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Abstract

Investigation on the adsorption for organic pollutants onto graphene nanomaterials, is not

only useful for exploring their potential adsorbent applications, but also helpful for better

understanding their fate and evaluating their risks in aquatic environment. Given that the

experimental determinations for the adsorption equilibrium coefficients are high workload,

time-consuming and expensive, development of prediction models for adsorption onto

graphene nanomaterials is becoming an urgent need. Herein molecular dynamics (MD)

simulations and theoretical linear solvation energy relationships (TLSERs) were employed to

predict the thermodynamics of adsorption for uncharged organic pollutants on graphene and

graphene oxides. MD simulations for the adsorption of 43 neutral aromatic compounds onto

graphene and diverse models of graphene oxides with various functional groups (hydroxyl,

epoxy and carbonyl) demonstrated that graphene has a stronger affinity for the aromatic

compounds than graphene oxides. The hydroxyl and carbonyl groups of graphene oxides

were found to form hydrogen bonds with the aromatic adsorbates, while epoxy groups did

not. Four TLSER models were developed for predicting the adsorption equilibrium

coefficients onto graphene and graphene oxide nanosheets. The results showed that

dispersion and hydrophobic interactions (V) and H-donating ability (e«) prevail in the

adsorption of uncharged aromatic solutes onto these nanomaterials. These models provide in

silico approaches for predicting adsorption affinities onto graphenic nanomaterials.
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Environmental significance

Graphene and its derivatives have an extraordinary propensity to accumulate adsorbed

organic pollutants, which results in its potential applications as sorption materials in various

fields. Meanwhile, the adsorption of organic pollutants on graphenic nanomaterials in aquatic

environment can affect their environmental fate and bring potential ecotoxicological risks.

Predicting the adsorption equilibrium coefficients and understanding the adsorption

mechanisms towards graphenic nanomaterials is helpful for exploring the potential

applications for graphene nanomaterials as well as evaluating their environmental risks. In

this study, molecular dynamics (MD) simulations were carried out to systematically examine

the adsorption behavior of 43 uncharged aromatic pollutants onto graphene and graphene

oxides with different functional groups (hydroxyl, epoxy and carbonyl) at an atomic level.

The results indicated that the interactions between neutral aromatic compounds and

graphene are stronger than those between aromatic compounds and graphene oxides.

Moreover, theoretical linear solvation energy relationships (TLSERs) models were first

established for predicting the adsorption equilibrium coefficients on graphene and graphene

oxides. These prediction models offer promising tools to obtain adsorption affinities onto

graphenic materials.
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1. Introduction

Owing to their unique physicochemical properties, graphene and its derivatives have drawn

extensive interest since the discovery of graphene in 2004.12 Their potential applications in

various fields (e.g., material science, medicine and biology, among others)*® have led to a

rapid increase in the production of graphene-based materials, for which the annual

production capacity is more than 400 tons in China alone.’® The market for global graphene

products was estimated to be worth US$ 1.5 million in 2015 and will reach to US$ 2.1 billion

by 2025.1" The ever-increasing studies have exhibited that graphene nanomaterials have

shown promising potential as sorption materials for applications in these fields, namely,

sample-preparation techniques, catalytic processes and wastewater treatment processes,

among others,'?1* owing to their strong adsorption capability. It is noteworthy that aromatic

compounds, and particularly their halogenated derivatives, exhibit high affinities for the

surfaces of graphenic materials,’>'8 and, coincidently, also constitute major pollutants of

concern in natural waters and soils, including organochlorine pesticides’ and brominated

flame retardants. 2 Indeed, analytical chemistry” and molecular simulations 2! have

demonstrated that graphenic nanomaterials, such as graphene, carbon nanotubes, and their

oxidized derivatives, possess exceptionally high affinity for organic pollutants of high

concern being compared with non-graphenic adsorbents. The graphene nanomaterials that

can be unavoidably released into the aquatic environment during their life cycle, can also

adsorb the organic pollutants, thereby altering their environmental behavior, fate as well as

toxicity.22 Therefore, it is of great importance to investigate the adsorptions between organic

pollutants and graphene nanomaterials, which is not only helpful for exploring their potential
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adsorbent applications, but also valuable for knowing more about their fate and risks in

aquatic environment.

The adsorption of organic compounds to graphene oxide (GO), has also attracted

increasing attention in recent years.>? Like graphene, various interactions (i.e., van der

Waals forces, hydrophobic interactions, electrostatic interactions, - stacking and hydrogen

bonding interactions) may be involved in the adsorption processes onto graphene oxide.2

The oxygen-containing functional groups, namely, hydroxyl, epoxy, carbonyl and carboxyl,

attached to the basal plane of GO, can affect the interactions between organic compounds and

GO. They can also change the hydrophobicity of graphene nanosheets, which affects the

interactions between graphene nanosheets and water molecules.?” For example, GO with

moderate oxidation has the weakest adsorption capability for nitroaromatic chemicals among

these adsorbents, viz., graphene, graphene oxide and reduced graphene oxide.?> However,

there is still a lack of a systematic investigation about the influences of different functional

groups attached to GO on the adsorption of diverse sets of organic compounds.

