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We formulated a spatially resolved model to estimate forces exerted by a polymerizing 

actin meshwork on an invagination of the plasma membrane during endocytosis in yeast 

cells. The model, which approximates the actin meshwork as a visco-active gel exerting 

forces on a rigid spherocylinder representing the endocytic invagination, is tightly 

constrained by experimental data. Simulations of the model produce forces that can 

overcome resistance of turgor pressure in yeast cells. Strong forces emerge due to the 

high density of polymerized actin in the vicinity of the invagination and because of 

entanglement of the meshwork due to its dendritic structure and crosslinking. The model 

predicts forces orthogonal to the invagination that are consistent with formation of a flask 

shape, which would diminish the net force due to turgor pressure. Simulations of the 

model with either two rings of nucleation promoting factors as in fission yeast or a single 

ring of nucleation promoting factors as in budding yeast produce enough force to 

elongate the invagination against the turgor pressure.  
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Introduction 

 

Assembly of actin filaments at sites of endocytosis is necessary for invagination of the plasma 

membrane in both budding and fission yeast (Aghamohammadzadeh and Ayscough, 2009; Basu 

et al., 2014). The transient accumulation of actin filaments around the invaginating plasma 

membrane is called an “actin patch.” Patches form in ~10 s, peak and disappear over ~10 s. 

Polymerizing actin is believed to produce the forces required to form a tubular invagination of 

the plasma membrane with a clathrin-coated hemisphere at the tip (Kaksonen and Roux, 2018). 

Force is required to overcome the very high turgor pressure in yeast cells, which is estimated to 

be on the order of 10 atm in fission yeast (Basu et al., 2014). This amounts to a force on the order 

of 3,000 pN on a typical endocytic tubule (Carlsson, 2018). Previous modeling studies concluded 

that actin polymerization alone is unlikely to generate such a force, and various additional 

mechanisms were proposed (Scher-Zagier and Carlsson, 2016; Lacy et al., 2018). 
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We used simulations of mathematical models to estimate the forces exerted on an endocytic, 

plasma membrane tubule by a surrounding network of actin filaments. In our model, mechanics 

of the filamentous meshwork is coupled to a detailed description of actin nucleation and 

polymerization (Berro et al., 2010). We assumed that proteins called nucleation-promoting 

factors (NPFs) reside on the membrane tubule and stimulate Arp2/3 complex to nucleate 

branched actin filaments. Simulations of the model constrained by experimental parameters 

yielded dense networks of actin filaments around the tubule in the vicinity of the NPFs. 

Entanglement of the branched filaments makes the network highly viscous, so that the energy 

released during the polymerization generates forces sufficient to work against the turgor pressure 

and elongate the nascent invagination.  

 

The elongating invaginations were simulated with either one or two narrow bands of NPFs 

around the membrane tubule. Fission yeast have two rings of NPFs, one that remains in the 

initial position at the base of the invagination, while the other moves with the tip of the tubule 

(Arasada and Pollard, 2011; Arasada et al., 2018). Budding yeast have one ring of NPFs that 

remains near the base of the invagination (Mund et al., 2018). Consistent with experimental 

observations, both versions of the model yielded similar forces, elongation rates, and lengths of 

the invaginations.  

 

Model  

 

1. Generalized description of the biochemistry and physics of the expanding actin filament 

network. The model of the actin filament network is formulated in a continuous approximation, 

such that the distribution of filaments in the patch is characterized by a continuous density of 

actin subunits ),( tx , which is a function of location x and time t . The peak number of ~6,500 

actin subunits per patch in fission yeast (Sirotkin et al., 2010) suffices for a continuous 

formulation to provide reasonably accurate results. This large number makes a discrete stochastic 

approach logistically burdensome, though such an approach would otherwise be appropriate, 

given submicron sizes of endocytic patches (Mund et al., 2018).  

 

We describe filamentous actin as a visco-active fluid (Kruse et al. 2005; Prost et al., 2015). In a 

viscosity-dominated environment, a balance between active and dissipative forces governs the 

mechanics of actin filament networks. The active repulsive stress, originating from the 

impingement of polymerizing subunits on existing filaments, is elastically stored in the 

meshwork, causing it to expand with velocities limited by dissipation due to viscosity of the 

meshwork. 

 

The force balance requires that the divergence of the total stress tensor be zero everywhere in the 

fluid (Kruse et al. 2005): 0)ˆˆ( activeviscous  σσ . Here, the viscous stress tensor is viscousσ̂
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))(( T
vv  , where ),( txvv   is the the local actin velocity,  

T)( v is the transpose of the 

velocty gradient tensor v ,  and the viscosity coefficient   is a function of the local densities 

  and local average length of actin filaments, L : ),( L   (Doi and Edwards, 1998). 

Because   is allowed to vary in space, actin velocities ),( txvv   are not subjected in our model 

to the incompressibility condition. The density of actin subunits, however, has an upper limit due 

to excluded volume, as explained further in this section.  

 

The active stress tensor is approximated as isotropic: activeσ̂ Îaσ , where Î is the unit tensor and 

aσ  can be interpreted as the energy per unit volume stored in the meshwork during 

polymerization. Active stress is generated when a polymerizing subunit impinges on an existing 

filament. This requires high filament densities characteristic of the endocytic actin patches, 

where large numbers of polymerized subunits are concentrated in submicron volumes, resulting 

in high  . The requirement of a direct interaction between two filaments is consistent with the 

quadratic  -dependence of the ‘storage’ modulus of overlapping actin filaments (Satcher and 

Dewey, Jr., 1996; MacKintosh et al., 1995; Gardel et al., 2003), see subsection Parameterization 

of the force-balance equation (Eq (1)). Hydrostatic pressure is not included in the force-balance 

equation in our model, because the mechanics of the actin filament network decouples from 

mechanics of the cytoplasm. Indeed, the viscous drag exerted on actin filaments by the 

cytoplasm is much weaker than the intrinsic viscous forces due to direct contacts of the filaments 

and can thus be ignored (Nickaeen et al., 2017). Technically, the repulsive active stress can be 

viewed as playing a role of pressure in our model. Overall, the equation governing ),( txv  is 

written as 

 

0)()))()(,((   a

TL vv .    (1) 

 

Eq (1) is coupled with the spatiotemporal dynamics of the molecules regulating actin filament 

assembly. In both types of yeast cells, NPFs  initiate the assembly of the actin filament networks 

by stimulating Arp2/3 complex to nucleate new actin filaments on the sides of existing filaments, 

forming a dendritic network.  

 

The model includes a spatial description of actin nucleation and polymerization that follows a 

kinetic model used by Berro et al. (Berro et al., 2010), which consists of rate equations detailing 

actin filament nucleation, polymerization and aging, as well as capping the barbed ends of 

polymerizing filaments and severing of aged filaments by cofilin. Simulations of the model using 

protein concentrations measured in cells (Berro et al., 2010) adequately describe experimentally 

measured time courses of the appearance and disappearance of patch proteins (Sirotkin et al., 

2010). The rate constants giving good fits of the simulations to the experimental data were larger 
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than expected from biochemical measurements owing in part to molecular crowding in cells 

(Schmit et al., 2009). Utilizing rate constants and equations of Berro et al. integrates 

measurements of actin kinetics in our model. 

 

The actin density   is determined by concentrations of all of the species of actin in an actin 

patch. These species include newly polymerized ATP-bound subunits (‘FATP’), subunits aged 

by ATP hydrolysis and phosphate dissociation (‘FADP’), and subunits bound by cofilin 

(‘FCOF’) as shown in the reaction diagram in Fig. 1. In our model,  also includes 

concentrations of the filaments barbed-ends, both active and capped (‘BEa’ and ‘BEc’, 

respectively), and slowly depolymerizing pointed ends (‘PE’). Overall,  

 


X

A Xn ][ ,  

 

where X  stands for FATP, FADP, FCOF, BEa, BEc, and PE, and ][X  is the concentration of 

molecule X  in M; the prefactor An  converts the concentration in M into the density 

expressed in molecules per m3 ( 602An m-3/M).  

 

Figure 1. Reaction diagram corresponding to the kinetic model by Berro et al. (Berro et al., 2010), with added 
partitioning of species between membrane and cytosol. Directions of arrows towards or from reaction nodes 
(yellow squares) determine roles of species (green circles) in a particular reaction as reactants or products, and 
reactions without products describe disappearance of reactants from the patch. Species connected to 
reactions by dashed curves act as ‘catalysts’, i.e. they are not consumed in those reactions. 
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All concentrations ][X , with the exception of [ActiveArp], are governed by reaction-transport 

equations of the following type, 

 

Xt RXX  )]([][ v ,    (2) 

 

where the first term in the right-hand side describes the flow of X with velocity v  and XR  is the 

sum of rates of all reactions affecting X . The next subsection describes the equations for 

[ActiveArp].  

 

Functional forms of XR and parameters are from (Berro et al., 2010), with modifications 

reflecting the effects of mechanical forces and high local filament densities on polymerization 

kinetics. In locations where the filament network is dense, molecular diffusion slows down 

(Novak et al., 2009), which affects reaction rates (Schmit et al., 2009). Because the effective 

diffusion coefficient of molecules in spaces filled with the filaments reduces by the factor 

2/1

max)/1(   (Novak et al., 2011), we modify by this factor the on- and off- rate constants of 

polymerization, capping, cofilin binding, and cofilin-dependent severing. This ensures that the 

abovementioned processes slow down as   approaches 
13

max )3/ 4(   , where  2.7 nm 

is the subunit radius, and, therefore,   never exceeds max = 20.15 mM. Note that the factor 

 is significantly different from unity only where  approaches ,  so in most 

locations the rate constants are essentially unchanged. We also take into account that the 

filaments that generate active stress polymerize under load. The fraction of such filaments is 

estimated as follows. Assuming that one of the two filament ends is immobilized at the 

membrane or a branching point, the probability of the filament growing under load is equivalent 

to that of its other end pushing against the network, which is ),( tp x max/),(  tx . Thus, the 

affected rates need to be multiplied by  )),(1( tp x ))/(exp(),( 3 Tktp Bax . For simplicity, we 

ignore the contributions of such filaments to actin density altogether, dropping the second term 

and modifying the rates of polymerization and capping by an additional factor max/),(1  tx . 

 

Reaction steps that lead to formation of ActiveArp occur on the surface of the membrane (Fig. 1) 

and involve dimers of WASp bound to G-actin monomers ( WGD ), Arp2/3 ternary complexes 

consisting of Arp2/3 complex bound to WGD (ArpTernCompl), and activated Arp2/3 ternary 

complexes (FArpTernCompl). These reactions are described by rate equations, 

 

     Yt RY  ][ ,       (3) 

 

2/1

max)/1(   max
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where ][Y  is the surface density of a membrane-bound protein Y . Note that while these variables 

are governed by ordinary differential equations, they also depend on spatial coordinates, given 

that YR  are nonzero only at the locations of NPFs (see below) and plArpTernComR  depends on 

[FATP] and [FADP] near the plasma membrane. 

 

Table 1 and Table S2 in section Model of Supplemental Text summarize, respectively, the 

parameters used in the model and all the variables and their governing equations. 

Table 1. Model parameters  
 

parameter value/units definition source 
𝐿 36 − 138 nm local average lengths of actin filaments  

 
estimated in Results 

 

𝑁 12 − 46 local numbers of subunits in a filament 

𝑡0 13 s parameter used in modeling 𝑓𝑐(𝑡) 

𝜏 0.66 s parameter used in modeling 𝑓𝑐(𝑡) 

𝑛𝐴 602 μm−3/μM conversion factor   

𝜇 0.4 nm/(s ⋅ pN) mobility coefficient defined in Model 

𝜅active 3.69 × 10−3𝑛𝐴
−2 

 Pa/( μM)2 

active stress coefficient  computed in Model 

𝜅visc 3.93  𝑛𝐴
−1 

Pa ⋅ s/μM 

shear viscosity coefficient  estimated in Model 

𝜌max 20.15 × 103 𝑛𝐴  μM maximum actin density defined in Model 

𝛿 2.7 nm radius of actin subunit  Broedersz and 
MacKintosh, 2014 

𝑛max   6500 maximum number of actin subunits in 
a patch 

 
Berro et al., 2010 

𝑅Arp2/3 0.035 − 0.06 molar Arp2/3 complex-to-actin ratio  

𝐺0 21.6 μM concentration of actin monomers 

𝑓stall 10.5 pN actin polymerization stalling force estimated in Results 

𝜀max 6.9 𝑘𝐵𝑇 maximum energy stored in the patch 
per subunit 

estimated in Results 

𝐸 1 GPa Young’s modulus of the actin filament  
Broedersz and 

MacKintosh, 2014 
 

𝐼 𝜋𝑎4/4  𝑛𝑚4 rotational inertia of the filament 

𝑎 3.5 nm radius of the filament cross-section 

WASp0 259.6 μm−2 surface density of nucleation-
promoting factors (NPF) 

based on Berro et 
al., 2010 

Arp0 1.3 μM concentration of Arp2/3 complex   
Berro et al., 2010 C0 0.8 μM concentration of capping protein  

COF0 40 μM concentration  of cofilin  
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2. Coupling the expansion of the actin filament network to the membrane invagination. Eqs (1) 

and (2) are solved in a sufficiently large neighborhood of the invagination, denoted   in Fig. 2. 

