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In savannas, predicting how vegetation varies is a longstanding

challenge. Spatial patterning in vegetation may structure that

variability, mediated by spatial interactions, including competition

and facilitation. Here, we use unique high-resolution, spatially

extensive data of tree distributions in an African savanna, derived

from airborne Light Detection and Ranging (LiDAR), to examine

tree-clustering patterns. We show that tree cluster sizes were

governed by power laws over two to three orders of magnitude in

spatial scale and that the parameters on their distributions were

invariant with respect to underlying environment. Concluding that

some universal process governs spatial patterns in tree distribu-

tions may be premature. However, we can say that, although the

tree layer may look unpredictable locally, at scales relevant to

prediction in, e.g., global vegetation models, vegetation is instead

strongly structured by regular statistical distributions.
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Savannas are defined as having open tree canopies and a
more-or-less continuous grass layer—a classification that

differentiates savannas from closed-canopy forests (1) and per-
haps even from pure grasslands (2), but which encompasses
substantial variability in vegetation and ecosystem structure (3).
Beyond this broad definition, variability in savanna vegeta-
tion structure has resisted mechanistic characterization and
explanation, despite repeated analysis (4–8), perhaps because
savanna vegetation is the product of complex interactions and
feedbacks between bottom-up constraints from climate and
soils and top-down control from fire and herbivory. As such,
savannas pose a challenge for predictive frameworks: diverse
biosphere models consistently underpredict savanna distribu-
tions or even fail to capture savanna vegetation entirely. A
more fundamental understanding of how savanna vegetation
varies, and its drivers, will be critical for improving the re-
presentation of this globally widespread biome that covers at
least 40% of the global tropics.
There may be mundane reasons that savanna structural vari-

ability has been difficult to constrain. One possibility is that
existing efforts have examined vegetation structure at scales that
are miniscule compared with the processes that shape it (3).
These may include rare events (9, 10), which are difficult to
sample adequately, or the problem may be more trivial, since
field plots—often as small as fractions of hectares—may fail to
statistically sample tree populations sufficiently. By the same
token, larger-scale analyses (5, 11) often leverage optical remote
sensing data, which cover relatively short time scales and are
often insufficient for characterizing savannas (12). Scaling up, with
high-quality data, will clearly be necessary for deepening our
mechanistic understanding of savanna tree-layer variability (3).
Savannas may also vary for reasons less mundane than those

related to undersampling. Extensive theoretical work (13, 14)
and more limited empirical observations (15) suggest that vari-
ation in savannas may be more organized, and less haphazard,
than plot-based studies suggest. While locally patchy, savannas

can be highly regular. In special cases, patterns can repeat
themselves at characteristic scales (16, 17); these patterns may
result from the combination of local activation (e.g., facilitation
via hydraulic redistribution; ref. 18) with longer-range inhibition
(e.g., tree-tree competition; ref. 19). In other cases, or at least on
other scales, patterns may be scale-free, best described by a
power-law relationship between, e.g., the size of a patch of trees
and its frequency (15, 20) of the form:

f ðxÞ ∝ x−α,

where the frequency f of clusters of size x decreases with x via the
exponent α (known as the power-law exponent). Short-range
facilitation without inhibition (a type of Yule process) could be
a possible mechanism (21), but power laws can emerge from
diverse processes such that inferring process from pattern is im-
possible without extremely careful parameterization, and is dif-
ficult even then (21). Either way, distributions at larger scales
speak to a degree of predictability—albeit not at the plot level—
that predictive approaches to savanna ecosystems have so far
mostly ignored.
These power-law distributions may describe widespread tree-

layer variation in savannas and other arid ecosystems (15, 20).
However, empirical work examining power laws in data (not just
in savannas) has come under scrutiny for a lack of statistical
rigor in how power laws are estimated (22, 23), broadly inva-
lidating results based on fitting linear regressions to statis-
tical distributions. Data are also improving dramatically in
both extent and quality; for instance, airborne Light Detection
and Ranging (LiDAR) techniques can now provide highly
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accurate data on vegetation occurrence and structure at the
submeter scale over large landscapes. Methodologically, these
data represent a tangible improvement over optical approaches
for differentiating trees from the grasses in between; LiDAR also
allows for evaluations of power law occurrence over a range of
spatial scales (24) that is unprecedented in savannas. Compre-
hensive reevaluation of claims about the ubiquity of power-law
distributions in the savanna tree layer is necessary and now
possible.
New high-resolution LiDAR data also permit more nuanced