Recently, molecular dynamics (MD) simulation, which can provide an atomic-level view

of adsorption, has been used for exploring the interactions between organic compounds and

graphene nanomaterials.?8-31 Given numerous organic pollutants detected in the aquatic

environment, it is not feasible to simulate the adsorption for compounds onto different

graphene nanosheets one by one, even if MD simulation is more efficient than experimental

determination. Thus, it is necessary to develop prediction models for estimating adsorption

affinities of solutes on graphene and its derivatives.

In our previous study, we developed poly-parameter linear free energy relationships
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(pp-LFERs), which are based on Abraham descriptors, for predicting the adsorption energies

of organic compounds onto pristine graphene in gaseous and aqueous phases.’?2 However,

these pp-LFERs are only applicable to the compounds having Abraham descriptor values,

which are determined experimentally. Emerging pollutants lack these descriptor values,

preventing the use of pp-LFERs. Theoretical linear solvation energy relationships

TLSERs),3.34 on the other hand, can be developed using theoretical descriptors from
P g P

molecular structures, overcoming the limitations of experimental data. Up to now, a TLSER

prediction model for graphene has not been established, nor has a model for graphene oxide

with different functional groups.

Considering that neutral chemicals generally show higher toxicity than their charged

species,?53 which indicates that they may have higher environmental risk than the charged

ones, in this study, we chose 43 uncharged aromatic organic compounds as adsorbates.

Besides, different graphene oxides with functional groups (hydroxyl, epoxy and carbonyl)

were built as adsorbents. We systematically explored the adsorption mechanisms of 43

neutral organic compounds onto graphene oxidesby MD simulations. Furthermore, we

developed theoretical prediction models for the adsorption equilibrium coefficients onto

graphene and graphene oxide nanosheets. These simulations provide insight into the

adsorption mechanisms onto graphene oxides. Moreover, the prediction models developed in

the current work can serve as an efficient, novel approach to obtain adsorption data for

various uncharged compounds toward graphene and graphene oxides.

2. Computational details

2.1. Organic compounds and graphene nanosheet models
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Herein, 43 neutral aromatic pollutants, including benzene and its derivatives (Table 1),
were chosen as adsorbate models for their ubiquitous existence in natural waters and soils.
Moreover, these 43 compounds have diverse functional groups, which is useful for probing
the influence of functional groups on adsorption equilibrium coefficients. Their structures
were downloaded from ChemSpider¥ and ChemicalBook.3 These compounds were
parameterized according to the CHARMM General Force Field (CGenFF),* using the
ParamChem Web interface.404!

Graphene sheet consisting of 160 carbons was built as original small periodic cell.
Besides, in order to investigate the effects of functional groups attached to GO on adsorption,
we built small periodic patches for graphene oxides sheets, i.e., graphene oxide with
hydroxyl groups (GO_H), graphene oxide with epoxy groups (GO_E) and graphene oxide
with carbonyl groups (GO_C), having the same O/C ratio (0.125) which is comparable to the
O/C ratio (0.12)% in the synthesized GO. The chemical compositions are Cs2(OH)+for GO_H,
C204 for GO_E and C304 for GO_C, respectively. We also built a periodic patch for graphene
oxide with a mixture of hydroxyl and epoxy groups (GO_M), with a chemical composition of
C128012(OH)24 and an O/C ratio (0.28), which is similar to the experimental O/C ratio (0.30).2
The size for GO_M is three times larger than that for other graphene oxide models.
Subsequently, these patches were solvated by adding 60 water molecules, creating an ~30 A
layer of water between periodic images of the graphene sheet. To relax the structures for
these graphene nanomaterials and verify their chemical stability, we simulated each solvated
structure in a reactive molecular dynamics framework (ReaxFF).#2 For each structure, we

performed energy minimization and 10 ps of equilibration at a temperature of 300 K and a
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pressure of 1 atm, using the ReaxFF implementation** of LAMMPS.4 The parameters for the

conventional molecular dynamics simulations were obtained by creating Kekulé

representations (where aromatic bonds are represented by a consistent set of single and

double bonds) of the structures produced by the ReaxFF energy minimization and submitting

the results to the ParamChem web interface.#4! Thereafter, we tiled the periodic structures in

the plane of the sheet, and built a 2 x 2 x 1 supercell for GS, a 5 x 5 x 1 supercell for GO_H, a 5

x 5 x 1 supercell for GO_E, a 5 x 5 x 1 supercell for GO_C and a 2 x 3 x 1 supercell for GO_M

with the original small patches correspondingly, so that they have similar supercell sizes and

are large enough to accurately accommodate adsorption of the solutes.