The plasma membrane  includes the invagination. Eqs (3) are solved on the parts of the 

invagination occupied by NPFs. Fission yeast assemble two rings containing different NPFs 

around the invagination of the plasma membrane (dark red bands in Fig. 2) (Arasada and Pollard, 

2011; Arasada et al., 2018). Both zones start near the cell surface at the neck of the invagination. 

One ring is stationary, while the other moves with the tip of the invagination, where it is assumed 

to be attached to a hemisphere of the protein clathrin. Budding yeast has a single zone containing 

both types of NPFs, which remains at the base of the invagination (Mund et al., 2018). 

 

We assume that an initial invagination forms by an unknown mechanism prior to the assembly of 

the actin patch. This coated pit of plasma membrane is associated with clathrin molecules and 

adapter proteins (Arasada and Pollard, 2011; Chen and Pollard, 2013). Our modeling starts after 

the initial invagination has a depth sufficient to accommodate two adjacent rings of NPFs. The 

next section describes the shape and size of the initial invagination used in simulations. 

 

Actin filaments polymerizing around the initial invagination are constrained by the plasma 

membrane, which is pressed against the stiff cell wall. This resistance causes the actin filament 

network to expand inward from, and laterally along, the cell surface. The flow of actin filaments 

exerts a drag on an initial invagination, counterbalancing the forces of turgor pressure and 

elongating the invagination further inward. It is believed that the drag occurs, because the actin 

filaments bind to proteins associated with the membrane (Lacy et al., 2018), though little is 

known about the biochemical mechanism. The connection between the actin meshwork and the 

plasma membrane is included in the model as a condition that the membrane and the adjacent 

actin filaments move with the same velocities: 0|)(  uv , where 
|u  are the velocities of the 

points of the membrane. This condition is consistent with the treatment of viscous fluids at 

interfaces with adjacent media in continuum mechanics (Landau and Lifshitz, 1987). 

Mathematically, it serves as a boundary condition for Eq (1) at  . The conditions at other 

Figure 2. Computational domain, , and plasma membrane, , including invagination. Two rings of nucleation-

promoting factors are shown in dark red. When the invagination elongates, both and  change with time. 
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boundaries of the computational domain were zero-stress, though they did not affect the solution 

significantly, since   was substantially larger than the size of the invagination (see Methods in 

Supplemental Text).  

 

The net force exerted on the endocytic invagination is obtained by evaluating an integral of the 

tangential force density, nσσe  )ˆˆ( activeviscousz  over the surface of the invagination S : 

  

 
S

zz dsf nσσe )ˆˆ( activeviscous
,    (4) 

 

where n  is the outward normal vector to  (directed from  towards the interior of ), ze  is 

the unit vector orthogonal to the cell wall and ds is the infenitesimal surface element (Landau 

and Lifshitz, 1987). The Results section considers in detail the rheological data for actin 

networks that are critically important for the constitutive dependences )( aa   and 

),( L   used in Eq (1). 

 

Eq (2) is subject to zero-flux boundary conditions at   for all X , except for ActiveArp, for 

which there is an incoming flux from the rings that describes the detachment of FArpTernCompl 

from the membrane, see Fig. 1. The magnitude of the corresponding flux density is equal to the 

detachment rate, 
rings

|ActiveArpmpl-FArpTernCo R , where 
rings denotes the zones of   occupied by the 

rings (see Fig. 2 and Methods in Supplemental Text). The existence of a nonzero influx of 

ActiveArp requires modification of the transport term in Eq (2) for this variable. Indeed, given 

the boundary condition for v , pure advection is generally  incompatible with a nonzero influx, 

resulting in unphysical Dirac-delta singularities. The inconsistency is resolved by taking into 

account that the detachment of the ternary complex from the membrane inherently involves 

diffusion. Adding the diffusive term restricted to the vicinity of the rings, we arrive at: 

 

    ActiveArp])ActiveArp[]ActiveArp([)(]ActiveArp[ RDt  vx  

 

and a corresponding boundary condition, ,0|)])ActiveArp([)((
ringsActiveArpmpl-FArpTernCo   RD x

where )(xD  is nonzero only in the vicinity of the rings (see Methods in Supplemental Text).  

 

At all the other boundaries of the computational domain, Eq (2) was subject to the outflow 

boundary conditions. As we have noted in the context of Eq (1), the type of these boundary 

conditions does not really matter, because so long as the size of   is sufficiently large, they do 

not affect the solution in any significant way (see Methods in Supplemental Text). 
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3. Simulations of the models. Eqs (1-3) coupled with respective boundary conditions were solved 

numerically. Importantly, when the membrane elongates,   and in Fig. 2 are changing:  

increases and  decreases, so the model must be solved in a domain with a moving boundary 

(see Methods in Supplemental Text). Note that the concentrations of molecules with names 

followed by zero in Fig. 1 are constants and the surface density of the nucleation-promoting 

factors, WASp0 , is uniform within the rings and varies over time as a bell-shape curve (Sirotkin 

et al., 2010; Berro et al. 2010). The initial values of all other concentrations and )0,(xv were set to 

zero, except for [FADP], [BEa], and [PE], which were assigned small initial values, 

corresponding to a small number of seed filaments (Chen and Pollard, 2013).  

 

The geometry of the initial invagination was a cylinder with radius 30 nm capped with a 

hemisphere of the same radius. The initial length of the cylindrical part was 40 nm, 

accommodating two 20-nm wide rings positioned next to each other. It was assumed, for 

simplicity, that during elongation, the invagination preserves its (sphero)cylindrical shape and is 

infinitely rigid i.e. that all points of the tubular membrane have the same instantaneous velocities 

collinear with the axis of the cylinder. Realistically, the invaginations are not infinitely rigid. 

Indeed, electron micrographs showed the endocytic invaginations of budding yeast are of flask 

shape (Kukulski et al., 2012). Our model yields forces orthogonal to the tubule distributed in a 

way that is consistent with such a shape (see Fig. 6).  

 

We computed the time-dependent magnitude of these velocities assuming a linear force-velocity 

relationship (Peskin et al., 1993), 

 










ccz

c

z
ftfftf

ftf
tu

)( if ),)((

)( if                    ,0
|)(

z

z




,   (5) 

 

where )(tf z is the force exerted on the invagination at time t , defined by Eq (4), cf  is the 

critical force due to turgor pressure, and   is a given mobility coefficient (see Results and 

Methods in Supplemental Text). 

 

4. Parameterization of the force-balance equation (Eq (1)). We begin with a description of 

constitutive relations for active stress and viscosity of actin meshwork in the absence of 

branching and crosslinking. Measurements of the viscoelasticity of filaments of purified actin 

can explain how the active stress and viscosity of the meshwork depend on its density and the 

properties of the filaments. Rheological data usually include information about dynamic (i.e. 

frequency-dependent) ‘storage’ and ‘loss’ moduli, denoted as )(G and )(G  , respectively 

(Wirtz, 2009). The active stress, aσ , which is determined by the energy released during 

polymerization and elastically stored in the meshwork, should be proportional to G . For 
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overlapping actin filaments, )(G  scales with actin density  as 
2  for any   (Gardel et 

al., 2003). We therefore assume 
2

activeaσ , where the proportionality coefficient active  

depends on the extent of branching and crosslinking. 

 

Obtaining a constitutive relation for viscosity   is not as straightforward. Based on polymer 

physics, it is expected to be of the form, 
 L , where L  is the polymer length and 

exponents  and   depend on whether the polymer is flexible or rigid and whether the solution 

is dilute or concentrated (Doi and Edwards, 1998). For concentrated solutions of certain flexible 

chemical polymers, measurements yielded  = 4-5 and  3.5, in agreement with theoretical 

results. Note that the same theory predicts that the viscosity of a polymer solution is always 

proportional to the viscosity of a solvent; this is based on the assumption that the cross-sectional 

area of a polymer is vanishingly small. While this assumption is adequate for chemical polymers, 

it does not apply to a biopolymer meshwork, where the viscosity originates from direct 

interactions between filaments and is essentially independent of viscosity of the medium. It is 

intuitive to assume that viscosity of overlapping actin filaments increases as a function of the 

number of contacts made by the filaments and how long these contacts ‘slide’ along the 

filaments. The average number of contacts a given filament makes with its neighbors can be 

estimated as the average number of subunits per volume occupied by a filament, i.e. 
3~ N , 

where N is the average number of subunits per filament and  is the radius of the actin subunit, 

as defined earlier. The contact density is then obtained as a product of the number of contacts per 

filament and the number of filaments per unit volume. The latter is N/ , so that the density of 

contacts is 
32~  . Assuming further that for the rod-like filaments, the ‘lifetime’ of a contact is 

proportional to the number of subunits in a filament N , we arrive at LN 2232~   , or  

 

L22

visc   ,       (6) 

 

where the proportionality coefficient visc  can depend on the structural properties of an actin 

meshwork, such as branching or crosslinking.  

 

We corroborated the constitutive relation of Eq (6) by estimating   from rheological data for 

filaments of purified actin. The estimation of   is complicated by the fact that solutions of actin 

filaments are non-Newtonian fluids with viscosities depending on the shear rates (Buxbaum et 

al., 1987). This was approximated by deriving visc , treated as a constant, from )(G  and 

)(G   with   close to the shear rates in actin patches, which are ~ 1 s-1 (see Salient properties 
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of the model in Results for more details). It is also important to note that the shear viscosity of the 

meshwork differs from  /)()( G   (Cox and Merz, 1958; Wirtz, 2009). The effective 

shear viscosity is often well approximated by an empirical Cox-Merz rule 

2/1221 ))()((  GG  
, with   being identified with the shear rate (Cox and Merz, 

1958). In what follows, values of   were computed by applying the Cox-Merz formula to the 

moduli measured at  = 1 s-1. The length dependence in Eq (6) is close to 
7.0L as proposed by 

Zaner and Stossel (Zaner and Stossel, 1983), who measured dynamic moduli of solutions of 

overlapping actin filaments with controlled lengths and applied the Cox-Merz rule to compute  . 

More recent data by Kasza et al. points to a linear dependence, L  (Kasza et al., 2010). 

These authors measured )(G  and )(G   of overlapping actin filament networks prepared 

with a fixed actin concentration and varying filament lengths and concentrations of linkers. 

Extrapolation of the data of (Kasza et al., 2010) to a zero cross-linker concentration gives the 

filament length dependence of   without crosslinking. Specifically, the data points of Figure 4c 

in (Kasza et al., 2010), corresponding to  = 1 s-1, were extrapolated to the linker-to-actin 

concentration ratio R 0 by approximating the increase in viscosity due to cross-linking as 
2)(RL  (McFadden et al., 2017). Fig. 3, which also includes data for R 0 of Figure 4a in (Kasza 

et al., 2010), shows the dependence of   on filament length in the absence of crosslinking or 

branching.  

 

 

To confirm the quadratic  dependence of Eq (6), one would need rheological data for actin  

filament samples with a fixed filament length and a range of actin concentrations. The data 

closest to these requirements are for )(G  and )(G   of pure actin filaments without 

branching or crosslinking at concentrations of 1 mg/mL and 0.3 mg/mL (Gardel et al., 2003). 

