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Passivity-Based Bilateral Tele-Driving System
With Parametric Uncertainty and

Communication Delays
Yimeng Dong and Nikhil Chopra

Abstract—In this letter, a new bilateral tele-driving
control design is proposed to enable a human driver to tele-
drive a car-like mobile robot with haptic feedback. In the
presence of communication delays and dynamic paramet-
ric uncertainties, a passivity-based adaptive control algo-
rithm is designed to achieve scaled coordination between
a local and a remote robot. The efficacy of the proposed
control scheme is verified through numerical simulations.

Index Terms—Human-in-the-loop control, control over
communications.

I. INTRODUCTION

B ILATERAL teleoperation system can greatly extend the
human capability to conduct a remote operation through

communication networks. There are various applications of
such system like handling hazardous materials [1], space
exploration [2], and telesurgery [3]. Fig. 1 shows the structure
of a typical bilateral teleoperation system. The state informa-
tion of two coupling robotic manipulators, termed the local
and remote robot, is exchanged through a communication
network. By manipulating the local robot, the human operator
can control the remote robot to complete a task in a remote
environment with haptic feedback.

One major difference between a tele-driving system and a
traditional bilateral teleoperation system such as Fig. 1 is the
kinematic dissimilarity between the local and remote robot. A
sketch for the proposed bilateral tele-driving system is shown
in Fig. 2. In this system, a car-like remote robot is driven by
a human driver using a two degree-of-freedom (DOF) local
robot (joystick) through a communication network. This two
DOF system can be analogously considered as a steering and
gas pedal input.
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Fig. 1. An example of bilateral teleoperation system structure.

Fig. 2. The sketch for tele-driving scheme: qm1, qm2 are two joint
variables of the local joystick, β is the steering angle, ω is the angu-
lar velocity of the front wheel, v is the linear velocity of the front
wheel, Tm, Ts are constant communication delays and rm, r̄s are the
transmitted data defined later in Section IV.

Considering previous work in control of bilateral tele-
driving systems, the notion of feedback r-passivity was
proposed and utilized in [4] and [5] to study the bilateral tele-
driving scheme for a two-wheeled mobile robot. An impedance
control framework was proposed for bilateral teleoperation
of a car-like rover in [6]. In [7], a wave-variable method
was applied on a kinematic model called extended virtual-
mass model for the car-like mobile robot teleoperation. In
the previously described algorithms, one DOF of the local
device was used to control the remote car’s linear velocity.
In [6] and [7], the haptic feedback on the environmental force
was achieved for obstacle avoidance by defining a virtual envi-
ronmental force based on the relative distance and speeds
between rover and obstacle. To better emulate normal car driv-
ing, in this letter we utilize an additional DOF of the local
robot as a gas pedal for controlling the remote car’s accelera-
tion, and to generate haptic feedback when the remote car is
in hard contact with an obstacle in the environment.

In this letter, a tele-driving scheme with a new control
mode is proposed, where (qm1, β)-coordination and (qm2, ω̇)-
coordination (see Fig. 2) is achieved. Here (., .) implies that
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these signals track each other asymptotically, and this is made
precise in Section IV. Specifically, (qm1, β)-coordination and
(qm2, ω̇)-coordination imply that the local robot’s link vari-
ables qm1, qm2 are used to control the steering angle β and the
angular acceleration ω̇, respectively. In the proposed setup, the
(qm2, ω̇)-coordination is equivalent to a (qm2, v̇)-coordination
as v = rFω, where rF is the radius of the front wheel.

It should be noted that many existing passivity-based meth-
ods for BTOS synchronization, for example [8]–[10] cannot
be directly utilized for (qm2, ω̇)-coordination, as the pair
(qm2, ω̇) implies position-acceleration coordination. However,
the aforementioned algorithms can only achieve coordination
between the variables with the same physical unit (such as
position-position coordination and velocity-velocity coordina-
tion). This is due to the fact that these algorithms relied on
feedback passivation, where the dynamics of system were
shaped using feedback so that the system dynamics were pas-
sive with respect to an appropriate output. Coordination of
these outputs then guaranteed coordination of desired state
variables [9].

