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Abstract 15 

Investigation on the adsorption for organic pollutants onto graphene nanomaterials, is not 16 

only useful for exploring their potential adsorbent applications, but also helpful for better 17 

understanding their fate and evaluating their risks in aquatic environment. Given that the 18 

experimental determinations for the adsorption equilibrium coefficients are high workload, 19 

time-consuming and expensive, development of prediction models for adsorption onto 20 

graphene nanomaterials is becoming an urgent need. Herein molecular dynamics (MD) 21 

simulations and theoretical linear solvation energy relationships (TLSERs) were employed to 22 

predict the thermodynamics of adsorption for uncharged organic pollutants on graphene and 23 

graphene oxides. MD simulations for the adsorption of 43 neutral aromatic compounds onto 24 

graphene and diverse models of graphene oxides with various functional groups (hydroxyl, 25 

epoxy and carbonyl) demonstrated that graphene has a stronger affinity for the aromatic 26 

compounds than graphene oxides. The hydroxyl and carbonyl groups of graphene oxides 27 

were found to form hydrogen bonds with the aromatic adsorbates, while epoxy groups did 28 

not. Four TLSER models were developed for predicting the adsorption equilibrium 29 

coefficients onto graphene and graphene oxide nanosheets. The results showed that 30 

dispersion and hydrophobic interactions (V) and H-donating ability (εα) prevail in the 31 

adsorption of uncharged aromatic solutes onto these nanomaterials. These models provide in 32 

silico approaches for predicting adsorption affinities onto graphenic nanomaterials.  33 

34 
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Environmental significance 35 

Graphene and its derivatives have an extraordinary propensity to accumulate adsorbed 36 

organic pollutants, which results in its potential applications as sorption materials in various 37 

fields. Meanwhile, the adsorption of organic pollutants on graphenic nanomaterials in aquatic 38 

environment can affect their environmental fate and bring potential ecotoxicological risks. 39 

Predicting the adsorption equilibrium coefficients and understanding the adsorption 40 

mechanisms towards graphenic nanomaterials is helpful for exploring the potential 41 

applications for graphene nanomaterials as well as evaluating their environmental risks. In 42 

this study, molecular dynamics (MD) simulations were carried out to systematically examine 43 

the adsorption behavior of 43 uncharged aromatic pollutants onto graphene and graphene 44 

oxides with different functional groups (hydroxyl, epoxy and carbonyl) at an atomic level. 45 

The results indicated that the interactions between neutral aromatic compounds and 46 

graphene are stronger than those between aromatic compounds and graphene oxides. 47 

Moreover, theoretical linear solvation energy relationships (TLSERs) models were first 48 

established for predicting the adsorption equilibrium coefficients on graphene and graphene 49 

oxides. These prediction models offer promising tools to obtain adsorption affinities onto 50 

graphenic materials. 51 

  52 
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1. Introduction 53 

Owing to their unique physicochemical properties, graphene and its derivatives have drawn 54 

extensive interest since the discovery of graphene in 2004.1,2 Their potential applications in 55 

various fields (e.g., material science, medicine and biology, among others)3-9 have led to a 56 

rapid increase in the production of graphene-based materials, for which the annual 57 

production capacity is more than 400 tons in China alone.10 The market for global graphene 58 

products was estimated to be worth US$ 1.5 million in 2015 and will reach to US$ 2.1 billion 59 

by 2025.11 The ever-increasing studies have exhibited that graphene nanomaterials have 60 

shown promising potential as sorption materials for applications in these fields, namely, 61 

sample-preparation techniques, catalytic processes and wastewater treatment processes, 62 

among others,12-14 owing to their strong adsorption capability. It is noteworthy that aromatic 63 

compounds, and particularly their halogenated derivatives, exhibit high affinities for the 64 

surfaces of graphenic materials,15-18 and, coincidently, also constitute major pollutants of 65 

concern in natural waters and soils, including organochlorine pesticides19 and brominated 66 

flame retardants. 20  Indeed, analytical chemistry17 and molecular simulations 21  have 67 

demonstrated that graphenic nanomaterials, such as graphene, carbon nanotubes, and their 68 

oxidized derivatives, possess exceptionally high affinity for organic pollutants of high 69 

concern being compared with non-graphenic adsorbents. The graphene nanomaterials that 70 

can be unavoidably released into the aquatic environment during their life cycle, can also 71 

adsorb the organic pollutants, thereby altering their environmental behavior, fate as well as 72 

toxicity.22 Therefore, it is of great importance to investigate the adsorptions between organic 73 

pollutants and graphene nanomaterials, which is not only helpful for exploring their potential 74 
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adsorbent applications, but also valuable for knowing more about their fate and risks in 75 

aquatic environment.  76 

The adsorption of organic compounds to graphene oxide (GO), has also attracted 77 

increasing attention in recent years.23-25 Like graphene, various interactions (i.e., van der 78 

Waals forces, hydrophobic interactions, electrostatic interactions, π-π stacking and hydrogen 79 

bonding interactions) may be involved in the adsorption processes onto graphene oxide.26 80 

The oxygen-containing functional groups, namely, hydroxyl, epoxy, carbonyl and carboxyl, 81 

attached to the basal plane of GO, can affect the interactions between organic compounds and 82 