examinations of tree clusters. Theory suggests that scale-free
patterns in vegetation structure should be reflected not just in
power law distributions of cluster sizes, but also in the geometry
of those clusters (23). In a classic example, the length of the
coastline of an island classically scales as a power of its area, via
an exponent that defines its fractal dimension; however, because
coastlines are tortuous (rough), these fractals do not scale as
strictly 2D objects (with dimensionality of 2) but rather as
something between a line and an area (25).
Here, we reexamine the statistical distributions and geome-

tries of tree patch sizes in Kruger National Park in South Africa
(Fig. 1), asking whether distributions are best described by power
laws, and how their parameters and geometries depend on un-
derlying environmental variation in climate and soils. To do this,
we used high-resolution (56 cm) airborne LiDAR-based esti-
mates of tree distributions (trees > 3.5 m height) across 10 large
landscapes (>6,000 ha each) in Kruger, using robust distribution
fitting techniques to estimate distribution parameters (see
Methods and Materials for more detail). Kruger spans significant
orthogonal ecological gradients in rainfall (300–750 mm) and
soils (clay-rich versus sandy) (6), originating from differences in
parent material, which also give rise to strongly contrasting to-
pography and river structure, as well as contrasting fire and
herbivory regimes.

Results and Discussion

We found that power laws were widespread, in some cases
over two or even three orders of magnitude in tree clump
size (Fig. 2A). Across all landscapes, the tree cluster size
above which power laws adequately fit the fat tail of the
distribution (defined as xmin) is significantly related to inde-
pendent, field-based estimates of the maximum canopy area
of large trees (Fig. 2B; R2

= 0.630, n = 10, P = 0.0062),
suggesting that, intuitively, power-law tree clustering can only
occur above the size of the individual tree. Both tree size
(R2

= 0.622, n = 10, P = 0.0067) and xmin (R
2
= 0.552, n = 10,

P = 0.013) increased significantly with rainfall (Fig. 3). To-
gether, these findings substantially corroborate the idea that
tree-clustering distributions are predictable, if not at small
scales then at larger ones, and that universal statistical dis-
tributions (power laws) may be useful for describing the
clustering of trees in savanna systems.
What is much more surprising is the unexpected consistency in

the distribution of large tree clumps across landscapes in Kruger.
Once we controlled for the smallest meaningful cluster size
(xmin), power law slopes were relatively consistent across land-
scapes, showing no systematic variation with respect to rainfall
(t10 = 0.13, P = 0.90), landform (t10 = 1.19, P = 0.30; Fig. 2C), fire
frequency (t10 = −0.31, P = 0.77), or mean distance to river
(t10 = −0.48, P = 0.66), although distributions were impossi-
ble to estimate with confidence (Fig. 2C) on two landscapes
with low tree cover (0.1% and 1.5%) and should not be con-
sidered conclusive with respect to geology. Excluding these,
the mean power-law α across landscapes was 2.72 ± 0.16
(or equivalently 1.72 ± 0.16 for the power-law exponent of
the inverse cumulative distribution function), showing dra-
matically less variation in tree cluster size distributions over
gradients in rainfall—in high resolution, spatially extensive

data—than previous studies have described (15, 20). Excluding
clumps that were close to rivers from the analysis did not change
estimates of α, which further suggests that rivers were not
primarily responsible for observed tree clustering patterns
(excluding clumps within 500 m, 1 km, and 5 km yield estimates
of α = 2.71 or 2.72).
Perimeter-area relationships were also predictable across

landscapes, included those with lower tree cover (Fig. 4).
Perimeter-area methods have been criticized as a method for
characterizing scale-free distributions, because approaches are
based on strong a priori assumptions about self-similarity, and
are subject to computational issues and interactions with scales
of analysis (23). Here, we found that patch geometry seemed to
scale consistently within landscapes (Fig. 4A) in a way that did
not depend on the scale of analysis [a frequent limitation of
analyses of this type (23); Fig. 5]. Unlike patch-size distribution
parameters, however, fractal dimension changed with rainfall (Fig.
4B), with fuller patches at higher rainfall and more linear ones at
lower rainfall (R2