In this letter, the proposed scheme for the (qm2, ω̇)-
coordination is inspired by the control algorithm for the
(q, v)-coordination in [4], where a new variable r = q̇ + λq
is defined and transmitted to coordinate with v. In this let-
ter, to achieve (qm2, ω̇)-coordination, a new variable rm2 =
q̇m2 +λ1qm2 +λ2

R t
0 qm2(s)ds, λ1, λ2 > 0 is defined and trans-

mitted to coordinate with ω. Then (qm2, ω̇)-coordination can
be approximately achieved by coupling rm2 with ω when the
magnitude of q̇m2 and q̈m2 are relatively small.

On the other hand, the (qm1, β)-coordination requires
position-position coordination. A PD-based control was
applied in [4], but its controller gain is time delay dependent
as shown in equation (11) in [4]. In this letter, a con-
trol scheme similar to the state synchronization scheme in
[9, Sec. 4.3.2] is proposed for the (qm1, β)-coordination and
the (rm2, ω)-coordination, thereby avoiding delay dependent
control gains.

Additionally, an adaptive control approach is utilized to
address the uncertainties in the system dynamics. Furthermore,
the synchronization algorithms discussed in [8]–[10] were
developed under passivity assumptions on the human oper-
ator, which not always be the case in practice as discussed
in [11]. In the proposed work, inspired by the scheme in [12],
the passivity assumption is replaced with a boundedness con-
dition on the human and environment input. The proposed
control framework is different from [12] in two main respects:
(i) The formulation is different. The scheme in [12] achieved
the position tracking while the velocities are driven to zero
and it cannot be applied here to achieve the new control mode
for tele-driving. (ii) The system is different. Reference [12]
studied a traditional teleoperation system, while a tele-driving
system is considered here.

The contributions of this letter can be summarized as fol-
lows: a passivity-based adaptive bilateral tele-driving control
scheme is proposed in the presence of communication delays
and dynamic parametric uncertainties.

(i) Different from previous works [4]–[7], the
proposed scheme can achieve a new control mode for

tele-driving that is the position-acceleration (qm2, ω̇)

coordination.
(ii) Inspired by the formulation in [12], the proposed algo-

rithm avoids the typically assumed passivity assumption on
the human and the environment. It should be noted that the
control algorithms in [8]–[10] can be analogously modified to
make them more broadly applicable.

The rest of this letter is organized as follows. In Section II,
the notations used throughout this letter are introduced. In
Section III, the dynamics of the bilateral tele-driving system
are presented. In Section IV, the details of the proposed tele-
driving control algorithm are provided. The simulation results
are discussed in Section V.

II. NOTATIONS

The following notations are adopted throughout this letter.
Symbols R

n, R
n×m, R

+
0 and R

+ denote n-dimensional real-
valued vectors, n by m matrices with real-valued elements, sets
of nonnegative real numbers, and sets of positive real numbers,
respectively. For a matrix A, λm(A) and λM(A) denote the
minimum and maximum eigenvalues of matrix A, AT denotes
its transpose, and if A is invertible then A−1 denotes its inverse.
diag denotes the diagonal matrix. For a vector x, |x| denotes
the Euclidean norm of vector x. For any function f : R

+
0 → R

n,
the L∞-norm is defined as kf k∞ = supt≥0|f (t)|, and L2-norm
is defined as kf k2 = (

R ∞
0 |f (t)|2dt)1/2. The L∞ and L2 spaces

are defined as the set {f : kf k∞ < ∞} and {f : kf k2 < ∞},
respectively.

III. PRELIMINARIES: SYSTEM DYNAMICS

In this section, the dynamics of the proposed bilateral tele-
driving system are described.

