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Abstract

We present a general mechanism to establish the existence of diffusing orbits in
a large class of nearly integrable Hamiltonian systems. Our approach is based
on following the “outer dynamics” along homoclinic orbits to a normally hyper-
bolic invariant manifold. The information on the outer dynamics is encoded by a
geometrically defined “scattering map.” We show that for every finite sequence
of successive iterations of the scattering map, there exists a true orbit that follows
that sequence, provided that the inner dynamics is recurrent. We apply this result
to prove the existence of diffusing orbits that cross large gaps in a priori unstable
models of arbitrary degrees of freedom, when the unperturbed Hamiltonian is
not necessarily convex and the induced inner dynamics is not necessarily a twist
map, and the perturbation satisfies explicit conditions that are generic.

We also mention several other applications where this mechanism is easy to
verify (analytically or numerically), such as the planar elliptic restricted three-
body problem and the spatial circular restricted three-body problem.

Our method differs, in several crucial aspects, from earlier works. Unlike the
well-known “two-dynamics” approach, the method we present here relies on the
outer dynamics alone. There are virtually no assumptions on the inner dynamics,
such as on existence of its invariant objects (e.g., primary and secondary tori,
lower-dimensional hyperbolic tori, and their stable/unstable manifolds, Aubry-
Mather sets), which are not used at all. © 2019 Wiley Periodicals, Inc.

1 Introduction

1.1 Brief Description of the Main Results

Understanding the long-term behavior of nearly integrable Hamiltonian systems
was viewed by Poincaré as the fundamental problem of dynamics. A major para-
digm that emerged from this problem is the Arnold diffusion problem |1, asserting
that “generic” integrable systems subjected to arbitrarily small, “generic” pertur-
bations, have orbits that travel a distance that is independent of the size of the
perturbation, henceforth referred to as diffusing orbits. In this sense, such orbits
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exhibit global instability, and their behavior is not captured by classical perturba-
tion theory. In Section|[I.2|we provide a brief overview of the work on this problem.

Finding explicit mechanisms of diffusion that can be verified in concrete models
is of interest in applications, since it gives insights into how to produce large effects
by applying small forces.

In this paper we develop a general but simple method to show the existence of
diffusing orbits in nearly integrable Hamiltonian systems in any dimension. The
main requirement for the system is to have a normally hyperbolic invariant mani-
fold whose stable and unstable manifolds intersect transversally along a transverse
homoclinic manifold. In this setting, one can geometrically define a map on the
normally hyperbolic invariant manifold, referred to as the scattering map [32,|36]],
which accounts for the “outer” dynamics along homoclinic orbits. The scattering
map assigns to the foot-point of an unstable fiber the foot-point of a stable fiber,
provided the two fibers meet at a unique point in the homoclinic manifold. On the
“inner dynamics,” defined by the restriction to the normally hyperbolic invariant
manifold, we only require that it satisfies Poincaré recurrence.

The main results of this paper can be summarized as follows:

(1) For every infinite pseudo—orbitﬂ generated by alternatively applying the
scattering map and the inner dynamics for sufficiently many times, there
exists a true orbit that shadows that pseudo-orbit. The statement is given in
Lemma

(i1) For every finite pseudo-orbit obtained by successively applying the scatter-
ing map, under the assumption that the inner dynamics satisfies Poincaré
recurrence, there exists a true orbit that shadows it (its intermediate points
follow the pseudo-orbit). The statement is given in Theorem [3.6]

More precisely, every finite pseudo-orbit of the scattering map can be
interspersed with arbitrarily long orbit segments of the inner dynamics, so
that the previous shadowing lemma can be applied to obtain true orbits.

(iii) For a class of perturbed systems that satisfy some verifiable conditions,
there exist pseudo-orbits of the scattering map that travel a distance of order
O(1) in the action variable; hence, by the previous shadowing result, there
exist true orbits that follow them. The specific class of systems is described
in Section [2.2] and the statement is given in Theorem [3.11]

(iv) For a class of a priori unstable, nearly integrable Hamiltonian systems,
as described in Section [ the conditions that yield diffusing orbits occur
generically.

More precisely, there exists a vector field on the normally hyperbolic invariant
manifold whose integral curves are followed closely by pseudo-orbits of the scat-
tering map. If this vector field is nontrivial at some point, we then show that the

UIn this paper we use the term pseudo-orbit in the sense of an orbit of an iterated function system
or poly-system; see [74].
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corresponding integral curve travels a distance of order 1, and there is a pseudo-
orbit of the scattering map that goes along that curve.

The above results remain valid if one considers several transverse homoclinic
manifolds rather than a single one, and hence several scattering maps. They also
remain valid if one considers a sequence of manifolds (which may be of differ-
ent topologies) chained via different heteroclinic connections, which can also be
described via scattering maps.

For the purpose of establishing the existence of diffusing orbits, the assumption
that the inner dynamics satisfies Poincaré recurrence on some bounded domain can
be eliminated for Hamiltonian systems. If there is no such domain, then there exist
diffusing orbits determined just by the inner dynamics.

As a concrete application of this method we obtain a qualitative result on the
existence of diffusing orbits in a priori unstable Hamiltonian systems (see [24]) of
any dimension, under verifiable conditions on the perturbation that are generically
satisfied, and under some mild conditions on the unperturbed system.

In particular, the unperturbed Hamiltonian does not need to be convex, and it
does not need to induce a twist map for the inner dynamics. The main requirement
on the Hamiltonian system is that we can compute perturbatively the scattering
map.

The salient features of the mechanism outlined above are the following:

(1) We do not require any information on the inner dynamics. In particular, we
can obtain diffusing orbits whose action variable crosses resonant surfaces
of any multiplicity.

This is a significant departure from previous approaches that rely on a
detailed analysis of the invariant objects for the inner dynamics: primary
KAM tori, secondary tori, lower-dimensional hyperbolic tori and their sta-
ble and unstable manifolds, Aubry-Mather sets, etc. In fact, we do not need
the inner dynamics to satisfy a twist condition, which is a key assumption
in previous geometric and variational approaches. In particular, the present
mechanism does not present the large gap problem.

(2) The normally hyperbolic invariant manifold as well as its stable and unsta-
ble manifolds can be of arbitrary dimensions.

(3) We can take advantage of the existence of several scattering maps.

(4) Our method can be applied to concrete systems—e.g., the planar elliptic
restricted three-body problem, and the spatial circular restricted three-body
problem—and, further, can be implemented in computer-assisted proofs.
See the related papers [[19,40L/44].

(5) Although the main application in this paper is on diffusion in a priori un-
stable systems, we expect that this method can be useful when applied to
a priori stable systems, as well as to infinite-dimensional systems, once the
existence of suitable normally hyperbolic invariant manifolds (called nor-
mally hyperbolic cylinders in [6168,69,/75]]) and their homoclinic channels
is established. See Remark [3.16
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1.2 Related Works

We compare our method here with some previous approaches to the diffusion
problem for different types of Hamiltonian systems.

It is customary to distinguish between geometric methods and variational meth-
ods. The method in this paper is geometric, so we first compare it with some related
approaches.

For nearly integrable Hamiltonian systems of two-and-a-half degrees of free-
dom, the existence of diffusion has been established via geometric methods in
[32,[34] by using the existence of KAM tori, primary and secondary, along the
normally hyperbolic invariant manifold. The perturbation in [34] is assumed to be
a trigonometric polynomial in the angle variable, but [42] eliminates this assump-
tion. The integrable Hamiltonian is not assumed to be convex, which seems to be
the standard assumption in many variational approaches. A similar type of results
has been obtained in [53,[54] with the use of the method of correctly aligned win-
dows. This allows us to simplify the proofs and to obtain explicit estimates on the
diffusion speed.

The case of higher-dimensional Hamiltonian systems poses a difficulty that is
not present in the case of two-and-a-half degrees of freedom: there are points in
the normally hyperbolic invariant manifold where the resonances have higher mul-
tiplicity. The technique involved in [32,[34]] uses heavily that in the neighborhood
of resonances of multiplicity 1 one can introduce a normal form that is integrable
and can be analyzed with great accuracy to obtain secondary tori. Unfortunately, it
is well-known that multiple resonances, that is, resonances of multiplicity greater
than or equal to 2, lead to normal forms that are not integrable and require other
techniques to be analyzed (see [[63}/64]).

In [37] the authors adapted the methods used in two-and-a-half degrees of free-
dom to show instability in higher dimensions. Their approach relies on the basic
fact that multiple resonances happen in subsets of codimension greater than 1 in
the space of actions and therefore the diffusing trajectories can contour them.

A key idea of our paper is that our mechanism relies mostly on following the
outer dynamics, and it does not need any detailed information on the inner dy-
namics, such as invariant tori and resonance webs, as we only need that the inner
dynamics be recurrent. This is automatically satisfied in the Hamiltonian case.
Some other works in Hamiltonian dynamics in which recurrence property plays an
important role include [56,/57,(79].

A work closely related to ours is [52]], in which the authors obtain a shadowing
lemma for finite pseudo-orbits and use it to show the existence of diffusing orbits in
a priori chaotic systems. Their shadowing lemma also does not use information on
the inner dynamics and relies on Poincaré recurrence. We note that their shadowing
lemma can alternatively be used to show the existence of true orbits that follow the
diffusing pseudo-orbits obtained in the proof of Theorem [3.11] There is a notable
difference: our shadowing lemma, Lemma [3.1] works for infinite pseudo-orbits,
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and can be used to show the existence of symbolic dynamics as well as of orbits
that escape to infinity.

Now we mention some other types of approaches to the diffusion problem.

Geometric methods based on normally hyperbolic invariant manifolds that use
the separatrix map rather than the scattering map appear in [[15,[81}[82}[89-92].
Other geometric methods have been applied in [16,,28},33,38.51L67.(75,95]]. These
geometric methods also work for systems with magnetic fields [[73]] and for dissi-
pative systems [61]].

Several authors have used variational methods (either local variational methods
or global variational methods) alone or in combination with geometric methods, to
obtain results on diffusion. This is the case, for example, in [[5H12,20-23}|68-70,
77./78]]. We mention the paper [88]], which suggests several other mechanisms that
should be at play. It seems to be a very challenging problem to make rigorous the
heuristic discussions on statistical and quantitative properties of different instability
mechanisms in the heuristic literature [25}/71,88]].

We also acknowledge that many of the methods and ideas that appear in the
works on the Arnold diffusion problem are owed to John Mather, whose influence
to the field cannot be overstated [76-78]].

1.3 Structure of the Paper

In Section[2] we review some background on normally hyperbolic invariant man-
ifolds, the scattering map, and recurrent dynamics. In Section [3] we provide two
general results on the existence of diffusing orbits, Theorem [3.6|and Theorem[3.11]
as well as some corollaries. We also provide a general shadowing lemma, Lemma
[B.1] that is used in proving these results. An application to establish the existence
of diffusing orbits in a class of nearly integrable a priori unstable Hamiltonian sys-
tems that are multi-dimensional both in the center and in the hyperbolic directions
is given in Section @ A novelty is that the unperturbed system corresponds to a
Hamiltonian that is not necessarily convex, and that the inner dynamics does not
need to satisfy a twist condition. Section[5]contains the proofs of the results stated
in Section |3} In particular, for the shadowing result given by Lemma[3.1| we give
two proofs, one based on correctly aligned windows and the other on the obstruc-
tion argument; while the first one is more constructive, the second one is simpler.
The appendices contain definitions and tools that are utilized in the paper; they are
included for the convenience of the reader. We also present in Appendix [D]an ex-
ample communicated to us by D. Turaev showing that a uniform version of Lemma
[3.1]is not possible.

2 Background

In this section, we cover some standard material that will be used in the state-
ment of the results. All the material will be well-known to experts.
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2.1 Normally Hyperbolic Invariant Manifolds and Scattering Maps

Consider a discrete-time dynamical system given by the action of a C”-smooth
map f ona C”-smooth manifold M of dimension m, where r > 1.

Assume that A is a normally hyperbolic invariant manifold (NHIM) in M, of
dimension #.: this means that the tangent bundle of M restricted to A splits as a
Whitney sum of subbundles TM|5, = TA @ E" @ E” that are invariant under Df,
and that (Df) g« expands more than (Df) ., while (Df)gs contracts more
than (Df)jra. We also assume that A is compact or that f is uniformly C”
in a neighborhood of A. The rather standard definition of the NHIM is given in
Appendix

In the sequel we assume that the stable and unstable bundles associated to the
normally hyperbolic structure have dimensions ny,ng > 0, respectively, where
ne +ny +ns = m. (In many applications concerning diffusion in nearly integrable
Hamiltonian systems, we have n, = ny = n and n, = even number, hence m =
even number.)

Remark 2.1. In the general theory of normally hyperbolic manifolds one does not
have the above restriction on dimensions, but for symplectic systems, this is natu-
ral. We also note that in the symplectic case, it is natural to assume that the stable
and unstable rates [49]] and that the forward rates in the tangent direction are the
same. In such a case, one has automatically that the invariant manifold is symplec-
tic. See [36].

The normal hyperbolicity of A implies that there exist stable and unstable in-
variant manifolds, WS(A) and W*(A), of A. The exponential contraction and
expansion rates of Df along the stable and unstable bundles, and on 7'A, deter-
mine an integer £ with 0 < £ < r such that A, W*(A), and W¥*(A) are C¢-smooth
manifolds. The stable and unstable manifolds W*(A) and W¥*(A) are foliated by
stable and unstable fibers W*(x) and W*(x), respectively, with x € A, which are
C7-smooth one-dimensional manifolds. The corresponding foliations are, how-
ever, only C t=1_smooth. See Appendix

From now on we assume that r and the normally hyperbolic structure are so that
£>2.

Let ' € W5(A) N W¥%(A) be a C*~!-smooth homoclinic manifold. Consider
the wave maps

Q:TCcW'A) - Q (M CA, Q (x)=x",
QT CcWs(A) - QM) CA, QT (x)=xT,

where x™ is the unique point in A such that x € W¥(x™) and x is the unique
point in A such that x € W5 (x™).

Under certain restrictions on I', which amount to the strong transversality condi-
tion and choosing I sufficiently small (see Appendix , the wave maps Q+
are C Z_1—diffeom0rphisms from I to their images. Such a homoclinic manifold I'
is referred to as a homoclinic channel.
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Assuming that ' is a homoclinic channel, one can define a C =1 diffeomor-

phism

0: Q (I - QT (I) givenbyo = Q1T o (Q7)7 L,
where Q7 (I") and QT (I") are open sets in A. That is, o(x™) = xT for every
x~ € Q7 (I') defined as above. The mapping ¢ is referred to as the scattering
map associated to the homoclinic channel I". For details on this setup and general
properties of the scattering map, see Appendix [A]

We shall note that there is no actual orbit of the system that goes from x~ to
o(x™) = xT. Rather, the geometric object that corresponds to o(x™) = x7 is
the heteroclinic orbit { /" (x)},ecz of x, which approaches asymptotically f”(x™)
backwards in time as n — —oo and f"(x™) forward in time as n — +o00. We
remark that, if we denote by ol the scattering map associated to the homoclinic
channel T, then for each k € Z, f¥(I') is also a homoclinic channel, and the

corresponding scattering map o/ (@ is related to o' by the invariance relation
@2.1) o @ = gk ool o ok,

While 0T and o/ @ are technically different scattering maps, they are geometri-
cally the same, as they are defined via the same homoclinic channel (up to iterations
by the map f). Of course, homoclinic channels that are not obtained from one an-
other via iteration yield, in general, two scattering maps that are geometrically
different.

In many examples, the scattering map can be computed explicitly via perturba-
tion theory [31134},/35] or numerically [[18}/19}/39,/40].

2.2 Normally Hyperbolic Invariant Manifolds and Scattering Maps
in a Symplectic Perturbative Setting

Assume now that (M, w) is a symplectic manifold and fo: M — M isa C’-
family of symplectic maps, where ¢ € (g¢, g9) for some g¢ > 0.