= 0.586, n = 10, P = 0.0099; see Table 1).
Again, changes were small but may reflect increases in tree
size with increasing rainfall or may alternatively suggest trends
in tree clustering across a broader rainfall gradient. Regard-
less, tree-cluster geometry may be more accessible at typical
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Fig. 1. Map of Kruger National Park, showing locations of large landscapes

included in this study, parent material, rivers and streams, and the overall

direction of the rainfall gradient. Large landscape positions are colored by

parent material and then numbered by increasing rainfall (note the in-

version of the rainfall gradient in the north of Kruger).
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scales of analysis (23) and more sensitive to underlying envi-
ronment than tree cluster size distributions at large scales (Fig. 2),
which are not often available, or direct plot-based assessments
of tree density at smaller scales, which yield poor predictive
ability (3, 4, 6).
From this analysis, tree clusters and their distributions look

more consistent across environments than previously thought.
Theory gives us no real reason to suppose this should be the case;
while generating power laws in tree cluster sizes is not difficult,
most mechanistic models yield distributions with parameters that
vary with respect to environment (15, 26). One possibility could
be that tree cluster distributions are governed by some univer-
sality class; another could be that tree clustering is governed by
some predictable but hitherto unappreciated aspect of tree
physiology and its scaling properties. Either would represent a
major breakthrough in our understanding of savanna vegetation
heterogeneity.
Before such radical conclusions can be supported, however, a

next line of future inquiry should be to broaden the scope of
the current analysis to include more diverse environmental
variation. Although Kruger encompasses broad variation in
soils and a reasonable rainfall gradient (6), landscapes here
range in tree cover (with height > 3.5 m) from near zero only
up to ∼13% and in rainfall from a minimum of 300 mm to
750 mm rainfall, and as such are not representative of the full
range of possible savanna variation (7), especially among
continents across which tree architecture may differ (27). This
will require comprehensive large-scale, high-quality data, and
may not be possible to the exceptional degree presented here,
but establishing whether cluster size distributions are in fact
invariant and accurately estimating their parameters will de-
pend on a broader geographical approach.

What we can say with confidence is that, overall, the tree layer
in savannas is far more predictable than smaller-scale plot analyses
have suggested. While the tree layer looks unpredictable locally (3,
6, 8), it is instead strongly structured by regular statistical distri-
butions at scales relevant to prediction. Savanna ecologists should
aim for mechanistic understanding, both of invariant distributions
(if indeed they are), and of parameters that vary smoothly with
environment (here, individual tree size). Meanwhile, global
models, which often operate assuming no spatial structure either
within or among simulation units (28, 29), should consider how to
leverage emergent distributions to improve predictions of vege-
tation distributions and carbon cycles in savannas.
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Fig. 2. Tree clump size distributions with estimated power law fits for all landscapes (A), response of power-law minimum clump size (xmin) to independent

estimates of individual tree canopy area (B), and response of power-law slope to mean annual rainfall (C). In A, red lines show power-law fits, gray dots show

actual data, and open circles show properties of a randomized landscape with tree cover equal to that of each real landscape; in B, the red line denotes the

best-fit estimate for the response (R2
= 0.630, n = 10, P = 0.0062). In B and C, light gray points correspond to landscapes on granitic soils and dark ones to those

on basaltic soils.
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Methods and Materials

Tree clusters weremapped across 10 landscapes in Kruger National Park, South

Africa, in April 2012 using the Carnegie Airborne Observatory (CAO)–AToMS

System (30). AToMS includes a waveform LiDAR scanner with integrated

Global Positioning System-Inertial Measurement Unit (GPS-IMU), which

returned 3D positioning and altitude data for the sensor onboard the

aircraft, allowing for highly precise and accurate projection of laser

ranging measurements on the ground. The GPS-IMU data were combined

with the laser ranging data to determine the 3D location of each laser

return. LiDAR data were collected from 2,000 m above ground level at

50 kHz laser pulse repetition rate, a 17° half-scan angle and 50% overlap

between adjacent flight lines, resulting in LiDAR measurements with 56-cm

laser spot spacing. These raw LiDAR returns were then used to derive top-

of-canopy and ground digital elevation models (DEMs) (31). Woody canopy

height was estimated as the difference between top-of-canopy and

ground DEMs.

This woody canopy height map was then thresholded at 3.5 m to yield a

presence/absence map of trees; the threshold of 3.5 m was chosen to con-

servatively accommodate LiDAR accuracy (which erodes strongly below 2m in

height) but also has ecological meaning in savannas, since fires and most

herbivores have much lighter impacts on savanna trees above this height.

