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1. INTRODUCTION

Let p be a prime number, which we regard as fixed throughout this paper. Our
starting point is the following theorem of Katz (see [10, Proposition 4.1.1}):

Theorem 1.0.1 (Katz). Let k be a perfect field of characteristic p and let k be
an algebraic closure of k. Then the construction V = (V ®g, k)GF/F) induces
an equivalence from the category of finite-dimensional F,-vector spaces V' with
a continuous action of Gal(k/k) to the category of finite-dimensional k-vector
spaces M equipped with a Frobenius-semilinear automorphism @y .

The equivalence of Theorem 1.0.1 can be extended to infinite-dimensional vec-
tor spaces; in this case, we must add the requirement that M is locally finite in
the sense that every element z € M belongs to a finite-dimensional ¢j;-stable
subspace. Our primary goal in this paper is to prove the following more general
result:

Theorem 1.0.2. Let R be a commutative Fp,-algebra. Then there is a fully faith-
ful embedding of abelian categories

{p-torsion étale sheaves on Spec(R)}

|

{R-modules with a Frobenius-semilinear automorphism @y }.

Moreover, the essential image of RH consists of those R-modules M equipped with
a Frobenius-semilinear automorphism oy : M — M which satisfies the following
condition: every element x € M satisfies an equation of the form

O+ ar ot + e+ apz =0
for some coefficients aq,...,a, € R.

We also establish various extensions of Theorem 1.0.2, where we replace p-
torsion sheaves by p"-torsion sheaves (Theorem 9.6.1), the affine scheme Spec(R)
by an arbitrary F,-scheme (Theorem 10.2.7), and the abelian category of étale
sheaves by its derived category (Theorem 12.1.5).

1.1. Outline. The first half of this paper is devoted to the proof of Theorem
1.0.2. Note that Theorem 1.0.2 supplies a description of the category of (p-torsion)
étale sheaves on Spec(R) as quasi-coherent sheaves on Spec(R) with additional
structure, and can therefore be viewed as a positive-characteristic analogue of the
Riemann-Hilbert correspondence. We will emphasize this perspective by referring
to the functor RH appearing in Theorem 1.0.2 as the Riemann-Hilbert functor.
It is not so easy to describe this functor directly. Instead, we begin in §2 by
constructing a functor in the opposite direction. Let Modﬁ,@r denote the category
whose objects are pairs (M, pys), where M is an R-module and ¢, is a Frobenius



4 BHARGAV BHATT AND JACOB LURIE

semilinear endomorphism of M; we will refer to such pairs as Frobenius modules
over R. If M is an R-module and M denotes the associated quasi-coherent sheaf
on the étale site of Spec(R), then every Frobenius-semilinear automorphism ¢,
of M determines an automorphism of M, which we will also denote by ¢ We
let Sol(M) denote subsheaf of ¢,,-fixed points in M: that is, the kernel of the
map id—py : M — M, formed in the category Shve (Spec(R),F,) of p-torsion
étale sheaves on Spec(R). The construction (M, ¢y) — Sol(M) determines a
functor

Sol : Modﬁr — Shvg (Spec(R), F)),

which we will refer to as the solution functor (Construction 2.3.1).

We will say that a Frobenius module (M, ) is perfect if the map ¢, is in-
vertible. In §6, we will show that, when restricted to category Mod%Orf of perfect
Frobenius modules, the solution functor Sol has a left adjoint (Theorem 6.1.1).
This left adjoint is the Riemann-Hilbert functor RH : Shve (Spec(R),F,) —
Mod%erf appearing in the statement Theorem 1.0.2. The existence of the functor
RH is not evident: to construct it, we will need to develop a theory of compactly
supported direct images in the setting of (perfect) Frobenius modules; this is the
subject of §5. We also prove in §6 that the functor RH is exact (Proposition
6.4.1). This is easy to see in the case where R is an algebraically closed field: in
this case, the category Shve (Spec(R),F,) is equivalent to the category of vector
spaces over F,,, where every exact sequence is split. We handle the general case by
reducing to the case of an algebraically closed field, using a theory of base change
for perfect Frobenius modules (which we study in §3) and its compatibiity with
the Riemann-Hilbert correspondence (which we prove as Proposition 6.2.2).