Measurements at  = 1 s-1  yielded 
  with  1.98. Eq (6) also yields plausible average 

Figure 3. Viscosity of actin filament meshwork as a function of mean filament length at  /nA = 12 µM. 
Extrapolated from data of (Kasza et al., 2010). 
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filament lengths, 15 m and 12 m, based on the data for pure actin filaments reported in (Sato 

et al., 1987) and (Mullins et al., 1998), respectively. These values were obtained using visc  for 

pure actin filaments that was estimated by applying Eq (6) to data points in Figure 4a of (Kasza 

et al., 2010) corresponding to R 0 (open and filled triangles) and  = 1 s-1. In this experiment, 

L 15 m, An/  0.5 mg/mL = 12 M, and the respective viscosity  , computed by the Cox-

Merz rule, is 1.32 Pa∙s, yielding Anvisc 0.14 Pa∙s/M. 

 

Note that Eq (6) holds only for overlapping filaments, i.e. for dense actin networks of sufficiently 

long filaments, such that 1)( 3/12 N  (Doi and Edwards, 1998). This condition is most 

certainly violated at early stages of patch assembly, when only few short filaments are present. In 

this limit,   is expected to be a multiple of solvent viscosity and  . Because noticeable 

stresses and shear rates are generated only after filaments begin to overlap, the two regimes were 

bridged in our computations by using a simple ‘interpolation’ formula, that crosses over to Eq (6) 

when the condition for the filament overlapping is met, 

 

)/1( 2

visc LN   .  

 

In this formula, the number of subunits per filament N was computed as BEc])[BEa]/([][ tot F , 

where )/][ tot AnF   and BEc][BEa][  is equivalent to local filament number density, and the 

filament length is NL  , as above. 

 

Results 

 

1. Salient properties of the model. Substituting the constitutive relations 
2

active)(  aσ  and 

LL 22

visc),(   in Eq (1) yields 

    

   0)))((( 2

active

22

visc   TL vv , 

 

from which it follows that both actin densities ),( tx  and velocities ),( txv  are controlled by the 

ratio 
viscactive / , rather than separately by 

active  and 
visc  (as defined earlier, here and below 

vector x  denotes spatial coordinates of a location in the cell). We confirmed, by solving the 

model numerically with varying 
active  and 

visc , that ),( txv  did not change beyond numerical 

error, when both coefficients were varied proportionally. Also in agreement with the prediction, 

we found that 
viscactive /  controls a maximum number of polymerized subunits in a patch 

maxn ))((max tn
t

, where 
patch

3),()(


 xx dttn  is the number of subunits at time t  in the 
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volume 
patch  occupied by the invagination and surrounding network of actin filaments. 

Modeling an elongating cylindrical invagination with varying 
viscactive /  (see Dynamics of the 

invagination during elongation), we found that the ratios 
viscactive /  ~ 1

1

An  s-1mM-1 result in 

maxn  close to the experimental numbers. For example, the maximum number of 6500 subunits 

inside a cylinder 
patch  of radius 0.15 m and length 0.3 m, enveloping the endocytic tubule, is 

obtained with viscactive / 0.9
1

An  s-1mM-1. The ratio 
viscactive /  constrained by the 

experimental maxn , in turn, determines actin velocities ),( txv  and the corresponding shear rates, 

which are found to be ~ 1 s-1 (see below). 

 

 

Fig. 4 depicts a snapshot of a solution of the two-ring model with viscactive /  0.94
1

An  s-1mM-

1 showing distributions of actin density (colors) and actin velocities (white arrows) for an r - z

section ( r  and z are cylindrical coordinates) at a time when the rings on an elongating 

invagination have separated. The solution yields two zones of actin filaments, which are 

particularly dense in the vicinity of the rings. Note that even though the two rings were identical  

in size and density of nucleation-promoting factors, the actin filament density is higher near the 

plasma membrane, owing to the inhomogeneity of active barbed ends whose transport is 

restricted by the rigid cell wall surrounding the plasma membrane. The gradient of actin density 

then results, as expected, in a net tangential force directed towards the tip of the invagination. 

Fig. 4 indicates low filament densities at the tip of the invagination. Thus, the tip lacks the 

support of actin and must be sufficiently stiff to withstand turgor pressure. We show in section 

Figure 4. A snapshot from a simulation of an elongating endocytic invagination shown for r-z cross-section of 3D 
geometry. The extracellular space is white. The color shows the density distribution of actin filaments, and the arrows 
show the local velocities of their movements at the peak of actin assembly (see Fig. 7C for snapshots at other time 

points). The velocity scale bar in upper-left corner corresponds to 0.08 m/s. 
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Actin density and forces at a tip of a tubule of Supplemental Text that measurements of rigidity 

of clathrin-coated vesicles by Nossal and coworkers (Jin et al., 2006) lend support for this 

assumption. Note that radial and tangential components of actin velocities in the vicinity of the 

invagination are ~0.02 m/s, yielding patch diameters of ~100-200 nm, consistent with 

experimental data (Berro et al., 2010; Arasada et al., 2018). The solution also indicates (data not 

shown) that tangential components of actin velocity vary significantly in the normal direction 

over distances ~0.02 m from the membrane, yielding shear rates of ~1 s-1, as mentioned above.  

 

Control of the shear rates and actin densities by viscactive /  has another consequence: for a 

given maxn , the force exerted on the invagination depends on visc  (or alternatively on active , 

given that viscactive /  is fixed). Mathematically, this is seen upon substitution of the constitutive  

relations in Eq (4). Qualitatively, the tangential force exerted on the invagination, which largely 

originates from the viscous stress, is locally defined by a product of viscosity and shear rates. 

Since the latter are fixed by the known maxn , this leaves the tangential force to be directly 

proportional to visc . We confirmed this assertion computationally by solving the model with 

constant viscactive /  over a range of visc  (see Model solutions with varying active and visc in 

Supplemental Text).  

  

2. Patch assembly can generate pushing forces comparable to turgor pressure in fission yeast.  

We use the model with viscactive / 0.94
1

An  s-1mM-1 to determine the visc  required to obtain 

forces sufficient to exceed the turgor pressure. For this, we solved the model in a static geometry 

with the shape and size of the initial invagination described in Simulations of the models. We 

found that the required visc  is ~ 4 
1

An Pa∙s/M. For example, a tangential force of ~2538 pN, 

sufficient to withstand turgor pressure of ~ 9 atm, requires visc 3.93 
1

An Pa∙s/M and, 

correspondingly, active 3.69 
2310  An Pa/(M)2. The obtained value of visc  is ~28-fold larger 

than 
1

visc 14.0  An  Pa∙s/M of actin filaments alone.  

 

Two factors in patches contribute to a higher viscosity than actin filaments alone. First, the 

meshwork is highly entangled due to the high density of branching. For example, the viscosity of 

24 M of actin filaments at a shear rate of  1 s-1 was more than 7-fold higher when 

polymerized with 0.12 M of Arp2/3 complex according to Figure 3 in (Tseng and Wirtz, 2004). 

The molar ratio of Arp2/3 complex-to-actin in these experiments, Arp2/3R 0.005, was 

significantly lower than the range of 0.035 and 0.06 observed in actin patches (Berro et al., 

2010). Such high values of Arp2/3R  increase the viscosity by at least a factor of 2.5, according to 
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rheological measurements of actin filaments with a range of concentrations of Arp2/3 complex 

(Mullins et al., 1998). Overall, the entanglement of the filaments due to branching alone yields 

the 18-fold increase of the patch viscosity compared to filament networks obtained in the 

absence of Arp2/3 complex. Second, actin patches accumulate a very high concentration of the 

crosslinking protein fimbrin (Berro and Pollard, 2014), which also increases the viscosity. 

Rheological data indicate that the viscosity of actin networks cross-linked by soft (muscle alpha-

actinin, filamin) and rigid (avidin-biotin) linkers ranges from few fold to an order of magnitude 

higher than actin filaments that are not crosslinked (Wachsstock et al. 1994, Kasza et al. 2010). 

The properties of actin filaments crosslinked by fimbrin are likely to be in the same range. Thus, 

crosslinking by fimbrin accounts for the remaining increase of visc   by a factor of 1.6.  

 

Our simulations of patch formation and force generation must satisfy several constraints. For a 

fixed viscactive / , the increase of visc  implies a similar increase of active  and hence the 

corresponding increase of aσ . The latter is limited by free energy released during a 

polymerization step: )/ln( crit0max GGTkB , where 0G  is the concentration of actin monomers 

and the critical concentration tionPolymerizazationDepolymericrit /  kkG  (Footer et al., 2007). For the 

parameter values used in our model, the upper bound for the stored energy is max 6.9 TkB , 

corresponding to the stalling force  /max  10.5 pN per filament, which is consistent with 

published estimates (Lacy et al., 2018). In simulations, the mechanical work per filament 

polymerizing under load depends on the local actin density: )(w )/),()(( max

3

3
4  ta x

5.0

max)/),(1(  tx , where 
2

activeaσ (see Parameterization of the force-balance equation (Eq 

(1))). The maximum of ),( tw x  evaluated for the abovementioned solution in static geometry, 

yields 


))],(([max
patch,

tw
t

x
x




7.1 ,TkB  which is comparable to m ax .  

 

The ability of a filament to sustain generated forces is another constraint on the system; the force 

per filament should not exceed the buckling threshold, 
22

crit )2/( LEIf   (Broedersz and 

MacKintosh, 2014). In this formula, E 1 GPa is Young’s modulus of the actin filament 

4/4aI   is the rotational inertia of the filament, where a =3.5 nm is the radius of the filament 

cross-section; and L  is the filament length. To satisfy the constraint, the force per filament in 

the vicinity of the invagination must be less than the critical load critf . For the solution with the 

static geometry described above, at the time of peak of actin assembly, the filament lengths in the 

vicinity of the endocytic tubule varied from 36 nm to 138 nm (recall that filament lengths are 

calculated as NL  , where ),(/),( BE ttN xx  ). These lengths are consistent with previous 
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estimates (Berro et al. 2010). Then the number of filaments in the vicinity of the invagination, 

obtained by integrating the density of barbed ends ),(BE tx  BEc])[BEa]([ An  in a shell with 

thickness equal to the shortest filament length, is 96. So for this solution, the average force per 

filament is 2538 pN/96 ≈ 26 pN. Of the total 146 filaments inside the shell with thickness 138 

nm, the lengths of 67 filaments is under 103 nm, and their critical load is above 27 pN. Thus, 

these shorter filaments endure the generated force on their own. The longer filaments sustain 

their share of the load through crosslinking by fimbrin: because the critical load for a bundle of 

filaments grows roughly as the square of the number of filaments in a bundle, the buckling 

threshold for a bundle of just two filaments will be at least 100 pN.  

 

We thus conclude that the forces generated during patch assembly can withstand the opposing 

forces from turgor pressure in fission yeast. 

 

3. Dynamics of the invagination during elongation. In this section, we elucidate factors 

determining the dynamics of elongating invaginations and their maximum length. For this, we 

solve our model in a moving geometry allowing the invagination to grow freely. We also show 

that the invagination dynamics are similar in fission and budding yeast, despite different 

localizations of the nucleation-promoting factors.  

 

Once the force exerted on the invagination exceeds the turgor pressure threshold, the 

invagination will grow inward. The rate of the growth in our model is given by Eq (5): 

))(()( czz ftftu   . It may seem that the length, which the invagination can attain during patch 

assembly, is controlled by the mobility coefficient  . However, solving the model in a dynamic  

geometry with varying   indicates that the final length of the endocytic tubule is virtually 

insensitive to  . This is because the increase of   is mitigated by the drop in zf  that depends 

on the shear rates zr v , so the elongation rate zu  does not change appreciably (in computations, 

we used  0.4 /pNsnm -1 ).  

 

The kinetic parameters of actin nucleation and polymerization govern the duration of patch 

assembly, so the time during which the patch elongates depends on how quickly zf  overcomes 

the critical threshold cf  from turgor pressure. The time before zf  exceeds cf  is shorter for 

larger visc , but visc  has an upper bound. The reason is that active  must increase in proportion to 

visc , because the ratio viscactive /  is limited by a maximum number of subunits in a patch, and 

active  is limited by the energy constraints considered in the previous subsection.  
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 Solving the model in a geometry allowing the invagination to lengthen freely yields a growing 

endocytic tubule (Movie S1). Fig. 5 illustrates the time courses of zf , zu , and invagination  

 

length obtained with active 3.69 
2310  An Pa/(M)2 , visc =3.93 

1 An  Pa∙s/M and the threshold 

cf  1894 pN corresponding to a turgor pressure of  ≈ 7 atm. Note that the rate of increase of 

zf  drops sharply when the exerted force crosses the turgor-pressure threshold (Fig. 5A). Above 

this threshold, the surface area increases, but zf  plateaus below the values reached in static 

geometry with the same active  and visc , due to the drop of shear rates when the invagination 

starts to move. This resulted in a relatively short elongation (Fig. 5B). 