Following [13], the dynamics of a n-link robotic manipula-
tor can be given as

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ (1)

where q ∈ R
n represents the generalized coordinates, M(q)

is the inertial matrix, C(q, q̇) is the centrifugal and Coriolis
matrix, g(q) is the gravitational torque and τ is the generalized
force acting on the system. Due to the Lagrangian dynam-
ics structure, (1) has the following properties [13] which are
utilized later in this letter:

(P1) Under an appropriate definition of C(q, q̇), the matrix
Ṁ(q) − 2C(q, q̇) is skew symmetric.

(P2) The Lagrangian dynamics are linearly parametrizable
in the sense that

M(q)q̈ + C(q, q̇)q̇ + g(q) = Y(q, q̇, q̈)φ (2)

where Y(q, q̇, q̈) ∈ R
n×p is called regressor which is a

matrix of known functions of generalized coordinates and their
derivatives, φ is called parameters vector which is a constant
p-dimensional vector of the inertia parameters (such as mass,
moment of inertia, etc.).

In the proposed tele-driving scheme in Fig. 2, the dynamics
for the local manipulator are given as

Mm(qm)q̈m + Cm(qm, q̇m)q̇m + gm(qm) = τm + fh (3)
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Fig. 3. The single track model of the car-like robot: β is the steering
angle, θ is the angel between the world reference frame and the longitu-
dinal axis of the robot, a, b are the distance from center of mass to each
wheel.

where qm = [qm1, qm2]T ∈ R
2 represents the angular positions

of the local robot, Mm is the inertial matrix, Cm is the cen-
trifugal and Coriolis matrix, gm is the gravitational torque, τm

is the local robot control input and fh is the human input.
The dynamics of the remote car-like mobile robot are

approximated by a single-track model shown in Fig. 3.
Following [14], the dynamics are given as

Ms(qs)η̇ + Cs(qs, q̇s)η = τs − fe (4)

where η = [β̇, ω]T ∈ R
2, qs = [β, β̇]T ∈ R

2, Ms is the
inertial matrix, Cs is the centrifugal and Coriolis matrix, τs is
the remote robot control input and fe is the environment input.

To simplify the car-like robot model in [14], the following
assumptions are made in this letter:

• The robot moves on a horizontal plane without slip.
• Each wheel is modeled as a rigid wheel and the tire

mechanics are not considered.
• Friction is neglected in the model.
Following [14], the mathematical expression for each matrix

of (4) is given as

Ms =
�

JF,v rFJF,v sin β/l
rFJF,v sin β/l m22

�

,

Cs =
�

0 rFJF,v cos ββ̇/l
0 c22

�

(5)

where

m22 = r2
FJB sin2 β/l2 + JF,h + r2

F[mF + cos2 β(mR

+ JR,h/r2
R)] + [(a2 + l2 + b(a + l) cos 2β)mB

+ 2 sin2 β(JF,v + JR,v)]/l2

c22 = sin 2β[(JB + JR,v + JF,v)r
2
R − (JR,h + mRr2

R)l2

− (a + l)bmBr2
R]r2

Fβ̇/2l2r2
R

In the above equations, besides the notations introduced in
Fig. 3, JB, JR,v, JR,h, JF,v, JF,h are the moments of inertia of
body, and the moments of inertia of rear wheel and front wheel
along vertical and horizontal wheel axis, respectively; rF, rR

are the radius of front and rear wheel, respectively; l := a + b
is the distance between front and rear wheel; mB, mF, mR are
the mass of body, front wheel and rear wheel, respectively.

Given the structure of Ms, Cs in (5) and the fact that the local
joystick can be modeled as a manipulator with two revolute
joints as (3), it can be verified that the properties (P1) and
(P2) of Lagrangian dynamics also hold for the dynamics of
the local and remote robot.

IV. BILATERAL TELE-DRIVING CONTROL SCHEME

The proposed adaptive coordination control framework is
detailed in this section. An adaptive control law is first used
to render the local and remote robot dynamics passive with
respect to the new defined outputs. Then a passive coordination
control is applied to achieve the desired coordination between
the local and remote robot.