We will complete the proof of Theorem 1.0.2 in §7 by showing that the Riemann-
Hilbert functor RH is fully faithful and characterizing its essential image. The
full-faithfulness is actually fairly easy, once we know that the functor RH is
exact: it essentially follows from the exactness of the Artin-Schreier sequence
0> F, > R - R - 0 in the category of étale sheaves Shvg (Spec(R),F,) (see
Proposition 7.2.1). To understand the essential image of the Riemann-Hilbert
functor, it will be convenient to consider first the functor RH® obtained by re-
stricting RH to the subcategory Shvg, (Spec(R),F,,) ¢ Shv (Spec(R), F,) of con-
structible étale sheaves on Spec(R). The functor RH takes values in the subcat-
egory Mod' € Mod%™ of holonomic Frobenius modules (Definition 4.1.1), which
we study in §4. Theorem 1.0.2 will then follow by combining the following two
assertions:

e The functor RH® : Shv§, (Spec(R),F,) - Mod¥" is an equivalence of cat-
egories (Theorem 7.4.1): that is, every holonomic Frobenius module M
the form RH(.%), for some constructible étale sheaf .% on Spec(R). We
will prove this using formal arguments to reduce to the case where R is a
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field, in which case the desired result follows from Theorem 1.0.1 (which
we reprove here as Proposition 7.3.1).

e A perfect Frobenius module M can be written as a filtered colimit of
holonomic Frobenius modules if and only if every element x € M satisfies
an equation <p’1\‘/[x+a1g0§(4‘1x+~--+an:c = 0 for some coefficients ay,...,a, € R
(Theorem 4.2.9). We will refer to such Frobenius modules as algebraic.

In the second half of this paper, we consider several refinements of Theorem
1.0.2:

e Let (M, oy ) and (N,@n) be Frobenius modules over R. If M and N
are perfect, then they can also be regarded as Frobenius modules over
the perfection R'/?” (Proposition 3.4.3). In this case, we can regard the
tensor product M ® pi/p= N as a (perfect) Frobenius module over R, with
Frobenius endomorphism given by z®y — ¢ () ®@n(y). In §8, we show
that the Riemann-Hilbert functor RH of Theorem 1.0.2 is compatible with
tensor products, in the sense that there are canonical isomorphisms

RH(@ ®F, g) v RH(?) ® p1/p> RH(g)

(Corollary 8.4.2). Our proof relies on the vanishing of the Tor-groups

Torfl/p (M, N) for n >0 when M and N are algebraic Frobenius modules,
which we establish as Theorem 8.3.1.

e In §9, we prove a generalization of Theorem 1.0.2 where the category
Shvg (Spec(R),F,) of p-torsion étale sheaves is replaced by the larger
category Shve (Spec(R),Z/p"Z) of p"-torsion étale sheaves, for some in-
teger n > 0. In this case, we must also replace the category Modﬁ,@r of
Frobenius modules over R by the larger category Modaﬂn( gy of Frobenius
modules over W, (R); here W, (R) denotes the ring of n-truncated Witt
vectors of R (see Theorem 9.6.1).

e In §10, we prove a generalization of Theorem 1.0.2 where the affine scheme
Spec(R) is replaced by an arbitrary F,-scheme X (Theorem 10.2.7). We
also show that the Riemann-Hilbert correspondence is compatible with the
formation of (higher) direct images along proper morphisms f: X — Y of
finite presentation (Theorem 10.5.5). As an application, we reprove a spe-
cial case of the proper base change theorem in étale cohomology (namely,
the case of p-torsion sheaves on F-schemes; see Corollary 10.6.2).

e In §12, we study the derived category D(R[F']) of Frobenius modules
over R. The equivalence of abelian categories RH® : Shvg, (Spec(R),F)) =
Mod}j%01 extends to an equivalence of triangulated categories

D;(Spec(R),F,) = Dy, (R[F]),
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where D! (R[F]) ¢ D(R[F]) denotes the full subcategory spanned by
the cohomologically bounded chain complexes with holonomic cohomol-
ogy and D%(Spec(R), F,) is the constructible derived category of Spec(R);
see Corollary 12.1.7. We also construct a duality functor D : D? (R[F]) -
D(R[F])°P, and show that it is a fully faithful embedding (Theorem
12.5.4). Combining this duality functor with our Riemann-Hilbert corre-
spondence, we obtain a second embedding from the constructible derived
category D!(Spec(R),F,) to the derived category D(R[F]). Using this
construction, we recover the contravariant Riemann-Hilbert correspon-
dence of [6] (in a strong form, which does not require the Fj,-algebra R to
be regular or even Noetherian; see Theorem 11.4.4), whose statement we
review in §11 (see also §1.3).