Note that these graphene and graphene oxides models were not directly parameterized

according to CGenFF (CG2R61), for the reason that previous simulations representing

graphene by the standard aromatic carbon type of CGenFF (CG2Ré61) yielded excellent

correlation with experiments; however, the adsorption equilibrium constants were

underestimated by a factor of about 8.Error! Bookmark not defined. To improve agreement

with the experiments, we made modifications to the specific Lennard-Jones size parameter

(called NBFIX in the CHARMM framework) between sp? graphenic carbon atoms and water

oxygen atoms. The parameter ¢ (Cgraph and Owawer) was shifted from its original value

(0.1031843 kcal/mol) by jAc, where j was an integer -8 < j < 8 and Ao = 0.005, producing 16

force field variants. The logarithms of the adsorption equilibrium constants (log K) were

calculated for four compounds (BzOMe, PhEt, NoT, and PrBn) for each force field variant as

described by Comer et al.Error! Bookmark not defined. Here, “log” denotes a base-10

logarithm and K has units of mL/g. The variants with j = -2 and -3 gave mean log K values for
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the four compounds in the closest agreement with experiment; thus, the calculations for these
two variants were extended to 29 aromatic compounds with various physicochemical
properties,Error! Bookmark not defined.* for which experimental log K values were
available and in a range of 1.96 ~ 5.68. The variant j = -3 yielded the best agreement with
experiment, having a mean log K of 3.69 over all 29 compounds, similar to the mean of the
experimental values, 3.66. In addition to the reduced mean deviation from experiment in
comparison to the standard CGenFF parameters, this force field variant also yielded
improved correlation with experiment: r = 0.920. Hence, all simulations were performed with
0 (Cgraph and Owater) = 0.0881843 kcal/mol. Since this special Lennard-Jones parameter was
parameterized to represent graphene-like carbon, it applied only to sp? carbon atoms in the
graphene oxide structures (sp® atoms retained standard parameters).

Subsequently, molecular dynamics simulations without imposing constraints on the
supercells, were carried out using the software NAMD 2.12.4 The final size of the simulation
cell for system including graphene and compounds was 39.1 A x 42.3 A x 39.3 A. The sizes of
supercells for systems including graphene oxides and chemicals were 49.3 A x 42.6 A x 41.6 A
(GO_H), 50.4 A x 43.8 A x39.2 A (GO_E), 489 A x 432 A x41.0 A (GO_C) and 40.2 A x51.9 A

x 40.4 A (GO_M). More details about adsorbent models are provided in Fig. 1.

Table 1. Organic Compounds and Logarithm Values of Calculated Adsorption Equilibrium
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Coefficients (log K) on Graphene and Graphene Oxides

log K_calculated

No Compound Substituents GO_ GO_
GS GO_H GO_E
M
1 benzene (PhH) 1.70  0.93 1.56 1.68 0.13
2 chlorobenzene (PhCl) -Cl 2.92 1.56 2.49 2.54 0.82
3 bromobenzene (PhBr) -Br 2.81 1.23 2.31 2.73 0.95
4 iodobenzene (Phl) -1 3.26 1.56 2.49 2.84 0.79
5 phenol (PhOH) -OH 265 137 2.04 2.33 0.89
6 benzonitrile (PhCN) -CN 355 1.82 2.64 2.46 0.92
7 nitrobenzene (PhNO2) -NO:2 399 216 2.66 2.62 1.90
8 toluene (PhMe) -CHs 267 110 1.97 2.13 0.21
9 phenylmethanol (PhMl) -CH0H 2.52 1.76 2.10 2.09 0.93
10 ethylbenzene (PhEt) -CH:CHs 273 149 2.30 2.55 0.87
11 propylbenzene (PhPr) -CH:CH2CHs  3.21 1.69 2.60 2.90 0.76
12 acetophenone (BzMe) -C(O)CHs 391 1.38 2.49 2.68 1.52
13 methylbenzoate (BzOMe) -C(O)OCHs 4.96 1.62 3.79 3.70 2.06
14 2-phenylethanol (PhEI) -CH:CH-OH 297 147 2.53 2.67 1.04
15 phenylacetate (PhOAc) -OC(O)CHs 3.08 1.69 2.22 2.55 0.92
16 ethylbenzoate (BzOEt) -C(O)OCH:CH 545 197 3.68 3.93 2.30
3
17 4-fluorophenol (FP1) -OH, -F 3.09 1.56 2.38 2.50 0.77
18 3-chlorophenol (CIPl) -OH, -C1 3.62 1.86 2.70 3.33 1.27
19 3-bromophenol (BrPl) -OH, -Br 4.01 1.68 3.19 3.43 1.62
20 m-cresol (mCr) -OH, -CHs 3.30 1.50 3.06 3.01 1.18
21 p-cresol (PCRO) -CHs, -OH 3.63 141 2.85 3.21 1.42
22 4-ethylphenol (EPHE) -OH, -CHCHs 3.65 1.78 3.02 3.25 0.95
23 p-xylene (PXYL) -CHs 3.66 147 2.83 2.97 1.35
24 4-chlorotoluene (PCLT) -CHs, -Cl 3.58 1.70 3.18 3.09 1.61
25 4-nitrotoluene (NoT) -NO, -CHs 5.05 1.73 3.50 3.39 2.73
26  (3-methylphenyl) methanol -CHs -CH:2OH 350 1.86 2.72 2.49 1.37
(MeBl)
27 4-chloroanisole (ClAn) -Cl, -OCHs 419 232 2.95 3.04 1.95
28 4-chloroacetophenone -CL -C(O)CHs 4.79 1.99 3.48 3.18 2.05
(ClAh)
29  1,3-dinitrobenzene (DNIN) -NO:2 576  2.28 3.04 2.75 3.02
30  methyl 2-methyl benzoate -CHs, 513 152 3.84 3.64 222
(MMBa) -C(O)OCHs
31 4-chloroaniline (PhAm) -Cl, -NH: 312 160 2.32 2.72 1.50
32  3,5-dimethylphenol (dMPI) -OH, -CH:s 450 1.14 3.65 3.23 2.13
33  hexabromobenzene (HBB) -Br 9.52 1.82 5.85 4.68 4.24
34 pentabromotoluene (PBT) -Br, -CHs 9.55 1.95 6.37 4.62 4.92
35 1,2-dibromo-4-(1,2-dibromo -Br, 5.87 2.66 3.95 3.68 2.05