These maps were analyzed using the package “raster” in R (version 3.2.2),

with tree clusters identified via the “clump” algorithm with a Queen

(Moore) neighborhood. The algorithm is more robust to gaps in tree

canopies than the alternative Rook (von Neumann) neighborhood would

be. Having identified clusters and estimated their perimeter and area, we

then proceeded to fit power law distributions with the package “poweRlaw”

(22). This package fits the inverse cumulative distribution function F(x),

defined as:

FðxÞ=

�

x

xmin

�

−ðα−1Þ

rather than fitting either a statistical distribution to the frequency distri-

bution or, worse, a linear model to binned data, which has been a common

approach historically; this approach has been shown theoretically and via

testing on distributions with known parameters to yield more robust esti-

mates of power-law distribution parameters (22). This package also extracts

an estimate for the minimum cluster size above which a fat-tailed distribu-

tion fits data (xmin); note too that, here x and α correspond to those quan-

tities defined in the main text. Values of α and xmin were estimated by

minimizing the Kolmogorov–Smirnov statistic. To evaluate sensitivity of

parameter estimates to samples and sample sizes, we also bootstrapped

(100x) parameter estimates to derive 95% confidence intervals.

Perimeter (P):area (A) relationships were evaluated as the linear re-

lationship between log-transformed perimeter and log-transformed area,

yielding an estimate of slope β and the overall relationship

A∝ Pβ.

The fractal dimension of a set of self-similar clusters (25) is given by 2
=β
. Lines

were fit in the package “lmodel2” in R via model II major axis regression,

which assumes the possibility of errors in observations in both variables,

appropriate here because both were estimated via the same data collection

techniques. Only clusters above the xmin estimated for each landscape were

included for estimating this relationship.

To evaluate the effects of scale of analysis on estimates of power-law and

P:A relationships (Fig. 5), we aggregated rasters from their original resolution

by a factor of 1–8, taking average tree cover within each new pixel and de-

fining presence when proportional tree cover was greater than or equal to 0.5.

We found that no parameter estimate depended strongly on the scale of

analysis, suggesting that results presented in the main text are robust.

Finally, we have used a dataset maintained by Kruger National Park

management (the Veld Condition Assessment dataset; see ref. 6 for a

complete analysis and description of these data) for ground-based esti-

mates of individual tree canopy area, which were used to compare

against estimates of the minimum cluster size above which power-law fits

apply (i.e., are minimum cluster sizes related to tree size?) (Datasets S1

and S2). In 2008, vegetation structure data were collected at 457 sites

throughout Kruger. At each site, tree size (including diameter, height,

and maximum canopy diameter) and species were collected for all trees

with height > 3 m within a radius of 5 m of eight points distributed evenly

within a 50 m × 60 m plot. For the purposes of this analysis, we then se-

lected the tree with the largest canopy diameter at each plot. To maxi-

mize data use, estimates of canopy diameter for each landscape were

estimated as mean canopy diameter for all VCA plots within 50 km of the

centroid of each large landscape (larger than the landscapes included

here, but a better balance given sparse field sampling). Canopy area was
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determined as A = πr2. We are clearly overestimating canopy area, how-

ever, given that field measurements recorded only maximum canopy di-

ameter; tree size trends with rainfall would thus benefit from further,

careful direct examination.

Variation in tree cluster parameters with respect to environmental vari-

ables was evaluated using independent maps maintained by Kruger National

Park Scientific Services of underlying parent geologic material, mean annual

rainfall, and permanent river distributions. Rainfall maps are based on data

collected at 22 weather stations that have been continuously monitored since

1989 throughout Kruger (see ref. 6 for more information). Fire frequency

estimates are also derived from management-maintained maps; individual

fires were mapped on the ground by park managers from 1941 through

2000; subsequent fire scar mapping was done from satellite imagery derived

from NASA’s Moderate Resolution Imaging Spectroradiometer instrument.
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Table 1. Estimated parameters (xmin and α) of power-law

distribution of tree cluster sizes and estimates of cluster

perimeter fractal dimension based on P:A analysis

Landscape Estimated xmin Estimated α Fractal dimension

1 19 2.72 1.43

2 76 2.93 1.71

3 135 2.89 1.95

4 131 2.81 1.92

5 185 2.63 1.98

6 23 3.19 1.38

7 12 2.68 1.35

8 24 2.40 1.42

9 222 2.75 1.96

10 112 4.02 2.09

See Fig. 1 for locations corresponding by number to each landscape. Es-

timated xmin is given in number of pixels (with each pixel = 56 cm on a side).
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