These sections are more or less independent of one another, and can be read
in any order (except that §12 depends on §11). One can also develop a theory
which incorporates several of these refinements simultaneously (for example, one
can compare derived categories of Z/p"Z-sheaves on an arbitrary F,-scheme X
with derived categories of quasi-coherent Frobenius modules over the Witt sheaf
W,(Ox)); we leave such extensions to the reader.

1.2. The Work of Bockle-Pink. In the case where the R is Noetherian, The-
orem 1.0.2 is essentially due to Bockle and Pink. Let us briefly summarize some
of their work. Assume that R is Noetherian, and let Modg’fg denote the full
category of Frobenius modules (M, ¢),) which are finitely generated as modules
over R. In [4], Bockle and Pink construct an equivalence of abelian categories

Shvg, (Spec(R),F,) ~ Modﬁgfg /Nil,

where Nil is the full subcategory of Modlj;r,fg spanned by those Frobenius modules
(M, pnr) where @y is nilpotent, and Modlj;r’fg /Nil denotes the Serre quotient
(Bockle and Pink denote this Serre quotient by Crys(R) and refer to it as the
category of crystals on Spec(R)). From the perspective of [4], the main innovation
of this paper is to realize the category Crys(R) concretely as a full subcategory
Mod%, rather than abstractly as a Serre quotient. To achieve this, we note that
every Frobenius module (M, @) admits a perfection M'/*” | given as an abelian
group by the direct limit

h_I)n(M oM MQDM MAOM M—>---);

we will study this construction in detail in §3.2. This construction annihilates
every Frobenius module (M, ) for which ¢y, is nilpotent, and therefore deter-
mines a functor

Crys(R) = Modj, /Nil > Mody; .
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This functor is fully faithful, and its essential image is the subcategory Mod]j’{01 c
MoleQr of holonomic Frobenius modules that we study in §4. The resulting iden-
tification of Crys(R) with Mody' carries the equivalence Shv§, (Spec(R),F,) =
Crys(R) to the Riemann-Hilbert equivalence RH® : Shv§, (Spec(R),F,) = Modh
of Theorem 7.4.1.

One advantage of our approach is that it does not require the ring R to be
Noetherian. Beware that if R is not Noetherian, then the subcategory Modf{fg c

MoleQr is not abelian, and the formalism of Serre quotients is not available. Nev-
ertheless, we will see that the category Mod}j%01 of holonomic Frobenius modules
is still a well-behaved abelian subcategory of Modjy (Corollary 4.3.3). Note that
the extra generality afforded by allowing non-Noetherian rings can quite useful in
practice: one of the main themes of the present paper is that the theory is often
clarified by replacing an F,-algebra R by its perfection R'/P”, which is almost
never Noetherian.

Our realization of crystals as holonomic Frobenius modules also has the ad-
vantage of essentially trivializing the passage to derived categories in §12.1 (see
Theorem 12.1.5). The corresponding statement in [4] requires more categorical
preliminaries (largely to deal with the derived category of the Serre quotient cate-
gory Crys(R) in a useful fashion), and does not describe the constructible derived
category D%(Spec(R),F,) as explicitly as Corollary 12.1.7.

Remark 1.2.1. When R is not Noetherian, we cannot realize the category Mod}}z"l
as a Serre quotient of the category Mod,F{fg. Nevertheless, it is still possible
to realize the holonomic derived category DP (R[F']) as a Verdier quotient of
the triangulated category of complexes of Frobenius modules which are finitely
generated and projective over R; see Remark 12.4.5.