GO. They can also change the hydrophobicity of graphene nanosheets, which affects the 83 

interactions between graphene nanosheets and water molecules.27 For example, GO with 84 

moderate oxidation has the weakest adsorption capability for nitroaromatic chemicals among 85 

these adsorbents, viz., graphene, graphene oxide and reduced graphene oxide.23 However, 86 

there is still a lack of a systematic investigation about the influences of different functional 87 

groups attached to GO on the adsorption of diverse sets of organic compounds.  88 

Recently, molecular dynamics (MD) simulation, which can provide an atomic-level view 89 

of adsorption, has been used for exploring the interactions between organic compounds and 90 

graphene nanomaterials.28-31 Given numerous organic pollutants detected in the aquatic 91 

environment, it is not feasible to simulate the adsorption for compounds onto different 92 

graphene nanosheets one by one, even if MD simulation is more efficient than experimental 93 

determination. Thus, it is necessary to develop prediction models for estimating adsorption 94 

affinities of solutes on graphene and its derivatives. 95 

In our previous study, we developed poly-parameter linear free energy relationships 96 
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(pp-LFERs), which are based on Abraham descriptors, for predicting the adsorption energies 97 

of organic compounds onto pristine graphene in gaseous and aqueous phases.32 However, 98 

these pp-LFERs are only applicable to the compounds having Abraham descriptor values, 99 

which are determined experimentally. Emerging pollutants lack these descriptor values, 100 

preventing the use of pp-LFERs. Theoretical linear solvation energy relationships 101 

(TLSERs), 33 , 34  on the other hand, can be developed using theoretical descriptors from 102 

molecular structures, overcoming the limitations of experimental data. Up to now, a TLSER 103 

prediction model for graphene has not been established, nor has a model for graphene oxide 104 

with different functional groups.  105 

Considering that neutral chemicals generally show higher toxicity than their charged 106 

species,35,36 which indicates that they may have higher environmental risk than the charged 107 

ones, in this study, we chose 43 uncharged aromatic organic compounds as adsorbates. 108 

Besides, different graphene oxides with functional groups (hydroxyl, epoxy and carbonyl) 109 

were built as adsorbents. We systematically explored the adsorption mechanisms of 43 110 

neutral organic compounds onto graphene oxidesby MD simulations. Furthermore, we 111 

developed theoretical prediction models for the adsorption equilibrium coefficients onto 112 

graphene and graphene oxide nanosheets. These simulations provide insight into the 113 

adsorption mechanisms onto graphene oxides. Moreover, the prediction models developed in 114 

the current work can serve as an efficient, novel approach to obtain adsorption data for 115 

various uncharged compounds toward graphene and graphene oxides. 116 

2. Computational details 117 

2.1. Organic compounds and graphene nanosheet models 118 
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Herein, 43 neutral aromatic pollutants, including benzene and its derivatives (Table 1), 119 

were chosen as adsorbate models for their ubiquitous existence in natural waters and soils. 120 

Moreover, these 43 compounds have diverse functional groups, which is useful for probing 121 

the influence of functional groups on adsorption equilibrium coefficients. Their structures 122 

were downloaded from ChemSpider 37  and ChemicalBook. 38  These compounds were 123 

parameterized according to the CHARMM General Force Field (CGenFF), 39  using the 124 

ParamChem Web interface.40,41 125 

Graphene sheet consisting of 160 carbons was built as original small periodic cell. 126 

Besides, in order to investigate the effects of functional groups attached to GO on adsorption, 127 

we built small periodic patches for graphene oxides sheets, i.e., graphene oxide with 128 

hydroxyl groups (GO_H), graphene oxide with epoxy groups (GO_E) and graphene oxide 129 

with carbonyl groups (GO_C), having the same O/C ratio (0.125) which is comparable to the 130 

O/C ratio (0.12)23 in the synthesized GO. The chemical compositions are C32(OH)4 for GO_H, 131 

C32O4 for GO_E and C32O4 for GO_C, respectively. We also built a periodic patch for graphene 132 

oxide with a mixture of hydroxyl and epoxy groups (GO_M), with a chemical composition of 133 

C128O12(OH)24 and an O/C ratio (0.28), which is similar to the experimental O/C ratio (0.30).23 134 

The size for GO_M is three times larger than that for other graphene oxide models. 135 

Subsequently, these patches were solvated by adding 60 water molecules, creating an ~30 Å 136 

layer of water between periodic images of the graphene sheet. To relax the structures for 137 

these graphene nanomaterials and verify their chemical stability, we simulated each solvated 138 

structure in a reactive molecular dynamics framework (ReaxFF).42 For each structure, we 139 

performed energy minimization and 10 ps of equilibration at a temperature of 300 K and a 140 
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pressure of 1 atm, using the ReaxFF implementation43 of LAMMPS.44 The parameters for the 141 

conventional molecular dynamics simulations were obtained by creating Kekulé 142 

representations (where aromatic bonds are represented by a consistent set of single and 143 

double bonds) of the structures produced by the ReaxFF energy minimization and submitting 144 

the results to the ParamChem web interface.40,41 Thereafter, we tiled the periodic structures in 145 

the plane of the sheet, and built a 2 × 2 × 1 supercell for GS, a 5 × 5 × 1 supercell for GO_H, a 5 146 