As shown in Fig. 2, define the two coordination signals rm

and r̄s as

rm =
�

rm1
rm2

�

=
�

q̇m1 + λqm1

q̇m2 + λ1qm2 + λ2
R t

0 qm2(s)ds

�

(6)

r̄s =
�

r̄s1
r̄s2

�

= Krs = K

�
β̇ + λβ

ω

�

(7)

where β is the steering angle, ω is the angular velocity of
the front wheel as shown in Fig. 2, and λ, λ1, λ2 > 0 are
constant coefficients. It is natural to consider a scaling fac-
tor between rm and rs due to the kinematic dissimilarity
between the local and remote robot. Hence, a constant diag-
onal positive definite scaling factor matrix K is considered
here. Consequently, in the ideal no delay case, the coordi-
nation control would guarantee that Krs tracks rm, where
K = diag([k1, k2]), k1, k2 > 0.

Assume there exists constant time delays Tm and Ts between
the local and remote robot in the network as shown in Fig. 2.
Then, the coordination error signals can be defined as

erm = rm − r̄s(t − Ts), ers = r̄s − rm(t − Tm) (8)

Definition 1: In this letter, the coordination is said to be
achieved by the proposed tele-driving system if

lim
t→∞(qm1(t − Tm) − k1β) = lim

t→∞(qm1 − k1β(t − Ts)) = 0

lim
t→∞(q̇m1(t − Tm) − k1β̇) = lim

t→∞(q̇m1 − k1β̇(t − Ts)) = 0

lim
t→∞(rm2(t − Tm) − k2ω) = lim

t→∞(rm2 − k2ω(t − Ts)) = 0 (9)

Assuming that the dynamics of the local and remote
robots are uncertain, their control inputs τm and τs are then
chosen as

τm = um − M̂m(

�
λq̇m1

λ1q̇m2 + λ2qm2

�

− ˙̄rs(t − Ts))

− Ĉm(

�
λqm1

λ1qm2 + λ2
R t

0 qm2(s)ds

�

− r̄s(t − Ts)) + ĝm

(10)

τs = us − M̂s(

�
λβ̇,

0

�

− K−1ṙm(t − Tm))

− Ĉs(

�
λβ

0

�

− K−1rm(t − Tm)) (11)

where M̂i, Ĉi (i = m, s) and ĝm are the estimates of the model
matrices, and um, us are the coordination control inputs to be
designed.

Using property (P2), the above control inputs can be
rewritten as

τm = um + Ym(qm, q̇m, r̄s(t − Ts), ˙̄rs(t − Ts))φ̂m

= um + Ymφm + Ymφ̃m, (12)
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τs = us + Ys(β, β̇, rm(t − Tm), ṙm(t − Tm))φ̂s

= us + Ysφs + Ysφ̃s (13)

where φ̂m, φ̂s are the time-varying estimates of the robots
model parameters given by φm, φs respectively and φ̃m: =
φ̂m − φm, φ̃s: = φ̂s − φs are the parameters estimation errors.

Then substituting (12) and (13) into (3) and (4) gives

Mmėrm + Cmerm = um + Ymφ̃m + fh (14)

M̄sėrs + C̄sers = us + Ysφ̃s − fe (15)

where M̄s = MsK−1, C̄s = CsK−1.
The update laws for the uncertain parameters estimates are

given as

˙̂
φm = −0−1

m YT
merm,

˙̂
φs = −0−1

s YT
s ers (16)

where 0m and 0s are constant positive definite matrices.
We next establish passivity properties of the local and

remote systems, in the absence of external inputs fh and fe.
Lemma 1: Consider fh = 0 in (14), system (14) is pas-

sive with (um, erm) as the input-output pair with respect to the
storage function Sm = 1

2 eT
rmMmerm + 1

2 φ̃T
m0mφ̃m.