10
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36

37
38
39

40
41
42
43

ethyl)-cyclohexane (TBE)
tetrabromo-o-chlorotoluene
(TBCT)
naphthalene (NAFT)
biphenyl (PhPh)
1-methylnaphthalene
(MeNh)

BDE209 (B209)
BDE47 (B47)
BDE99 (B99)

BDE207 (B207)

-CHBrCH-2Br
-Cl, -Br, -CH3

-CHs

-O-, -Br
-O-, -Br
-O-, -Br
-O-, -Br

9.08

4.26
5.09
5.21

9.65
5.85
6.06
9.39

1.96

1.33
211
1.73

2.32
3.83
3.92
4.06

5.85

4.14
4.67
4.92

5.85
4.13
5.00
5.63

4.10

4.20
4.68
441

5.27
441
5.21
4.28

5.05

2.22
2.71
2.60

2.59
2.63
4.22
5.12

GS: graphene sheet;

GO_H: graphene oxide with hydroxyl groups; GO_E: graphene oxide

with epoxy groups; GO_C: graphene oxide with carbonyl groups; GO_M: graphene oxide

with mixed hydroxyl and epoxy groups.

Fig. 1 The structures for graphene and graphene oxides. (a) graphene (GS); (b) graphene

oxide with hydroxyl groups (GO_H); (c) graphene oxide with epoxy groups (GO_E); (d)

graphene oxide with carbonyl groups (GO_C); (e) graphene oxide with a mix of hydroxyl and

epoxy groups (GO_M).

11
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2.2. Molecular dynamics simulations

All the molecular dynamics simulations for the systems including graphene
nanomaterials and each aromatic compound, were performed with NAMD 2.12. The TIP3P
water model,#” an all-atom explicit-solvent model typically used with the CHARMM force
field, was used for simulating the aqueous environment. The temperature and pressure were
set 300 K and 1 atm, by using Langevin thermostat and Langevin piston methods*s
respectively. A timestep of 2 fs was set for bonded interactions and short-range non-bonded
interactions. The cut-off was set at 9 A; the particle-mesh Ewald algorithm* was employed to
treat the long-range electrostatic interactions every other time step. Analyses were performed
with VMD 1.9.3.50
2.3. Calculation of adsorption equilibrium coefficients (K)

Every system underwent 2000 steps of energy minimization before the calculation of free
energies, which were obtained with the adaptive biasing force (ABF)5'52 method. The Colvars
module® of NAMD 2.12 was used to implement ABF along the z component of the vector
between the center of mass for the organic compounds and the center of mass for the
graphene or graphene oxide nanosheets. All the calculations were performed using a window
with an interval 3<z <15 A, and the forces were sampled in bins with a width of 0.05 A. Each
simulation was run for 50 ns. To verify convergence of the free energy, a few systems were
run for an additional 50 ns and no significant change was observed. The potentials of mean
force from the 50 ns simulations were normalized so that the mean value on 14< z < 15 A was

zero.