As an example, f; can be the time-1 map associated to the Hamiltonian flow
¢ ¢ corresponding to a Hamiltonian H;: M — R of the form

(2.2) He = Ho + ¢H,.

In this case, the maps f; with ¢ # 0 can be viewed as e-perturbations of the map
fo, the time-1 map for the unperturbed Hamiltonian flow of Hy.

Going back to the general setting, assume that there exists a normally hyperbolic
invariant manifold A, € M for f,, of even dimension n,, for all ¢ € (—gq, &9),
and that dim W*(A;) = ne + ny = dim W¥(A;) = n. + ns. Assume that Ag is
symplectic and denote by J the linear operator associated to w|a, by the metric.
Then the map f is also symplectic on Ag.

Assume for each ¢ € (—gg, £¢) there exists a homoclinic channel I, for f; that
depends C*~!-smoothly on . Then the scattering map o,: Q™ (I's) — Q7 (Iy) is
also symplectic and C*~! (see [36,38]).
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Now we assume that A, can be parametrized via a symplectic C ¢_diffeomor-
phism kg: Ag — A, for ¢ € (—e&p,&0), where Ay is the normally hyperbolic
manifold for the unperturbed map fo, and kg = Ida,. This happens, for exam-
ple, when the A.’s are obtained by the persistence of normal hyperbolicity under
sufficiently small perturbations (see [34]).

Via the parametrizations k., each map f; induces a map f; on Ag by

fo =kt o (fo)|a, 0 ke

The scattering map 0.: Q™ (I'z) C A — Q1 (Iy) C A, can also be expressed
in terms of the reference manifold Ag by

Ge kN () € Ag — k7H(QT () C Ag

given by
68 :ks_l anokg.

We will refer to the map G, also as the scattering map.

In this setting, one also has an unperturbed scattering map o on the unperturbed
manifold A g, associated to the homoclinic channel 'y contained in the intersection
between the stable and unstable manifolds of Ag. Of course, in the unperturbed
case one has 69 = kg Voo oky = 0p. Expressing both the perturbed and the
unperturbed scattering map as maps on the same (unperturbed) manifold is quite
advantageous, as one can compare them relative to the same coordinate system.

For a Hamiltonian system H, as in (2.2)), [36] provides a perturbative formula
for the scattering map:

(2.3) Ge = 8o + £JVS 05y + O(c?)

where S is a real-valued C¢-function on Ag that can be computed explicitly in
terms of convergent integrals of the perturbation evaluated along homoclinic tra-
jectories of the unperturbed system (see [36,/535]):

0 st Toy—1
— 1 0 —1
s = tim [ [T ogio (@) ooyt
dH
_ e oqjtoao_l(x)]dt
(2.4) de |e=0
+ _lim B ELE oo (250) 7 (x)
T—+o0 Jo de |e=0 +
dH
— & o¢,(x)]dt
de |e=0

Here ¢, = ¢; 0 is the flow corresponding to the unperturbed Hamiltonian Hy.
Note that, by definition, there exists z € [g such that ¢;(z) is a heteroclinic
orbit, or, equivalently, z € W¥((0¢) ! (x)) N W3 (x). Therefore, the formula (2.4)
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can also be written as

O TdH, dH,
25) S(x)= 1 ) — . dt
s st=tm [ [T on@-TE  oper'w)]
TrdH dH
+ lim [ L ogi(z) — —= o¢t(x):|dl.
T—+oo o | de |e=0 de |s=0

The normal hyperbolicity of Ag ensures that ¢, (z) —¢; (0, L(x)) and ¢; (z) —¢; (x)
converge to 0 exponentially fast as f — Foo, respectively. This makes the integral
in (2.5]) absolutely convergent with its derivatives.

In some cases it is possible that, when ¢ = 0, the stable and unstable man-
ifolds of Ag coincide, i.e., W*¥(Ag) = W*(Ay); see, e.g., Section In these
cases, one usually uses first-order perturbation theory to establish the splitting of
the manifolds. Using an adapted Melnikov method, in [34,/55] it is shown that,
under appropriate conditions, for 0 < |¢| < 1, one can find a transverse intersec-
tion of W¥(A) with W¥(A,) along a manifold I';, which extends smoothly to a
homoclinic manifold I'g as ¢ — 0. While the limiting manifold ['g is not a trans-
verse intersection, the scattering map o, depends smoothly on ¢, and thus extends
smoothly to a well-defined map oy associated to I'y.

The special case when oy = Id, which occurs in many examples, will be con-
sidered in Section 4} where a more explicit formula for the function S(x) is given
in terms of the so-called Melnikov potential.

2.3 Recurrence

We briefly recall here the definition of recurrent points and the Poincaré recur-
rence theorem, which will be needed later.

DEFINITION 2.2. A point x € A is said to be recurrent for a map f on A if for
every open neighborhood U € A of x, f¥(x) € U for some k > 0 large enough.

THEOREM 2.3 (Poincaré recurrence theorem). Suppose that | is a measure on
A that is preserved by f, and D C A is f-invariant with n(D) < oco. Then
p-almost every point of D is recurrent.

Instead of recurrent points, in the arguments below we can use nonwandering
points.

PROPOSITION 2.4. Suppose that i is a measure on A that is preserved by f, and
D C Ais f-invariant with u(D) < oo. Then every point x € D is nonwandering;
that is, for every open neighborhood U of x in D, there exists n > 1 such that
fMU)NU # @; moreover, n can be chosen arbitrarily large.

3 Main Results

The aim of this section is to provide a master theorem, Theorem[3.6] that will be
used to yield, in Theorem[3.1T]and Corollary [3.12] the existence of diffusing orbits
in a general framework.
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3.1 Shadowing of Pseudo-orbits Obtained by Interspersing
the Inner Dynamics with Scattering Maps

In this section we provide a rather general-shadowing-lemma type of result that
is needed for the proof of Theorem [3.6]

Let A be an NHIM as in Section[2.1] There are two maps defined acting on A:
the scattering map o, the outer dynamics, which is typically defined on some sub-
domain of A, called 27 (") in Section[2.2] and the restriction of f to A—the inner
dynamics. In principle, one can act on A by applying either map in any succession;
however, this does not yield true orbits of the system but only pseudo-orbits.

The shadowing lemma below says that for every pseudo-orbit obtained by al-
ternately applying a single scattering map and some sufficiently high power of the
inner map, there exists a true orbit of the system that shadows that pseudo-orbit.
The pseudo-orbits that we consider are of the form y; 11 = f™ oo o f"(y;).
The resulting shadowing orbits are of the form z;41 = f™i*"i(z;), where z; is
6-close to y; for all i. We point out that we do not claim that all points of the orbit
{f™(z0)}n>0 are close to those of the pseudo-orbit, but only some points corre-
sponding to some intermediate times, and this is the sense in which we understand
shadowing orbits here.

The orders of the iterates n; and m; are required to satisfy certain conditions.
Each power n; is required to be larger than some threshold value n*, which depends
on &, and each power m; is required to be larger than some threshold value m},
which depends on the history of the pseudo-orbit up to that point, that is, on all
previous powers ng, ..., H;_1,1i, My, ..., m;j_1 that were utilized in the previous
segments of the pseudo-orbit from yq to y;. Intuitively, m;, n; quantify the lengths
of time for which we follow a homoclinic trajectory associated to the scattering
map forward and backward in time, respectively, from I to a neighborhood of A.

LEMMA 3.1 (Shadowing lemma for pseudo-orbits of the scattering map and the
inner dynamics). Assume that f: M — M isa C"-map, r > ro, A € M is
a normally hyperbolic invariant manifold, ' C M is a homoclinic channel, and
ol Q7(I") — QT (") is the scattering map associated to . Assume that A and
I" are compact.

Then, for every § > O there exists n* € N depending on § and a family of
functions m7: N2+l 5 N, i > 0, depending on 8, such that, for every pseudo-
orbit {y; }i>o in A of the form

3.1 vier = fMool o fMi (i),
foralli >0, withn; > n* and m; > m}(no,...,nj—1.1n;, Mo, ..., mj_y), there
exists an orbit {z; }i>o of f in M such that, for all i > 0,

Zitr = fMHM(z) and  d(zi,yi) <8

The proof of Lemma[3.1]is given in Section 5.1}
Notice that the functions n* and m are defined only after we choose 8, so they
depend on §. We emphasize that the sequence y; in (3.1) is contained in A so that
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the map f that appears in the definition of y; can be taken to be f|5. The reason
why we refer to the sequence {y;} in (3.I) as a “pseudo-orbit” is that y; | and y;
are close to the endpoints of a segment orbit of the full map.

Indeed, if we consider the point p; = (L)~ £ (y;), we see that £~ (p;)
and f" (" (y;)) = y; would be close since they are in the same unstable fiber
and n; is large. We also see that o1 f% (y;) = QE(P;’)- Therefore, f™i(p;) and
f™Mi ool o f7(y;) will be close since they are in the same stable fiber.

Therefore, the sequence {y;} is approximated by a concatenation of segments
of orbits O; = { f/( p,-)};.";_ni. The mismatches at the ends of these segments of
orbits are clearly small.

It would be natural to try to use a hyperbolic shadowing theorem to follow this
pseudo-orbit. Unfortunately, with the present hypothesis, we do not have any infor-
mation on the expanding or contracting properties of the map along the directions
tangent to A, and standard hyperbolic shadowing theorems do not seem to apply.
We have to give a different proof and introduce the condition that the m;’s grow.

Lemma 3.1 can be immediately extended to the case of countably many scatter-
ing maps. Suppose that there exists an infinite collection of homoclinic channels
I’ € M, for j € N, and let

aj: Q7 () = Q7(I))
be the scattering map associated to I'; for j € N.

LEMMA 3.2. Assume that f: M — M, A € M, 1'; € M, and o} are as above
for j € N. Assume that A and I'; are compact.

Then, for every § > 0O there exist two families of functions, n}: N? — N and
ml* N2+l  Nitl 5 N, pboth depending on §, for i > 0, such that, for every
pseudo-orbit {y; }i>o in A of the form

yit1 = fM o0y 0 f(yi).
where n; > n*(ap,...,ai—1), mj > m*(ng....,nj,Mmo,...,Mj—1,0Q0,...,q;)
foralli > 0, there exists an orbit {z; }i>o of f in M such that, for alli > 0,

Zig1 = Mt (z;) and  d(zi.yi) <.

Remark 3.3. Even if it is not explicitly written in Lemma n* and m} also
depend on the hyperbolic structure, and in particular on the angle of intersection
between W*¥(A) with W¥(A) along T.

Remark 3.4. Note that Lemma [3.1] does not use any symplectic structure. It is
valid for general maps. Hence, the results obtained from it remain valid for dis-
sipative perturbations of Hamiltonian systems. Of course, when the perturbations
are Hamiltonian we can obtain stronger results.

Remark 3.5. We note that results related to Lemma [3.1] appear in [39/52}/60]. In
comparison to our lemma, [39/60] make some geometric assumptions on the inner
dynamics, and [52]] considers only finite pseudo-orbits.
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3.2 Shadowing of Pseudo-orbits of the Scattering Map
The main result of this section is the following:

THEOREM 3.6 (Shadowing Lemma for Orbits of the Scattering Map). Assume
that f: M — M is a sufficiently smooth map, A C M is a normally hyperbolic
invariant manifold with stable and unstable manifolds that intersect transversally
along an homoclinic channel ' C M, and o is the scattering map associated to I

Assume that [ preserves a measure absolutely continuous with respect to the
Lebesgue measure on A, and that o sends positive measure sets to positive measure
sets.

Let {xi}i—o,...n be a finite pseudo-orbit of the scattering map in A, i.e., Xj+1 =
o(x;),i =0,....,n—1,n > 1, which is contained in some open setUd T A with
almost every point of U recurrent for f|a. (The points {x;}i=o,....n do not have to
be themselves recurrent.)

Then, for every § > O there exists an orbit {Z;}i—o,...n of f in M, with z; 41 =
fki(z;) for some k; > 0, such that d(z;, x;) <8 foralli =0,...,n.

The proof of this result, given in Section [5.2] uses the given pseudo-orbit of
the scattering map and the recurrence property of the inner dynamics to produce
another pseudo-orbit that intertwines the scattering map and the inner dynamics.
Then, the shadowing lemma, Lemma 3.1] yields a true orbit of the system.

To apply Theorem [3.6] one needs to find orbits of the scattering map that fol-
low desired itineraries. For example, one may wish to find a pseudo-orbit of the
scattering map that travels a “long distance” in A. If such a pseudo-orbit is found,
Theorem [3.6] yields a true orbit that also travels the same large distance.

We emphasize that Theorem is very general, as the requirements on the
scattering map and on the inner dynamics are automatically satisfied in many sit-
uations. If M is endowed with a symplectic form w, |, is symplectic, and f is
also symplectic, then f|A is symplectic and the scattering map o is also symplectic
(see [360]). Thus, f and o are volume preserving, and Theorem |3.6|applies.

We have the following remarkable dichotomy. Either:

1. The inner map f| A has an invariant open set I/ containing the domain of the
scattering map and on which there is Poincaré recurrence. Under generic
conditions, the scattering map has a pseudo-orbit that travels a long dis-
tance within /. Applying Theorem yields the existence of a true orbit
that travels a long distance as well. Therefore we obtain diffusion by inter-
twining the inner and outer dynamics.

II. There is no open set of finite measure in A that is invariant under f| A-
Hence there are orbits of f that leave every open set in A, thus traveling
long distances. Therefore we obtain diffusion by the inner map f| A alone.

In both alternatives we obtain diffusing orbits.

A precise formulation of this dichotomy is given in Corollary[3.12]

Note that in Theorem we do not require that f satisfy a twist condition,
which seems to be essential in many other works. In general, nontwist maps of
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the annulus have regions where standard methods such as KAM theory and Aubry-
Mather theory do not apply (see [30,31]]).

Indeed, in Theorem [3.6] we do not need to make any qualitative assumption
about the map f. In particular, we do not care whether the map has KAM tori that
are close enough. That is, the mechanism presented here does not present the large
gap problem.

Theorem [3.6] extends naturally to the case of finitely many scattering maps
rather than a single one. Suppose that there exists a finite collection of homo-
clinic channels I'; € M, for j € {1,..., L}, for some positive integer L. Let
oj: Q7 () — S2+(I‘_,-) be the scattering map associated to I'; for j = 1,..., L.

Using many scattering maps in arbitrary order rather than just one is very advan-
tageous in proving diffusion. Iterating a single map has obstructions for large-scale
motions (e.g., KAM tori). Having several maps, it is very hard to find objects that
are invariant for all of them. See [13,/14,[32,/54,/56.,(59./74].

THEOREM 3.7. Assume that f: M — M, A € M, I} € M, and 0j, j =
1,..., L, are as above. Assume that [ preserves a measure absolutely continuous
with respect to the Lebesgue measure on A and that each o sends positive measure
sets to positive measure sets. Let {x;}i—o,...n be a finite sequence of points of the
form xi11 = o0g;(x;) in A, where ; € {1,..., L} fori = 0,...,n — 1, which
is contained in some open set U < A with the property that almost every point
of U is recurrent for fia. Then, for every § > O there exists an orbit {Z;}i=o,...n
of fin M, withzi1 = f¥i(z;) for some k; > 0, such that d(z;, x;) < § for all
i=0,...,n

Remark 3.8. In general situations, one has an abundance of homoclinic orbits. By
the Smale-Birkhoff homoclinic orbit theorem the existence of a single transverse
homoclinic orbit implies the existence of infinitely many transverse homoclinic
orbits that are geometrically distinct. Thus one is able to define many scattering
maps.

In applications, using several scattering maps rather than a single one can be
very advantageous. In astrodynamics, for example, the existence of multiple ho-
moclinic intersections can be exploited to obtain diffusion [43}{47]] and to increase
the versatility of space missions; see, e.g., [[19,40].