× 5 × 1 supercell for GO_E, a 5 × 5 × 1 supercell for GO_C and a 2 × 3 × 1 supercell for GO_M 147 

with the original small patches correspondingly, so that they have similar supercell sizes and 148 

are large enough to accurately accommodate adsorption of the solutes.  149 

Note that these graphene and graphene oxides models were not directly parameterized 150 

according to CGenFF (CG2R61), for the reason that previous simulations representing 151 

graphene by the standard aromatic carbon type of CGenFF (CG2R61) yielded excellent 152 

correlation with experiments; however, the adsorption equilibrium constants were 153 

underestimated by a factor of about 8.Error! Bookmark not defined. To improve agreement 154 

with the experiments, we made modifications to the specific Lennard-Jones size parameter 155 

(called NBFIX in the CHARMM framework) between sp2 graphenic carbon atoms and water 156 

oxygen atoms. The parameter σ (Cgraph and Owater) was shifted from its original value 157 

(0.1031843 kcal/mol) by j∆σ, where j was an integer −8 ≤ j ≤ 8 and ∆σ = 0.005, producing 16 158 

force field variants. The logarithms of the adsorption equilibrium constants (log K) were 159 

calculated for four compounds (BzOMe, PhEt, NoT, and PrBn) for each force field variant as 160 

described by Comer et al.Error! Bookmark not defined. Here, “log” denotes a base-10 161 

logarithm and K has units of mL/g. The variants with j = −2 and −3 gave mean log K values for 162 
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the four compounds in the closest agreement with experiment; thus, the calculations for these 163 

two variants were extended to 29 aromatic compounds with various physicochemical 164 

properties,Error! Bookmark not defined., 45  for which experimental log K values were 165 

available and in a range of 1.96 ~ 5.68. The variant j = −3 yielded the best agreement with 166 

experiment, having a mean log K of 3.69 over all 29 compounds, similar to the mean of the 167 

experimental values, 3.66. In addition to the reduced mean deviation from experiment in 168 

comparison to the standard CGenFF parameters, this force field variant also yielded 169 

improved correlation with experiment: r = 0.920. Hence, all simulations were performed with 170 

σ (Cgraph and Owater) = 0.0881843 kcal/mol. Since this special Lennard-Jones parameter was 171 

parameterized to represent graphene-like carbon, it applied only to sp2 carbon atoms in the 172 

graphene oxide structures (sp3 atoms retained standard parameters). 173 

Subsequently, molecular dynamics simulations without imposing constraints on the 174 

supercells, were carried out using the software NAMD 2.12.46 The final size of the simulation 175 

cell for system including graphene and compounds was 39.1 Å × 42.3 Å × 39.3 Å. The sizes of 176 

supercells for systems including graphene oxides and chemicals were 49.3 Å × 42.6 Å × 41.6 Å 177 

(GO_H), 50.4 Å × 43.8 Å × 39.2 Å (GO_E), 48.9 Å × 43.2 Å × 41.0 Å (GO_C) and 40.2 Å × 51.9 Å 178 

× 40.4 Å (GO_M). More details about adsorbent models are provided in Fig. 1. 179 

 180 

 181 

 182 

 183 

Table 1. Organic Compounds and Logarithm Values of Calculated Adsorption Equilibrium 184 
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Coefficients (log K) on Graphene and Graphene Oxides 185 

No
. 

Compound Substituents 
log K_calculated 

GS GO_H GO_E 
GO_

C 
GO_

M 
1 benzene (PhH)  1.70 0.93 1.56 1.68 0.13 
2 chlorobenzene (PhCl) -Cl 2.92 1.56 2.49 2.54 0.82 
3 bromobenzene (PhBr) -Br 2.81 1.23 2.31 2.73 0.95 
4 iodobenzene (PhI) -I 3.26 1.56 2.49 2.84 0.79 
5 phenol (PhOH) -OH 2.65 1.37 2.04 2.33 0.89 
6 benzonitrile (PhCN) -CN 3.55 1.82 2.64 2.46 0.92 
7 nitrobenzene (PhNO2) -NO2 3.99 2.16 2.66 2.62 1.90 
8 toluene (PhMe) -CH3 2.67 1.10 1.97 2.13 0.21 
9 phenylmethanol (PhMl) -CH2OH 2.52 1.76 2.10 2.09 0.93 

10 ethylbenzene (PhEt) -CH2CH3 2.73 1.49 2.30 2.55 0.87 
11 propylbenzene (PhPr) -CH2CH2CH3 3.21 1.69 2.60 2.90 0.76 
12 acetophenone (BzMe) -C(O)CH3 3.91 1.38 2.49 2.68 1.52 
13 methylbenzoate (BzOMe) -C(O)OCH3 4.96 1.62 3.79 3.70 2.06 
14 2-phenylethanol (PhEl) -CH2CH2OH 2.97 1.47 2.53 2.67 1.04 
15 phenylacetate (PhOAc) -OC(O)CH3 3.08 1.69 2.22 2.55 0.92 
16 ethylbenzoate (BzOEt) -C(O)OCH2CH