 

The model produces longer invaginations, if we take into account the effects of the forces 

produced by actin polymerization on the shape of the plasma membrane invagination. The 

distribution of force density nσσe  )ˆˆ( activeviscousr  orthogonal to an invagination, shown in Fig. 

6A for the static-geometry solution of the previous subsection, suggests that the normal forces  

Figure 5. Simulation of the elongation of an endocytic tubule with a fixed threshold corresponding to the turgor 
pressure of ≈7 atm. Time zero is the peak of actin assembly. (A) Time course of net tangential force (solid line) 
and the speed of elongation (dashed line). (B) Tubule length over time.  
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 tend to squeeze the invagination near the plasma membrane and stretch the middle of the 

invagination. If the tubule were not modeled as infinitely rigid, these forces would likely distort 

the invagination into flask or ‘head-and-neck’ shape, Fig. 6B, as observed in electron 

micrographs of budding yeast actin patches (Kukulski et al., 2012).  

 

Because turgor pressure is isotropic, the net resistance force cf  it would produce for the flask 

shape is proportional to the cross-sectional area of the opening of the invagination delineated in 

Fig. 6B by dashed lines. Indeed, the net force exerted by turgor pressure in the upward direction 

along the tubule’s axis is  ds cos , where   ( ],0[   ) is the angle that the outward, with 

respect to the cytoplasm, normal vector makes with the axis of symmetry, ds is the area of a 

surface element, and the integral is taken over the surface of the invagination. Because ds cos

is the signed area of the surface element projection on the plane perpendicular to the axis, the 

integral yields the difference of the projection area obtained for the surface points with 2/   

and that  for the points with 2/  . This difference is exactly the cross-sectional area of the  

opening delineated by the dashed lines in Fig. 6B, which is  2r , where r is the radius of the  

opening. Thus, as the opening tightens and r diminishes, cf  decreases in proportion to 2r , while 

the turgor pressure remains unchanged. We further assume that the radius of the opening, 

initially equal to the radius of the tubule R , decreases linearly with the normal force   

Figure 6. Simulated forces exerted by actin assembly normal to the endocytic tubule. (A) Distribution of forces 
at ≈ 5 s before peak on a static tubule. (B) Rough sketch of a plausible shape if the membrane lining the 
invagination is flexible. The vertical dashed lines show the area of the pore that determines the force produced 
by the turgor pressure. (C) Time course of the force normal to the tubule at its base. Time zero is the peak of 
actin assembly. 
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fn (t) (Fig 6C), starting with some threshold value 
0,nf . Then, 

22

max,0, /)(),( Rtrfftf cnc  ,  where  

fc,max = R2Pturgor, with the turgor pressure Pturgor fixed at ≈ 9 atm, and )(tr ))(( 0,nn ftfkR   

for 
0,)( nn ftf  . We define the proportionality coefficient k  to find the maximum invagination 

length that our model could yield. The corresponding condition is that r approaches zero as 

max,)( nn ftf  . For full derivation, see section Modeling the time-dependent force threshold due 

to turgor pressure of Supplemental Text. 

 

To facilitate the incorporation of the numerically defined )(tf n  in the model,  we observe that 

the time-dependent threshold ),( 0,nc ftf  is accurately approximated by an analytical function  

1

0max, ))/)exp((1(  ttfc . The fitting of the analytical function to ),( 0,nc ftf  was done by 

Figure 7. Simulation of endocytic tubule elongation with the force threshold from turgor pressure decreasing 
with time. Time zero is the peak of actin assembly. (A) Time course of the assumed decrease in force threshold 
due to turgor pressure, fc (dashed curve), and the simulated pushing force, fz (solid line). (B) Time course of the 

variation in the speed of invagination, which begins when fz is greater than fc. (C) Snapshots of r-z sections of the 

actin filament density around the endocytic tubule and its velocities (arrows; scale bar in upper-left corner of 

snapshot in the middle corresponds to 0.08 m/s); see also Movie S2. (D) Comparison of the time courses of 
tubule elongation with decreasing force from turgor pressure (solid line) against that obtained with a fixed 
threshold due to turgor pressure from Fig. 5B (dashed curve).  



 
 

  
 

20 

varying 0t  and  . Parameter   is largely constrained by the time window within which )(tf n  

takes off, and 0t , which is the timing of the  fc(t) decrease, depends in part on 
0,nf . Varying 

0,nf  resulted only in marginal changes of the simulation outputs. The dashed curve in Fig 7A, 

obtained with 0t  13 s and  0.66 s, is an approximation of )(tf c  with max,cf 2538 pN, 

corresponding to Pturgor ≈ 9 atm, and 0,nf 120 pN. Using the same values of  active , visc  and 

other model parameters as before, solutions of the model with the time-dependent threshold 

yielded a longer invagination than the model with a fixed threshold  (Fig. 7D and Movie S2).  

 

The lengths of modeled invaginations are similar to the distances that actin patch proteins moved 

from the cell surface in superresolution movies, taking into account the size of the protein coat 

around the membrane (Arasada et al., 2018). To illustrate the qualitative agreement between the 

model and experiment, the simulation data were processed using the protocol of Arasada and 

Pollard (see Methods in Supplemental Text for details), so that the results shown in Fig. 8 can be 

directly compared with the experimental data (see Figure 3A-F in (Arasada et al. 2018)).  

 

We compared the solution of the two-ring model with a fixed threshold cf  against the 

corresponding solutions of the models, in which all of the NPFs remained at the base or moved 

together with the tip of the tubule (Fig. 9). For all three versions of the model we used 

Figure 8. Simulation of elongating tubule with time-dependent force threshold is consistent with experimental 
data. (A) Heatmaps of simulated actin density (see Fig. 7 above) projected on plane of image and subjected to 
median filtering to mimic 35-nm resolution limit due to convolution with point-spread function, are shown for 
selected time points. See Methods in Supplemental Text for details of how simulation results were processed 
for this figure; see Fig. S2 for results before filtering. (B) Width and length distributions of actin density, 
obtained by integrating results of panel (A) over time, are consistent with experimental data in (Arasada et al., 
2018). FWHM is the full width of a distribution at half-maximum. 
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invaginations with the same widths and total numbers of nucleation-promoting factors and ran 

the simulations with the same initial conditions. The model with the NPFs remaining at the base  

slightly over-performs the two-ring model. In contrast, the model with the NPFs moving together 

with the tip generates significantly weaker forces, resulting in a slower movement and much 

shorter invagination than the two-ring model. These results highlight the importance of the cell 

wall in supporting the actin meshwork to generate traction forces. The partial absence of such 

support in the two-ring model is mitigated almost entirely by the repulsion of the two zones of 

polymerizing actin. 

 

Discussion 

 

Endocytosis in fission and budding yeast depends on forces produced by the assembly of 

expanding networks of actin filaments, which drive invagination of the plasma membrane against 

the high internal turgor pressure. However, it was unclear whether actin assembly generates forces 

sufficient to overcome the turgor pressure.  

 

Figure 9. Comparison of the simulation results from models with three different locations of 
nucleation promoting factors: solid lines, two-ring model with NPFs at the base and tip of the 
invagination; dashed line, one-ring model where all NPFs stay at base of invagination; and grey 
dashed line, one ring model with all NFPs at the tip. Time zero is the peak of actin assembly in 
the two-ring model. Time dependencies for pushing force (panel A), elongation speed (panel C), 
and tubule length (panel B) are shown for elongating invaginations with fixed threshold 
corresponding to turgor pressure ≈ 7 atm.   
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We formulated a mathematical model of the forces based on principles of polymer physics that 

integrates the kinetics of the biochemical reactions (actin filament nucleation, elongation, 

capping, and severing), the rheological properties of actin filament networks and the time course 

of numbers of participating proteins. Certain modeling assumptions and approximations used in 

this study are similar to those adopted in other models of endocytosis in yeast (Carlsson and 

Bayly, 2014; Carlsson, 2018; Lacy et al., 2018; Mund et al., 2018). In particular, as in previous 

studies, we assume that movement is transmitted from a growing actin patch to the endocytic 

invagination via connections of actin filaments to the plasma membrane. As assumed previously 

(Carlsson and Bayly, 2014), our model approximates a network of actin filaments as a 

continuous medium, though Carlsson and coworkers (as well as the authors of a discrete model 

in (Mund et al. 2018)) approximate the actin patch as a growing elastic solid. Taking into 

account the turnover of actin in the patch, largely due to severing of the filaments by cofilin, we 

interpret the mechanics of endocytic actin meshwork as that of a viscoelastic fluid, with 

parameters constrained by measured rheological properties of overlapping filaments. This has 

yielded forces sufficient to withstand turgor pressure in fission yeast. Simulations of the model 

also reproduce the temporal and spatial distributions of actin filaments at sites of endocytosis and 

point to the flask-type shapes of invaginations of the plasma membrane observed by electron 

microscopy (Kukulski et al., 2012). 

 

Our model allows for different assumptions about the location of the nucleation-promoting 

factors that activate Arp2/3 complex to drive the assembly of the actin filament networks. We 

compared a two-ring hypothesis proposed for fission yeast (Arasada and Pollard, 2011; Arasada 

et al., 2018), a model proposed for budding yeast (Picco et al., 2015; Sun et al., 2017; Mund et 

al., 2018) where all NPFs remain at the base of the invagination, and a hypothetical model where 

the NPFs move with the tip of the invagination. 

 

Simulations of the two-ring model produced two interacting zones of actin filaments with high 

densities near the rings. The internal repulsive stress generated by actin polymerization causes 

the entire patch to expand. Constraints imposed by the plasma membrane and cell wall result in 

expansion of the network inward and laterally, exerting drag on an initial invagination and thus 

pulling it inward. Given the known number of polymerized actin subunits and viscosity of the 

actin meshwork, we estimate the magnitude of this drag. The dendritic structure of the meshwork 

produces entanglement that enhances viscosity to levels sufficient to produce forces in the range 

of 2,200-3,000 pN, which, for invaginations with typical diameters, would overcome turgor 

pressure ~ 8-10 atm. The estimates are within the energy and critical load constraints, with the 

buckling threshold being met, in part, with the aid of crosslinking by fimbrin. 

 

Simulations of the one-zone models with the numbers of nucleation-promoting factors and initial 

conditions used for the two-zone model also produced drag on the invagination. The budding 

yeast model with the NPFs remaining at the base of the invagination generated forces close to 
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those in the two-ring model. This result underscores the importance of the cell wall that provides 

support necessary for the actin filament network to generate a traction force. In the two-ring 

model mutual repulsion of the two zones of actin filaments compensates for the partial loss of 

support from the cell wall. The model with the NPFs moving at the tip generated significantly 

weaker forces, resulting in a much shorter invagination than the two other models. 

 

The general model allowed us to simulate the forces required to elongate an endocytic tubule, 

although we used the simplifying assumption that the invagination is a spherocylinder with a 

fixed radius. We also assumed that once the generated force overcomes the turgor threshold, all 

the points on the invagination move with the same (but time-dependent) speed 

))(()( push cftftu   . Somewhat counterintuitively, the speed and the length attained by the 

invagination is virtually insensitive to the mobility coefficient  , but rather depends on how 

early during patch assembly the force produced by actin assembly )(push tf  overcomes the 

opposing force from turgor pressure cf . For cf  corresponding to ~ 7-atm turgor pressure, the 

simulations yielded a maximum tubule length somewhat shorter than experimental patch sizes. 

 

We discovered that expansion of the actin filament network produces radial forces normal to the 

tubule. The distribution of these radial forces along the tubule would tend to squeeze the 

invagination near its opening and stretch the middle, producing a shape like a flask as observed 

by electron microscopy in budding yeast (Kukulski et al., 2012). Without reliable information 

about elastic properties of endocytic invaginations we could not solve for shape of the 

invagination. However, a small pore between the exterior and the lumen of the invagination 

reduces cf  as actin assembles. We approximated the effect of this shape change by using a 

threshold )(tf c  decreasing over time, to show that reducing the size of the pore favors the 

formation of longer tubules.  
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SUPPLEMENTAL MATERIAL 

Supplemental figures 

 

 

  

Figure S1. Simulation of a single ring model of actin patch assembly around a tubule with fixed 
geometry. Actin densities (color) and velocities (arrows, scale bar in upper-left corner of snapshot in 

the middle corresponds to 0.08 m/s) are shown for r-z sections of 3D geometry and selected time 
points. Two rings of nucleation-promoting factors, not shown explicitly, were positioned next to 
each other at the base of the invagination adjacent to the horizontal portion of the plasma 
membrane.  