1.3. The Work of Emerton-Kisin. The Riemann-Hilbert correspondence of
Theorem 1.0.2 is also closely related to the work of Emerton and Kisin (see [6]).
In the case where R is a smooth algebra over a field k of characteristic p, Emerton
and Kisin construct an equivalence of triangulated categories

RSolgk : Dy, (R[F])* = D}(Spec(R), F,),

where DY (R[F]) denotes the full subcategory of D(R[F]) spanned by the coho-
mologically bounded chain complexes whose cohomology groups finitely generated
unit Frobenius modules (see Definition 11.1.3). This differs from our Riemann-
Hilbert equivalence Sol : Mods" ~ Shv¢, (Spec(R),F,) in two important respects:

e The functor Sol : Mody! ~ Shv§, (Spec(R), F,) is an equivalence of abelian
categories (though it can be extended to an equivalence of suitable derived
categories, see Corollary 12.1.7). However, the functor RSolgk is well-
defined only at the level of derived categories: in other words, it is not
t-exact. Gabber has identified the image of the abelian category of finitely
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generated unit Frobenius modules under the equivalence RSolgx with a
certain category of perverse F,-sheaves inside Db(Spec(R),F,) (see [8]).

e The equivalence Sol : Mod" ~ Shv§, (Spec(R), F,) is a covariant functor,
while RSolgxk is contravariant.

Example 1.3.1. To illustrate the contrast between the Riemann-Hilbert corre-
spondence of Theorem 1.0.2 and the Riemann-Hilbert correspondence of [6] in
more concrete terms, let us consider an arbitrary F,-algebra R. A choice of
non-zero divisor t € R determines closed and open immersions

i:Spec(R/tR) < Spec(R) j :Spec(R[t™]) = Spec(R),
so that the constant sheaf F,, on Spec(R) fits into an exact sequence
(1) 0-5hF,->F,-iF, 0.
Then the functor RH of Theorem 1.0.2 carries the étale sheaves F,, 51 F,, and
i.F, to the Frobenius modules R'/P”  (tR)Y/?™ and (R/tR)'/P”, respectively,
and the exact sequence (1) to the short exact sequence

0 - (tR)YP” » RY?™  (R/tR)Y*" - 0.

of Frobenius modules.
On the other hand, if R is a smooth algebra over a field k£ of characteristic p,
then the contravariant functor RSolgk from [6] carries the étale sheaves F,,, j1F,,

and ¢, F, to the chain complexes of (finitely generated unit) Frobenius modules R,
R[t71], and (R[tt]/R)[-1], respectively (up to a cohomological shift of dim(R):
see Remark 11.4.5). In other words, RSolgk carries exact sequence (1) into the
the distinguished triangle (R[t7']/R)[-1] - R — R[t"!] in the derived category

Dﬁ’gu(Modg), obtained by “rotating” the exact sequence
0> R-R[t']->R[t"']/R-0
in the category of Frobenius modules.

In §12, we will show that the functor RSolgk fits into a commutative diagram
of triangulated categories

Dﬁol(R[F])
DY, (R[F])p DY(Spec(R); F,),

where RSol is a derived version of our solution functor Sol, and ID denotes a certain
duality functor on the derived category of Frobenius modules. Using the fact that
RSol is an equivalence of categories (which follows easily from Theorem 1.0.2 and
its proof) and that D is an equivalence of categories (which we prove as Theorem