12
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The adsorption equilibrium coefficients can be estimated with the method defined by
Comer et al.:Error! Bookmark not defined.
K =2 ffgze M
M
where 8 = (ksT)" represents the reciprocal thermal energy, and Wel«(z) is the potential of mean
force calculated by ABF. /M denotes the specific surface areas of the graphene nanomaterials.
Here, the experimentally measured K values by Brunauer-Emmett-Teller method,? 298.8 m?/g
for GS, GO_H, GO_E and GO_C, and 7.707 m?/g for GO_M, are used to compare with our
simulation results.
2.4. Theoretical descriptors for prediction models
All the molecules were optimized at the MO06-2X/6-31G(d, p)>* level using the
GAUSSIAN 09 program unless stated otherwise.’> The LANL2DZ basis set5 was used for Br
and I atoms. All the optimized structures were confirmed to be local minima by vibrational
frequency analyses. Quantum chemical descriptors, including molecular polarizability,
atomic charges, the highest occupied molecular orbital energy level (Enomo) and the lowest
unoccupied molecular orbital energy level (ELumo) values, were extracted from the Gaussian
output files. McGowan volumes were generated by using Dragon software® with the
optimized structures. According to theoretical linear solvation energy relationships,’% we
used six theoretical descriptors for developing prediction models, which can be expressed as
follows:
log K=aca+bep+ fgt+eq-+oV+pn+g (2)
where log K represents logarithm of the experimentally determined adsorption equilibrium

constant; ea (ELumo— ExoMO(waten)), in an energy unit of electron volt (eV), is defined as covalent

13
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acidity; g (ELumowatery — Exomo) in eV, is covalent basicity; g*, the most positive formal charge

on a hydrogen atom in the molecule in atomic charge unit (acu), is taken as electrostatic

acidity; likewise, g~ (acu), the absolute value of the most negative formal charge in the

molecule, represents the electrostatic basicity; V is obtained by dividing the molecular volume

(Vx, in mL/mol) by 100; 7, a unitless quantity, is calculated by dividing the polarizability by V.

a, b, f, e, v and p are fitting coefficients, and g is a regression constant. aca, beg, eq- and fg*

describe the hydrogen bonding terms; vV characterizes bulk/cavity term; and pm is the

dipolarity/polarizability term. By convention, the logarithm in equation (2) is base-10 and the

K has units of mL/g.

2.5. Models development and characterization

The calculated log K values for 43 organic compounds were used for establishing

prediction models. Besides, we also randomly split the total 43 organic compounds into a

training set of 35 aromatic compounds and a validation set of 8 aromatic compounds (Table

S1 of the Supplementary Information, SI), and developed prediction models with the training

set. Four parameters, namely, the determination coefficient (R?), root mean square error

(RMSE), leave-one-out cross-validated Q? (Q%o0), and Q2from bootstrap resampling (Q2soor)

(1/5, 5000 iterations), were used to evaluate the goodness of fit and robustness. Additionally,

the application domain (AD) of the prediction models was characterized with a Williams plot,

which is based on standardized residuals (6”) and leverage values (/).

3. Results and discussion

3.1. log K values for organic compounds on graphene and graphene oxides

Experimental log K values are available for three of the compounds examined in this

14
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study, namely 1, 3-dinitrobenzene (DNIN), 4-nitrotoluene (NoT) and nitrobenzene (PhNO2).23

Table 2 compares our calculated log K values with the experimental ones. The mean absolute

errors are 0.51 and 0.24 for GS and GO_M, respectively, indicating that molecular dynamics

simulation is a viable alternative method for getting log K values for adsorption onto

graphene nanomaterials.

Table 2. The Experimental and Calculated log K Values for DNIN, NoT and PhNO2 on GS

and GO_M
log K on GS log K on GO_M
Compound : ;
Experimental’ Calculated Experimental® Calculated
DNIN 5.82 5.76 2.59 3.02
NoT 4.91 5.05 2.79 2.73
PhNO2 5.31 3.99 2.14 1.90

* The experimental log K values are obtained from Chen ef al.’s studies.?

Table 1 lists the categories of functional groups for 43 organic compounds and the

calculated log K values on graphene and graphene oxides. The log K values (Fig. 2) in

simulations on unmodified graphene are in the range of 1.70 to 9.65, which is wider than the

ranges for graphene oxides, i.e., 0.93 to 4.06 (GO_H), 1.56 to 6.37 (GO_E), 1.68 to 5.27 (GO_C)

and 0.13 to 5.12 (GO_M). The log K values for organic compounds on graphene are larger

than those on graphene oxides, namely, GO_H, GO_E and GO_C, which implies that

graphene has a stronger adsorption capability than graphene oxides.

15
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GS GOH GOE GOC GOM

Fig. 2 Whisker and box plot representation of the log K values on GS, GO_H, GO_E, GO_C

and GO_M. The blue lines above and below the rectangles in the plot represent the maximum

and minimum log K values on each graphene nanosheet; the top and the bottom of the

rectangles represent the 75th and 25th percentiles, respectively; the lines within the rectangles

represent 50th percentiles.

3.2. The influence of hydroxyl, epoxy and carbonyl groups for adsorption on graphene

oxides

The calculated free energy varies with changing the distance (r) between the center of

mass for organic compounds and the surface for graphene and its oxides (Fig. 3 and Fig. S1).