Figure S2. Results of simulating an elongating tubule with two zones of NPFs and a time-dependent 
force threshold, without applying a median filter. (A) Heatmaps of actin density (see Fig. 7C of main 
text) are projected on plane for selected time points. (B) Width and length distribution of actin 
density obtained by integrating the results of panel (A) over time. The central trough in the width 
distribution reflects the space inside the invagination that is void of actin. No such troughs were 
observed experimentally, likely because the spatial resolution was comparable to the invagination 
width. 



 
 

  
 

27 

Supplemental movies 

 

Movie S1.  Simulation of an elongating invagination with fixed resisting force. 
Results are shown for turgor pressure ≈7 atm. Left panel: 3D distribution of actin density (color) in the vicinity of 
the tubule. Middle panel: actin density and its velocities (arrows, scale bar in upper-left corner of the middle panel 

corresponds to 0.08 m/s) are shown for r-z sections of 3D geometry. Right panel: deformable computational 
mesh used in the simulations; deformations of mesh conform to moving invagination. The movie was made with a 
color code built into COMSOL, which is slightly different from that used in the Figures. 
 
 

Movie S2.  Simulation of elongating invagination with force threshold decreasing with time. 
Left panel: 3D distribution of actin density (color) in the vicinity of the tubule. Middle panel: actin density and its 

velocities (arrows, scale bar in upper-left corner of the middle panel corresponds to 0.08 m/s) are shown for r-z 
sections of 3D geometry. Right panel: deformable computational mesh used in simulation; deformations of mesh 
conform to moving invagination. The movie was made with a color code built into COMSOL, which is slightly 
different from that used in the Figures. 

 

 

 

Supplemental text 

 

1. Model solutions with varying active and visc  

 

As explained in the main text, solutions of the model are controlled by the ratio 
viscactive / , 

rather than separately by 
active  and 

visc , and the force exerted on the invagination is 

proportional to visc . We confirmed these assertions computationally by solving the model with 

constant viscactive /  over a range of visc . Table S1 includes the time-dependent numbers of 

polymerized subunits in a patch, )(tn , and a maximum force 
max,zf exerted on a tubule at t 0 s, 

obtained for varying visc and a fixed viscactive / 0.94
1

An  s-1mM-1. 

 

Table S1. Number of patch subunits and maximum pulling force  for varying visc at fixed 
visc

active




 

visc ,  

1

An Pa∙s/M 

)(tn  
max,zf , pN 

t -10s t -5 s t 0 s t 0 s 

0.94 391.946 2327.21 5231.93 2538.30 

0.752 391.947 2327.22 5231.94 2030.70 

0.47 391.943 2327.20 5231.93 1269.16 
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Table S1 indicates, within numerical error, a linear dependence of 
max,zf on visc , whereas the 

values of )(tn , controlled by viscactive /  are essentially independent of visc  for all selected time 

points. 

 

2. Modeling the time-dependent force due to turgor pressure 

 

The distribution of forces orthogonal to an invagination (Fig. 6A) suggests that they squeeze the 

tubule near the plasma membrane and stretch it in the middle. If the tubule were not infinitely 

rigid, these forces would likely distort the invagination into flask or ‘head-and-neck’ shape (Fig. 

6B), similar to those observed in electron micrographs of budding yeast actin patches (Kukulski 

et al., 2012). Because turgor pressure is isotropic, the net resistance force cf  it would produce 

for the flask shape is proportional to the cross-sectional area of the opening of the invagination 

delineated in Fig. 6B by dashed lines. Indeed, the net force exerted by turgor pressure in the 

upward direction of the tubule’s axis (Fig. 6A) is  ds cos , where   ( ],0[   ) is the angle 

that the outward, with respect to the cytoplasm, normal vector makes with the upward direction 

of the  axis, ds is the area of an infinitesimal surface element, and the integral is taken over the 

surface of the invagination. Because ds cos is the signed area of the projection of the surface 

element on the plane perpendicular to the axis,  ds cos
  AA , where 

A  is the area of 

the projection of surface points with 2/  , and 
A is the area of the projection of the 

remaining part of the surface consisting of points with 2/  . The difference
  AA is equal 

to the cross-sectional area of the opening delineated by the dashed lines in Fig. 6B:  
2 rAA   , where r is the radius of the opening. Thus, cf  decreases as 2r . 

 

We further assume that the radius of the opening, initially equal to the radius of the tubule R , 

decreases linearly with the normal force )(tf n  (Fig 6C), starting with some threshold value 
0,nf . 

This yields: 

 










0,0,

0,

)(for  ),)((

)(for                           ,
)(

nnnn

nn

ftfftfkR

ftfR
tr , 

 

where the proportionality coefficient k is chosen so that r 0 for 
max,)( nn ftf  , i.e. k

)/( 0,max, nn ffR  . Then  the time-dependent threshold )(tf c , satisfying 
22

max, /)(/)( Rtrftf cc  , 

is: 

 










0,

2

0,max,max,

0,

max,
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This function is fairly accurately approximated by 
1

0max, ))/)exp((1(  ttfc , which facilitates 

incorpotation of the numerically defined )(tf n  in the model. Parameter   largely reflects the 

time window of the increase of )(tf n , and 0t  is the timing of the increase of )(tf c , which in 

part depends on 
0,nf . Varying 

0,nf  causes only marginal changes in simulation outputs. The 

dashed curve in Fig 7A, obtained with 0t  13 s and  0.66 s, approximates )(tf c  with max,cf

2538 pN and 0,nf 120 pN.  

 

3. Actin density and forces at a tip of a tubule. 

 

Our model yields lower actin filament densities surrounding the tips of the invagination than 

along the sides, see Figs. 4, 7C, and S1. In Fig. S3A below, we used the results of the simulation 

of an elongating invagination described in Figs. 4 and 7C to plot the actin density at the surface 

of the tip as a function of the angle defined in panel B. On the milli-Molar scale, the actin density 

is distinctly nonzero only for angles that are greater than 30 degrees.  

 

 

Our simulation results also indicate that the force exerted on the tip by the actin flow, while 

making up a sizable portion of the net force (for the static geometry, e.g., it is ~ 800 pN, or about 

a third of the net force), is mostly applied near the junction of the tip with the cylindrical portion 

of the invagination, so the tip of the invagination lacks the support of actin. Our working 

assumption is that the tips are sufficiently stiff to resist being crushed in by the turgor pressure. 

Measurements of rigidity of clathrin-coated vesicles (CCVs) by Jin et al. (2006) support this 

assumption. According to Fig. 2C in their paper, the force 280 pN applied to a CCV of 

radius R 50 nm diminishes the vesicle height by H 45 nm. The contact area can be 

approximated as 2/)2/2( 2 HRHr   , so that the critical stress is ) /( 2rf  0.5 atm. 

The tips of invaginations generally have smaller sizes than CCVs and thus are more rigid, as the 

Figure S3. Actin filament density surrounding the tip of invagination. 
Results for actin density from the simulation of an elongating tubule, as 
shown in Fig 4, are used to plot the actin density at the surface of the tip 
(A) as a function of the angle defined in panel (B). 
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rigidity of plates is inversely proportional to the fourth power of their size (Landau and Lifshitz, 

1989). Therefore, to endure stresses comparable to turgor pressure of 7 – 9 atm, the tip radii must 

be in the 24 – 26 nm range. These are reasonable estimates of the “mean” radius of the tip, which 

is midway between the outer and inner radii, i.e. it is the outer radius minus half width of the 

clathrin coat of the tip. 

 

 

Due to the low simulated actin density surrounding the tip and the absence of actin in the lumen 

of the invagination, ‘top views’ of our simulated actin distributions have deep minima at the 

center (Fig. S4 A below, where the x- and y- coordinates are shown in nanometers). Such 

minima are absent from the superresolution data (Mund et al., 2018), which is largely explained  

 

by the fact that the resolution limit of the single-molecule localization microscopy is ~ 30 nm, 

which is comparable to tubules’ radii and to a length scale of actin heterogeneities within a 

patch. Thus, even superresolution data would blur the details with sizes below 30 nm. (It is 

instructive to compare the results of the simulation of an elongating tubule before (Fig. S2) and 

after applying a filter mimicking the 35-nm resolution of super-resolution microscopy (Fig. 8 of 

the main text)). Incidentally, the simulation results of Mund et al. also have central minima, 

though less pronounced (their Fig. S7 D). The quantitative differences of the two models are 

likely due to different kinetic descriptions of actin nucleation and assembly. The detailed kinetic 

description employed in our model results in non-uniform distributions of actin with pronounced 

density peaks in the vicinity of NPFs locations. The Mund et al. actin distribution is much more 

uniform, because the distribution of active Arp2/3 in their model is only weakly correlated with 

the positions of NPFs (i.e. the distribution of Arp2/3 is pretty much uniform throughout the 

patch, see their Fig. S7 A) and the severing by cofilin is ignored.  

  

In both models, the central minima largely disappear upon filtering, see Fig. S4 B above and 

Figure S7 E in (Mund et al., 2018). The remaining dip in Fig. S4 B may be due to 

underestimation of the simulated actin densities and/or variations of geometry and sizes of real 

patches. 

 

4. Methods  

 

M.1 Governing Equations 

Figure S4. ‘Top view’ of the simulated actin distribution from Fig. 4: 
(A) unfiltered simulation results; (B) results of convolving the 
simulation results in panel (A) with a 30-nm point-spread function.  
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M1.1 Computational Domain 

Based on the assumptions described in Model, the computational domain depicted in Figure 1 of 

the main text remains axisymmetric throughout the elongation process. Because the localization 

of membrane-bound species and the corresponding fluxes are also axisymmetric, solutions of the 

model will have the same symmetry. Therefore, the problem reduces to solving an equivalent 2D 

model in cylindrical coordinates 𝑥 = (𝑟, 𝑧) in the domain   shown in Figure M1, where 
i ( i

1, …, 5) are the corresponding boundaries. Note that the full 3D geometry is restored by revolving 

  around the axis of symmetry 𝑟 =  0 (red dash-dotted line in Figure M1).  

 

 
Figure M1. Equivalent 2D axisymmetric computational domain ( ) and boundaries (

1 ,
2 ,

3 ,
4 ,

5 ). 

 

The domain extensions (0.5 μm in each coordinate direction) were chosen to be sufficiently large 

to ensure that numerical solutions are essentially independent from boundary conditions at 
2 and 

3 (see the following subsections). The cylindrical and hemispherical parts of the invagination 

degenerate in the 2D model into a line and a quarter of a circle, respectively. The initial length of 

the cylindrical part is 40 nm, as it accommodates two rings of nucleation promoting factors (NPFs), 

each being 20 nm wide (Arasada and Pollard, 2011). The radius of the endocytic invagination 

is 𝑟0 = 30 nm.  

 

M1.2 Transport and Reaction Equations 

Spatiotemporal dynamics of proteins involved in patch assembly are governed by conservation of 

mass, which in our model has the following form,  

 

 𝜕𝑡[𝑋] = −𝛻 ⋅ ([𝑋]𝑣) + 𝑅𝑋              in   𝛺                        (M1) 
 

for all cytoplasmic species, except ActiveArp (the equation for ActiveArp is discussed below). In 

Eq (M1), ][X  is the concentration of protein X in M, 𝑅𝑋 is the sum of rates of all reactions 

affecting 𝑋, v is actin velocity, and 𝛺 is the computational domain. In what follows, the density of 
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actin network is defined as 
X

A Xn ][ , where the sum is taken over all cytosolic species, 

except for FArp and ActiveArp, and 602An  m-3/M.  