A RIEMANN-HILBERT CORRESPONDENCE IN POSITIVE CHARACTERISTIC 9

12.5.4), we give a new proof of the assertion that RSolgk is an equivalence of
categories. Moreover, our argument does not require the assumption that R is
a smooth algebra over a field: we allow R to be an arbitrary F,-algebra, with
the caveat that the triangulated category D?gu(R[F ]) must be suitably defined
(if R is not a regular Noetherian ring, then the criteria for membership in the
subcategory Dg (R[F]) € D(R[F]) must be imposed at the derived level, rather
than at the level of individual cohomology groups; see Definition 11.3.4).
Remark 1.3.2. Let R be a commutative F,-algebra, let X = Spec(R) denote
the associated affine scheme, and let oy : X - X denote the absolute Frobe-
nius map. A Frobenius module over R can be identified with a quasi-coherent
sheaf £ on X equipped with a map ¢¢ : &€ - px. &, or equivalently with a map
e 1 oy & — £. In this paper, we will be primarily concerned with the class of
perfect Frobenius modules, characterized by the requirement that the map ¢ is
an isomorphism. By contrast, the book [6] is mainly concerned with the class of
unit Frobenius modules, characterized by the requirement that the map ¢ is an
isomorphism. Note that the direct image functor px, is always exact (since px
is affine morphism), but the exactness of the pullback functor ¢% requires some
strong hypotheses on R (for example, that R is a regular Noetherian ring). Con-
sequently, the category Mod%Orf of perfect Frobenius modules is always abelian,
but the category of finitely generated unit Frobenius modules is well-behaved
only in special cases.

1.4. Other Related Works. Extensions of the contravariant Riemann-Hilbert
correspondence of [6] to singular schemes have also been explored in the papers
of Blickle-Bockle [2, 3], Schedlmeier [13], and Ohkawa [12]. Under mild finiteness
conditions on R, the papers [2, 3] develop a theory of “Cartier” modules: these are
coherent sheaves £ on X = Spec(R) equipped with a map Cg : px. € - E. Passing
to a quotient by a naturally defined subcategory of nilpotent objects yields the
category Cryse,,.(R) of Cartier crystals on R. For X smooth over a perfect field,
the category Crysc,,(R) is identified in [2] with the category of finitely generated
unit Frobenius modules (and thus with the category of perverse F,-sheaves on
Spec(R)e via [6] and [8]). Roughly speaking, the smoothness of R ensures that
P &~ p* 5®w;{p, so a Cartier module Cg : px, & - & gives by adjunction a map
a:Eewy - i (€ ®wyt) whose unitalization (see Construction 11.2.2) yields the
desired finitely generated unit Frobenius module. For R not necessarily regular,
even though finitely generated unit Frobenius modules may be badly behaved, the
abelian category Crysc,,(R) is shown to have good behaviour in [2, 3]; see also
[8]. Using this, the paper [13] shows that, given an embedding X < Spec(P) with
P smooth over a perfect field, a suitably defined derived category of Crysc,,(R) is
equivalent to the full subcategory of ngu(P[F ]) spanned by complexes supported
on X. Combining this with the Riemann-Hilbert correspondence from [6] for P
and a suitable analogue of Kashiwara’s theorem, one obtains a description of the
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constructible derived category D%(Spec(R),F,) in terms of Cartier crystals on R
([12, 13]).

Remark 1.4.1. The most important example of a Cartier module is the coherent
dualizing sheaf wy for X = Spec(R), where we take C,, : px.wx — wx to be
the Grothendieck dual of the unit map Ox — ¢x.Ox. In the case where X
is a smooth scheme over a perfect field k, this map can also be described in
terms of the Cartier operator on the de Rham complex of X, which motivates
the terminology.

In summary, the papers [2, 3, 12, 13] extend the Riemann-Hilbert correspon-
dence of [6] to algebras of finite type over a field by developing the theory of
Cartier modules and reducing to the smooth case. In contrast, the discussion in
§11 gives an intrinsic extension of the Riemann-Hilbert correspondence of [6] to
all Fj-algebras R, which is described using Frobenius modules (that is, quasi-
coherent sheaves with a map & - ¢x. &). The presentation via Cartier crystals
gives a module-theoretic description of perverse F,-sheaves on Spec(R)s (which
has an important precursor in [8]), while the presentation in §11 works entirely in
the derived category and thus avoids discussion of the abelian category of perverse
sheaves.

1.5. Acknowledgements. During the period in which this work was carried
out, the first author was supported by National Science Foundation under grant
number 1501461 and a Packard fellowship, and the second author was supported
by the National Science Foundation under grant number 1510417. We thank
Manuel Blickle and Johan de Jong for useful conversations.
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2. OVERVIEW

Our goal in this section is to give a precise formulation of Theorem 1.0.2. We
begin by introducing two of the principal objects of interest in this paper: the cat-
egory Modﬁr of Frobenius modules over a commutative F,-algebra R (Definition
2.1.1) and the category Shve (Spec(R),F),) of p-torsion étale sheaves on Spec(R)
(Definition 2.2.2). The Riemann-Hilbert correspondence of Theorem 1.0.2 is a
fully faithful embedding of categories

RH : Shv (Spec(R), F,) - Mod}; .