Moreover, similar trends were observed in the changes of free energy for 43 compounds on

different graphene nanomaterials. In order to explore the effect of hydroxyl, epoxy and

carbonyl groups on the adsorption, we focus the discussion on the free energies for the

systems including six most representative aromatic compounds, namely, PhH, PhMe, PhOH,

PhCN, PhCl and PhNO2 (Fig. 3). For GS, the free energies for organic compounds at the

bottom of each valley are —4.58 kcal/mol (PhH), -5.91 kcal/mol (PhMe), -5.93 kcal/mol

16



298 (PhOH), -7.20 kcal/mol (PhCN), -6.29 kcal/mol (PhCl), and -7.78 kcal/mol (PhNO?2). All these
299  values are lower than those on graphene oxides. This further demonstrates that the graphene
300  has the strongest adsorption affinity for these model adsorbates. For GO_H, the free energies
301 for these adsorbates at the bottom of each valley are —-3.31 kcal/mol (PhH), -3.53 kcal/mol
302 (PhMe), -3.98 kcal/mol (PhOH), —4.67 kcal/mol (PhCN), -4.28 kcal/mol (PhCl), and -5.12
303 kcal/mol (PhNO2), and these values are less favorable than those on the other GO models.
304 Thus, graphene oxide with hydroxyl groups has weaker adsorption affinity than the
305  graphene oxides with other functional groups. Note that the bottom of each valley for free
306  energies on GO_H in Fig. 3 locates at ca. 3.8 A, while it locates at ca. 3.5 A for the free energies
307  on GS, which may be understood by the fact that steric effects for hydroxyl groups on GO_H

308  hinder the adsorbates from approaching GO_H.
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311  Fig. 3 Calculated free energy versus distance (r) between the center-of-mass for six organic

312 compounds and the surface of graphene or graphene oxide nanosheets.
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Furthermore, @ we  calculated radial distribution functions (RDFs) for
electron-withdrawing atoms (i.e.,, N, O, F, Cl, Br, I) in a compound relative to the hydrogen
atom in hydroxyl groups on GO_H (Fig. 4). The electron-withdrawing atoms in these
compounds, namely chlorobenzene (PhCl), bromobenzene (PhBr), iodobenzene (Phl), phenol
(PhOH) and benzonitrile (PhCN), tend to distribute closer to the H atoms on GO_H, as
compared to the compound, indicating that there exists electrostatic interactions between
these electron-withdrawing atoms and H atoms. Especially for N and O atoms, g(r) has a
peak at ca. 2 A, which is within the range of hydrogen bonding interactions. Thus,
electrostatic interactions play important roles in adsorption of organic compounds with
electron-withdrawing atoms on GO_H, while for compounds with N or O atoms, hydrogen
bonding interactions also contribute to the adsorption onto GO_H.

In addition, we also calculated g(r) for H atoms in the substituent of a compound relative
to the O atoms in hydroxyl groups of GO_H. The RDFs (Fig. 4) for toluene (PhMe),
ethylbenzene (PhEt), and propylbenzene (PhPr) indicate that there are no hydrogen bonding
interactions between the H atoms of ~-CHs, -CH2CH3 and ~-CH2CH:CHs functional groups and
the O atoms of GO_H. The g(r) values for PhOH, 4-fluorophenol (FPI), 3-chlorophenol (CIPl)
and phenylmethanol (PhMI), however, have a peak at around 2 A, implying that hydrogen
bonds exist between the hydrogen atom in —-OH groups of these four compounds and the O
atoms of GO_H. Note that CIP] acts as a hydrogen bond donor and acceptor to -OH group on
the GO_H, while 3-bromophenol (BrPl) acts only as a hydrogen bond acceptor. Likewise,
m-cresol (mCr) and p-cresol (PCRO) act as hydrogen bond acceptors, though the hydroxyl

group in PhOH tends to be a hydrogen bond donor. Therefore, the substituent in a phenol
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345

can affect the formation of hydrogen bonds between the -OH and the GO_H. Moreover,
RDFs for methylbenzoate (BzOMe) and phenylacetate (PhOAc) in Fig. 4 show that BzZOMe
has a greater propensity to form hydrogen bonds than PhOAc, even though their structures
are similar. The reason may be that the oxygen atom in C=O for BzZOMe maintaining the
conjugation is richer in electrons than the oxygen atom in C=O for PhOAc, and prefers to act

as a hydrogen bond acceptor.
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Fig. 4 RDFs for compounds relative to GO_H. C...C: RDFs for all carbon atoms in a

compound relative to the graphene nanosheet; H...O: RDFs for H in the substituent of a
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compound relative to O in the hydroxyl group on GO_H; N...H: RDFs for N in the
substituent of a compound relative to H in the hydroxyl group; O...H, F...H, Cl...H, Br...H

and I...H were defined similarly.