Proof: Using the property (P1), the derivative of Sm along
the trajectory of (14) (16) is computed as

Ṡm = eT
rm(−Cmerm + um + Ymφ̃m)

+ 1

2
eT

rmṀmerm − φ̃T
mYT

merm = eT
rmum

Following the definition of passivity from [9], the system (14)
is passive with (um, erm) as the input-output pair with respect
to the storage function Sm.

Similarly, when fe = 0, system (15) is passive with (us, ers)

as the input-output pair with respect to the storage function
Ss = 1

2 eT
rsM̄sers + 1

2 φ̃T
s 0sφ̃s.

Utilizing the aforementioned passivity properties, the coor-
dination control inputs um and us are designed as

um = −Kuerm, us = −Kuers (17)

where Ku is a constant diagonal positive definite control gain
matrix.

Theorem 1: Consider the tele-driving system described
by (3)-(17). Then,

(a) if fh, fe ∈ L2 ∩ L∞, then the signal erm, ers, φ̃m, φ̃s are
bounded and the state coordination is achieved for the tele-
driving system in the sense of Definition 1;

(b) if the tele-driven car is in hard contact with the environ-
ment assuming steady state (q̇m, q̈m, β̇, β̈, ω, ω̇ → 0), then the
driver can perceive the environment contact force as fh → fe +
Ku

�
0

λ2
R t

t−Tm
qm2(s)ds

�

−Ymφ̃m −Ysφ̃s + (Mm +M̄s)

�
0

λ2qm2

�

.

Proof:
(a) A positive semidefinite storage functional V is consid-

ered for the tele-driving system as

V = 1

2
eT

rmMmerm + 1

2
φ̃T

m0mφ̃m + 1

2
eT

rsM̄sers + 1

2
φ̃T

s 0sφ̃s (18)

With the help of the property (P1), the derivative of V
along the trajectories of system (14), (15) and (16) can

be computed as

V̇ = eT
rm(−Cmerm + um + Ymφ̃m + fh) + 1

2
eT

rmṀmerm

− φ̃T
mYT

merm + eT
rs(−C̄sers + us + Ysφ̃s − fe)

+ 1

2
ers

˙̄Msers − φ̃T
s YT

s ers

= eT
rmum + eT

rsus + eT
rmfh − eT

rsfe

Substituting um, us in (17) into above equation gives

V̇ = −eT
rmKuerm − eT

rsKuers + eT
rmfh − eT

rsfe
≤ −λK |erm|2 − λK |ers|2 + |erm||fh| + |ers||fe|

where λK = λm(Ku) > 0.
Using Young’s inequality, we have

|erm||fh| ≤ |fh|2
2λK

+ λK |erm|2
2

, |ers||fe| ≤ |fe|2
2λK

+ λK |ers|2
2

,

Thus,

V̇ ≤ −λK

2
|erm|2 − λK

2
|ers|2 + 1

2λK
|fh|2 + 1

2λK
|fe|2

Integrating V̇ from 0 to t gives

V(t) + λK

2

Z t

0
|erm|2ds + λK

2

Z t

0
|ers|2ds

≤ 1

2λK

Z t

0
|fh|2ds + 1

2λK

Z t

0
|fe|2ds + V(0)

Letting t → ∞, and using the assumption that fh, fe ∈ L2,
we have erm, ers ∈ L2 and V is bounded. Hence, from (18)
the signals erm, ers, φ̃m, φ̃s are bounded.