It will take a bit of work to construct this functor (this is the main objective of
§6). In this section, we consider instead the solution sheaf functor Sol : Mod}y —
Shv¢ (Spec(R), F,), which is left inverse to the Riemann-Hilbert functor RH and
admits a very simple description (Definition 2.3.3). We then formulate a variant
of Theorem 1.0.2, which asserts that the functor Sol becomes an equivalence when
restricted to a certain full subcategory Modi‘%lg c Mod%; (Theorem 2.4.3).

2.1. Frobenius Modules. We begin by introducing some definitions.

Definition 2.1.1. Let R be a commutative F,-algebra. A Frobenius module over
R is an R-module M equipped with an additive map ¢y, : M — M satisfying the
identity par(Ax) = APy (x) for x € M, X e R.

Let (M, par) and (N, N ) be Frobenius modules over R. A morphism of Frobe-
nius modules from (M, ppr) to (N, ¢y ) is an R-module homomorphism p: M — N
for which the diagram

M- N

\LQOIVI l@N
ML= M
commutes. We let Mod%r denote the category whose objects are Frobenius mod-

ules (M, ¢pr) and whose morphisms are morphisms of Frobenius modules. We
will refer to Modﬁr as the category of Frobenius modules over R.

Notation 2.1.2. Let M and N be Frobenius modules over a commutative F,-
algebra R. We let Hom}y (M, N) denote the set of Frobenius module morphisms
from (M, ) to (N, pn).

Remark 2.1.3. Let (M, ¢y ) be a Frobenius module over a commutative F-
algebra R. We will often abuse terminology by simply referring to M as a Frobe-

nius module over R: in this case, we are implicitly asserting that M is equipped
with a Frobenius-semilinear map ¢, : M — M.

Example 2.1.4. Let R be a commutative F,-algebra. Then we can regard R as
a Frobenius module over itself, via the Frobenius map

pr:R—>R  pr(A\) =M.
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More generally, the same comment applies to an ideal I € R.

It will sometimes be helpful to identify Frobenius modules over a commutative
F,-algebra R with modules over a certain (noncommutative) enlargement of R.

Notation 2.1.5. Let R be an F,-algebra. We let R[F'] denote the noncommu-
tative ring whose elements are finite sums ), ¢, F™, with multiplication given

by

(Y ™)X F) =2 Y ec )"

m20 n>0 k>0 i+j=k
We will identify R with the subring of R[F'] consisting of those sums Y., ¢, F™
for which the coefficients ¢; vanish for ¢ > 0. Unwinding the definitions, we see
that the category Modgr is equivalent to the category of left R[F']-modules. In
particular, Mod}F;zr is an abelian category which has enough projective objects and
enough injective objects. Given objects M, N € Mod}y, we let Extigp (M, N)

denote the nth Ext-group of M and N, computed in the abelian category Mod,F%r.

We now consider the behavior of the category Modgr as the commutative F-
algebra R varies.

Construction 2.1.6 (Extension of Scalars). Let f: A - B be a homomorphism
of commutative F,-algebras. If M is a Frobenius module over A, then we can
regard the tensor product B® 4 M as a Frobenius module over B, with Frobenius
map given by

(,OB@,AM(()@ LL’) =0 e® QOM(LL’)
The construction M + B®4 M determines a functor from Mod to Mod};, which
we will denote by f and refer to as extension of scalars along f.

Remark 2.1.7 (Restriction of Scalars). In the situation of Construction 2.1.6, the
extension of scalars f (M) = B®4 M is characterized by the following universal
property: for every Frobenius module N over B, composition with the map M —
B ®4 M induces a bijection

HomB[F](B ® A M,N) - HOIIlA[F](M, N)

In other words, we can regard the functor fj as a left adjoint to the forgetful
functor Modlj;r - Modir. We will denote this forgetful functor by f. and refer to
it as restriction of scalars along f.