For graphene oxide with epoxy groups (GO_E), we also examined the RDFs for different
atoms, i.e., H atoms in the functional groups -OH, -CHs, -CH2CH3 and ~CH2CH2CHs as well
as N atoms in —CN, relative to the O atom in epoxy functional groups (see Fig. S2). None of
the RDFs exhibit a peak at ca. 2 A, indicating that no hydrogen bonds exist between the
inspected organic chemicals and the GO_E nanosheet. Similarly, as for graphene oxide with
carbonyl groups (GO_C), the RDFs (Fig. S3) for H atoms in the -OH groups of compounds
relative to the O atom on GO_C exhibit a peak at around 2 A, which reveals that the
hydrogen bonding interactions play roles in the adsorption for those compounds having -OH
onto GO_C.

As noted above, steric effects result in considerably weaker adsorption for the organic
compounds on graphene oxide with hydroxyl groups compared to pristine graphene
nanosheets. Graphene oxides with hydroxyl or carbonyl groups can form hydrogen bonds
with the -OH group(s) in a compound. The hydroxyl groups in GO_H can also interact with
the functional groups, namely, -CH20H, —C(O)CH3s, -C(O)OCHs, -CH2CH:0H, -OC(O)CHs, —
C(O)OCH:CHs and -CN via hydrogen bonding. Moreover, the functional group in phenol
can affect its hydrogen bonding between its -OH and GO_H.

3.3. Prediction models for adsorption on GS and on GO_M

The optimal models for predicting log K values of organic compounds onto GS and
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379

GO_M, which were developed with log K values for 43 compounds, are as follows.

For GS:

log K=-1.826¢a—1.297¢p+ 0.475g* — 0.937q- + 1.012V — 1.5997 + 43.011 3)

n =43, R2=0.881, RMSE =0.703, Q%00 = 0.827, Q2soor = 0.754

For GO_M:

log K=-1.14 €« — 0.623 g+ 3.519 q* - 1.234 g~ + 0.442V + 0.401 = + 17.919 (4)

n =43, R = 0.768, RMSE = 0.595, Q?.00 = 0.601, Q200 = 0.752

Fig. 5(a) shows that the predicted log K values on graphene nanosheets agree well with

those determined by MD simulations. Similarly, the predicted log K values on GO_M are in

good agreement with those from simulations (Fig. 5(b)). The values for R%g (R? > 0.60), Q200

and Q%oor (Q? > 0.50),¢ and RMSE indicate that these two models have excellent

goodness-of-fit and robustness.
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Fig. 5 Predicted log K values (log K_pre) versus MD calculated ones (log K_cal) on (a) GS (Eq.

3) and (b) GO_M (Eq. 4)

Applicability domains of the prediction models (Eq. 3 and Eq. 4) are visualized in Fig. 6.
All the compounds have 6" <3, which shows that there are no outliers. Eq. 3 can be used for
predicting log K values onto graphene nanosheets for various aromatic compounds including
benzene, alcohols, phenols, anilines, nitrobenzenes, nitriles, halogenated benzenes, ketones,
esters, biphenyls, polycyclic aromatic hydrocarbons (PAHs) and polybrominated diphenyl
ethers (PBDEs). Eq. 4, with the same applicability domain as Eq. 3, can predict adsorption

onto graphene oxide.
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Fig. 6 Williams plot of standardized residuals (6°) versus leverages (&) on (a) GS (Eq. 3) and (b)

GO_M (Eq. 4)

Furthermore, we established two models (Eq. S1 and Eq. S2) with the training set

consisting of 35 organic chemicals. These two developed models (Eq. S1 and Eq. S2) have

fitting coefficients (i.e., 4, b, f, ¢, v and p) and regression constant g similar to those in Eq. 3 and

Eq. 4. In terms of goodness-of-fit (Table 3), Eq. 3 and Eq. 4 have smaller root mean square

errors than those for Eq. S1 and Eq. S2, although the R? values for Eq. 3 and Eq. 4 are slightly

lower than those for Eq. S1 and Eq. S2. For robustness, the two models (Eq. 3 and Eq. 4) being

developed on 43 aromatic compounds perform better than the models (Eq. S1 and Eq. 52)

with 35 compounds. Moreover, the chemical domain for the models with whole dataset is
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wider than that for those with sub-dataset. More details about the prediction models being

based on 35 aromatic compounds can be found in SI. Note that these four prediction models

are the first theoretical linear solvation energy relationship models for adsorption onto

graphene and graphene oxide.

Table 3. Comparisons of goodness-of-fit, robustness and predictivity ability for the

developed models

Goodness-of-fit Robustness Predictivity
Model n ability
R2 RMSEr Q%00 Q%oot RMSEy
GS (Eq. 3) 43 0.881 0.703 0.827 0.754
GS (Eq. S1) 35 0.882 0.742 0.818 0.712 0.540
GO_M (Eq.4) 43 0.768 0.595 0.601 0.752
GO_M (Eq.S2) 35 0.774 0.621 0.584 0.709 0.525

3.4. Adsorption mechanisms on GS and GO_M

As given in the two prediction models Eq. 3 and Eq. 4, the six terms aeq, beg, eq, fq*, vV

and prm have different contributions to the log K values. This difference indicates that

hydrogen bonding, dispersion, hydrophobic and electrostatic interactions play diverse roles

in the adsorption of organic compounds onto graphene and graphene oxide.