Remark 3.9. Using several scattering maps can also be useful to prove diffusion in
generic systems. In some perturbative problems, e.g., as in Section[d} the scattering
map can be computed in terms of convergent integrals of the perturbation evaluated
along a homoclinic of the unperturbed system. One can ensure that the scattering
map has nontrivial effects by verifying that such an integral is nonzero. Thus, given
a perturbation, one can slightly modify it, using a bump function supported in some
tubular neighborhood of the homoclinic, to obtain a nearby perturbation for which
the corresponding scattering map exhibits the desired nontrivial effects. Having
available multiple homoclinics, one can use bump functions supported in disjoint
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tubular neighborhoods of each of these homoclinics to obtain multiple scattering
maps that exhibit different types of nontrivial behaviors; see, e.g., [22,23.55}/56].

Remark 3.10. The results above also generalize to the case of several NHIMs. If
I'p € WKI N Wls\z

is a heteroclinic channel between two NHIMs A1 and A», we can define a scatter-
ing map

012: Q (I'12) CA1L — A2
in a similar fashion to the case of a single NHIM. If we are given a chain of mani-
folds A;,i = 1,....n, and scattering maps

0iit1: Q (Tig1) CA = A, i=1,...,n—-1,

then we can shadow orbits of the form y; 11 = o;;+1(y;), with y; € A; and
Vi+1 € Aj41, fori = 1,...,n — 1. Such scattering maps appear in the study of
double resonances [6.68}/69,77]]. We hope to come back to this problem.

Another problem where one has scattering maps between two different normally
hyperbolic invariant manifolds is the problem of two rocking blocks under periodic
forcing [62].

3.3 A Qualitative Mechanism of Diffusion
in a Perturbative Symplectic Setting

We now describe several situations when we can construct pseudo-orbits of the
scattering map that travel a significant distance within the normally hyperbolic
invariant manifold, and so Theorem [3.6|can be applied to obtain true orbits nearby.
More concrete conditions that yield such orbits in some concrete examples appear
in Section 4]

We consider the perturbative setting described in Section where fo: M —
M is a symplectic map, A; € M is a normally hyperbolic invariant manifold (not
necessarily compact) for f¢, [s is a homoclinic channel for f;, and o.: Q7 (I's) —
QT (T,) is the corresponding scattering map for & € (gg, &9). We assume that A,
is described via a symplectic parametrization kz: Ag — Ag, and let (,]};)| Ao =
kg_l o (fe)|a, © ke, O = kg_l 0 05 0 K.

Below, in Theorem [3.11] we will use the perturbative formula for the scattering
map with 69 = Id, and with a slightly more general first-order perturbation
term of the scattering map. This allows us to apply the result of Theorem [3.11
to more degenerate cases, where second-order perturbation theory is necessary to
detect the transversality between the stable and unstable manifolds, or to the so-
called “a priori stable” case, where the Melnikov potential can be exponentially
small in &; see Remark [3.16

THEOREM 3.11. Assume that for all ¢ € (—&q, o), there exists a scattering map
0%, defined in a domain U := ke_l(Q_(Fg)) C Ay, such that

(3.2) 0 = Id + () JVS + g(u(e), g(u(e)) = o(ule)),
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where S is some real-valued C*-function on U C Ag, and g(u(e)) and ju(e) are
some Ct-functions, being defined on (—eg, g9) with £(0) = 0; by g(u(e)) =

o(u(e)) we mean that limg—.¢ g(u(e))/u(e) = 0.
Suppose that

(3.3) JVS(Xo) # 0 at some point X9 € U C Ay.

Let y: [0,1] — Ay be an integral curve through Xo for the vector field JVS.
Suppose that there exists a neighborhood Uy C U of ¥([0, 1]) in Ag such that a.e.
point in Uy is recurrent for f;| Ao- Let Yo = kg o ¥ be the corresponding curve in
As.

There exists €1 > O sufficiently small and a constant K > 0 such that for every
e € (—€1,€1), € # 0, and every § > 0, there exists an orbit {Z;}i—o,..n Of fe
in M, withn = O(u(e)™Y), such that foralli =0,...,n —1,

Zit+l = fek" (zi) forsomek; > 0,
andforalli =0,...,n, we have

d(zi» ye(ti)) < 8 + K(ule) + [g(u(e)/ne))  forti =i-ule),

where 0 =t < ---<t, <1.

The proof of this theorem is given in Section[5.3]

We will refer to a solution curve ¥ in A as in the statement of Theorem[3.11] or
to its corresponding curve y, = k.(}) in Ag, as a “scattering path,” as it represents
an approximation of an orbit of the scattering map; see Figure[5.3] So the previous
result can be stated that, given any scattering path, there exits a true orbit of the
system that shadows it.

In applications, it is often the case that Ag = B? x T, and we have a system
of action-angle coordinates (/, ¢) on Ao with / € B? and ¢ € T4, where T4 =
Rd/Zd and B¢ € R is a disk in R? or B4 = R¥. Since one can typically find
a scattering path for which the action variable changes by some positive distance
independent of &, implicitly one can find a true orbit for which the action variable
changes by O(1); this is stated precisely in the following corollary.

There exists a sufficiently small neighborhood V), of Ag in M such that for
every point z € Vj, there exists a unique point z' € A, that is the closest point
to z. The point z’ is the image of some unique point Z € Ay via kg, i.e., 7/ =
ke(Z). We denote by I(z) the [-coordinate of the corresponding point Z € Ay,
ie, I(z) := I(2).

COROLLARY 3.12. Assume that a scattering map og as in Theorem[3.11]is given.
If JVS is transverse to some level set {1 = I} in Ao at some point (1, ¢+«) C U,
then there exist 0 < g1 < eg and p > O such that for every 0 < ¢ < g1 there exists
an orbit {z; }i—o,...n of fe such that

11(zn) — I(z0)|l > p.



16 M. GIDEA, R. DE LA LLAVE, AND T. SEARA

The proof of Corollary [3.12]is given in Section [5.4]

Remark 3.13. The key assumptions for Theorem [3.11] are the existence of a nor-
mally hyperbolic invariant manifold, the recurrence property of the inner dynamics,
and the existence of transverse homoclinic intersections yielding scattering maps.
In the perturbative setting that we consider, the existence of a normally hyperbolic
invariant manifold for some range of ¢’s follows from the standard theory of nor-
mally hyperbolic invariant manifolds; see, e.g., [49}/66]. The recurrence property
of the inner dynamics is automatically satisfied in the symplectic setting that we
consider. The transversality conditions (A.6) and are necessary to ensure
by our method the existence of a scattering map (of course, there may be other
methods).

Since these conditions play an important role, let us discuss somewhat infor-
mally their abundance in the space of dynamical systems. Both conditions (A.6)
and are transversality conditions. The existence of manifolds satisfying both
of them is a C '-open condition.

Of course, like all transversality conditions, (A.6) and (A.7) can fail in a persis-
tent way. There are examples where the transversality is lost in a codimension 1
manifold in such a way that all the perturbations will still have another such mani-
fold. (Intuitively, transversality amounts to some determinant of a matrix of deriva-
tives being away from 0. If it happens to change sign in some neighborhood, all
perturbations will have some sign change). Note, however, that small perturbations
can create the desired transversality at one point.

The condition has been very well studied in dynamical systems. If it
holds, we have also infinitely many other intersections satisfying obtained by
iteration, and under mild conditions there are also secondary intersections. It could
very well be that the secondary intersections satisfy in some appreciable
region.

It is important to remark that the application of the results only requires the
existence of one channel satisfying the two conditions.

Let us mention that in many cases of practical interest, when the existence of
transverse homoclinic intersections can be established via Melnikov theory (in-
cluding systems with small dissipation, as in [53])), the conditions (A.6) and
are generically satisfied on open sets of order O(1). This is also the case for the
a priori unstable, nearly integrable Hamiltonian systems considered in Section 4}
in which case the existence of a homoclinic manifold satisfying (A.6) and is
a generic condition; i.e., it is satisfied by a C !-open and C *°-dense set of perturba-
tions. In particular, the homoclinic manifold turns out to be a graph over the center
variables. Moreover, for this class of Hamiltonian systems, the condition (3.3 on
the corresponding scattering map, which ensures the existence of orbits that travel
O(1), is generically satisfied.

We shall also mention that there are some special classes of systems (symplectic,
volume preserving) for which the existence of homoclinics always holds (see, e.g.,
[41]/46L[72L[87,93]).
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Remark 3.14. Let us note that the diffusion orbit {z; };—o,...,» obtained in Corollary
[3.12] does not necessarily follow a given pseudo-orbit of the scattering map. If
the dynamics given by f; has diffusing orbits, these are the ones obtained in the
corollary. In case the dynamics of f; remains in a bounded set, we need to follow
the pseudo-orbits of the scattering map g, to obtain the diffusing ones.

Besides this corollary, later in Section[d where we will have more details of the
construction of the perturbed normally hyperbolic manifold A, we will be able to
prove that one can always follow any orbit of the scattering map or combinations
of orbits of several scattering maps while they stay in a compact subset of A.. This
will allow us to obtain stronger results on diffusion to travel predesigned itineraries
in the actions.

Remark 3.15. We note that, in order to obtain a trajectory that achieves a change
in the /-variable of order O(1), the scattering map needs to be applied n =
O(ju(e)~1) times. However, the true orbit that achieves the O(1)-change in the
I -variable follows not only the scattering map but also some recursive orbit seg-
ments of the inner dynamics, as in the proof of Theorem [3.6] Since these recursive
orbit segments of the inner dynamics are obtained by invoking the Poincaré recur-
rence theorem, the above result does not yield an estimate for the time required to
follow the inner dynamics, and hence does not directly lead to an estimate on the
diffusion time.

Remark 3.16. The condition that the unperturbed scattering map is the identity,
i.e., 09 = Id, is naturally satisfied in some examples, e.g., in the a priori unstable
system in Section 4] The function p(¢) is associated to the size of the splitting of
WH*(Ag) and W5 (Ay).

In the example in Section 4, we have u(g) = ¢ and g(u(e)) = O(?) in the
generic case. Nevertheless, in some degenerate cases, it can happen that, up to first
order in g, the perturbed stable and unstable invariant manifolds of A, coincide. In
these cases it is necessary to go to second-order perturbation theory to distinguish
them and therefore u(¢) = €% and S in has a different expression (not given
here) in terms of the second-order variationals along the unperturbed homoclinic
orbit.

Another special situation occurs in the so-called a priori stable systems, where
the unperturbed system is completely integrable without any hyperbolic structure.
In those cases, the a priori unstable structure appears after some first-order partial
averaging near simple resonances, giving rise to a system of the form H, S+ H L.
Therefore the analogue of the unperturbed homoclinic orbit ¢;(z), which appears
in the formulas of the scattering map (2.3)), is ¢-dependent, i.e., ¢; ¢(z). The split-
ting between the stable and unstable manifolds behaves differently from the a priori
unstable case with respect to the perturbation parameter. Concretely, we have:

G =1d + JVS + g(u(e)),
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where
0
S(x,e) = lim [HEI o ¢re(z) — Hgl ° ¢t,s(x)]dt
T—+oo J_T
T
+ o dim | [Hy o ¢re(z) — HY 0 s e(x)]dt.

and S and g satisfy

S(x.e) = O(ule)). glule)) = o(ule)).

If the system is analytic, there is an exponentially small splitting of the separatrices
and therefore () = O(s? exp(—qge™")) for some p,q,r € Q, as in [2]. Nev-
ertheless, to obtain the behavior of the error function g(u4(g)) in general analytic
a priori stable systems is still an open and difficult question. If the system is only
smooth, one usually has p(g) = &P for p > 2.

Besides the above comments, we want to stress that, once a formula like is
established, the results of Theorem [3.11]remain true.

4 Existence of Diffusing Trajectories in Nearly Integrable
A Priori Unstable Hamiltonian Systems

As an application, we show the existence of diffusing orbits in a large class of
nearly integrable a priori unstable Hamiltonian systems that are multi-dimensional
both in the center and in the hyperbolic directions. The model below is an extension
of those considered in [|34}37,42].

Let

n
1
He(p.q.1.¢.1) = ho(1) + i(ng + vz-<q,-))
i=1
+eHi(p.q.1.¢.1:¢).
where (p,q. 1, ¢.1) e R" x T" x R? x T4 x T
We make the following assumptions:

4.1

(A1) The functions hg, H1,and V;,i = 1,...,n, are uniformly C” for r > ry.
(A2) Each potential V;: T" — R,i = 1,...,n, is I-periodic in ¢; and has a
nondegenerate (in the sense of Morse) global maximum at 0; hence each
“pendulum” :I:(% pi2 + Vi (qi)) has a homoclinic orbit to (0, 0), parame-
trized by (p?(t), q?(t)), t eR.
To formulate the next assumption (A3), which has two parts (A3.a) and (A3.b),
we need to introduce some other tools.
o Let Ag = {(p,g.1,0.1)| p = g = 0}. By (A2) there is a family of
homoclinic orbits for the whole system of pendula given by

(P°(x +11),¢°(x + (1)) =
(p(l)(n 1), pen + 0. g (1), g0t + 1).
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where 7 = (11,...,17,) € R" and 1 = (1,...,1) e R",
o Let [y € {(p°(1).4%1). 1., 1) [t € R", I e R¥, p e T¥, ¢t €T ) be
a homoclinic channel for which we can define a scattering map ¢ on Ao.
e Let the Poincaré function (or Melnikov potential) associated to the homo-
clinic manifold fo be:

L(t,1,¢,5)

4.2) = —/ [Hi(p°(x +11), " +11), 1,¢ + (D)t s + 10)

—o0

H1(0,0.1,¢ + w(I)t.s + 1:0)] dt.

where w(l) = dhg/01.
The first part of assumption (A3) is the following:

(A3.a) The perturbation H; is 1-periodic in ¢ and satisfies some explicit nonde-
generacy conditions as described below. Assume that there exists a set
U =IxJC R4 x T9+1 guch that Z is an open ball in ]Rd, and for
any values (1, ¢, s) € U™, the map

teR"” - L(t,1,¢,5) € R
has a nondegenerate critical point 7*, which is locally given, by the im-
plicit function theorem, by
™ =1, 9,5).
To formulate the next assumption we need to introduce some other tools.
e Define the auxiliary functions
4.3) L, ¢,s)=LE* U, ¢,5),1,¢,5), L*,0)=L(,06,0).
We regard £*(1, 0) as a function on the set
Dom(L*) = {(1,0) e R x T% |35 € T! s.t. (1.6 + w(l)s,s) € U™}
The second part of assumption (A3) is:
(A3.b) The reduced Poincaré function L£*(/,6) satisfies that JVL*(I,0) is
transverse, relative to R? x T4, to the level set {/ = I,} at some point
aL*
(4~4) W(l*, 9*) 7é 0.

We note that the integral in (4.2)) is similar to that in (2.4)) and (2.5)), as it concerns
the average effect of the perturbation H; on a homoclinic orbit of the unperturbed
system.

The result below states that, for all small enough regular perturbations satisfying
(@.4), there exist trajectories that travel O(1) with respect to the /-coordinate; that

is, they travel a distance relative to the /-coordinate that is independent of the size
of the perturbation. This phenomenon is referred to as Arnold diffusion.
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THEOREM 4.1. Assuming conditions (A1)—(A3), there exists g > O and p > 0
such that, for each ¢ € (0, ¢&q), there exists a trajectory x(t) of the Hamiltonian
flow of Hamiltonian @) and T > 0 such that

1 (x(T)) = 1(x ) > p.

Remark 4.2. We emphasize some advantages of Theorem {.1]in comparison to the
main results of [34,37,42,60]:

e Both the phase space of /g and that of the system of pendula are multidi-
mensional.

e We do not assume a convexity condition on the unperturbed Hamiltonian
HO (I’ (pv p; q) = hO(I) + Zi:l,...,n :l:(plz/z + Vl (ql))’ which is typlcally
required when using variational methods.

e We do not assume that /¢ satisfies a nondegeneracy condition that / +—
dho/ 01 is a diffeomorphism, or a convexity condition that 02ho/0d1; 01 s
strictly positive/negative definite. In the lack of such conditions, one can-
not apply the KAM theorem, and hence cannot construct transition chains
of KAM tori. Also, Aubry-Mather theory cannot be applied.

e We do not assume that H; is a trigonometric polynomial. Moreover, we
note that condition (A3) is satisfied by a C” open and dense set of pertur-
bations H;.