3 
5.45 1.97 3.68 3.93 2.30 

17 4-fluorophenol (FPl) -OH, -F 3.09 1.56 2.38 2.50 0.77 
18 3-chlorophenol (ClPl) -OH, -Cl 3.62 1.86 2.70 3.33 1.27 
19 3-bromophenol (BrPl) -OH, -Br 4.01 1.68 3.19 3.43 1.62 
20 m-cresol (mCr) -OH, -CH3 3.30 1.50 3.06 3.01 1.18 
21 p-cresol (PCRO) -CH3, -OH 3.63 1.41 2.85 3.21 1.42 
22 4-ethylphenol (EPHE) -OH, -CH2CH3 3.65 1.78 3.02 3.25 0.95 
23 p-xylene (PXYL) -CH3 3.66 1.47 2.83 2.97 1.35 
24 4-chlorotoluene (PCLT) -CH3, -Cl 3.58 1.70 3.18 3.09 1.61 
25 4-nitrotoluene (NoT) -NO2, -CH3 5.05 1.73 3.50 3.39 2.73 
26 (3-methylphenyl) methanol 

(MeBl) 
-CH3, -CH2OH 3.50 1.86 2.72 2.49 1.37 

27 4-chloroanisole (ClAn) -Cl, -OCH3 4.19 2.32 2.95 3.04 1.95 
28 4-chloroacetophenone 

(ClAh) 
-Cl, -C(O)CH3 4.79 1.99 3.48 3.18 2.05 

29 1,3-dinitrobenzene (DNIN) -NO2 5.76 2.28 3.04 2.75 3.02 
30 methyl 2-methyl benzoate 

(MMBa) 
-CH3, 

-C(O)OCH3 
5.13 1.52 3.84 3.64 2.22 

31 4-chloroaniline (PhAm) -Cl, -NH2 3.12 1.60 2.32 2.72 1.50 
32 3,5-dimethylphenol (dMPl) -OH, -CH3 4.50 1.14 3.65 3.23 2.13 
33 hexabromobenzene (HBB) -Br 9.52 1.82 5.85 4.68 4.24 
34 pentabromotoluene (PBT) -Br, -CH3 9.55 1.95 6.37 4.62 4.92 
35 1,2-dibromo-4-(1,2-dibromo -Br, 5.87 2.66 3.95 3.68 2.05 
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ethyl)-cyclohexane (TBE) -CHBrCH2Br 
36 tetrabromo-o-chlorotoluene 

(TBCT) 
-Cl, -Br, -CH3 9.08 1.96 5.85 4.10 5.05 

37 naphthalene (NAFT)  4.26 1.33 4.14 4.20 2.22 
38 biphenyl (PhPh)  5.09 2.11 4.67 4.68 2.71 
39 1-methylnaphthalene 

(MeNh) 
-CH3 5.21 1.73 4.92 4.41 2.60 

40 BDE209 (B209) -O-, -Br 9.65 2.32 5.85 5.27 2.59 
41 BDE47 (B47) -O-, -Br 5.85 3.83 4.13 4.41 2.63 
42 BDE99 (B99) -O-, -Br 6.06 3.92 5.00 5.21 4.22 
43 BDE207 (B207) -O-, -Br 9.39 4.06 5.63 4.28 5.12 

GS: graphene sheet; GO_H: graphene oxide with hydroxyl groups; GO_E: graphene oxide 186 
with epoxy groups; GO_C: graphene oxide with carbonyl groups; GO_M: graphene oxide 187 
with mixed hydroxyl and epoxy groups. 188 

 189 

 190 

 191 

Fig. 1 The structures for graphene and graphene oxides. (a) graphene (GS); (b) graphene 192 

oxide with hydroxyl groups (GO_H); (c) graphene oxide with epoxy groups (GO_E); (d) 193 

graphene oxide with carbonyl groups (GO_C); (e) graphene oxide with a mix of hydroxyl and 194 

epoxy groups (GO_M). 195 

(a) (b)

(c) (d)

(e)
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 196 

2.2. Molecular dynamics simulations 197 

All the molecular dynamics simulations for the systems including graphene 198 

nanomaterials and each aromatic compound, were performed with NAMD 2.12. The TIP3P 199 

water model,47 an all-atom explicit-solvent model typically used with the CHARMM force 200 

field, was used for simulating the aqueous environment. The temperature and pressure were 201 

set 300 K and 1 atm, by using Langevin thermostat and Langevin piston methods 48 202 

respectively. A timestep of 2 fs was set for bonded interactions and short-range non-bonded 203 

interactions. The cut-off was set at 9 Å; the particle-mesh Ewald algorithm49 was employed to 204 

treat the long-range electrostatic interactions every other time step. Analyses were performed 205 

with VMD 1.9.3.50 206 

2.3. Calculation of adsorption equilibrium coefficients (K) 207 

Every system underwent 2000 steps of energy minimization before the calculation of free 208 

energies, which were obtained with the adaptive biasing force (ABF)51,52 method. The Colvars 209 

module53 of NAMD 2.12 was used to implement ABF along the z component of the vector 210 

between the center of mass for the organic compounds and the center of mass for the 211 

graphene or graphene oxide nanosheets. All the calculations were performed using a window 212 

with an interval 3 ≤ z ≤ 15 Å, and the forces were sampled in bins with a width of 0.05 Å. Each 213 

simulation was run for 50 ns. To verify convergence of the free energy, a few systems were 214 

run for an additional 50 ns and no significant change was observed. The potentials of mean 215 

force from the 50 ns simulations were normalized so that the mean value on 14< z < 15 Å was 216 

zero.  217 
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The adsorption equilibrium coefficients can be estimated with the method defined by 218 

Comer et al.:Error! Bookmark not defined.                    219 

( )
∫

−=
c

0

calc calc

ed zβWz 
M

K σ                      (1) 220 

where β = (kBT)-1 represents the reciprocal thermal energy, and Wcalc(z) is the potential of mean 221 

force calculated by ABF. σ/M denotes the specific surface areas of the graphene nanomaterials. 222 

