interference.

Fig. 11. Radio power consumption and PDR traces of three transmitters for 30 periods.

first 10 periods is 188mW. It increases to 212mW during the next 20 periods when two senders
transmit. It further increases to 218mW when three senders are present. As Figure 11(b) shows,
the PDRs remain stable when new nodes join the network, demonstrating the effectiveness of
ARTPoS-irp on preserving the link reliability through running a TDMA-based MAC protocol.
The overall experimental results thus show that ARTPoS-irp and ARTPoS can effectively reduce

the energy consumption while maintaining satisfactory link reliability, to meet varying network
traffic demands under different real/uncertain environments. Moreover, the new ARTPoS-irp con-
sistently delivers superior performance compared to the original ARTPoS, particularly in terms of
power consumption, thereby demonstrating the advantage of the novel online adaptation mecha-
nism built into ARTPoS-irp.

7 CONCLUSION AND FUTURE WORK

Given the dynamic nature of communication in IoT (e.g., moving IoT/robotic units in uncertain
commercial/residential/industrial environments), a traditional one-radio-fits-all approach cannot
meet the challenges under typically varying operating conditions and traffic. This article presents
the newARTPoS system that makes available multiple wireless technologies at runtime and selects
the radio(s) and their transmission power(s) most suitable for the current conditions. The selection

ACM Transactions on Sensor Networks, Vol. 15, No. 4, Article 39. Publication date: July 2019.



Robust Optimal Selection of Radio Type and Transmission Power for Internet of Things 39:23

process aims to preserve link reliability within acceptable thresholds, while minimizing the power
consumption of the node attributed to radio operation. To this end, empirical approaches to mod-
eling power and PRR are presented, which allow the system to proactively adapt to large variations
in power consumption and link reliability observed runtime. This is followed by the development
of two computationally lightweight online optimization schemes, based on a unique sense-classify-
predict-search process, with the latter scheme also employing an in situ (runtime) refinement of
the PRR models for added robustness in meeting the QoS objectives. Experimental evaluations of
the thus formulated online optimization schemes, and their comparison with different baselines,
show that ARTPoS can remarkably reduce the power consumption, while maintaining satisfactory
link reliability. We plan to integrate ARTPoS with the low-power listening technique to support ef-
ficient duty cycling and enable model updating at runtime as our future works. In addition, we are
also currently investigating approaches to extend this fundamental radio/transmission selection
technique from a one-to-one communication to a many-to-many/network-scale communication
framework involving gateways. Decomposed problem formulations and decentralized decision-
making are expected to serve as two other core elements in facilitating this important next step in
this research.
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