In the method of [37]] one needs to check a different condition (which
is clearly generic) around every first-order resonance. In concrete sys-
tems, when one is interested in a practical problem (e.g., in the three-body
problem) and not in generic statements, the verification of the mechanism
of [[37] is possible, albeit tedious. With the present method, the verifi-
cation in concrete systems of interest is much more straightforward; see,
e.g., [19].

From now on, we use the following notation: When we say that some error term
is bounded by a constant, or by O(¢%), or by O(¢? In(g?)), we mean uniformly on
some compact set.

PROOF OF THEOREM .1l We describe the geometric structures that organize
the dynamics, following [34,[37]]. We emphasize that, once the geometric setup is
laid out, the dynamics argument to show the existence of diffusing orbits is very
different.

The time-dependent Hamiltonian in (4.1)) is transformed into an autonomous
Hamiltonian by introducing a new variable A, symplectically conjugate with ¢,
obtaining the (n + d + 1)-degrees-of-freedom Hamiltonian system

n
~ 1
F(p.a.19. 4.0 = ho() + 3 %502 + Vila ) + 4
i=1

+eHi(p.q.1,¢,1;¢).

(4.5)
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The variable A does not play any dynamical role, as it does not appear in any of
the Hamiltonian equations for any of the variables, including itself.
With an abuse of notation, we denote

Ao:={(p.q.1.¢. A1) | p=qg=0,1€L, AR, (¢.1) € TIt1}.

This is a normally hyperbolic invariant manifold for the extended Hamiltonian
flow; Ao is diffeomorphic to (R? x T4) x (R x T).

We fix an energy manifold {Hg = h} for some 7, and restrict to a Poincaré
section {t = s} for the Hamiltonian flow. The resulting manifold is a (2n + 2d)-
dimensional manifold, which we denote by M;. The first return map to M, of the
Hamiltonian flow is a C” -differentiable map denoted fe.

The manifold

Ao :={(p.q.1,9)|p=qg=01€cL T C M,

is a normally hyperbolic invariant manifold for fy, which is independent of the
section {f = s}. Note that A is diffeomorphic to R x T4,

Thus, both Ko and A are noncompact.

Note that the restriction of fy to Ag is an integrable map, as f¢(0,0,/,¢) =
(0,0,1,¢ + w(l)), and Ay is foliated by invariant ¢-dimensional tori given by
{I =ct}.

Choose a closed ball Bg(/) in the action space R¥ such that JVL*(1, 8) is
transverse, relative to Dom(L*), to each action level set {/ = [y}, which is an
invariant torus, with /o € Bg(/4). Choose 0 < p < R.

Denote

Ay:={(p.q. 1.¢, A1) |p=q =0, 1 € BR(l+), A€ R, (p.1) € TIH1},
Ao :={(p.q.1.¢)|p=q=0.1 € Br(ly), ¢ € T},

which are normally hyperbolic invariant manifolds with boundary for the flow and
for the map, respectively, corresponding to I € Br ().

Consider now the perturbed Hamiltonian system. Using a C"-differentiable
bump function we can modify the Hamiltonian H to another Hamiltonian 7—[8
that coincides with the original one for all (p,q, I, ¢, A,t) with I € Bgr(ly),
and coincides with Hy for all (p,q, I, ¢, A, t) with I outside of some open ball
Br/(I+) 2 Br(I4), with R’ > R. For all ¢ sufficiently small, there exists a nor-
mally hyperbolic invariant manifold A for the flow of the modified Hamiltonian
7—[8 The manifold Ag is diffeomorphic to Ao via a C*¢-smooth parametrlzatlon
k AO — Ag, with kg = Id. Using this parametrlzatlon we can describe A in
terms of the coordinates (I, ¢, A,f) € Ao. Similarly, there exists a C £ smooth
parametrization k.: A9 — A, with kg = Id, and we can then describe A, in
terms of the coordinates (/, ¢) € Ay.

The manifold A, is not unique, as it depends on the modified Hamiltonian vec-
tor field of ’ﬁg, but what is important for us is that the extended Hamiltonian 778
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coincides with H; at the points with / € Bg(I). Therefore, if we find an orbit of
7-[3 whose action [ stays in B IR (1), this orbit will also be a real orbit of H, .. Let

us denote by ¢, ¢ the flow of ’Hg, and by f/ the corresponding first return map.
Let

={ke(p.q. 1,6, A,0)|p =g =0, 1 € Br(ly), A€ R, (¢,t) € T,

= {ke(p.q. 1) | p =q =0, I € Br(Is), ¢ € T4},

be the normally hyperbolic manifolds for the perturbed flow and for the perturbed
map, respectively, corresponding to I € Bg(l«). They are not invariant, but only
locally invariant. The local invariance means, in the case of A, that there exists a
neighborhood V of A/ in M, such that any orbit of f; that stays in V for all time
is actually contained in A,. The neighborhood V can be chosen independent of ¢.
The manifold A, is compact and symplectic (see [36]).

Condition (A3) allows one to define a scattering map o¢: Q7 () — QT (),
with Q7 (), QT () € AL. We will restrict to a homoclinic channel I, that is
compact.

As mentioned before, it is more convenient to express the scattering map o, as a
mapon Ag viag, = k)s_1 oo.0k,. By hypothesis (A.3), we have U~ C dom(G,) =
k;1(27(T¢)). In a similar fashion, we consider f; =k 'o Se|a, © ke on Ag.

The papers [36,38,53]] show that condition (A3.a) implies that the scattering
map can be expressed as

Ge(l,9) = (I.§) +eJVL* (I, ¢ —w(I)s) + O(e?),

which is of the form (3.2)) with j1(g) = ¢ and g(u(e)) = 2. Of course, both the
scattering map &, and the Poincaré map fg depend on the chosen section {t = s}.

The function £* involved in condition (A3) plays the role of the function S
in Theorem and Corollary Condition (#4) amounts to JVL* being
transverse to one level set of the variable /. Therefore we can apply Corollary
for the normally hyperbolic invariant manifold A, and the scattering map G,
obtaining an orbit (2;);—o,....n of fa’ with 1(zo) = I« and |[{(z,) — [(Zo)|| > p
for some 7" > 0. Either the resulting orbit is so that the action / along it stays in
BRr(I4) and hence this orbit is a real orbit of f; along which the action changes by
at least p, or the orbit is so that the action / along it leaves Bg(/4), in which case
the action changes by at least R > p. In either case, we obtain a trajectory of 178
along which the action / changes by at least p > 0, which is independent of . [J

Below, we consider the case when the Melnikov potential (4.2)) has / distinct
nondegenerate critical points 7", 75, ..., ‘L’l* of L(z,1,¢,s). Each critical point
determines a scattering map aé for which there exists a corresponding scattering
path y; that is a solution curve of the Hamiltonian flows X = JV.L(x) on Ag,
where L7 is defined by @#.3) for i = 1,...,/. Further, we assume that these
scattering paths can be concatenated. The following result says we either have
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orbits that escape every compact set in A, or we have orbits that follow any such
prescribed sequence of paths.

COROLLARY 4.3. Assume hypotheses (A1) and (A2) of Theoremf.1| hold and that
(A3) is satisfied for finitely many nondegenerate critical points of L(zt, 1, ¢, s).
Let ol: Q7(T'L) — QT (T}) be the corresponding scattering maps, with Q~(T'%),
Q"'(Fé) C Ag, fori = 1,...,1. Suppose that Q_(Fé) N Q_(Fé"‘l) % @ for
i=1,....0—1 Lt == ; Q (). Then, either

e for every compact set K in A containing U, there exists xo € U, an orbit
x(t) of the Hamiltonian H,, and a time T > 0 such that x(0) = xo and
x(T) €K

or

e for every sequence of scattering paths yi: [T;j—1,T;] — Q7(T'Y), with
)/;(T,-) = )/;"'I(Ti) fori = 1,...,1 — 1, and for every § > 0, there
exists an orbit x(t) of the Hamiltonian H, and a time T > 0 such that
x(0) € Bs(yg(To)) and x(T') € Bs (i (11).

Papers where the authors combine several scattering maps to obtain scattering
paths are, for instance [44}45]], where this corollary can be applied, and also [43]]
in a different setting.

Remark 4.4. For the above results, we do not require the nondegeneracy condition
that I — w(l) = dho/dl is a diffeomorphism. Note that in the case when d = 1
such a nondegeneracy condition implies that f; is a monotone twist map relative
to the (/, ¢) coordinates. In our case, we allow ];; to be a nontwist map, which
happens, for instance, if hg(/) = I" with n > 3 odd. It is well-known that
nontwist maps arise in many concrete models, e.g., in magnetic fields of toroidal
plasma devices (such as tokamaks, which have reversed magnetic shear), models of
transport by traveling waves in shear flows with zonal flow, and models of satellite
orbits near critical inclination. Unlike twist maps, nontwist maps have regions
where the KAM theorem and the Aubry-Mather theory do not apply; see [30,(31]]
and the references listed therein.

5 Proofs of the Main Results

5.1 Proof of Lemmal[3.1]

We provide two proofs of Lemma [3.1]

The first proof uses the topological method of correctly aligned windows (see
Appendix[C) and is constructive in the sense that it provides an explicit algorithm to
detect orbits with prescribed itineraries. It can also be used to provide quantitative
estimates for the diffusion time (see Remark [3.3]and Remark[5.5).

The second proof uses the obstruction argument and is shorter.
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5.1.1 A Proof Using Correctly Aligned Windows

5.1.1.A Outline. We will construct windows that are correctly aligned and utilize
them in two different ways: first, to define the integers n* and m] that appear in
the statement of the lemma, and second, to show that, for a given pseudo-orbit as
in the statement of the lemma, there exists a true orbit that shadows it.

For the first part, starting with a homoclinic point, we define a pair of “proto-
type” windows that are correctly aligned, with one window in a neighborhood of
some negative iterate of the homoclinic point, and another window in a neighbor-
hood of some positive iterate of the homoclinic point. There are conditions on the
number of such iterates that provide us with the integer n*. Then we consider a
second homoclinic point and construct a second pair of “prototype” windows, in a
similar fashion. To make the second window from the first pair correctly aligned
with the first window from the second pair, we need to apply a sufficiently large
number of iterates that is no less than some integer m™*. When this construction
is repeated i times, it provides us with an integer m that depends on all previous
windows.

For the second part, there is given a pseudo-orbit generated by alternatively
applying the scattering map and the inner dynamics; the orders of the iterates of
the inner map are required to satisfy conditions that depend on the integers n* and
m. Then, the above-mentioned windows can be used to construct a sequence of
correctly aligned windows along the pseudo-orbit. The existence of an orbit that
follows these windows, and, in particular, shadows the given pseudo-orbit, follows
from the shadowing property of correctly aligned windows (Theorem [C.4).

We proceed in several steps.

5.1.1.B Choice of balls. We choose a system of linearized coordinates (see Ap-
pendix [B), given by h: Upx — VA, so that V, is contained in a §-neighborhood
of A.

By the compactness of A or the uniform regularity of f, there exists §; > 0
such that, whenever x. € A, ||vy||. [lvs|| < 81, and O < p¢, py, ps < 81, the image
of

(5.1 By (x¢) x By, (vy) X By, (vs) € Ua

under /% is contained in ¥V and has diameter less than §/2.

We choose and fix pc, py, ps as in (3.1).

By the normal hyperbolicity of A, there exist 0 < A_ < A4 < u;l <pl<l
such that for each pair of balls B, (vy) € E¥ and By, (vs) € E§, withx € A, we
have

Bpuu_ (DflE“(vu)) - Df|E" (Bpu (vu)) € Bpu/L+ (DflE“ (vu)),

O B (Dfiss(s) € Dfigs By, (v5)  Bpos, (Dfis (v5)).
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5.1.1.C Lambda lemma. Consider a homoclinic channel I" and the corresponding
scattering map 0 := o1 : Q7 (I') — QT ().

Let p € T and let p—, p* € A be the unique points for which W*(p™) N
W3(pT)NT = {p}. For given k~, k™, denote:

5 () = h(x7.0,0), 7 (p) = h(x, vy, 0),
0T = h(xr.0,0, 5 (p) = hxFL0,0).

Due to the compactness of 1" and the exponential contraction of the unstable
(stable) fibers under negative (positive) iterates of f, there exists n* > 0 suffi-
ciently large such that for every k= > n* and k™ > n* we have the following:

(i) The point f K" (p) € W¥(f~* (p™)) satisfies [|v;, || < pu < 1. This
implies f =% (p) € V and is (§/2)-close to f % (p™).

(i) The point f¥"(p) € WS(f¥ (p™)) satisfies |v}| < ps < 1. This
implies fk+ (p) € Va and is (8/2)-close to fk+ (p™).

Since I is an homoclinic channel, W*(p™) is transverse to W*(A) at p, and
WY (p™) is transverse to W*(A) at p.

We apply two versions of the lambda lemma [26}27,/50,|65}85]], and derive
two transversality properties. The first version is concerned with the asymptotic
behavior of the backwards iterates of an (ry)-dimensional manifold transverse to
WH(A). The second version is concerned with the asymptotic behavior of the
forward iterates of an (n,, + n.)-dimensional manifold transverse to W*(x) where
x e A.

5.1.1.C.1 First application of the Lambda Lemma. First we apply the lambda
lemma to the (ny)-dimensional manifold W*(p™) passing through the point p.
There exists a family of (n5)-dimensional compact disks

Zi-(p) CW*(p™)

centered at p such that f =%~ (Z¢-(p) C'-approaches as k= — oo, a disk of
fixed radius in W5 (K" (p™)) and centered at f % (p™). Denote

(5.3) DE(f™% (p) = 7K (Z5-(p) c WX (p)).

the disk centered at f %" (p) that is asymptotic to a moving disk of fixed size in
WS (=K (p7)).

Choose k™ large enough and 7} (p) sufficiently small so that D*(f " (p))
is contained in (B, (x;) x By, (0) x B, (0)) and is 6/2-close to Ws(f~* " (p7))
in the C '-topology.

Due to the compactness of A and I', the size of the disk DS(f %" (p)) can be
chosen independently of p € I" and of k™.
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5.1.1.C.II First transversality property. Since Z; (p) is transverse to W"(A)
at p:
(54)  DS(f* (p))is transverse to W*(A) at % (p) for any k= > n*.

5.1.1.C.III Second application of the Lambda Lemma. We now apply the lambda
lemma to the (1. + ny)-dimensional manifold W¥(A) at the point f~—% (p),
which is transverse to W3 (f =% (p*)) at £~ (p). In particular, it is transverse

o D*(f7* (p)).
There exists a family of (n, + n,,)-dimensional disks

D (ST (p) S W),

centered at £~k (p), with each disk being a neighborhood of 7%~ (p) in W*(A),
such that each f**+k~ (7 k+(f_k_ (p))) approaches, in the C !-topology as
kT — oo, a disk of fixed size, in the unstable directions contained in W*(A) and
centered at f¥t(pt)ask™ — oc.

If we choose k™ and k™ large enough and fixed, for every disk
(5.5 D(f7F (p)) 1= (Boz (x7) x By (vy)) x{0}) € Z¢* (o (f 7* (p))

with p; > 0 and p,, > 0 small enough, we have that FREHET (Deu £k (p))) is
§/2-close, in the C !-topology, to some disk of the form h(Bp+ (x)) x Bp+ (0) x

{0}) contained in W*(A) for some p;} > 0, pF > 0. Define

(5.6) DU(FET (p) o= TR (DM ST (p)).

We have that p} > 0 depends on p;, and p_ but is independent of k~ and k+
provided they are large enough, and p > 0 depends on p;,, p,,k~,k*. For
k~, kT fixed, the smaller Py » Po » the smaller p,‘}' >0, pj‘ > 0.