Here, the experimentally measured K values by Brunauer-Emmett-Teller method,23 298.8 m2/g 223 

for GS, GO_H, GO_E and GO_C, and 7.707 m2/g for GO_M, are used to compare with our 224 

simulation results. 225 

2.4. Theoretical descriptors for prediction models 226 

All the molecules were optimized at the M06-2X/6-31G(d, p) 54  level using the 227 

GAUSSIAN 09 program unless stated otherwise.55 The LANL2DZ basis set56 was used for Br 228 

and I atoms. All the optimized structures were confirmed to be local minima by vibrational 229 

frequency analyses. Quantum chemical descriptors, including molecular polarizability, 230 

atomic charges, the highest occupied molecular orbital energy level (EHOMO) and the lowest 231 

unoccupied molecular orbital energy level (ELUMO) values, were extracted from the Gaussian 232 

output files. McGowan volumes were generated by using Dragon software 57 with the 233 

optimized structures. According to theoretical linear solvation energy relationships,58,59 we 234 

used six theoretical descriptors for developing prediction models, which can be expressed as 235 

follows: 236 

log K = aεα + bεβ + fq+ + eq− + vV + pπ + g               (2) 237 

where log K represents logarithm of the experimentally determined adsorption equilibrium 238 

constant; εα (ELUMO − EHOMO(water)), in an energy unit of electron volt (eV), is defined as covalent 239 
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acidity; εβ (ELUMO(water) − EHOMO) in eV, is covalent basicity; q+, the most positive formal charge 240 

on a hydrogen atom in the molecule in atomic charge unit (acu), is taken as electrostatic 241 

acidity; likewise, q− (acu), the absolute value of the most negative formal charge in the 242 

molecule, represents the electrostatic basicity; V is obtained by dividing the molecular volume 243 

(Vx, in mL/mol) by 100; π, a unitless quantity, is calculated by dividing the polarizability by V. 244 

a, b, f, e, v and p are fitting coefficients, and g is a regression constant. aεα, bεβ, eq− and fq+ 245 

describe the hydrogen bonding terms; vV characterizes bulk/cavity term; and pπ is the 246 

dipolarity/polarizability term. By convention, the logarithm in equation (2) is base-10 and the 247 

K has units of mL/g. 248 

2.5. Models development and characterization 249 

The calculated log K values for 43 organic compounds were used for establishing 250 

prediction models. Besides, we also randomly split the total 43 organic compounds into a 251 

training set of 35 aromatic compounds and a validation set of 8 aromatic compounds (Table 252 

S1 of the Supplementary Information, SI), and developed prediction models with the training 253 

set. Four parameters, namely, the determination coefficient (R2), root mean square error 254 

(RMSE), leave-one-out cross-validated Q2 (Q2LOO), and Q2 from bootstrap resampling (Q2BOOT) 255 

(1/5, 5000 iterations), were used to evaluate the goodness of fit and robustness. Additionally, 256 

the application domain (AD) of the prediction models was characterized with a Williams plot, 257 

which is based on standardized residuals (δ*) and leverage values (hi).  258 

3. Results and discussion  259 

3.1. log K values for organic compounds on graphene and graphene oxides 260 

Experimental log K values are available for three of the compounds examined in this 261 
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study, namely 1, 3-dinitrobenzene (DNIN), 4-nitrotoluene (NoT) and nitrobenzene (PhNO2).23 262 

Table 2 compares our calculated log K values with the experimental ones. The mean absolute 263 

errors are 0.51 and 0.24 for GS and GO_M, respectively, indicating that molecular dynamics 264 

simulation is a viable alternative method for getting log K values for adsorption onto 265 

graphene nanomaterials. 266 

 267 

Table 2. The Experimental and Calculated log K Values for DNIN, NoT and PhNO2 on GS 268 

and GO_M 269 

Compound 
log K on GS  log K on GO_M 

Experimental*  Calculated  Experimental*  Calculated 
DNIN 5.82 5.76  2.59 3.02 
NoT 4.91 5.05  2.79 2.73 

PhNO2 5.31 3.99  2.14 1.90 
* The experimental log K values are obtained from Chen et al.’s studies.23  270 
 271 

Table 1 lists the categories of functional groups for 43 organic compounds and the 272 

calculated log K values on graphene and graphene oxides. The log K values (Fig. 2) in 273 

simulations on unmodified graphene are in the range of 1.70 to 9.65, which is wider than the 274 

ranges for graphene oxides, i.e., 0.93 to 4.06 (GO_H), 1.56 to 6.37 (GO_E), 1.68 to 5.27 (GO_C) 275 

and 0.13 to 5.12 (GO_M). The log K values for organic compounds on graphene are larger 276 

than those on graphene oxides, namely, GO_H, GO_E and GO_C, which implies that 277 

graphene has a stronger adsorption capability than graphene oxides.  278 

 279 

   280 
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 281 

Fig. 2 Whisker and box plot representation of the log K values on GS, GO_H, GO_E, GO_C 282 

and GO_M. The blue lines above and below the rectangles in the plot represent the maximum 283 

and minimum log K values on each graphene nanosheet; the top and the bottom of the 284 

rectangles represent the 75th and 25th percentiles, respectively; the lines within the rectangles 285 

represent 50th percentiles. 286 

 287 

3.2. The influence of hydroxyl, epoxy and carbonyl groups for adsorption on graphene 288 

oxides 289 

The calculated free energy varies with changing the distance (r) between the center of 290 

mass for organic compounds and the surface for graphene and its oxides (Fig. 3 and Fig. S1). 291 