For adsorption on graphene (Eq. 3), the covalent acidity (¢a) of the examined organic

compounds has a negative contribution to the log K values, indicating that compounds with

strong H-donating abilities prefer to form hydrogen bonds with the oxygen atoms in water

molecules, leading to a decrease in log K. Similarly, the log K values increase with decreasing

covalent basicity (eg), as compounds with strong H-accepting abilities can interact with the

hydrogen atoms in the water molecules as H-acceptors. Electrostatic acidity (4*) has a positive
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correlation with the log K values because the hydrogen atom with the most positive formal

charge can interact with 7 electrons around graphene, promoting adsorption of organic

compounds onto graphene. On the contrary, the electrostatic basicity (77) of a molecule

correlates negatively with the log K values.

The term vV, which represents the dispersion and hydrophobic interactions, has a

positive contribution to the log K values. In previous prediction models for multiwalled

carbon nanotubes Error! Bookmark not defined. 6 which are based on experimental

adsorption data, vV plays an analogous role. Note that the dipolarity/polarizability term (p7)

negatively correlates with the log K values, indicating that compounds possessing larger

polarizability tend to interact with water molecules rather than with graphene.

For adsorption onto graphene oxide (Eq. 4), the terms aca, bep and eq- contribute

negatively, while the electrostatic acidity (fg*) and bulk/cavity (vV) terms are positively

correlated with the log K values, similar to those in the graphene prediction model. However,

the dipolarity/polarizability (pr) term makes a positive contribution to the adsorption for

organic compounds on graphene oxide, in contrast to graphene. The reason may be that the

hydroxyl and epoxy groups in graphene oxide result in polar surface, which promotes

stronger interactions with polarizable compounds. To confirm the above reasoning, we

computed the electrostatic potential for graphene and graphene oxide with density functional

theory, as detailed in the SI. The electrostatic potential around hydroxyl and epoxy groups

are negative (Fig. 7), which differs significantly from that on a graphene nanosheet. This

demonstrates that the hydroxyl and epoxy groups on graphene oxide increase the polarity of

graphene oxide.
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Fig. 7 Electrostatic potential distribution of (a) graphene and (b) GO_M.

Finally, we calculated the Pearson’s correlation coefficients (PCCs) to evaluate the

influences of the six descriptors used on log K values. As shown in Table 3, the PCCs for e«

and V have the largest magnitudes in both graphene and graphene oxide models: in the

graphene prediction model, they are -0.826 and 0.831, respectively, while for the graphene

oxide model, they are —0.776 and 0.711 (Table 4). Thus, for both graphene and graphene oxide,

the H-donating ability (e«) and dispersion/hydrophobic interactions (V) are the most

influential factors on the partitioning of organic compounds between graphene nanosheets

and water.

Table 4. Descriptors and Their Pearson’s Correlation Coefficients (PCCs)

Descriptor PCCs (GS) PCCs (GO_M)
Ea -0.826 -0.776
& 0.369 0.313
q -0.063 -0.066
q* -0.422 -0.300
1% 0.831 0.711
Tt 0.253 0.366

PCCs (GS): Pearson’s correlation coefficients for the descriptors in the graphene prediction

model; PCCs (GO_M): Pearson’s correlation coefficients for the descriptors in the graphene

oxide prediction model.
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4. Conclusions

By combining MD simulations and TLSERs, we investigated the adsorption of 43

aromatic solutes on graphene and graphene oxides with the functional groups hydroxyl,

epoxy and carbonyl. MD simulations provided us an atomic-level view of the adsorption

process and an in-depth understanding of how different functional groups attached to the

graphene nanosheet influence adsorption from aqueous solution. The results illustrate that

the hydroxyl and carbonyl groups on graphene oxides can form hydrogen bonds with a

solute’s -OH group, while the epoxy group does not form hydrogen bonds with the same

compound. The newly established TLSER models can enable us to obtain the adsorption data

for a much wider range of uncharged compounds onto graphene nanomaterials than the 43

tested ones in this work. This study provides us novel tools to rapidly predict adsorption

affinities onto graphene and graphene oxides using only theoretical molecular descriptors,

which can overcome the lack of experimental descriptors.

Supplementary information

Electronic supplementary information (ESI) is available: (1) 35 compounds in the training set

and 8 compounds in the validation set (Table S1); (2) Calculated free energy versus distance (r)

between the center-of-mass for 37 organic compounds and the surface of graphene or

graphene oxide nanosheets (Fig. S1); (3) Radial distribution functions on GO_E (Fig. S2); (4)

Radial distribution functions on GO_C (Fig. S3); (5) Details for prediction models being based

on 35 aromatic compounds (SI1); (6) Details for computing the electrostatic potential

distribution with density functional theory (DFT) method (SI2).
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