Here we should note that, while D¢*( £ ~%~ (p)) is defined via the h-coordinates,
which are only C©, it is in fact contained in W*(A), so it is embedded in a C !-disk.
Hence we can measure its distance away from W¥(A) in terms of the C ! -topology.
Also, note that D% (fk+ (p)) b ws (fk+ (p™)). We derive the following:

5.1.1.C.IV Second transversality property. For k™ sufficiently large and fixed,
there exist p,; > 0 and p} > 0 such that for each z " € Bp+ (x1), wl € Bp+ (0),

(5.7) D (kar (p)) is topologically transverse to h({z} x {w;]} x Bps(0)),

where p° is defined in (5.1).

See [58]] for a definition of topological transversality. Since the linearized coor-
dinates & are C°, the ng-disks h({z 7} x {w;}} X Bps(0)) in are only C°. This
is why we have to use the notion of topological transversality rather than the dif-
ferentiable one. Property holds true for the following reasons. The n-disks
h({z} x {w;F} x Bps(0)) depend in a C°-fashion on z and w;'. For z} = x
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and w;} = 0 the corresponding 7,-dimensional disk is a part of the stable fiber
WS (f k* (p™)), which is differentiably transverse to the (n. + n,,)-dimensional
disk De¥(f*k * (p)). Differentiable transversality implies topological transversal-
ity, and topological transversality is C°-stable.

Property implies that
(58) Tea (K (DM (P))) 2 B+ () x B+(0),

where m. , is the projection onto the (c,u)-subspace of (E¥ @ E®), relative to
the h-coordinate system.

Due to the compactness of A and T, p;I can be chosen independently of p € T
and of k—, k™, provided they are large enough, but will depend on p};, p,, whereas
p;" can be chosen independently of p € I, but will depend on p,,, p, . k™, k.

5.1.1.D Choice of n*. Fix § > 0, and let n* > 0 be sufficiently large so that the
conditions in Section C hold. We impose additional conditions on n*.

Since I is compact, we can choose n* > 0 such that for every k~ > n* and ev-
ery p € T, the ng-dimensional compact disk DS(f =% (p)) given in (.3) always
satisfies the transversality condition (5.4). In other words, k£~ can be chosen uni-
formly with respect to p € T'. This n* is the number that appears in the statement
of Lemma[3.1]

Fix such an n* depending on § and independent of p € T.

For a fixed choice of p € I and of k= > n*, let D*(f % (p)) be the disk
attached to % (p) described in (3.5) for some p; > 0, p;,;, > 0. For every
kt > n* the (k— + k) iterate of D*(f % (p)), denoted by D (kar ()
in (5.6), satisfies and for some p; and pf. The power k* can be
chosen uniformly with respect to p € T, and for k™ fixed, the parameters p; and
p depend on p and pj .

It is also important to note that k™, p;f, pF also depend on the angle of the
intersection between W*(A) and W*(A) at p € I'. When the angle of intersection
is small, the radii p;” and p" need to be chosen sufficiently small. However, our
argument is only qualitative, and making quantitative estimates on the dependence
of this product of disks on the angle of intersection is beyond the purpose of this
paper. Since I' is compact, there exists a positive lower bound for the angle of
intersection, and thus we can make the choices of kK~ and k* uniform for all points
pel.
5.1.1.E Prototype windows. For § > 0 fixed, choose and fix n* > 0 as in Sec-
tion C. Consider a point p in the homoclinic channel I". For fixed k=, k* > n*
consider a pair of disks: the ng-dimensional D*( /%" (p)) as in (3.3) and the

(n¢ + ny)-dimensional D<* (fk+ (p)) asin (5.6).
We make the following claim:

5.1.1.E.I Claim on m*. There exists m* > 0 depending on the size of the disks
DS(f~* (p)) and D" (fk+ (p)) such that for every m > m™ and every k'~ >
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n*, if p’ € I is such that
pT= 8.
then there exists a triplet of windows W™=, W, W'~ with the following properties:

e W~ is contained in a §/2-neighborhood of f~ (p) and therefore in a
§-neighborhood of f %" (p™);

e W is contained in a §-neighborhood of f¥ * (ph);

e W'~ is contained in a §/2-neighborhood of f —*""(p’) and therefore in a
§-neighborhood of £~ (p'7);

o W~ is correctly aligned with W under f*~+k,

o W is correctly aligned with W'~ under fm—*";

e the sizes of the windows W=, W, W'~ do not depend on the points
p, p' € I'; the size of W™ depends only on the size of W~ andon k™, k;
the size of W'~ depends only on the size of W and on m and k.

In the above, p~, pt satisty W¥(p™) N WS(pT)y NI = {p}, and p'~, p'*
satisfy W¥(p') N WS(p'") N T = {p’}. We will refer to W—, W+, W'~ as
prototype windows as we will use them in the next section to construct an infinite
sequence of correctly aligned windows, as described in the outline.

5.1.1.LEXI Construction of W~. We construct the window W~ about f % (p) =
h(x;,v,,0), where ||v, || < &1 (see (5.1)). Consider the (n5)-dimensional disk
D*(f %" (p)) through f~*"(p) given in (53), and the (n. + n,)-dimensional

disk D (fk+ (p)) through fk+ (p) given in (5.6).
We attach the (n, + n,)-dimensional disk

k- ket —k— +
DS (p) = T DS (p))
of fixed size independent of p, to the point /% (p); see (5.6).

Then choose a C %-family of ng-dimensional disks 2°(¢) = 2°(f % (p)) of
fixed size independent of p, with ¢ € D*(f~* (p)) satisfying the following
conditions:

o forg = [~k (p) the disk 2°(q) is contained in D*(f %" (p));
e foreach g € D*(f 5" (p)), we have

+ —
SR (@) C h((zd Y x {wif ) x Bps (0),
where 7 € B+ (x})and w;f € B +(0) are defined as in (57).

Observe that, by construction, for each ¢ € D*(f~5"(p)), Z°(q) is topologi-
cally transverse to D*( f =% (p)).

Summarizing, the (1. + n,)-dimensional disk D¢¥( %" (p)) is contained in
WY (A), the ng-dimensional disk D5 (f =K (p)) is (§/2)-close in the C !-topology
to WS(f~%"(p7)), and each disk £¥" k7 (25(q)) is topologically transverse to
D(fET (p).
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We define the window W~ and its exit and entry sets (W ™)' and (W —)ety,
respectively, by

W= U 7°(q),
qeDeu (=K (p))
(5.9) (W)™ = U 2°(q).
qedDu(f—k~ (p)
(W)™ = U 97 (9).

geDU(f k™ (p))

We choose the sizes of D*(f %" (p)) and of Z°(q), for ¢ € D*(f~% (p)),
such that W~ is contained in a (§/2)-neighborhood of £ =% (p); hence every point
in W~ is §-close to f~% (p™).

We note that W~ is a window; see Remark [C.2]

We will impose additional conditions on the sizes of D*( f =%~ (p)) and 2°(q)
in Section

We take a forward iterate % Tk (W™) of W—. The point f %" (p) is mapped
by £¥" 5 onto £k (p). For kT > n* we have fK(p) € V. The set
f k++k—(W‘) is still a window, since it is a homeomorphic copy of W™ under
f k ++k—, with the exit and entry sets being defined by transporting the exit and
entry sets of W™, respectively, through f ket kT

In fact, by construction

(5.10) = Y @

geD(f~*"(p))

51.1.EIIl Construction of W™. We construct a new window W+ C ¥ about
¥ (pt) = h(x}.0,0) such that "k~ (W) is correctly aligned with W+
under the identity map, or, equivalently, W™ is correctly aligned with W™ under
f k*+k™  This new window will be a product of disks in the linearized coordi-
nates i. The construction follows below.

The image set DU(f*" (p)) := X"+ (DU(f 7 (p)) is a (ne + m)-
dimensional disk through f kt (p) that is (§/2)-close to W¥*(A); see (5.6). This
disk is transverse to WS( f¥ * (p™)). Also denote

+ + ik —k—
D’(f* (@)= P @) qe DUSTE (o))

For a given choice of the size of D*(f~%" (p)), we require o > 0 and
o5 > 0 to be sufficiently small, so that (5.7) and (5.8) hold. We also require
that pf, pjf < 81.

Then we choose 0 < p~ < §; and require that all disks Z°(q) be small enough
so that

(5.11) s [A=H (D (%" (@))] € in[B 4+ (0)]
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forall g € DU(f~* (p)).
For future reference, we also have to set a lower bound for the sizes of the disks
25(q), q € D*(f % (p)). There exist §, > 0 defined by the property that

(5.12)

int[s (k1 (2°(9)))] 2 Bs,(0)

forall ¢ € D“(f—* (p)).

We now define the second “prototype” window W™ around f k+( pt) to be
given in the s-coordinates by

Wt = h[B ,+ (x) x B,+(0) x B +(0)].
(Wit = h[3B & (x}) x B,+(0) x B +(0)
UB,+ (x) x 0B 1(0) x B+ 0)].

(WH)yenty — h[B .+ (x) x B,+(0) x 3B _+(0)].

By the product property of correct alignment, Lemma [C.5] the choices that we

made imply that W~ is correctly aligned with W+ under f*" %~

It is useful at this point to summarize the interdependence of the parameters
involved in the construction of the windows W™ and W so that they are correctly

aligned under £k~ k"

e The quantities p,, p;, pf from above can be chosen independently of the

point p € T, but they depend on k~, k™ on the sizes of the disks involved
in the definition of the window W .

The powers k—, k™ can be chosen arbitrarily large with k= > n* and
k™ > n*, where n* depends only on § and noton p € T.

The disks D*(f % (p)) and DC“(kar (p)), and implicitly the parame-
ters p;" and p,‘}' , depend on k™ and kt. In particular, for fixed k™ and kT,
the parameters p and p;" depend on the size of the disk D% (f " (p));
the smaller the disk D*( f K (p)) is, the smaller pJand p; need to be
chosen. This is due to the coupling of the center and hyperbolic dynamics,
which mixes the center and unstable directions when iterated along the ho-
moclinic orbit. That is, the center and unstable directions of a disk are not
preserved when the disk is iterated along a homoclinic orbit, as they “get
mixed,” therefore, the image of a center-unstable rectangle iterated along
the stable manifold of a point does not remain a rectangle anymore, as the
rectangle “gets distorted.”

The disks 2°(q), ¢ € D“(f~* (p)), and implicitly the parameter 8,
in (5.12) depend on k™ and k*. The sizes of these disks can be chosen
independently of the size of the disk D*( f ~K (p)) provided this is suf-
ficiently small. That is, if D*(f % (p)) is replaced by a smaller disk
De*( =% (p)) € D“(f~¥ (p)), then we simply restrict the family of



A GENERAL MECHANISM OF DIFFUSION IN HAMILTONIAN SYSTEMS 31

disks 2°(q) to those ¢ € D*( £~k (p)) without having to modify the
size of the disks 2°(g).

e Parameter p; can be chosen independently of k™~ and k+ provided that the
disks Z°(f %" (¢)), ¢ € D“(f %" (p)), are chosen small enough,

5.1.1.LE.IV  Choice of m*. Now we show that there exists a number m* with the
property that for every m > m* and every k'~ > n*, and for every point p’ € T
with p'~ = ™+t (p*), we can construct a window W'~ near f =% (p’) in a
similar way to which we have constructed W~ such that W is correctly aligned
with W'~ under f’"—k+.

Since the power m — k™ should be nonnegative, we first require m* > k. We
also fix kT = kT > n*.

A key observation is that, since W is a window of product type relative to
the h-coordinates, the image /™ (W 1) is also a window of product type relative
to the /i-coordinates, for any iterate f m’ provided that £ (W) remains in the
domain V of the map & for 0 < k < m’. This is due to the fact that, relative to
the linearized coordinates, the map f is conjugate to Nf (see Appendix B).

Even in the case when f™ (W) does not entirely remain in V5 (e.g., it “es-
capes” in the unstable directions), F™ (W) N Vy contains a subwindow of prod-
uct type, say W . If this window W is correctly aligned with W'~ under the identity
map, it immediately follows that f™ (W) itself is correctly aligned with W'~
So for all practical purposes we can assume that f™ (W) stays in V.

We now take §; from (5.1) and 8, from (5.12). By (5.2), there exists m* > k+
large enough so that for m’ > m* — k™, f’"/(h({xj} X Bp;r (0) x {0})) contains a
disk in W“(h({fml(xj')} x {0} x {0})) of radius &7 relative to the i-coordinates,
that is:

(5.13) int[f™ (A({x}} % B, (0) x {0)] 2 h({f™ ()} x By, (0) x 103).

and f™ (h({x}} x {0} x B,+(0))) is contained in a disk in W (h({ f™ ()} x
{0} x {0})) of radius §,, that is,

(5.14) ™[R} % (0} x B+ ()] S intlh({f™ (x)} x {0} x Bs,(O))]

Observe that the parameter 8, in (5.12)) depends on k'~ and k't = k.

Fix m* with these properties. Note that m™* depends, in particular, on the size
of the unstable component Bp{f (0) of the previous window W™, which in turn
depends on the size of the disk D%( /%" (p)) that is used in the construction of
the first window W ™ ; the smaller the radius p,‘l" is, the larger m™ needs to be chosen

in order to satisfy (5.13).
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5.1.1.E.V Construction of W'=. Let m > m* and let m’ = m — k™. Assume that
p’ € I'is such that p’~ = f™+*"(p*). We construct a third window W'~ near
- —k" (p) in a similar way to the construction of W™ such that W is correctly
aligned under /™ with W’'~.

Consider the point f~ k" (p")y € W¥(f—*" (p'7)). Choose a sufficiently small
(ne + ny)-dimensional disk D*(f =K (p')) € Z¢* o (7 —k"7(p')) in W*(A)

such that it contains the point /K" (p’) and satisfies the following condition:

(5.15) nc,u[h‘l(5"”(f"‘"(p’)))] c
1nt[ o fm o h(B +(x+) x B +(0) X O})].
The size of the disk D*( %" (p’)) can be chosen to depend only on the win-
dow W, onm’ and §; in (5.1)), and 1ndependently of the pomt p € I'. Then we

choose a C°-family of n- d1mens1onal disks 7% (¢"), with ¢’ € D"“(f =K (p)),
such that for & in (5.12)

(5.16) int[7,(h " (Z°(4")))] 2 Bs, (0)
forall ¢’ € D¥(f %" (p’)), and when ¢’ = %" (p’),

() cwETET ().

As noted earlier, 8, is independent of the choice of the disk DU (k" (p)
provided this is sufficiently small, and only depends on k'~ and k't = k™. For
fixed k'~ k'*, and &, sufficiently small, a family of disks Z°(g’) satisfying (5.16)
can always be constructed.

Conditions (5.14) and (5.16) imply that the projection of each 25(q’) for ¢’ €
De¥(f=k"(p’)) onto the stable coordinates contains the stable component of
£ (W) inside it, that is,

517 intm (NP @N)] 2 h7 o f™ o h({zd} x {0} x B +(0)),

forall zJ} € B+ (xh).
The window W'~ is then defined similarly to W, by

W' = U 7°).
g’eDeu(f—+"(p)
rexit S (!
(5.18) wt= U 7°(q),
q'€dDU(f—K" T (p")
W/entry _ U a@“s(q/)'

q'eD(f =+ (p)
Conditions (5.15)) and (5.17) imply that the product property of correct align-
ment applies (Lemma [C.5)), and hence we obtain that W7 is correctly aligned
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P

o)

FIGURE 5.1. Construction of windows.

under f m’ with W'~. An important point to keep in mind is that we have no con-
trol on the size of the (n. + n,)-dimensional disk D (f —k" (p’)) involved in
the construction W/~. We choose this disk so that its center-unstable part is con-
tained in the center-unstable component of f” (W ). Thus, the size of the disk
De¥(f=*"(p’)) utilized in the construction W'~ may be smaller than the size of
the disk D*( £ =% (p)) utilized in the construction of W .