Moreover, similar trends were observed in the changes of free energy for 43 compounds on 292 

different graphene nanomaterials. In order to explore the effect of hydroxyl, epoxy and 293 

carbonyl groups on the adsorption, we focus the discussion on the free energies for the 294 

systems including six most representative aromatic compounds, namely, PhH, PhMe, PhOH, 295 

PhCN, PhCl and PhNO2 (Fig. 3). For GS, the free energies for organic compounds at the 296 

bottom of each valley are −4.58 kcal/mol (PhH), −5.91 kcal/mol (PhMe), −5.93 kcal/mol 297 
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(PhOH), −7.20 kcal/mol (PhCN), −6.29 kcal/mol (PhCl), and −7.78 kcal/mol (PhNO2). All these 298 

values are lower than those on graphene oxides. This further demonstrates that the graphene 299 

has the strongest adsorption affinity for these model adsorbates. For GO_H, the free energies 300 

for these adsorbates at the bottom of each valley are –3.31 kcal/mol (PhH), −3.53 kcal/mol 301 

(PhMe), −3.98 kcal/mol (PhOH), −4.67 kcal/mol (PhCN), −4.28 kcal/mol (PhCl), and −5.12 302 

kcal/mol (PhNO2), and these values are less favorable than those on the other GO models. 303 

Thus, graphene oxide with hydroxyl groups has weaker adsorption affinity than the 304 

graphene oxides with other functional groups. Note that the bottom of each valley for free 305 

energies on GO_H in Fig. 3 locates at ca. 3.8 Å, while it locates at ca. 3.5 Å for the free energies 306 

on GS, which may be understood by the fact that steric effects for hydroxyl groups on GO_H 307 

hinder the adsorbates from approaching GO_H.  308 

 309 

 310 

Fig. 3 Calculated free energy versus distance (r) between the center-of-mass for six organic 311 

compounds and the surface of graphene or graphene oxide nanosheets.  312 
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Furthermore, we calculated radial distribution functions (RDFs) for 314 

electron-withdrawing atoms (i.e., N, O, F, Cl, Br, I) in a compound relative to the hydrogen 315 

atom in hydroxyl groups on GO_H (Fig. 4). The electron-withdrawing atoms in these 316 

compounds, namely chlorobenzene (PhCl), bromobenzene (PhBr), iodobenzene (PhI), phenol 317 

(PhOH) and benzonitrile (PhCN), tend to distribute closer to the H atoms on GO_H, as 318 

compared to the compound, indicating that there exists electrostatic interactions between 319 

these electron-withdrawing atoms and H atoms. Especially for N and O atoms, g(r) has a 320 

peak at ca. 2 Å, which is within the range of hydrogen bonding interactions. Thus, 321 

electrostatic interactions play important roles in adsorption of organic compounds with 322 

electron-withdrawing atoms on GO_H, while for compounds with N or O atoms, hydrogen 323 

bonding interactions also contribute to the adsorption onto GO_H.  324 

In addition, we also calculated g(r) for H atoms in the substituent of a compound relative 325 

to the O atoms in hydroxyl groups of GO_H. The RDFs (Fig. 4) for toluene (PhMe), 326 

ethylbenzene (PhEt), and propylbenzene (PhPr) indicate that there are no hydrogen bonding 327 

interactions between the H atoms of –CH3, –CH2CH3 and –CH2CH2CH3 functional groups and 328 

the O atoms of GO_H. The g(r) values for PhOH, 4-fluorophenol (FPl), 3-chlorophenol (ClPl) 329 

and phenylmethanol (PhMl), however, have a peak at around 2 Å, implying that hydrogen 330 

bonds exist between the hydrogen atom in –OH groups of these four compounds and the O 331 

atoms of GO_H. Note that ClPl acts as a hydrogen bond donor and acceptor to –OH group on 332 

the GO_H, while 3-bromophenol (BrPl) acts only as a hydrogen bond acceptor. Likewise, 333 

m-cresol (mCr) and p-cresol (PCRO) act as hydrogen bond acceptors, though the hydroxyl 334 

group in PhOH tends to be a hydrogen bond donor. Therefore, the substituent in a phenol 335 
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can affect the formation of hydrogen bonds between the –OH and the GO_H. Moreover, 336 

RDFs for methylbenzoate (BzOMe) and phenylacetate (PhOAc) in Fig. 4 show that BzOMe 337 

has a greater propensity to form hydrogen bonds than PhOAc, even though their structures 338 

are similar. The reason may be that the oxygen atom in C=O for BzOMe maintaining the 339 

conjugation is richer in electrons than the oxygen atom in C=O for PhOAc, and prefers to act 340 

as a hydrogen bond acceptor. 341 

  342 

 343 

Fig. 4 RDFs for compounds relative to GO_H. C…C: RDFs for all carbon atoms in a 344 

compound relative to the graphene nanosheet; H…O: RDFs for H in the substituent of a 345 
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compound relative to O in the hydroxyl group on GO_H; N…H: RDFs for N in the 346 

substituent of a compound relative to H in the hydroxyl group; O…H, F…H, Cl…H, Br…H 347 