 

Functional forms of XR and parameters are from (Berro et al., 2010), with modifications 

reflecting the effects of mechanical forces and high local filament densities on polymerization 

kinetics. In locations where the filament network is dense, molecular diffusion slows down 

(Novak et al., 2009), which affects reaction rates (Schmit et al., 2009). Because the effective 

diffusion coefficient of molecules in spaces filled with the filaments reduces by the factor 
2/1

max)/1(   (Novak et al., 2011), we modify by this factor the on- and off- rate constants of 

polymerization, capping, cofilin binding, and cofilin-dependent severing. This ensures that the 

abovementioned processes slow down as   approaches 
13

max )3/ 4(   , where  2.7 nm 

is the subunit radius, and, therefore,   never exceeds max = 20.15 mM. Note that the factor 

 is significantly different from unity only where  approaches ,  so in most 

locations the rate constants are essentially unchanged. We also take into account that the 

filaments that generate active stress polymerize under load. The fraction of such filaments is 

estimated as follows. Assuming that one of the two filament ends is immobilized at the 

membrane or a branching point, the probability of the filament growing under load is equivalent 

to that of its other end pushing against the network, which is ),( tp x max/),(  tx . Thus, the 

affected rates need to be multiplied by  )),(1( tp x ))/(exp(),( 3 Tktp Bax . For simplicity, we 

ignore the contributions of such filaments to actin density altogether, dropping the second term 

and modifying the rates of polymerization and capping by an additional factor max/),(1  tx . 

 

The equations describing spatiotemporal dynamics of each species are listed below: 

 

𝜕𝑡[FArp] = −∇ ⋅ (v[FArp]) + 𝑘Polymerisation
+  G0[ActiveArp] − 𝑘Chop[FCOF][FArp]     (M2.1) 

 

∂t[BEa] = −∇ ⋅ (v[BEa]) + 𝑘Polymerisation
+  G0[ActiveArp] + 𝑘Cap 

− [BEc]  

−(𝑘Cap
+ C0 + 𝑘Chop[FCOF])[BEa]                                                                              (M2.2) 

 

∂t[BEc] = −∇ ⋅ (v[BEc]) + 𝑘Cap 
+ C0[BEa]  

− (𝑘Cap
− + 𝑘Chop[FCOF] + 𝑘Depolymerization 

− [PE]/[Ftot])[BEc]                        (M2.3) 

 

∂t[PE] = −∇ ⋅ (v[PE]) −  (𝑘Chop[FCOF] + 𝑘Depolymerization 
− [BEc]/[Ftot])[PE]             (M2.4)  

 

∂t[FATP] = −∇ ⋅ (v[FATP]) + 𝑘Polymerisation
+  G0[BEa]  

− (𝑘Hydrolysis + 𝑘Chop[FCOF] + 𝑘Depolymerization 
− [PE]/[Ftot])[FATP]      (M2.5) 

 

∂t[FADP] = −∇ ⋅ (v[FADP]) + 𝑘Hydrolysis[FATP] + 𝑘COFBinding
−  [FCOF]  

− (𝑘COFBinding
+ COF0 + 𝑘Chop[FCOF] + 𝑘Depolymerization 

− [PE]/[Ftot])[FADP]      (M2.6) 

 

2/1

max)/1(   max
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∂t[FCOF] = −∇ ⋅ (v[FCOF]) + 𝑘COFBinding
+  COF0[FADP]  

− (𝑘COFBinding
− + 𝑘Chop[FCOF] + 𝑘Depolymerization 

− [PE]/[Ftot])[FCOF]     (M2.7)  

 

In Equations (M2.1) – (M2.7), Ftot = [FADP] + [FATP] + [FCOF] + [PE] + [BEa] + [BEc], and 

subscript ′0′ denotes a constant. Values of reaction rate constants and constant concentrations are 

taken from Table 1 and Table 2 of (Berro et al., 2010). Equations (M2.1) – (M2.7) are subject to 

zero-flux boundary conditions at the membrane, 𝛤mem =  𝛤1 ∪ 𝛤5, as well as at the boundary 

passing along the axis of symmetry 𝛤4 in Figure M1. Outflow boundary conditions were enforced 

at 𝛤2 and 𝛤3  . Note that for solving equations (M2.1) – (M2.7), which are of the hyperbolic type, 

boundary conditions need not be specified on all 
i  (Ferziger and Perić, 2002). However, for 

technical reasons discussed in subsection Finite Element Implementation of the Model, a diffusion 

term with a very small diffusion coefficient was added to all equations. The resulting parabolic 

equations require boundary conditions on all boundaries of the domain. 

  

We now describe the equation for ActiveArp. Active Arp2/3 complexes appear in the cytoplasm 

due to the flux of FArpTernCompl that only exists at the NPF rings (Figure 1 of the main text). 

The corresponding flux density is 𝑘ArpActivation
+ [FArpTernCompl]/ 𝑛𝐴, where [FArpTernCompl] 

is in molecules/m2. Because the detachment of FArpTernCompl from the membrane involves 

diffusion, a consistent description of [ActiveArp] near the rings should include a diffusion term.  

 

The transport terms for all other variables are purely advective, see Eqs (M2.1-M2.7) because 

our continuous deterministic model does not resolve small distances and ignores fluctuations of 

the filaments. But since the actin velocities of actin filaments at the membrane are equal to the 

velocity of the membrane in the continuous approximation, see Eq (M4.2) below, diffusion of 

the filaments cannot be ignored for ActiveArp near the rings, where it enters the cytoplasm, since 

otherwise its concentration becomes infinite at those locations.  

 

Therefore, the dynamics of [ActiveArp] are described by a diffusion-advection-reaction equation, 

 

𝜕𝑡[ActiveArp] = ∇ ⋅ (𝐷(𝑥)∇([ActiveArp]) − v[ActiveArp]) + 𝑘Polymerisation
+  G0[ActiveArp]       

(M2.8) 
and a corresponding boundary condition, 

 

(𝐷(𝑥)∇([ActiveArp]) + 𝑘ArpActivation
+ [FArpTernCompl]/ 𝑛𝐴)|𝛾rings = 0, 

 

where 𝛾rings are the fragments of 𝛤mem occupied by the rings.  

 

Because the effect of diffusion of ActiveArp is important only at the membrane, the diffusion term 

is restricted to the vicinity of the rings, by using a diffusion coefficient that is non-zero only along 

the cylindrical part of the tubule ( 𝛤5 in Figure M1) and decays exponentially in the radial direction, 

𝐷(𝑥) = 𝐷AA exp (−
|𝑟 − 𝑟0|

𝜉
). 

The parameter values used in the solutions were 𝜉 = 3 nm and 𝐷AA = 0.001 μm2/s. The choice 

of 𝜉 was based on the mesh sizes used in the computations. This parameter has little effect on the 
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solution, because ActiveArp quickly converts into BEa, for which the velocity boundary condition 

is not an issue. Changing the diffusion constant 𝐷AA by several orders of magnitude did not change 

the outcome in any significant way. At all other boundaries, the conditions for [ActiveArp] were 

the same as for the other cytoplasmic species. 

 

As in (Berro et al., 2010), adapter proteins that recruit and activate NPFs are not included in our 

model. Instead, a temporal wave of NPFs with a Gaussian shape drives actin assembly near the 

rings. Therefore, the surface densities of the membrane-bound proteins are governed by ordinary 

differential equations (ODEs) based on the rates of corresponding biochemical reactions: 

 

𝑑[WGD]

𝑑𝑡
= 𝑘WASpGBinding

+ G0WASp0𝑒
(t−TimePeak)2

𝜎   

+𝑘ArpComplexFormation
− [ArpTernaryComplex]                            

− (𝑘WASpGBinding
− + 𝑘ArpComplexFormation

+ Arp0)[WGD]               (M3.1) 

 
𝑑[ArpTernCompl]

𝑑𝑡
= 𝑘ArpComplexFormation

+ Arp0[WGD]  

− (𝑘ArpComplexFormation
− + 𝑘WASpGBinding

+ ([FATP] + [FADP]))[ArpTernCompl]    (M3.2) 

 
𝑑[FArpTernCompl]

𝑑𝑡
=  𝑘ArpGWBindingF

+ ([FATP] + [FADP])[ArpTernCompl]  

−𝑘ArpActivation
+ [FArpTernCompl]   (M3.3) 

The densities of the membrane-bound species are in 
molecules

μm2 . The reaction rates, initial 

conditions and other constants are taken from Table 1 and Table 2 of (Berro et al., 2010); note  

 

Table S2. Model variables and their governing equations 

variable definition governing equation  
𝐱 spatial location  

𝑡 time  

𝐯(𝐱, 𝑡) actin velocity field (1) 

𝜌(𝐱, 𝑡) actin filament density, ),(][),( tXnt
XA xx   (2) 

𝜂(𝜌, 𝐿) shear viscosity of actin meshwork Eq (6) 

𝜎𝑎(𝜌) active stress  defined in Model of 
main text 

𝑢z tubule’s elongation speed Eq (5) 

𝑓z net tangential force exerted on a tubule Eq (4) 

𝐷(𝐱) diffusion coefficient of ActiveArp Eq (M2.8) 

𝑓𝑐 critical force due to turgor pressure defined in Results 

𝐺crit critical concentration of actin monomers defined in Results 

𝑤(𝜌) mechanical work per filament  estimated in Results 

𝑓crit buckling force threshold of actin filament defined in Broedersz 
and MacKintosh, 2014 

FArp Arp2/3 complex in a filament (M2.1) 

BEa active barbed ends (M2.2) 

BEc capped barbed ends  (M2.3) 
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PE pointed ends (M2.4) 

FATP newly polymerized ATP-bound subunits (M2.5) 

FADP subunits aged by ATP hydrolysis and phosphate 
dissociation 

(M2.6) 

FCOF polymerized subunits bound by cofilin (M2.7) 

ActiveArp activated Arp2/3 complex  (M2.8) 

WGD WASp - G-actin dimers (M3.1) 

ArpTernCompl Arp2/3 ternary complexes (Arp2/3 bound to WGD) (M3.2) 

FArpTernCompl activated Arp2/3 ternary complexes (bound to a 
filament) 

(M3.3) 

 

that the value of WASP0 was converted from μM to 
molecules

μm2 . Table S2 provides a list of the model 

variables and their governing equations. 
 

 

M1.3 Actin Meshwork Mechanics Equations 

The actin meshwork is modeled as a compressible visco-active fluid. In a viscosity-dominated 

environment of the actin patch, forces due to the fluid’s inertia and acceleration are neglected, 

which leads to a quasi-static formulation of the meshwork velocities v 

 

∇ ⋅ ( 2𝜂(𝜌, 𝐿)∇Sv ) − ∇𝜎𝑎(𝜌) = 0,               in     Ω,                (M4.1) 
 

where ∇Sv = 1/2(∇v + (∇v)𝑇) is the symmetrized velocity gradient tensor, 𝜂(𝜌, 𝐿) =
𝜅visc𝜌(1/𝑁 + 𝜌𝛿2𝐿) is the dynamic viscosity, and 𝜎𝑎 = 𝜅active𝜌2 is the active stress. See 

subsection Model for further details regarding the derivation of the functional forms of the 

viscosity and the active stress. 

  

Equations (M4.1) are elliptic in nature, similar to the Stokes equations of a Newtonian fluid, and 

hence require boundary conditions on all boundaries of the computational domain. No-slip 

boundary condition is applied where actin meshwork meets the membrane  

 

                                         v = u     at    𝛤mem,                                              (M4.2) 

 

where u is the velocity of the membrane. All other boundaries are subject to zero-stress boundary 

conditions, 

 

(2𝜅visc𝜌(1/𝑁 + 𝜌𝛿2𝐿)∇Sv − 𝜅active𝜌2 Î). 𝐧 = 0       at     𝛤2 ∪ 𝛤3,     (M4.3) 

 

where  Î is a unit tensor and n is the outward normal vector to the boundary. 

 

M1.4 Boundary Conditions and Domain Size Effects 

The simulations were first run in a domain with smaller extensions in each coordinate 

direction, 0.3 μm instead of 0.5 μm. To ensure that the boundary conditions applied at 𝛤2 and 𝛤3  

had no effect on the numerical results, we ran simulations with different types of boundary 

conditions and in larger domains. No significant changes in the solutions were observed. All the 
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numerical results presented in the paper are from the simulations performed in the larger domains, 

0.5 µm in each coordinate direction. 

 

M2 Moving Boundaries Formulation 

 

M2.1 Modelling Tubule Movement 

Simulations of elongating invaginations involve additional assumptions. In particular, the shape 

of the invagination is assumed to remain (sphero)cylindrical during the elongation process, so that 

only the cylindrical part elongates. Furthermore, we assume for simplicity that the invagination is 

infinitely rigid, so that all material points move with a same instantaneous velocity, which changes 

linearly with the net viscous drag exerted by the actin network; the linear dependence on the 

pushing force is parameterized by a mobility coefficient, see Equation (5) in Model. 