A schematic representation of the construction of the triplet of windows W™,
W T, W'~ constructed so far is shown in Figure

We anticipate that, in order to continue this construction of triplets of correctly
aligned windows starting from W'~, the number of iterates m’™ that we need to
choose at the next step, in order to satisfy (5.13)), may need to be larger than m™*.
Without further conditions on the dynamics, we cannot guarantee a uniform choice
of m* to work for all steps of the construction. In Appendix@we show an example,
which was kindly communicated to us by Dmitry Turaev, showing that a “uniform”
version of this shadowing lemma is not true in general.

5.1.1.LF Definition of m7.Let pg € I' be an arbitrary homoclinic point, and
let ng > ns. We construct a pair of windows W~ in a §/2-neighborhood of
f7"0(pg), and WOJr in a §-neighborhood of fk+(p;r), where k™ > n* is fixed,
such that W™ is correctly aligned with WO+ under f notk" Then, the procedure

in Section [5.1.1.E.IV| provides an mg = mg(no) that depends on W~ and W0+,

and implicitly on ng, and is independent of po € I'. Inductively, if mg. ..., m7_;
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have been defined, let
nO z n*""ﬁni_l z n*?ni z n*’

mo > mg(no),

(5.19)
Let
po,...,pi €L
such that f”/’"‘mf'*‘(p;r_l) =p; forj=1,....1i.
Let ' '
W()_a WOJ’_’ Wl_a L] w/i_v I/Vl+7

be a sequence of correctly aligned windows, constructed as above, such that
W,_, is in a §/2-neighborhood of /™"~ (p;—1),
° W]tl is in a §-neighborhood of f*™ (p;r—l)’

. VVj__1 is correctly aligned with thl under f nj-1tk +, and

. . . _ gt . .
° thl is correctly aligned with Wj under f™/-1 k ,forj =1,...,1.
Then the procedure in Section[5.1.1.E.IV|provides an
m} =m}(no, ..., nj—1,ni, Mo, ..., Mi—_1)
as in the statement of Lemma that dependson W, .. ., Wi+; henceonny,...,
nj_1,n;, Mo, ..., m;_1, butis independent of pg,..., pi—1 € I'.

5.1.1.G Construction of an infinite sequence of correctly aligned windows.

Take a pseudo-orbit {y;};>¢ as in the statement of Lemma We implicitly
assume that " (y;) is in the domain ~(I") of ¢, and hence o o ™ (y;) is in the
range Q1(T) of 0. Thus W¥( f"i (y;)) N W5 (o (f™(y;)) N T = {p;} for some
uniquely defined homoclinic point p; € I'. Fix k™ > n*.

Starting with the homoclinic point py we construct inductively an infinite se-
quence of correctly aligned windows along the pseudo-orbit,

- wt w— - wt w— +
Wo . Wo . Wi .. W W W Wik

such that for each i > 0 we have (choosing p; = f™i(y;), p;r = o(f"(yi)),
k7 =n;,and kT fixed)

1
e W™ lies within a §-neighborhood of y;;
. Wi+ lies within a §-neighborhood of fk+ oo o fMi(y;), where nj > n™;
e W.™ is correctly aligned with WiJr under f* Tni

W, lies within a §-neighborhood of y;+1 = f™ o o f™(y;);

° Wl.Jr is correctly aligned with W, | under f mi—k " \here m; > m;.



A GENERAL MECHANISM OF DIFFUSION IN HAMILTONIAN SYSTEMS 35

The shadowing property of correctly aligned windows, Theorem [C.4] implies
that there exists a point zg € W~ whose forward orbit visits all windows in the
prescribed order. In particular, the orbit points given by z; 41 = f™ithi(z;)
satisfy z; € W, foralli > 0. Since each W™ is contained inside a §-neighborhood
of y;, it follows that d(z;, y;) < § foralli > 0.

5.1.2 A Proof Using the Obstruction Property
In this section we give an alternative proof of Theorem 3.1}

5.1.2.A Outline. The proof is based on the construction of a nested sequence of
closed balls B;+; C B; in a neighborhood of the first point of the pseudo-orbit yg
such that taking zo € Bx = [ )g<j<x Bi one has that z9 € Bs(yo) and z;41 =
fmithi(zo) € Bg(yiq1) fori = 0,1...,k, for any k € N. Moreover, taking
20 € Boo =()j>o Bi # @, one hasthat z; 1 € Bg(yi41) forany i € N.

The argument will be done by induction.

We will define the values of n* and m™ at every step of the induction process.
We will see that n* can be taken once and for all but m™* will depend on the previous
choices.

5.1.2.B Choice of n* and m*. Consider the homoclinic channel I" and the corre-
sponding scattering map o: Q7 (I') — Q7 (I"). We will choose § > 0 and consider
Va and V1 contained in neighborhoods of size § of the compact manifolds A and
I, respectively.

We define n* = n*(§) to be the same number as in Section[5.1.1.C] In particular,
given any point p € I, for any n € N with n > n*, one has that f"(p) € V.
Moreover, this property also holds for points in W (A) N VT when iterating them
backwards or forward, respectively.

Moreover, we will modify n* to have the following additional property. Assume
we have p € I" and let p~, p* € A be the unique points for which W¥*(p™) N
Ws(pt)nT = {p}.

(1) Let a point x € WS(f~% (p7)) and B C Bs(f~* (p~)) be any ball
centered at x of fixed radius p > 0 small enough. Then we have that

BCVx, xeBNW(f* (p7)) + 2.

As WS(p™) intersects transversally W*(A) at the homoclinic point p,
by the lambda lemma, there exists a point X € W*(p™) N Vr such that
=% (x) € Bif k= > n*. The value of n4 depends on p, which is fixed
once and for all, and also on the angle of intersection of the stable and
unstable manifolds of A along I" which, by the hypothesis of compactness,
is bounded below by a fixed quantity.
(2) By continuity, a ball ¥ C Vi exists centered at X such that =% (X) e
=) c B.
The value of n* will be fixed from now on. Now we explain how we choose m*
at every step of the process.
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Assume that we also have p’ € I" and p’~, p’T with the same properties as p
and p~, pt, and such that /™% (pt) = p/—. Equivalently,

(5.20) pt = fETEM .

Take the point ¥ € W*(p™) and the ball X € V C Vr centered at X . Then choose
kT > n*. The value of k* will be fixed along the process.
(1) We know that £5" (%) € Bs(f* " (p)NVanws(f** (pT)), and there
exists a ball U centered at f¥ * (X) such that

U C Bs(f¥ (p*) c Va,
@ evnws(fF(ph) £ o,
F*wycv.

(2) As, by 5200, F5" (pT) = f~*+m=EkD) (7)), the ball U satisfies
@ e U nws(f® D (o)) £ @)

(3) Now we apply the lambda lemma to U ; we know that W*(p’") intersects
W¥(A) transversally at p’, and therefore, if k'~ 4+ m — k+ > m* is large
enough (depending on the size of U), there exists X’ € W*(p’T) such that
f—(k’_-i—m—k"')()—c/) cU.

(4) By continuity, there exists a ball centered at X’ € V' C Vr such that
f—(k/_+m—k+)(V/) C U

In summary, given a point x € WS(f %" (p~)) and a ball B centered at x of fixed
radius p > 0 small enough with the property that

B C Bs(f* (p7)) C Va.
x e BOWS(f T (p7) # 2.
we have produced the following:
(1) for k= > n*, aball V C Vp, centered at a point X € W¥(p™) N Vr such
that f =%~ (V) c B;
(2) for k¥ > n* and fixed, a ball U C Bj (kar (p™)) C Va centered at the
point fk+()?) € Ws(fk+ (p™)) N U such that f_kJr )y cv;
(3) for k'~ +m —k* > m*, aball V/ C Vr, centered at a point X’ €
WS (p't) N Vp such that f~&~+m=kH 1y c v,
(4) moreover, as k'~ > n*, we can also ensure f % (V') c Bs(f*" (p')).
The values of k™, k™, k'~ are taken bigger than n*, which is already fixed, but
the value of m™ depends on the size of U and m* > n™, but it is independent of

the points p, p’, pE.(p')E. As the balls Uand V will decrease in size during the
induction process, the value of m™* will increase depending on the previous iterates.
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5.1.2.C Inductive construction. Now we begin the construction of the shadowing
orbit {z;} once the pseudo-orbit {y;} is given. The required values of n*and k™
are fixed (one can use, for instance, k™ = n*), and m7 does not depend on the
given pseudo-orbit, but only on the numbers n; and m;.

The first step in the induction procedure is done separately because it requires a
slightly different reasoning. In this first step, p~ = f"°(yg), p™ = a(f™(y9)),
and K~ = ny.

(1) Choose xo € W5(yg), and let By be any ball centered at x¢ of fixed radius
p > 0 such that
By C Bs(yo) C Va.,
X0 € Bo N W*(yo) # @.
As WH(A) h WS(a(f™(y0))) at an homoclinic point that we call pg, by
the lambda lemma there exists a point Xo € W*(a(f™(y¢))) N VT such
that f7"%(xg) € Bg if ng > n*.
(2) By continuity, there exists a ball Vo C VT centered at X such that

(5.21) f7"(Vo) C Bo C Bs(yo) C Va.
Now we proceed with the second step of the induction procedure:
(1) By the definition of n*, as Xo € W3 (a(f™(y0))) N Vp,as k™ > n*, we
know that
+ + +
f57 @) e W (0(f™ (vo)D) N Bs(f* (0 (f™(30))) C V.

(2) By continuity, there is a ball U; centered at f ket (Xo) such that

Uy C Bs(f* (0(£™(30)))) C Va,
(5.22) @) e Uy n WX (0 (0 (o))
f_k+(U1) C V.

(3) Recall that y; = f™0(a(f"°(y0))), and therefore fk+ (0 (f™(y9))) =
kt—m
f °(r1).

(4) The next step is to apply the lambda lemma. Now p'~ = f"1(y1), p'* =
o(f"(y1)),and k'~ = ny. As W¥(A) intersects W3 (o (f"1(y1))) trans-
versally at an homoclinic point p;, if we take n; > kT > n* and mo >
mg, where mg is the value m* given in the general step and depends on
the size of U; and therefore on ng, one has that ny + mg —k+ > kT +
mo — k™t = mg > mg, and there exists x; € W*(o(f"'(y1))) and a ball
V1 centered at x1 such that

(5.23) fM(x) € f7" (V1) C Bs(y),
(5.24) fromok D () e prmEmo—k Dy
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| By = fmn(Vy) € fm(Uy) © f(Uh) € By \

|4

Y

9 :

[ @) er W c )

By

By

0 Few) o) m ) o)
£7ma) )

FIGURE 5.2. The construction in the obstruction argument.

(5) If we now take By = f~ot71+mo) () we have, using (5.24), (5.22).
and (5.21), that

Bl — f—(n0+n1+m0)(V1) — f—no—k+ ° f—nl—m0+k+(V1)
c f77 R Uy) € fT0Ve) € Bo.

Moreover, if we take zg € Bj it satisfies, by (5.25) and (5.23) and using
that Bo C Bs(yo),

(5.25)

20 € Bs(yo),
frotmo(zg) € fTM(Vh) C Bs(yn).

A schematic illustration of the first step in the induction construction above is

shown in Figure[5.2]

Once we have done the two first steps, we can proceed with the general induction
step.

Assume we have built the sequence x; € WS(a(f™ (y;)))NVr,aball V; C Vp
centered at Xj,i = 0,...,j, and U;41 aball centered at fk+ (x;) forn; > k™ >
n*,and m; > m; fori = 0,..., j, with the following properties:

o fT(Vi) C Bs(yi),
o frliEmTkD(W C u,
+ .
* Uiti C Bs(f¥ (o (S (y)))),
o /¥ J(rfi) € Ui,
o [T (Uit C Wi
We also assume that we have Xj 11 € Vi1 N W¥ (o (f™+1(yj+1))) such that
o [T (Vig1) C Bs(yj+1)s
o [T Vigh) C Uy,
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Let
. 7 T
Bigr = f7V4 o fT R0 M (V).
and we have that B; 1 C B; C Bj—1 C--- C By.
To proceed, first we look for a ball U; 4, centered at f ket (Xj+1) such that

+ .
Uj+a C Bs(f* (0 (S (3j+1)),
+ + .
) € U n WS (5 o (F4 (3 41)),
it
f* (Uj+2) C Vit1.
The value of kT and n* are fixed, but the size of Uj12 depends on the size of
Vi+1 and therefore on the previous steps. Then, applying the lambda lemma, us-
ing yj1o = f™H1(a(f"+1(yj+1)) and WH¥(A)) h WE(a(f™+2(y;+2))) at

a point pj 1o, we will find Xj 12 € W¥(o(f™/+2(yj+2))) and aball Vj1» C Vp
centered at X; 4o such that, if n; 4, > kt > n* and mjiq > m}'.‘H, then

o fTH2(Vig2) C Bs(yj+2)s
o fr2tmin—k )y ) C U,
Observe that the value m}" 41 is the general value m™ that now depends on the

size of U; 1>, and therefore of all the previous steps.
Finally, define

BJ-Jr2 = f‘zi=omk+"k o f—”j+2—mj+1—nj+1([/j+2).

Then we have
FTHAT AT AL (Y o) = f—"j+1—”* o f—”j+2—mj+1+n*(yj+2)
(5.26) ‘ * .
C ST Uaa) C f T (V).

Therefore
Bjia C J('—Z]/(=0mk+nk ° J('_nj+1(I/j+1) = Bj+1.
This finishes the induction procedure. Observe that if zg € (o<, < j Bj and we
consider the orbit z; 41 = f™ T™i(z;), we have that
® 79 € By C Bs(yo), and
e foralli =0,...,J,zo € B;, and therefore, by the definition of B;,
zg = frofmotEnitmi-1(70) € f7" (Vi) C Bs(i)-

To finish the proof we just point out that the definition of m;‘ 41 depends on the
size of the balls U; 11 but not on the points y; themselves. Therefore, if another
pseudo-orbit is given with the same indexes n; and m;, the same choices of n* and
m} will work.
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5.1.3 Remarks

Remark 5.1. In the proof of Lemma[3.1|given in Section[5.1.1] we have constructed
windows W=, W, ¥, W, | in V4 sothat f*(W;*) C VA, 0 <t <m; —k™, sothe
corresponding segment of the shadowing orbit of z; stays in V5 for this entire time.
Thus, the construction in the proof of the lemma enables one to find shadowing
orbits that stay close to A for any sufficiently long time intervals between two
consecutive homoclinic excursions.

Remark 5.2. Lemma[3.1|provides a true forward orbit that shadows a given forward
pseudo-orbit. The current proofs do not allow for immediately extending this result
for bi-infinite orbits. We remark that there is no assumption on the inner dynamics
given by fiA. In the proof given in Section the alignment of windows in
the center directions was achieved by defining, at each step of the construction,
the center component of W, ; as a ball inside some forward image of the center-

component of Wi+. Thus, the consecutive balls in the center direction can get
smaller and smaller in size as i increases. So if we try to continue the procedure in
backwards time, the center-components of the windows Wi+, i <0, may get bigger
and bigger in size. Thus, we may lose control on the shadowing trajectory; that is,
the resulting shadowing orbit does not follow §-closely the prescribed pseudo-orbit.

Remark 5.3. Statements related to Lemma [3.1] appear in [[391/40,/60]]. The main dif-
ference is that the statements in these papers assume certain geometric conditions
on the inner dynamics.

There is also a related version of the shadowing lemma in [52]], but only for finite
pseudo-orbits; moreover, those pseudo-orbits are subject to certain conditions that
are very different from ours.

Remark 5.4. Tt is interesting to note that the geometric proof of Lemma [3.1] given
in Section [5.1.2] works in infinite dimensions. One only needs to substitute the
compactness assumptions by the assumption that the regularity of the maps—and
hence of the manifolds—are uniform.

Indeed, infinite-dimensional versions of the theory of normally hyperbolic man-
ifolds appear in [4,|86]. An infinite-dimensional version of the inclination lemma
appears in [29]]. Note also that the nested-balls arguments also work in infinite di-
mensions when the space we consider is reflexive (or the dual of Banach space).
It suffices to note that by the Banach-Alaoglu theorem, balls are compact in the
weak-* topology.