and I…H were defined similarly. 348 

 349 

For graphene oxide with epoxy groups (GO_E), we also examined the RDFs for different 350 

atoms, i.e., H atoms in the functional groups –OH, –CH3, –CH2CH3 and –CH2CH2CH3 as well 351 

as N atoms in –CN, relative to the O atom in epoxy functional groups (see Fig. S2). None of 352 

the RDFs exhibit a peak at ca. 2 Å, indicating that no hydrogen bonds exist between the 353 

inspected organic chemicals and the GO_E nanosheet. Similarly, as for graphene oxide with 354 

carbonyl groups (GO_C), the RDFs (Fig. S3) for H atoms in the –OH groups of compounds 355 

relative to the O atom on GO_C exhibit a peak at around 2 Å, which reveals that the 356 

hydrogen bonding interactions play roles in the adsorption for those compounds having –OH 357 

onto GO_C. 358 

As noted above, steric effects result in considerably weaker adsorption for the organic 359 

compounds on graphene oxide with hydroxyl groups compared to pristine graphene 360 

nanosheets. Graphene oxides with hydroxyl or carbonyl groups can form hydrogen bonds 361 

with the –OH group(s) in a compound. The hydroxyl groups in GO_H can also interact with 362 

the functional groups, namely, –CH2OH, –C(O)CH3, –C(O)OCH3, –CH2CH2OH, –OC(O)CH3, –363 

C(O)OCH2CH3 and –CN via hydrogen bonding. Moreover, the functional group in phenol 364 

can affect its hydrogen bonding between its –OH and GO_H. 365 

3.3. Prediction models for adsorption on GS and on GO_M 366 

The optimal models for predicting log K values of organic compounds onto GS and 367 
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GO_M, which were developed with log K values for 43 compounds, are as follows. 368 

For GS: 369 

log K = −1.826εα − 1.297εβ + 0.475q+ − 0.937q− + 1.012V − 1.599π + 43.011    (3) 370 

n = 43, R2 = 0.881, RMSE = 0.703, Q2LOO = 0.827, Q2BOOT = 0.754 371 

For GO_M: 372 

log K = −1.14 εα − 0.623 εβ + 3.519 q+ − 1.234 q− + 0.442V + 0.401 π + 17.919  (4) 373 

n = 43, R2 = 0.768, RMSE = 0.595, Q2LOO = 0.601, Q2BOOT = 0.752 374 

Fig. 5(a) shows that the predicted log K values on graphene nanosheets agree well with 375 

those determined by MD simulations. Similarly, the predicted log K values on GO_M are in 376 

good agreement with those from simulations (Fig. 5(b)). The values for R2adj (R2 > 0.60), Q2LOO 377 

and Q2BOOT (Q2 > 0.50), 60  and RMSE indicate that these two models have excellent 378 

goodness-of-fit and robustness. 379 
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 380 

Fig. 5 Predicted log K values (log K_pre) versus MD calculated ones (log K_cal) on (a) GS (Eq. 381 

3) and (b) GO_M (Eq. 4) 382 

 383 

Applicability domains of the prediction models (Eq. 3 and Eq. 4) are visualized in Fig. 6. 384 

All the compounds have |δ*| < 3, which shows that there are no outliers. Eq. 3 can be used for 385 

predicting log K values onto graphene nanosheets for various aromatic compounds including 386 

benzene, alcohols, phenols, anilines, nitrobenzenes, nitriles, halogenated benzenes, ketones, 387 

esters, biphenyls, polycyclic aromatic hydrocarbons (PAHs) and polybrominated diphenyl 388 

ethers (PBDEs). Eq. 4, with the same applicability domain as Eq. 3, can predict adsorption 389 

onto graphene oxide.  390 
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  392 

Fig. 6 Williams plot of standardized residuals (δ*) versus leverages (h) on (a) GS (Eq. 3) and (b) 393 

GO_M (Eq. 4) 394 

 395 

Furthermore, we established two models (Eq. S1 and Eq. S2) with the training set 396 

consisting of 35 organic chemicals. These two developed models (Eq. S1 and Eq. S2) have 397 

fitting coefficients (i.e., a, b, f, e, v and p) and regression constant g similar to those in Eq. 3 and 398 

Eq. 4. In terms of goodness-of-fit (Table 3), Eq. 3 and Eq. 4 have smaller root mean square 399 

errors than those for Eq. S1 and Eq. S2, although the R2 values for Eq. 3 and Eq. 4 are slightly 400 

lower than those for Eq. S1 and Eq. S2. For robustness, the two models (Eq. 3 and Eq. 4) being 401 

developed on 43 aromatic compounds perform better than the models (Eq. S1 and Eq. S2) 402 
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wider than that for those with sub-dataset. More details about the prediction models being 404 

based on 35 aromatic compounds can be found in SI. Note that these four prediction models 405 

are the first theoretical linear solvation energy relationship models for adsorption onto 406 

graphene and graphene oxide.  407 

 408 

Table 3. Comparisons of goodness-of-fit, robustness and predictivity ability for the 409 

developed models 410 

Model n 
 Goodness-of-fit  Robustness  Predictivity 

ability 
 R2 RMSET  Q2LOO Q2boot  RMSEv 

GS (Eq. 3) 43  0.881 0.703  0.827 0.754   
GS (Eq. S1) 35  0.882 0.742  0.818 0.712  0.540 