 

From fluid mechanics, the viscous forces acting on the tubule are given by the integral of the total 

stress in the actin meshwork over the surface of the endocytic invagination, 

 

𝑓viscous(𝑡) = ∫ (σ̂viscous + σ̂active). n  𝑑𝑆(t),
𝑆(t)

                         (M5)   

  
In Eq (M5), integration is carried over the time-dependent boundary S(𝑡) = 𝛤5(𝑡) representing the 

invagination, and n = (n𝑟 , n𝑧)𝑇 is the outward unit normal vector to the boundary 𝛤5(𝑡) (directed 

from 𝛤5(𝑡) towards the interior of 𝛺(𝑡)). The velocity of the tubule at any given time is then 

obtained by Eq (5) of Model. The 𝑧-component of the viscous force is the drag force exerted on 

the invagination, 𝑓z(𝑡) = 𝑓viscous(𝑡) ⋅ 𝑛𝑧, and the force due to the turgor pressure 𝛱turgor, is 𝑓c =

𝜋𝑟0
2𝛱turgor, where 𝑟0 is the radius of the (sphero)cylindrical invagination (Figure M1); if the 

invagination is constricted by the surrounding meshwork, 𝑟0 is the radius of the pore between the 

exterior and the lumen of the invagination.   

 

M2.2 The ALE Framework 

The models of elongating invaginations were solved using an Arbitrary Lagrangian-Eulerian 

(ALE) method. The ALE method is described in numerous publications, see e.g. (Donea et al., 

2004). In an ALE simulation, the computational mesh moves with displacements/velocities 

prescribed at the boundaries of interest (normally loading and interface boundaries). At all other 

places in the domain, the mesh moves with a smooth arbitrary velocity such that mesh quality is 

maintained throughout the simulation, while mesh connectivity remains the same. The governing 

equations formulated in a Eulerian coordinate system should be reformulated based on the ALE 

framework. Following the notation used by (Formaggia and Nobile, 2004), a fixed reference frame 

𝛺̃ and a mapping 𝒜𝑡 ∶ 𝛺̃ → 𝛺(𝑡) is defined to provide a one-to-one correspondence 𝑥 = 𝒜𝑡(𝑥̃), 

and 𝑥̃ = 𝒜𝑡
−1(𝑥) between the Eulerian coordinates 𝑥 = (𝑟, 𝑧) ∈ Ω(𝑡) and ALE coordinates 𝑥̃ =

(𝑟̃, 𝑧̃) ∈ 𝛺̃. It is straightforward to show that for any scalar function 𝑓(𝑥, 𝑡), the Eulerian and ALE 

time derivatives are related by the chain rule,  

 
𝜕𝑓

𝜕𝑡
|

𝑥̃
=

𝜕𝑓

𝜕𝑡
|

𝑥
+

𝜕𝑥

𝜕𝑡
|

𝑥̃
⋅ ∇𝑓 =

𝜕𝑓

𝜕𝑡
|

𝑥
+ v𝑚 ⋅ ∇𝑓                   (M6),   
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where v𝑚(𝑥, 𝑡) =
𝜕𝑥

𝜕𝑡
|

𝑥̃
(𝑥̃, 𝑡) is the local mesh velocity. The mesh velocity can be obtained by 

solving in the domain a mesh smoothing equation. See Finite Element Implementation of the Model 

for further details. 

 

Since domain 𝛺(𝑡) changes with time, it is generally not possible to discretize directly the Eulerian 

time derivatives in the transport-reaction equations. In fact, if 𝑥 ∈ 𝛺(𝑡) and Δ𝑡 > 0, the condition 

𝑥 ∈ 𝛺(𝑡 + Δ𝑡) may not be always satisfied (San Martín et al. 2009). Therefore, the Eulerian time 

derivatives 
𝜕𝑓

𝜕𝑡
|

𝑥
in the transport-reaction equations are substituted by the right-hand side of 

equation (M6). This introduces additional advection-like terms to the equations with the advection 

velocity being the local mesh velocity v𝑚. For example, the transport equation (M1) in the 

equivalent ALE formulation reads as 

 
𝜕𝑋

𝜕𝑡
|

𝑥̃
− v𝑚 ⋅ ∇𝑋 = −𝛻 ⋅ ([𝑋]𝑣) + 𝑅𝑋              in   𝛺(𝑡).          (M7) 

 

It should be noted that all space derivatives in Equation (M7) are taken with respect to the Eulerian 

coordinates 𝑥. This equation is subject to Rankine-Hugoniot boundary condition (zero-flux 

boundary condition) on the moving boundary 𝛤5(𝑡). Boundary conditions on all other non-moving 

boundaries remain unchanged.  

 

The equations for actin meshwork mechanics and their boundary conditions do not change in the 

ALE framework. This is because these equations are in quasi-static form and there are no history-

dependent rates in the definitions of viscous and active stresses (Donea et al., 2004). 

 

ODEs that govern membrane-bound species are not modified as a result of the movement, since 

these species are treated in the model as non-spatial. 

 

M2.3 Movement of the NPF Ring(s) 

According to the two-ring hypothesis (Arasada and Pollard, 2011), two NPF rings drive the actin 

assembly. One of the rings remains stationary near the horizontal membrane, 𝛤1 in Figure M1. The 

other ring moves with the tubule, keeping its proximity to the tip of the tubule. During the 

movement the width of the NPF rings and their radius remain constant. Therefore, it suffices to 

track the 𝑧-component of the position of the moving ring 𝑧ring described by 

 
𝑑𝑧ring

𝑑𝑡
= 𝑢𝑧(𝑡),                                (M8) 

 

where 𝑢𝑧(𝑡) is as in Eq (5) of Model. The movements of the rings were tracked similarly in the 

one-ring models described in Results. 

 

M3 Finite Element Implementation of the Model 

We used a Galerkin finite-element method to solve numerically the governing equations for the 

transport and reaction of proteins, and the equation for velocities of the actin meshwork. These 

equations are implemented and solved in COMSOL Multiphysics (COMSOL, 2015) in a 2D 

axisymmetric domain (Figure M1), as described below. 
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M3.1 Computational Mesh 

A computational mesh used for spatial discretization of the governing equations consisted of 33777 

quadrilateral elements (Figure M2(a)). To approximate the velocity gradients near the invagination 

with more precision, a boundary layer mesh was constructed. These gradients are important for 

calculating forces exerted on the tubule, and they affect the accuracy of the numerical solution 

overall. Figure M2(b) is a zoomed-in view of the vicinity of the invagination to show the boundary 

layer mesh. 

 

The mesh was designed so that as the tubule grew, the elements near the horizontal membrane and 

in the vicinity of the cylindrical part of the tubule were elongated in the 𝑧 direction. To maintain 

sufficiently fine elements even after they were stretched as a result of the elongation, a high initial 

mesh density was used in the vertical direction in these regions. For more details about the design 

of mesh movements and its implementation see subsection Mesh Smoothing Equations below. 

 

Classical mesh refinement was performed for simulations in fixed geometries and for one 

simulation of an elongating invagination to ensure that numerical results were grid-independent. 

The original mesh was refined by reducing the linear size of elements by approximately a factor 

of 2. This yielded 132884 quadrilateral elements, roughly four times the number of elements in 

the original mesh. The solutions obtained with refined meshes differed from the original mesh by 

less than 0.3%. 

 

Given the negligible differences, all subsequent moving geometry simulations were performed on 

the original mesh. 

 

 

 

(a) (b) 
Figure M2. The computational mesh(a), and a zoomed-in view near the invagination boundaries (b). 

 

 

M3.2 Transport Equations of Cytoplasmic Species 

Eqs (M2.1-M2.8), governing the spatiotemporal dynamics of cytosolic species, were solved using 

COMSOL’s ‘Transport of Diluted Species’ module. For simulating moving domains, the module 
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automatically adds to the transport equations advection-like terms of Eq (M7). Linear Lagrange 

finite elements were used to approximate the concentrations of these species.  

 

Solving Eqs (M2.1-M2.7) with the standard Galerkin finite-element method may result in spurious 

oscillations (Donea and Huerta, 2003). Treating advection terms with Petrov-Galerkin type 

methods available in COMSOL can suppress these unphysical oscillations. However, the 

effectiveness of these methods generally depends on values of auxiliary parameters, and some 

numerical oscillations may persist. We chose instead adding to the transport equations a diffusion 

term with a small diffusion coefficient, termed ‘technical diffusion’ with diffusivity 𝐷tech., and 

using standard discretization schemes for all terms. For consistency, 𝐷tech. was added also to 𝐷(𝑥) 

in Eq (M2.8) for [ActiveArp]. In all simulations, we used the value 𝐷tech. = 1 × 10−5μm2/𝑠. 

Decreasing 𝐷tech. further by an order of magnitude did not produce significant changes in the 

solution. While spurious oscillations can occur in solving diffusion-advection equations on meshes 

with high Peclet numbers, no such oscillations were observed after adding technical diffusion for 

the meshes used in our computations (see subsection M3.1). 

 

M3.3 ODEs for Membrane-bound Species  

Eqs (M3.1-M3.3) for membrane-bound species were solved on 𝛤5 (Figure M1) with the ‘Boundary 

ODEs and DAEs’ module of COMSOL. Positions of the rings of NPFs were accounted for by 

multiplying the first term in the right-hand side of Eq (M3.1) by a Boolean expression, which was 

evaluated to one at the locations of the rings and zero elsewhere. As the rings moved, the 

expression was updated accordingly. Although, membrane-bound species are non-zero only at the 

locations of the rings, the corresponding ODEs were solved everywhere on 𝛤5, allowing for a  

uniform application of the flux boundary condition for [ActiveArp], although the flux density was 

non-zero only at 𝛾rings. Constant discontinuous Lagrange finite elements were used for the 

membrane-bound species. 

  

M3.4 Velocity Equations 

Eqs (M4.1) for actin velocities were solved using the ‘Weak Form PDE’ module of COMSOL, 

which allows one to implement a method of weighted residuals solving equations in weak forms 

(Donea and Huerta, 2003). Let 𝒲 be the space of weighting (test) functions vanishing on the 

Dirichlet boundaries 𝛤mem, and let 𝑤(𝑤1, 𝑤2, 𝑤3) ∈ 𝒲 be the test functions for velocities in the 

cylindrical coordinates. The weighted residual form of equations in the moving domain 𝛺(𝑡) is 

then written as 

 

∫ 𝑤 [ ∇ ⋅ (2𝜂(𝑞, 𝐿)∇S𝑣 − 𝜅active𝑞2 Î) ]  𝑑𝑥
𝛺(𝑡)

= 0               ∀𝑤 ∈ 𝒲,     (M9) 

 

where 𝑞 and 𝑣 are the weak solutions corresponding to the polymerized actin density 𝜌 and actin 

velocities v. The weak solution 𝑣 resides in a space of admissible functions satisfying the Dirichlet 

(no-slip) boundary condition (M4.2). Integrating by parts and applying Green’s formula (Donea 

and Huerta, 2003) then yields 

 

∫ ∇𝑤 ∶ (2𝜂(𝑞, 𝐿)∇S𝑣 − 𝜅active𝑞2 Î)  𝑑𝑥
𝛺(𝑡)
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− ∫ 𝑤 ⋅ (2𝜂(𝑞, 𝐿)∇S𝑣 − 𝜅active𝑞2 Î) ⋅ 𝑛  𝑑s
𝛤(𝑡)\𝛤mem

= 0    ∀𝑤 ∈ 𝒲,       (M10) 

 
where ‘:’ denotes the double dot product of two tensors. The integrand in the second integral of 

equation (M10) is zero on 𝛤(𝑡)\𝛤mem due to the zero-stress boundary condition (M4.3), so the 

final weak form of the velocity equations reads 

 

∫ ∇𝑤 ∶ (2𝜂(𝑞, 𝐿)∇S𝑣 − 𝜅active𝑞2 Î)  𝑑𝑥
Ω(𝑡)

= 0          ∀𝑤 ∈ 𝒲.       (M11) 

 

To derive equations for velocity components in weak form for the equivalent two-dimensional 

axisymmetric coordinate system, one should start with the full differential operators in cylindrical 

coordinates (𝑟, 𝜃, 𝑧), and then remove 𝜃-components and derivatives with respect to 𝜃. In a 

cylindrical coordinate system with orthonormal basis vectors 𝑟̅, 𝜃̅, 𝑧,̅ the velocity gradient operator 

and the symmetrized velocity gradient tensor applied to the weak solution 𝑣 = (𝑣1, 𝑣2, 𝑣3)𝑇 are 

defined as follows: 