From (14) and (15), and using the assumption that fh, fe ∈
L∞, ėrm, ėrs are also bounded. Using Barbalat’s Lemma [15]
gives lim

t→∞erm(t) = lim
t→∞ers(t) = 0, which means

lim
t→∞(r̄s1(t − Ts) − rm1) = lim

t→∞(rm1(t − Tm) − r̄s1) = 0 (19)

lim
t→∞(r̄s2(t − Ts) − rm2) = lim

t→∞(rm2(t − Tm) − r̄s2) = 0 (20)

Using (7), (20) is equivalent to

lim
t→∞(rm2(t − Tm) − k2ω) = lim

t→∞(rm2 − k2ω(t − Ts)) = 0 (21)

The signal r̄s1(t − Ts) − rm1 can be rewritten as

r̄s1(t − Ts) − rm1 = ėβ + λeβ (22)

where eβ := k1β(t − Ts) − qm1.
As (22) is an exponentially stable linear system with input

r̄s1(t − Ts) − rm1 and state eβ , by (19) and [9, Th. A.4], if
r̄s1(t − Ts) − rm1 ∈ L2 and asymptotically converges to zero,
then

lim
t→∞eβ = lim

t→∞ėβ = 0 (23)

Similarly, if rm1(t − Tm) − r̄s1 is rewritten as

rm1(t − Tm) − r̄s1 = ėqm1 + λeqm1 (24)

where eqm1 := qm1(t − Tm) − k1β, it can be shown that

lim
t→∞eqm1 = lim

t→∞ėqm1 = 0 (25)

Hence, the proof of the part (a) is complete.
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(b) Now assuming q̇m, q̈m, β̇, β̈, ω, ω̇ → 0, then we have
Cm(qm, q̇m) → 0 as q̇m → 0 and ėrm → [0, λ2qm2]T in (14),
thus

fh → −um − Ymφ̃m + Mm

�
0

λ2qm2

�

(26)

= Ku

� −k1λβ(t − Ts) + λqm1

λ1qm2 + λ2
R t

0 qm2(s)ds

�

− Ymφ̃m

+ Mm

�
0

λ2qm2

�

In (15), ˙̄rs → 0 and C̄s(qs, q̇s) → 0 due to the structure of Cs

in (5). Hence,

fe → us + Ysφ̃s − M̄s

�
0

λ2qm2(t − Tm)

�

= Ku

� −k1λβ + λqm1(t − Tm)

λ1qm2(t − Tm) + λ2
R t−Tm

0 qm2(s)ds

�

+ Ysφ̃s

− M̄s

�
0

λ2qm2(t − Tm)

�

(27)

For a signal x(t) and i = m, s, x(t) → x(t−Ti) as lim
t→∞ẋ(t) = 0,

thus when q̇m, q̈m, β̇, β̈, ω, ω̇ → 0, fh →

Ku

� −k1λβ(t) + λqm1

λ1qm2 + λ2
R t

0 qm2(s)ds

�

− Ymφ̃m + Mm

�
0

λ2qm2

�

= fe + Ku

�
0

λ2
R t

t−Tm
qm2(s)ds

�

− Ymφ̃m − Ysφ̃s

+ (Mm + M̄s)

�
0

λ2qm2

�

(28)

which completes the proof of the part (b).
Remark 1: Compared with the state synchronization con-

trol scheme for the traditional bilateral teleoperation system
in [8]–[10], the proposed scheme formulates a passive system
as (14) and (15) with the new defined outputs erm and ers

as (8). Additionally, the passivity assumption on the human
and environment in [8]–[10] can be avoided as has been
accomplished in part (a) of Theorem 1. It should be noted
that the bilateral teleoperation algorithms and results devel-
oped in [8]–[10] can be made less conservative by avoiding the
passivity assumption on the human operator and environment,
as has been done in the proposed work.

Remark 2: From part (b) of Theorem 1, the force reflec-
tion from the environment can be perceived by the human
driver when the car is in hard contact with the environment
and in steady state. For example, when the car’s tire hits an
obstacle like the curb on the road, the environment force infor-
mation can be provided to the local driver by (28), and hence
the driver’s situational awareness can be improved. In (28),
the first and second row reflect the force feedback on the
steering direction and the forward driving direction, respec-
tively. Observing the final expression of (28), the effect of
time delay on the force reflection is represented by the second
term, the effect of model parameters estimation errors on the
force reflection is represented by the third and fourth term,
and the coupling between two directions is represented by the
last term.