GO_M (Eq. 4) 43  0.768 0.595  0.601 0.752   
GO_M (Eq. S2) 35  0.774 0.621  0.584 0.709  0.525 

 411 

3.4. Adsorption mechanisms on GS and GO_M 412 

As given in the two prediction models Eq. 3 and Eq. 4, the six terms aεα, bεβ, eq−, fq+, vV 413 

and pπ have different contributions to the log K values. This difference indicates that 414 

hydrogen bonding, dispersion, hydrophobic and electrostatic interactions play diverse roles 415 

in the adsorption of organic compounds onto graphene and graphene oxide. 416 

For adsorption on graphene (Eq. 3), the covalent acidity (εα) of the examined organic 417 

compounds has a negative contribution to the log K values, indicating that compounds with 418 

strong H-donating abilities prefer to form hydrogen bonds with the oxygen atoms in water 419 

molecules, leading to a decrease in log K. Similarly, the log K values increase with decreasing 420 

covalent basicity (εβ), as compounds with strong H-accepting abilities can interact with the 421 

hydrogen atoms in the water molecules as H-acceptors. Electrostatic acidity (q+) has a positive 422 
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correlation with the log K values because the hydrogen atom with the most positive formal 423 

charge can interact with π electrons around graphene, promoting adsorption of organic 424 

compounds onto graphene. On the contrary, the electrostatic basicity (q−) of a molecule 425 

correlates negatively with the log K values. 426 

The term vV, which represents the dispersion and hydrophobic interactions, has a 427 

positive contribution to the log K values. In previous prediction models for multiwalled 428 

carbon nanotubes,Error! Bookmark not defined. , 61  which are based on experimental 429 

adsorption data, vV plays an analogous role. Note that the dipolarity/polarizability term (pπ) 430 

negatively correlates with the log K values, indicating that compounds possessing larger 431 

polarizability tend to interact with water molecules rather than with graphene.  432 

For adsorption onto graphene oxide (Eq. 4), the terms aεα, bεβ and eq− contribute 433 

negatively, while the electrostatic acidity (fq+) and bulk/cavity (vV) terms are positively 434 

correlated with the log K values, similar to those in the graphene prediction model. However, 435 

the dipolarity/polarizability (pπ) term makes a positive contribution to the adsorption for 436 

organic compounds on graphene oxide, in contrast to graphene. The reason may be that the 437 

hydroxyl and epoxy groups in graphene oxide result in polar surface, which promotes 438 

stronger interactions with polarizable compounds. To confirm the above reasoning, we 439 

computed the electrostatic potential for graphene and graphene oxide with density functional 440 

theory, as detailed in the SI. The electrostatic potential around hydroxyl and epoxy groups 441 

are negative (Fig. 7), which differs significantly from that on a graphene nanosheet. This 442 

demonstrates that the hydroxyl and epoxy groups on graphene oxide increase the polarity of 443 

graphene oxide.  444 
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 445 

 446 

Fig. 7 Electrostatic potential distribution of (a) graphene and (b) GO_M. 447 

 448 

Finally, we calculated the Pearson’s correlation coefficients (PCCs) to evaluate the 449 

influences of the six descriptors used on log K values. As shown in Table 3, the PCCs for εα 450 

and V have the largest magnitudes in both graphene and graphene oxide models: in the 451 

graphene prediction model, they are −0.826 and 0.831, respectively, while for the graphene 452 

oxide model, they are −0.776 and 0.711 (Table 4). Thus, for both graphene and graphene oxide, 453 

the H-donating ability (εα) and dispersion/hydrophobic interactions (V) are the most 454 

influential factors on the partitioning of organic compounds between graphene nanosheets 455 

and water. 456 

 457 

Table 4. Descriptors and Their Pearson’s Correlation Coefficients (PCCs)  458 

Descriptor PCCs (GS) PCCs (GO_M) 
εα −0.826 −0.776 
εβ 0.369 0.313 
q− −0.063 −0.066 
q+ −0.422 −0.300 
V 0.831 0.711 
π 0.253 0.366 

PCCs (GS): Pearson’s correlation coefficients for the descriptors in the graphene prediction 459 
model; PCCs (GO_M): Pearson’s correlation coefficients for the descriptors in the graphene 460 
oxide prediction model.  461 

 462 
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4. Conclusions 463 

By combining MD simulations and TLSERs, we investigated the adsorption of 43 464 

aromatic solutes on graphene and graphene oxides with the functional groups hydroxyl, 465 

epoxy and carbonyl. MD simulations provided us an atomic-level view of the adsorption 466 

process and an in-depth understanding of how different functional groups attached to the 467 

graphene nanosheet influence adsorption from aqueous solution. The results illustrate that 468 

the hydroxyl and carbonyl groups on graphene oxides can form hydrogen bonds with a 469 

solute’s –OH group, while the epoxy group does not form hydrogen bonds with the same 470 

compound. The newly established TLSER models can enable us to obtain the adsorption data 471 

for a much wider range of uncharged compounds onto graphene nanomaterials than the 43 472 

tested ones in this work. This study provides us novel tools to rapidly predict adsorption 473 

affinities onto graphene and graphene oxides using only theoretical molecular descriptors, 474 

which can overcome the lack of experimental descriptors.  475 

 476 
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between the center-of-mass for 37 organic compounds and the surface of graphene or 480 
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