 

∇𝑣 =
𝜕𝑣1

𝜕𝑟
𝑟̅ 𝑟̅ +

𝜕𝑣2

𝜕𝑟
𝜃̅𝑟̅ +

𝜕𝑣3

𝜕𝑟
𝑧̅𝑟̅ +

1

𝑟
(

𝜕𝑣1

𝜕𝜃
− 𝑣2) 𝑟̅𝜃̅ +

1

𝑟
(𝑣1 +

𝜕𝑣2

𝜕𝜃
) 𝜃̅𝜃̅ +

1

𝑟

𝜕𝑣3

𝜕𝜃
𝑧̅𝜃̅ + ⋯ 

𝜕𝑣1

𝜕𝑧
𝑟̅𝑧̅ +

𝜕𝑣2

𝜕𝑧
𝜃̅𝑧̅ +

𝜕𝑣3

𝜕𝑧
𝑧̅𝑧̅,                                                                              (M12) 

 

 ∇S𝑣 =
1

2
(∇𝑣 + (∇𝑣)𝑇) =

𝜕𝑣1

𝜕𝑟
𝑟̅𝑟̅ +

1

2
(

𝜕𝑣2

𝜕𝑟
+

1

𝑟
(

𝜕𝑣1

𝜕𝜃
− 𝑣2)) 𝜃̅𝑟̅ +

1

2
(

𝜕𝑣3

𝜕𝑟
+

𝜕𝑣1

𝜕𝑧
) 𝑧̅𝑟̅ + ⋯ 

1

2
(

𝜕𝑣2

𝜕𝑟
+

1

𝑟
(

𝜕𝑣1

𝜕𝜃
− 𝑣2)) 𝑟̅𝜃̅ +

1

𝑟
(𝑣1 +

𝜕𝑣2

𝜕𝜃
) 𝜃̅𝜃̅ +

1

2
(

1

𝑟

𝜕𝑣3

𝜕𝜃
+

𝜕𝑣2

𝜕𝑧
) 𝑧̅𝜃̅ + ⋯ 

1

2
(

𝜕𝑣3

𝜕𝑟
+

𝜕𝑣1

𝜕𝑧
) 𝑟̅𝑧̅ +

1

2
(

1

𝑟

𝜕𝑣3

𝜕𝜃
+

𝜕𝑣2

𝜕𝑧
) 𝜃̅𝑧̅ +

𝜕𝑣3

𝜕𝑧
𝑧̅𝑧̅.                                 (M13) 

 

A unit tensor is defined as Î = 𝑟̅ 𝑟̅ + 𝜃̅𝜃̅ + 𝑧̅𝑧̅.  Using these definitions, the first term in the 

integrand of equation (M11),  ∇𝑤 ∶ (2𝜂(𝑞, 𝐿) ∇S𝑣), is  

 

∇𝑤 ∶ (2𝜂(𝑞, 𝐿) ∇S𝑣) = 2𝜂(𝑞, 𝐿) [
𝜕𝑤1

𝜕𝑟
 
𝜕𝑣1

𝜕𝑟
+

𝜕𝑤2

𝜕𝑟
 
1

2
(

𝜕𝑣2

𝜕𝑟
+

1

𝑟
(

𝜕𝑣1

𝜕𝜃
− 𝑣2))  

+
𝜕𝑤3

𝜕𝑟
 
1

2
(

𝜕𝑣3

𝜕𝑟
+

𝜕𝑣1

𝜕𝑧
) +

1

𝑟
(

𝜕𝑤1

𝜕𝜃
− 𝑤2) 

1

2
(

𝜕𝑣2

𝜕𝑟
+

1

𝑟
(

𝜕𝑣1

𝜕𝜃
− 𝑣2)) +

1

𝑟
(𝑤1 +

𝜕𝑤2

𝜕𝜃
) 

1

𝑟
(𝑣1 +

𝜕𝑣2

𝜕𝜃
)  

+
1

𝑟

𝜕𝑤3

𝜕𝜃
 
1

2
(

1

𝑟

𝜕𝑣3

𝜕𝜃
+

𝜕𝑣2

𝜕𝑧
)+

𝜕𝑤1

𝜕𝑧
 
1

2
(

𝜕𝑣3

𝜕𝑟
+

𝜕𝑣1

𝜕𝑧
) +

𝜕𝑤2

𝜕𝑧
 
1

2
(

1

𝑟

𝜕𝑣3

𝜕𝜃
+

𝜕𝑣2

𝜕𝑧
) +

𝜕𝑤3

𝜕𝑧
 
𝜕𝑣3

𝜕𝑧
]. 

 
The simplification due to axial symmetry yields the following weak form of the first term in Eq 

(M11): 
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∫ 2𝜋𝑟 ∇𝑤 ∶ (2𝜂(𝑞, 𝐿)∇S𝑣) 𝑑𝑥
𝛺(𝑡)

= ∫ 2𝜋𝑟 2𝜂(𝑞, 𝐿) [
𝜕𝑤1

𝜕𝑟
 
𝜕𝑣1

𝜕𝑟
+

1

2

𝜕𝑤3

𝜕𝑟
 (

𝜕𝑣3

𝜕𝑟
+

𝜕𝑣1

𝜕𝑧
) +

𝑤1

𝑟
 
𝑣1

𝑟Ω(𝑡)

+
1

2

𝜕𝑤1

𝜕𝑧
 (

𝜕𝑣3

𝜕𝑟
+

𝜕𝑣1

𝜕𝑧
) +

𝜕𝑤3

𝜕𝑧
 
𝜕𝑣3

𝜕𝑧
]  𝑑𝑥        (M14) 

 

Similarly, the second term of the integrand in Eq (M11) yields 

 

−∇𝑤 ∶ (𝜅active𝑞2 Î) = −𝜅active𝑞2 (
𝜕𝑤1

𝜕𝑟
+

1

𝑟
(𝑤1 +

𝜕𝑤2

𝜕𝜃
) +

𝜕𝑤3

𝜕𝑧
), 

 

and upon the reduction due to axial symmetry, the weak form of the second term in Eq (M11) is 

 

∫ −2𝜋𝑟 ∇𝑤 ∶ (𝜅active𝑞2 Î) 𝑑𝑥 =
𝛺(𝑡)

∫ −2𝜋𝑟 𝜅active𝑞2  (
𝜕𝑤1

𝜕𝑟
+

𝑤1

𝑟
+

𝜕𝑤3

𝜕𝑧
) 𝑑𝑥

𝛺(𝑡)
.   (M15) 

 

The factor 2𝜋𝑟 in Eqs (M14-15) is the result of integration over .  

 

Eqs (M14) and (M15) were implemented in COMSOL. Linear Lagrange finite elements were used 

in computing actin velocities. 

 

M3.5 Mesh Smoothing Equations 

Solving a moving boundary problem using the ALE method requires computing local mesh 

velocities vm. While vm are not known in advance in the interior of the domain, velocities of points 

on a moving tubule are computed from Eq (5) of Model, while other boundaries of the 

computational domain are fixed in the course of a simulation. To correctly model the movements 

of the domain, mesh velocities at the boundaries should coincide with the velocities of the 

boundary. Then the mesh velocities of the interior points of the domain may be computed, for 

instance, by employing a harmonic extension of the boundary velocities (Formaggia and Nobile, 

2004).  

 

Computing vm  and tracking of mesh movements  were done using the ‘Moving Mesh’ module of 

COMSOL, which allows one to prescribe mesh displacements xm and/or mesh velocities at the 

domain boundaries and at any other interior domain points/edges. Values of v𝑚 in the domain 

interior were computed using a Laplacian mesh smoother with linear geometric shape functions. 

Care must be exercised in simulating large elongations, which may result in a highly distorted 

mesh. The ALE methods become instable on distorted meshes, so that the domain needs to be 

remeshed to restore the regularity of the elements (San Martín et al., 2009). Remeshing entails 

interpolation to a new mesh, which introduces additional error.  Also, frequent remeshing increases 

computational costs. To avoid remeshing and the issues associated with it, we defined a virtual 

edge in the interior of the computational domain, indicated by a dashed line in Figure M1. The 

tubule velocity computed from Eq (5) in Model was then used as the 𝑧-component of the mesh 

velocity for both the virtual edge and the circular part of 𝛤5. The 𝑟-components of the mesh velocity 

on these segments were set to zero. The prescribed movement of the virtual edge guides the mesh 

deformation in the interior of the domain and allows for modeling very large tubule elongations 
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without remeshing. On 𝛤2, 𝛤4 and the straight part of 𝛤5, the 𝑟-component of the mesh displacement 

was set to zero, whereas the vertical components was allowed to vary freely. Displacements of the 

mesh on the remaining horizontal segments of the domain boundary were set to zero.  

 

M3.6 Equation for Updating NPF Ring Position 

Eq (M8), determining the time-dependent z-component of the position of the moving ring, 𝑧ring , 

was solved using COMSOL’s ‘Point ODEs and DAEs’ module for one point on 𝛤5. The  𝑧ring was 

initialized to the position of the ring at  𝑡 = 0. Because Eq (M8) was solved in COMSOL within a 

spatial model, a constant discontinuous Lagrange finite element was used to approximate 𝑧ring. 

 

M4 Solvers and Computational Parameters 

The coupled nonlinear system of equations describing the cytoplasmic species, Eqs (M2.1- 8), the 

membrane-bound species, Eqs (M3.1-3), the ring’s position Eq (M8), and the actin velocities, Eqs 

(M14-15), along with the corresponding boundary conditions, were discretized using FEM and 

solved in a fully coupled manner in COMSOL. Note that even though the force-balance equation 

does not involve time derivatives, the coupled system constitutes an initial-value problem, so that 

initial conditions must be specified for all variables (initial values of the actin velocities were set 

to zero).  

 

The time-dependent system was solved using a backward-differentiation time-stepping method of 

order 1-2. Relative and absolute tolerances of the time-stepper were set to 1 × 10−5 and  1 × 10−6, 

respectively. Other default solver parameters were used without modification. Linearization was 

performed using Newton’s method with a constant damping factor of 1. The system’s Jacobian 

was updated at each nonlinear iteration. The linearized system was solved monolithically using a 

direct MUMPS solver with default solver parameters. We verified, by solving the problem with 

varying solver parameters (including the tolerances of the time-stepper), that the solutions did not 

depend on specific choices of parameters of the solver. 

 

M5 Data Analysis and Display 

Presentation and post-processing of numerical results were facilitated by exporting the COMSOL 

FEM solutions, obtained at the Lagrange points, which were further processed in MATLAB 

R2017b (The MathWorks, Natick, MA). The 2D snapshots of the solution (see, as an example, 

Figs. 4 and S1) were obtained by interpolating the FEM solutions onto a uniform 2D grid. A 

sufficiently large size of the grid allowed for accurately capturing all important features of the 

FEM solution that were first visualized in COMSOL. The 3D snapshots (see, for instance, Movies 

S1 and S2) were exported as image files from COMSOL and then replotted in MATLAB. 

 

The actin filament heat maps in Figs. 8 and S2 were produced by first interpolating the FEM 

solutions for polymerized actin onto a uniform 3D grid defined inside a domain with the horizontal 

and vertical extensions of [−0.5, 0.5] μm and [0, 0.5] μm, equal to the respective ranges of 𝑟 and 

𝑧 coordinates of the 2D axisymmetric model. The extension in the depth direction was 
[−0.2, 0.2] μm, in accordance with the thickness of the imaging plane in epifluorescence 

microscopy experiments of (Arasada et al., 2018). The interpolated 3D data was then projected on 

a 2D plane by integrating over the depth direction; the corresponding heat maps are presented in 

Fig. S2. The projected data were further subjected to a median filter with a half window size of 35 

nm; the heat maps for the filtered data are shown in Fig. 8 of the main text.   



 
 

  
 

43 

 

The histograms in Figs. 8 and S2 were produced as follows. First, the filtered projected (projected 

only for Fig. S2) data were integrated over time. This yielded a two-dimensional matrix with the 

elements corresponding to the 2D image of the actin filament density integrated over time. In 

accordance with the protocol adopted by (Arasada et al., 2018), the width (length) distribution of 

the actin density was generated by summing up the values of the elements in each column (row) 

of the matrix. The width of the patch was calculated as the width of the corresponding histogram 

at half its maximum.  
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