5.2 Proof of Theorem [3.6)

Denote by u the measure referred to in the statement of the theorem, which
is absolutely continuous with respect to the Lebesgue measure on A. Then f
preserves [, and o takes positive measure sets onto positive measure sets.

Choose a small open disk By of x¢ in A, with By € U such that B; :=
o' (By) € U and diam(B;) < §/2 foralli = 0,...,n. For the given pseudo-orbit
{x;}of o, with x; +1 = o(x;), we have that x; € B; for all i. We will use Poincaré
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recurrence to produce a new pseudo-orbit {y;}, with y; 1 = f™ oo o f"(y;),
where m; and n; are as in Lemma [3.1] such that y; € B; for all i, and hence
d(yi,x;) < §/2. Invoking Lemma [3.1) will provide us with a true orbit {z;} with
Ziv1 = f™Mi*7i(z;) such that d(z;, y;) < 8/2, hence d(z;,x;) < §.

We first establish some basic facts about recurrent points.

5.2.1 First Recurrence Property

For an open set B C U C A, asubset A C B of positive measure in B, and
k* > 0, we define

P¥ (A, B) ={x € A|(f*")(x) € B for some t > 1}.

The set Pk (A, B) C A consists of the recurrent points of A4 that return to B
under some positive iteration of f k™ Since [-a.e. point in U is recurrent, and
B C U, Poincaré recurrence for the map f k* implies that Pk (A,B) C A has
full measure in A, and hence is of positive measure itself.

For each x € P¥" (A, B) let tymin(x) be the smallest positive integer ¢ > | with
(f*") (x) € B. Let

©={r>1|3x € P (A, B) s.t. tain(y) = 7}
be the set of the return times to B. For each 7 € O, let
(5.27) PF(A.B) = {x € PX" (4, B) [ tmin(y) = 7}
be the set of points with a prescribed return time 7 € ® under f k*

Since Pi+(A, B) = U¢sg Ptk* (A, B), with the sets Prk* (A, B) mutually dis-
joint, there exists T* > 1 such that M(Prk: (A, B)) > 0. Since f* is area preserv-
ing, p(f* T (PE (A, B)) = n(PE (4. B)) > 0.

Thus, every point in Prk** (A,B) € A € B will return to a point in B under
fk*f*. The set
(5.28) Ok (B, A) == [ (PX' (4, B)) C B

has positive measure in B. In terms of f, every point in Pf: (A,B) € A C B will
return to a point in Q’t‘: (A, B) C B inexactly k*t* > k™ iterates.

5.2.2 Second Recurrence Property

Consider now two open sets B € U and B’ = o(B) C U. Let A be a subset
of B of positive measure. By the above, Prk: (A, B) and Q]t‘: (A, B) are positive
measure subsets of B. Since the scattering map o sends positive measure sets onto
positive measure sets, it follows that

(5.29) A =0(0% (4, B) c B

is a positive measure subset of B’.
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5.2.3 Inductive Construction of Pseudo-orbits

Starting with By, we construct inductively a nested sequence of subsets >; C
By of positive measure of By such that each set is carried onto a positive measure
subset of B;,i = 1,...,n, via successive applications of some large powers of f
interspersed with applications of .

Use Lemma3.1]for §/2, and consider the value n* depending on §/2 as provided
by this lemma. Let Ag := By, let 7o > I such that P! (4. Bo) C Ag (see (3:27))
has positive measure, and

g = Pﬁ,* (Ao, Bo) € Ayp.
Consider the set Q’r’; (Ao, Bo) < 130 (see (5.28))), which has positive measure.
Then consider the set A} := 0(Q% (Ao, Bo)) € B1 (see (5.29)), which has pos-

itive measure in By. Let no := n* 7o and consider the value mg = mg(ng) given
by Lemmafor 8/2. There exists 7, > 1 such that the set

P;ZO(A/,Bl) C A] C B

(see (5.27)) has positive measure. Then the set Q:Zg (A, B1) C B (see (5.29))
also has positive measure in Bj.
Each point y; € QZ:,)S (A", By) is of the form y; = f™0%(x’), for some x’ €
Pr”(,)'*(A’ ,B1) and 1) > 1; each such x’ is of the form x’ = o(x) for some x €
?g (Ao. Bo); and each such x is of the form x = f" %(y,) for some yo €
Pr’z)* (Ao. Bg) = Xo and 19 > 1. Denote mg := mgt)and A; := Q:ZE (A}.B;) C

Bj. Thus, each y; € A; can be written as

(5.30) yi = f" o0 o f"(y)

for some yo € Xo, ng = n*, and mg > m*, where mg = m§t} and ng = n*v.
Denote by X; the set of points yo € Xo that correspond, via (5.30), to some
point y; € A;. We obviously have X1 € Xp. The preliminary facts established
above show that ¥ is a positive measure subset of By.
Assume that at the j™ step we have constructed a subset A i € Bj, which has
positive measure in Bj, such that each point y; € A; is of the form

(5.3D yj=f""tooo fl om0 fM0 00 0 f"(yo),

for some yg € Ag C By, withng > n*,...,n;_1 > n*andmg > mg, ... .mj_
> m.’]‘.‘_l, where n* and the m,’:’s are as in Lemma 3.1} Let X; be the set of points
yo for which the corresponding y; given by (5.31)) isin A;. We assume that X; C
;1 €--- C Xy, and that X; is a positive measure subset of By.

It follows from the above preliminaries that, for some z; > 1, the sets

PI'(A;.Bj) S B; and Q7 (4;.Bj)C Bj = f" Y (P! (4;.B)))
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have positive measure. Each point y € Pt”j* (A;j, Bj) returns to a point in
after exactly n*; iterates of f. Denote n; := n*t;. Since o is measure preserv-
ing, the set A}_H = O(ng (4;, Bj)) C Bjy1 has positive measure in Bj 1. Let

*k : .
m7, depending on §/2 and on no, ..., n;,mo,...,m;1, be as in the Lemma
There exists rJf > 1 such that

mi ’
Prj,/ (Ajr1:Bj+1) € 441 C Bjy
m* .o, . .
and O/ (A;. 41> Bj+1) € Bj+1 have positive measure. Each point
j o
m;‘ ,
y € Prj{ (Aj 41 Bj+1)

L. m* .
returns to a point in Q" (A%, . Bj+1) S Bj41 after exactly m}t} iterates of
A i

v

f. Denote Aj+1 =0, Bj 1), which is of positive measure. Then each
J

/
J+r
point yj1+1 € Aj 41 is of the form
(5.32) yi+1 = f" o000 [ (y;)
forsome y; € Aj, wheren; =n*t; > n*andm; =m
Since y; is of the form (5.37)), then
(5.33) vi+1 = f" oo o f o0 fM0 o0 0 fM0(y)
for some yg € Xg, withng > n*,...,nj_y > n* andmg > mg,...,m; > m?.

Denoting by X; 1 the set of points yg € 2¢ that yield points y; 1 given by (5.34),
we obtain that X; 11 C X; is of positive measure. This completes the induction
step.

e x !
i Zm~,W1th‘L'_,,‘17j > 1.

5.2.4 Shadowing of Pseudo-orbits
At the nt® step we obtain a nested sequence of sets X9 2 X1 2 --- D X, such

that each set Xj, j = 0,...,n, has positive measure in By. Each point yg € X,
generates a pseudo-orbit of the form

(5.34) Vi+1 = f" o000 fV(y;)

for j = 0,...,n — 1, where n; and m; are as in Lemma By construction,

each point y; is inside B, hence d(y;, x;) < §/2. Then Lemma [3.1] provides the
existence of an orbit {zj};=o,...» With z; 41 = f™ T (z;) such that d(z;, y;) <
8/2. Hence d(zj,x;) < é forall j.

Remark 5.5. In the proof of Theorem 3.6 instead of using the Poincaré recurrence
theorem we can use the nonwandering property given by Proposition [2.4] Starting
with By = By, there exists ng > n* such that f"0(Bj) N By # @. The set
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E(’) = f"0(B{)N By is an open set in By, and O’(E(/)) C By. There exists mg > m
such that f™0(a(B})) N o (By) # @. The set B := o (f™(a(B})) N o(B}))
is an open set in By. The construction can be continued recursively as before.
Given the open set BJ’. C Bj obtained at the end of the (j — 1) step, at step |
we construct EJ’ = fn (BJ’.) N B]’. for n; > n*, G(EJ’.) C Bj41, and B]’._H :
fmi (G(B]’.)) N U(Bj’.) # © formj > m7. The initial points yo € By that generate
pseudo-orbits of the form (5.34) for j = 0,...,n — | form an open set X, C By.

This approach yields explicit estimates of the return times to BJ’. and G(EJ’.),

given by O(1/ /L(B]’.)) and O(1/ M(G(EJ’.))), respectively. These estimates on the
return time, together with the data on the hyperbolic expansion/contraction rates
and on the angle of intersection between the stable and unstable manifolds (see
Remark [3.3) can be used to obtain explicit—but far from optimal—estimates on
the diffusion time.

5.3 Proof of Theorem 3.11]

We notice that (3.2) is reminiscent of the forward Euler method with step p(¢)
for ordinary differential equations.
As JVS(Xp) # 0 at some point Xo € U C Ay, we know that the solution

d_ -
(5.35) P = IS o7 ()

with (0) = Xg is not a constant solution. Let’s denote ¥(f) = ¢(z, Xo) where
¢(t, x) is the flow of (5.35). Consider n = [ ™! ], where i = ju(¢) is the parame-
ter that appears in (3.2)), and |-| denotes the floor function. Define two sequences:

Vi =y(t) = ¢(At,yi—1), Xi =0:(Xi—1), i=12,....n, Xo = Yo,

where t; = i and At = p. We will use two facts.
On one hand, if we apply Gronwall’s lemma to the vector field (5.33)), there
exists a constant K; > 0 such that

(5.36) Ip(AL,7) —p(AL T < BT =5 for 7,5 € Uy,
On the other hand, also by (3.2), calling
gw) = lgwl/m = o(D),
there exists a constant K, > 0 that is independent of y and & such that
(5.37) 106(X) — p(A1, X)|| < Kop(u + g(n)) for X € Uy.
Now one easily obtains that, by (5.37),
X1 = Vil = [5e(Xo) — ¢ (1. Xo) | < Kapu(p + g (1)),

and, consequently, X1 € Uy.
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Now, using again (5.36) and (5.37), we get
1%2 = Y2l = 15e(X1) — (e, T
< 1Ge(X1) — (. XD + ll¢ (. X1) — ¢ (e, Y1)
< Ko + 8(w) + 5% = F1ll < Kap(+ Z) (1 + ),

where we denote ¢ = eK1# > 1.
Consequently, X € Uy. Now we proceed by induction. We assume that, for
some 0 < i < n, one has that

1% = 5l < Kopulp + Z) (1 + ¢ + ¢ 4o 4 "7,
Using again (5.36) and we obtain
1Xi+1 = Fit1ll = 156 (Xi) — ¢ (. 3i)l
< 1Ge(Xi) — p(u. X)) | + llp (1. Xi) — P (p, 3i) |
< Kap(u + §(w) + K15 — 5|
< Kou(p + 5(u)A +c+c?+ -+ ).

Therefore, using that ¢ = eX1# thatc — 1 = eK1# — 1 > Ky, and that n =
|w=1], fori =0,1,...,n, we have that

Cl

A

1% = yill = Kap(p + (1))

1 K2 . )
— = (B
(5.38) ¢ 1

A

K> 5 X
E(“ + g(u))e™t.

As u = u(e) = o(e), there exists €1 such that if 0 < ¢ < &1, we obtain that
the sequence X; of the scattering map is also in U5 and is (i + g(u))-close to the
orbit y:

Xit+1 =0e(Xi) €Uy C A, d(Y(1).X%i) < K(u(e) +8(n(e). i =0.....n,

where K = %eKl, and n = |1 depends on &, for the increasing sequence
of parameters t; = iy € [0,1],i = 0,...,n. The points X; represent an orbit of

0¢ in A; therefore the points x; = k.(X;) represent an orbit of o, in A, satisfying
d(xi,ye(t;)) < K(u(e) + 2(1u(e))), where y. = k. o ¥ and K is a new constant.
This orbit X; lies inside the set Uy, = k¢(Uy) S A, where a.e. point is recurrent
for (f¢)|a,. See Figure

We now apply Theorem for the orbit (x;);—o,...,, of the scattering map o,
on Ag, where x; = k.(X;), and we obtain that, for any § > 0 there exists an orbit
Zigl = fgk’ (z;) of fe, which satisfies d(z;,x;) < 8,i = 0,...,n. Therefore we
obtain that

d(zi.ye(ti)) < 8 4+ K(u(e) + g(u(e))).
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Ag

FIGURE 5.3. A scattering path and a nearby orbit of the scattering map.

5.4 Proof of Corollary 3.12]

By continuity, since J VS is transverse to one level set of the variable / in A, it
is transverse to a O(1)-family of level sets of the variable /. More precisely, there
exist two compact disks D4 - B4 E d - T4 , of radii independent of ¢, such that
J VS is transverse to each level set {I = I} at5o(I4, ¢g) for I, € D, ¢, € EX.

Let A = D9 x E9 and let

A® = frw).
n>0
Note that A € A% and that A® is positively invariant, i.e., f;(A%®) € A,
We have the following two possibilities:
I. Either £(A®°) = oo
II. or (A®°) < oo.

Case I implies right away that for every N > 0, there exists an orbit ( f;” (XNnso0
of f; in A for which ||I(ka (X)) — I(X)| > N for some ky > 0. It follows
immediately that there exist orbits of f; as in the statement of the corollary. Notice
that in this case we obtain diffusing orbits only by applying the inner dynamics;
we do not have to use the scattering map.

Now we consider Case II. Since (t(A°°) < oo we can apply the Poincaré recur-
rence theorem, so for every open set i/ C A, almost every point of I/ is recurrent.

By the assumption on the scattering map, we have that for each (/g, ¢9) € D4 x
E9 the curve 7(1), ¢ € [0, 1], obtained by integrating the vector field J V.S with
initial condition at (/g, ¢p¢) is transverse to every level set {/ = [I,} at a point
7() = (1(t), $(1)), where (1(1), (1)) € D% x E2 = Aforallt € [0, 1] and all
0 < & < g1. Thus, there exists pg > 0, independent of &, such that

(7 1) = IFON] > po.

Choose an ¢ as in Theorem and fix an € € (0, &1). Choose 0 < § < po/4
and restrict &1 if necessary in such a way that K (u(e)+|g(u(e))|/mu(e)) < & andlet
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p = po—48 > 0. Theorem[3.11|implies that there is an orbit (z;);—o,...,» of fe such
that d(zg, y:(0)) < 26 and d(z5, y:(1)) < 28. Thus, we have || {(z,) — [(Zo)|| >
po — 48 = p.

Appendix A Normally Hyperbolic Invariant Manifolds
and the Scattering Map

In this section we recall the background on normally hyperbolic invariant man-
ifolds and the definition of the scattering map and its geometric properties.

The main references for normally hyperbolic manifolds are [48//49,66,80]. Even
if the definitions of [48]/49,/66]] are not completely equivalent, the results that we
use are very basic and appear in both treatments as well as in several subsequent
treatments [3/4]]. The properties of the scattering map appear in [36]. Let f: M —
M be a C" map on a C"-differentiable manifold M. Assume that there exists a
manifold A € M that is a normally hyperbolic invariant manifold for f. We will
assume that the derivatives of f are uniformly continuous and uniformly bounded
in a neighborhood of A. This is, of course, automatic if A is a compact manifold,
and many of the results are stated only for compact manifolds, but as remarked
in [3}/41/66]], only the uniform continuity and uniform boundedness of derivatives is
needed.

We recall that, following [[48],49,/66,80]], we say thata A C M is a hyperbolic
manifold if there exists a splitting of the tangent bundle of 7M into D f -invariant
subbundles

T™M = E¥Y @ E* @ TA,
and there exist a constant C > 0 and rates
(A1) 0<Ay <n-=<1<ny<p-
such that for all x € A we have
veES & |DfFw) <CAk v forallk >0,
veEY & |Dff)| < cuF|lv|  forallk <0,
ve T & IDAF W) < Crl o),

IDFT* )| < Cy=F|v||  forall k > 0.