Fig. 4. The human input fh = [fh1, fh2] in simulation.

V. SIMULATIONS

The proposed tele-driving control scheme was simulated
in Simulink. To simplify the presentation, it was assumed
that the local robot dynamics are known and the remote
robot dynamics are uncertain. The local robot consisted of
two decoupled individual single link planar manipulators, and
hence the dynamics can be written as

Mmq̈m = τm + fh, qm ∈ R
2 (29)

where Mm = diag([Jm1, Jm2]).
For the remote robot, following (4) (5), it can be shown that

−Ms(

�
λβ̇,

0

�

− K−1ṙm(t − Tm)) − Cs(

�
λβ

0

�

−K−1rm(t − Tm)) = Ysφs, (30)

and it can be verified that the parameters vector φs ∈ R
7 and

the regressor matrix Ys(β, β̇, rm(t − Tm), ṙm(t − Tm)) ∈ R
2×7.

The parameters in the control scheme were taken as fol-
lowing: λ = 3, λ1 = 2, λ2 = 2, k1 = 2, k2 = 3 and the
control gain matrix Ku = diag([4, 10]). The simulation param-
eters were taken as following: simulation time t = 12s, time
step 0.005s, time delay Ts = 0.1s, Tm = 0.15s, the ini-
tial condition for system states (qm1, qm2, q̇m1, q̇m2, β, β̇, ω)

is (−0.1, 0, 0, 0, 0.2, 0, 0), the nominal value of φs in (30)
was chosen as (1, 0.2, 4.04, 8.12, 1.24, 5.04,−0.5808). The
human input on the local robot fh = [fh1, fh2] is shown in
the Fig. 4. In (10) and (11), the derivative of r̄s(t − Ts) and
rm(t − Tm) were computed and used, and in the simulation, a
low-pass filter was applied to r̄s(t − Ts) and rm(t − Tm) before
the derivatives were computed to get rid of the noise issue
in the derivative computation. In the simulation, the nominal
value of φs was unknown, and a perturbation was added on
the nominal value of φs to generate an initial condition of
φ̂s in the adaptation law (16) for the remote robot. To show
the coordination performance of the proposed control scheme,
a zoomed-in plot of the simulation results for t ∈ [3s, 9s]
is shown in Fig. 5. In each subplot, the coordination error
between the two signals is denoted by the dashed line, where
the error signal was generated by first time-shifting one of
the two state trajectories based on the network delay and
then subtracting two signals. As can be observed from the
plots, good coordination performance under the human input
was achieved in the presence of communication delays and
uncertain dynamics. In the fourth subplot of Fig. 5, it is also
verified the new control mode (position-acceleration (qm2, ω̇)

coordination) was achieved by the proposed control scheme.



DONG AND CHOPRA: PASSIVITY-BASED BILATERAL TELE-DRIVING SYSTEM WITH PARAMETRIC UNCERTAINTY AND COMMUNICATION DELAYS 355

Fig. 5. The coordination performance for t ∈ [3s, 9s].

Fig. 6. The trajectories of the parameters vector φ̂s for the remote robot.

Fig. 6 displays the trajectories of the parameter vector φ̂s,
and as demonstrated in part (a) of Theorem 1, the parameter
estimation errors are bounded.

VI. SUMMARY

In this letter, a passivity-based adaptive coordination control
scheme is proposed for a new bilateral tele-driving system in
the presence of communication delays and dynamic parametric
uncertainties. The proposed tele-driving scheme can achieve a
new control mode and haptic feedback to better emulate nor-
mal car driving compared with the existing schemes in the
mobile robot teleoperation such as [4]–[7]. Unlike the syn-
chronization control scheme in [8]–[10] for traditional bilateral
teleoperation system, the passivity assumption on the human
and environment is replaced with a boundedness condition.
Through simulations, it is verified that a good coordination
performance under the human input can be achieved with the
proposed control framework.
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