(A2)

If Df(x) and Df ~!(x) are uniformly bounded, we have that there are opposite
inequalities; namely, there exist A_ < A4 and @4 > p— such that

ve ES = |DfF@)| = CAk|v|| forallk >0,
veE; = ||Dka(v)|| > C/Ljrkllvll forall k < 0.

Note that, of course, if the inequalities (A.2)) and (A.3) hold for some rates, they
also hold for other rates A, i+, and 77+ satisfying (A.T)) such that

(A4 Ao A C Ao Ag] e pg] CHE= fig) In—one] C =, 4 ).

(A3)
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Clearly, the bounds for Ii, [+ .7+ are less sharp than those for the original values.

If we change the metric in the manifold M by an equivalent metric, the rates
A4, n4, M4 are not altered, but the constant C can be modified. A standard con-
struction [[66]] shows that, for any rates that satisfy (A.4) with strict inclusions, we
can find a metric (called an adapted metric) equivalent to and as smooth as the
original one in such a way that C = 1 both in (A.2) and in (A.3). See [17] for a
discussion of adapted metrics for (A.3). Hence, for theoretical purposes (including
in this paper) one can assume that C = 1 in both and (A.3).

In the case when f is symplectic, it is natural to consider hyperbolic manifolds
with the property that

(A5) n—=1/n+, Ay =1/u—, andalso A_ = 1/pu4.

As shown in [36], normally hyperbolic invariant manifolds for symplectic maps
with the restricted exponents as in (A.5)) enjoy many geometric properties (e.g.,
the map restricted to the manifold is symplectic). Note, however, that even for
symplectic maps, there are normally hyperbolic invariant manifolds that satisfy
the general definition but not (A.3). A notable example is the stable manifold of a
NHIM, which is normally hyperbolic according to the general definition (this plays
an important role in [48]]) but does not satisfy (A.5)), and, indeed, the map restricted
to it is not symplectic.
Assume that there exists an integer £ > 0 such that

£ < min(r,log A/ log njrl Jogn—/log piy).

Then A is C*-differentiable, and its stable and unstable manifolds W*(A) and
WH(A) are C ¢_differentiable manifolds. See [184]].

The manifolds WS(A) and W¥(A) are foliated by stable and unstable mani-
folds of points W¥(z) and W¥(z'), respectively, with z,z’ € A, which are C”-
differentiable manifolds. The foliations are C¢~!-differentiable. For each x €
WS(A) there exists a unique x™ € A such that x € W$(x™), and for each
x € WH(A) there exists a unique x~ € A such that x € W¥(x™). We define
the wave maps

QT WH(A) > Aby QT (x) = x™,
QWA > Aby Q (x) =x".
The maps QT and Q~ are Ct'-smooth.
‘We assume that there exists a transverse homoclinic manifold I' € M, which is

C 1 _differentiable. This means that I’ € W*(A) N W*(A) and, for each x € T,
we have

IxM = Tqu(A) + Tst(A),

(A.6) ToT = T WH(A) N T WS(A).
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We assume the additional conditions that for each x € I" we have
TeWS(A) = T WS (x1) @ T T,

(A.7) _
Tqu(A) = Tqu(x ) @ TxT,

where x~, x™T are the uniquely defined points in A corresponding to x; in this

case we say that ' is transverse to the foliations. Following [36], we call " a
homoclinic channel if it is transverse to the foliation, and ~, QT restricted to T’
are diffeomorphisms. Hence, we can define a scattering map

o:Q (D)= QTI), o=Q o),
which is a diffeomorphism from Q~(T") to Q*(I).
If o(x~) = x, then there exists a unique x € I such that W¥(x " )NW*(x )N
I' = {x}. Note that the backwards orbit f~"(x) of x in M is asymptotic to

the backwards orbit f~"(x7) in A, and the forward orbit f™(x) of x in M is
asymptotic to the forward orbit /™ (x™¥) in A.

Appendix B Linearized Coordinates

We will construct all windows used in Section [5.1.1] in linearized coordinates,
which will be recalled below, following [83]].

Let A be a normally hyperbolic invariant manifold for f in M. There exists an
open neighborhood V of A in M, an open neighborhood Uy of the zero section
of (E* & E®)|5, and a homeomorphism /4 from Up to V such that for every
(x, 0%, v%) € (E" @ E¥)|A

(h™' o foh)(x¢,v", v%) = Nf(xC, v", v*)
= (fia(x), Df (x°) | pugps (", v%)).
Via this coordinate system, each point p € V can be written uniquely through
(x¢, v, v%) for some x¢ € A, v" € E*, v¥ € ES,as p = h(x°, v%, v°).

In the linearized coordinates, the map f is conjugate with the normal mapping

Nf|gugEs of f in a neighborhood of A. Hence, iterating a rectangle in these

coordinates by the map f for an arbitrary number of times is equivalent to iterating
the rectangle by the normal mapping Nf .

Appendix C Correctly Aligned Windows

We review briefly the topological method of correctly aligned windows. We
follow [94] (see also [[54.,58]]).

DEFINITION C.1. An (m1, m2)-window in an m-dimensional manifold M , where
mi 4+ mp = m, is a a C%homeomorphism y from some open neighborhood
dom(y) of [0, 1]™1 x [0, 1]™2 in R™! x R™2 to an open subset im(y) of M, together
with the homeomorphic image W = ([0, 1]™! x [0, 1]™2), and with a choice of
an “exit set”

Wit =y (3]0, 1™ x [0, 1]™2)
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and of an “entry set”
Wy = ([0, 17 x 3[0, 1]™2).

Remark C.2. Alternatively, we can define a window as a C %-family of m-dimen-
sional disks attached to an m,-dimensional disk, i.e.,

w= | D™,
quH’ll
with D™! being some fixed m,-dimensional disk, and D"2(g) being m-dimen-
sional disks depending in a C°-fashion on ¢ € D™, in which case
WeXit _ U ap™m>2 (q) and Wentry _ U pm2 (q)
geD1 qgeaD™1
In the sequel, when we refer to a window we mean the set W together with the

underlying local parametrization .

DEFINITION C.3. Let Wy and W, be (m1, m»)-windows, and let y; and y» be
the corresponding local parametrizations. Let f be a continuous map on M with
f(@im(y1)) € im(x2), and let f;, = Xgl o f o y1. We say that W is correctly
aligned with W, under f if the following conditions are satisfied:

(1) There exists a continuous homotopy #%: [0, 1] x ([0, 1]™! x [0, 1]"2) —
R™1 x R™2_ such that the following conditions hold true:
h([0, 1], 9]0, 1™ x [0, 1]™2) N ([0, 1]™* x [0, 1]"*?) = @,
h([0,1],[0, 1]™" x [0,1]™2) N ([0, 1]™" x 3]0, 1]™?) = @.
(ii) There exists yg € [0, 1] such that the map Ay,: [0, 1] — R™! defined
by Ay (x) = m, (h1(x, yo)) satisfies
Ayo(a[ov 1]m1) g le \ [Ov 1]m1’ deg(Ayov 0) 7£ 0?

where 7,1 R xR™2 — R™! is the projection onto the first component,
and deg( -, 0) is the Brouwer degree of a map at 0.

The following is a shadowing-lemma type of result for correctly aligned win-
dows.

THEOREM C4. Let f: M — M be a homeomorphism, W; be a collection of
(m1,ma)-windows in M, and {t;} be a collection of positive integers, where i € Z.
If W; is correctly aligned with W 11 under f* for each i, then there exists a point
p € Wy such that

(flio---o f0)p)e Wiy1 foralli.

Moreover, if for some k > 0 we have t;1 ) = t; and Wi = W; for all i, then the
point p can be chosen periodic with period ty + -+ + tx—1.
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The correct alignment satisfies a natural product property. Given two windows
and a map, if each window can be written as a product of window components, and
if the components of the first window are correctly aligned with the corresponding
components of the second window under the appropriate components of the map,
then the first window is correctly aligned with the second window under the given
map. The details can be found in [54].

We describe the product property in a special case, which corresponds to the
situation considered in the paper.

Let f: M — M be a homeomorphism of the m-dimensional manifold M.
Denote by B;f (x) the k-dimensional closed ball of radius p centered at the point
x in R¥. Assume that c,u,s € N are such that ¢ + u + s = m, and write each
x € R™asx = (x¢, x¥%, x%), with x¢ € R¢, x* € R¥, and x° € R®. Let p1, ps be
two points in M, and let y1, y2 be two systems of local coordinates about p1, pa,
respectively. Relative to these coordinate systems, we write p1 = (p§, p{, p})
and p2 = (p3, Py, P3)-

LEMMA C.5. Given two sets, Wy in the local chart around p1, and W5 in the local
chart around py such that, in the corresponding local coordinates, we have

Wi = Bl (pf) X Bpu(py) X Bps (pY).
Wa = BPc (p3) X By (P3) x Bys(p3),
for some pS, oY, py, p5. 5, P4 > 0. Let
WKt = 3B (p) x Bl (p}) x B3 (p})
U Bgf (P x GBZIL, (pY) x B;{ (p1).
W™ = BS(p§) x Bl (pY) x 3B, (p}).

W3 = 0By (p5) x Bpy (p3) x By (p3)

121
U BS (p$) x 9B (p¥) x B3, (p3).

W™ = B (pS) x By (p3) x 0By (p3).

Assume that the map f, written in local coordinates, satisfies the following
conditions relative to W1 and W»:

7 o f(Bge (p1) X Api'} X {p1}) 2 Bug(p3).
o JUPTY % By (pi) x {P1}) 2 By (p3).
s o f({pi} < Api'} X By (P1)) S By (p2),

where 7., 7Ty, s denote the standard projections onto R€, R¥, RS, respectively.
Then W1 and Wy are (¢ + u, s)-windows, and W1y is correctly aligned with W,
under f.

This lemma is an immediate consequence of proposition 3 in [54].
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Appendix D An Example of D. Turaev

We are very grateful to Dmitry Turaev who provided to us an example that shows
that a “uniform-time” version of the shadowing lemma analogue of Lemma [3.1]is
not true in general.

This example shows that the requirement that

P
ml Z ml (nOa e ani—lam()?' . 7ml—1)
in Lemmacannot be replaced by m; > m™*, where m™* is a constant.

Example D.1. Let M = R3, f: M — M be a C'-map, and A be a straight line in
M that is a normally hyperbolic invariant manifold for f as follows. There exists
a system of coordinates (x,u, v) in a neighborhood V of A in M, with x € R
representing the coordinate on A, and u € R and v € R the contracting and
expanding directions, respectively, and a corresponding open set U C R3 of the
form

U={(x,u,v)xeR,|ul <3/2,|v] <3/2}

such that for p = (x,u,v) € U, the map f is of the form f(x,u,v) = (x’,u’,v)
where

(D.1) ¥ =x4+ @)’ v =u/2, v =2

Thus A corresponds to u = v = 0, and for each point p = (x,0,0) € A,
Wi(p) = {(x,u.0)}, and W¥(p) = {(x.0.v)}. Moreover, fijx = Id, and
fVSYU(p)) = WS¥(p) for every p € A, that is, f leaves invariant the stable
and unstable fibers.

Assume that W¥*(A) and W¥(A) intersect transversally along a homoclinic
manifold

r—={x,u,v):u=00v=1}

which is a line, and that for some power ¢ > 0 the map f¢ is of the form
fexou,v) = (" u” "),

(D.2) X"=x+1, u'=14u vV =v-1

Thus f9(I'") = I'" = {(x,u,v): u = 1,v = 0}, and the corresponding scatter-
ing map o: A — A is of the form

(D.3) o(x,0,0) = (x + 1,0,0).

Assume that for every § > 0 there exists n* such that for every pseudo-orbit
yi+1 = f™ oo(y;) with n; > n* there exists a true orbit z;41 = f™i(z;) such
that d(z;, y;) < & for all i. Take § > 0 small and a corresponding n* sufficiently
large. Choose and fix a pseudo-orbit y; +1 = f" oo (y;) withn; = n = n* for all
i >0.Lety; = (x;,0,0). Since fj5 = Id and o shifts the x-coordinate by 1 unit,
we have

(D.4) Xiy1 =X + 1.
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Assume that there is an orbit z; 11 = f"(z;) whose points are §-close to the
corresponding points y;. Let z; = (x/,u;,v;). Shadowing would imply that for
alli > 0 we have

(D.5) Ixj —xi| <8, |ui| <8, |vi| <8.

First we show that one of the iterations f¥(z;) with 0 < k < n must lie outside
the neighborhood U of A (i.e., the orbit between z; and z;+; makes an excursion
along the homoclinic). Indeed, note that as long as the orbit of z; lies in the neigh-
borhood U, the product uv stays constant by (D.T)), so if the orbit between z; and
Zi+1 stays in U for all time, then

xfpq = x} 4+ n(uivi)®.

Also, by (D.I)), we must have |v;| < 2,1%, 5o |xj — xi| < ﬁﬁlu%, which
contradicts (D.4)) and if § is small. Thus, the orbit between z; and z; 1 must
leave at some point f¥+1(z;) the neighborhood U.

Thus, for each i > 0 there exists a positive integer k; < n — ¢ such that the
first k; iterations of z; stay in U, the next ¢ iterations stay outside U following
the homoclinic and returning to U, and the last n — g — k; iterations stay in U
again. For the first k; iterations the product ©v stays equal to u;v;, and for the last
n — q — k; iterations the product stays constant and equals u; +1v;+1 (see (D.I)).

Thus, by and (D.2),
(D.6) Xy =X+ 1+ kiivi)? + (0 — g — ki) (i1 1vi11)°
Using (D.I), since z; leaves U after k; < n — g forward iterations, we have
lv;| > 3/2"79%2 foralli,
and since z; leaves U aftern — g — k; < n — ¢ negative iterations,

lu;| > 3/2"79%2  foralli.

Therefore,
(u;v;)? > 1/2*"  forall i,
hence implies
Xj > X+ 1+ (m—q)/2" > x] + 1+ 1/2
thus
Xy > xg+i+i(1/2%).
By (D4)

X;j = xo +1,

the distance between x; and x; grows without bound as i grows, for any choice of
xo and x, so the shadowing property will be broken after finitely many iterations
for any choice of the constant 7.
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Remark D.2. The idea of this counterexample is that the dynamics off A differs
from the dynamics restricted to A by some fixed amount of shift that depends
on the u- and v-coordinates of a point. Thus the shift between the points of the
pseudo-orbit (which lie on A) and the points of a shadowing orbit that takes the
same number of iterates between successive points keeps increasing by the fixed
amount of shift at every step, and the pseudo-orbit and the shadowing orbit end
up being far apart. If we allow that the number of iterates between successive
points of the pseudo-orbit to vary, as is the case in Lemma|[3.1] we can arrange that
the shadowing orbit gets closer and closer to A, which makes the amount of shift
between its points in Aand the points of the pseudo-orbit smaller and smaller at
every step. More precisely, in the above example where we consider a shadowing
orbit z; 41 = f™(z;) with n; sufficiently large and depending on i, the above
estimates yield an error term between x; 41 and x; 4 of the order

i
> nij2t,
k=0

which can be made arbitrarily small by choosing, for instance, ng sufficiently large
and »; increasing at a linear rate.

Remark D.3. The proof of Lemma [3.T|uses the existence of a linearized system of
coordinates / in a neighborhood of A (cf. [83]]). In Example such a system of
coordinates is given by

(o + i )2, v), foru,v #0,

hx.u.v) = (x,u,0), forv # 0,
T (x,0,v), foru # 0,
(x,0,0), foru =v =0.

Indeed, note that
ho f(x.u.v) = h(x + (uv)*,u/2,2v)

= (x + (uv)? + (W — 1)(uv)2, u/2, 2v)

In|u| —In|v| 5
= _ 2,2
(x+( a3 (uv)*,u/2,2v

= Nf oh(x,u,v).
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