Warning 2.1.8. Let f: A - B be a homomorphism of commutative F,-algebras.
Then f induces extends to homomorphism of noncommutative rings f*: A[F] —
B[F], where A[F] and B[F] are defined as in Notation 2.1.5. The content of
Construction 2.1.6 and Remark 2.1.7 is that, for every Frobenius module M over
A, the canonical map

Beo, M-~ B[F] ®A[F] M
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is an isomorphism. This relies on the fact that A[F'] is freely generated as a left
A-module by the elements {F"},50. Beware that A[F'] is usually not free when
regarded as a right A-module (so the analogous compatibility would fail if we were
to study right modules over A[F], rather than left modules). In fact, following
Notation 3.1.1, the ring A[F'] identifies with @,50A - F? as a left A-module, and
with @,50F" - AY/P" as a right A-module. In particular, the latter is free over A
only under strong conditions (such as regularity).

Remark 2.1.9. Let f: A — B be a homomorphism of commutative F,-algebras,
and suppose that the multiplication map m : B®4 B — B is an isomorphism
(this condition is satisfied, for example, if f is surjective, or if f exhibits B as a
localization of A). Then, for any Frobenius module M over B, the counit map
v frfo(M) - M is also an isomorphism: note that the domain of v can be
identified with the tensor product B®s M ~ (B®4 B) ®p M. It follows that the
restriction of scalars functor f, : Mody — Mod'y is fully faithful.

2.2. Etale Sheaves. For the reader’s convenience, we briefly review the theory
of étale sheaves. We consider here only the case of affine schemes (we will discuss
sheaves on more general schemes in §10).

Notation 2.2.1. Let R be a commutative ring. We let CAlg% denote the cat-
egory whose objects are étale R-algebras, and whose morphisms are R-algebra
homomorphisms.

Definition 2.2.2. Let R and A be commutative rings, and let Mod, denote the
category of A-modules. An étale sheaf of A-modules on Spec(R) is a functor
F : CAlg% - Mod,
which satisfies the following pair of conditions:
e For every faithfully flat map u: A - B in CAlg‘%, the sequence

0-7(4) 2 2(B)

is exact.
e For every finite collection of étale R-algebras {A;};cs, the map

F([14) - [[7(4)

iel iel

F (u®id)-Z (id ®u)

y(B®AB)

is an isomorphism.

We let Shve (Spec(R),A) denote the category whose objects are étale sheaves of
A-modules on Spec(R) (where morphisms are given by natural transformations).

Remark 2.2.3. In this paper, we will be concerned almost exclusively with the
case where A is the finite field F,. The only exception is in §9, where we take
A =Z/p"Z for some integer n > 0.
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Example 2.2.4 (Constant Sheaves). Let R be a commutative ring and let M
be a module over a commutative ring A. We let M € Shv¢ (Spec(R),A) denote
the functor which associates to each étale R-algebra A the set M(A) of locally
constant M-valued functions on Spec(A). We will refer to M as the constant
sheaf with value M.

Example 2.2.5 (Quasi-Coherent Sheaves). Let R be an F,-algebra. For every
R-module M, the construction (A € CAlg®) —» A®p M determines an étale sheaf
of F,-modules on M, which we denote by M (see [14, Tag 03DX]). Note that
if M is a Frobenius module over R, then ¢,; determines a map of étale sheaves
O M — M ; this map is F)-linear, but not R-linear in general.

Notation 2.2.6. Let R and A be commutative rings. If .# and ¥ are étale
sheaves of A-modules on Spec(R), we let Homy (.%,%) denote the abelian group
of morphisms from % to ¢ in the category Shvg (Spec(R),A) (emphasizing the
idea that .# and ¢ can be regarded as modules over the constant sheaf A).

Note that Shve (Spec(R),A) is an abelian category with enough injective ob-
jects, so that we can consider Ext-groups in Shvg (Spec(R),A). We denote these
Ext-groups by Ext} (.#,¥) for n > 0.

Remark 2.2.7 (Functoriality). Let f: A - B be a homomorphism of commuta-
tive rings. Then f induces a base change functor

CAlg® — CAlgS: A A'®4 B.
Precomposition with this functor determines a pushforward functor
f« : Shvg (Spec(B), A) — Shvg (Spec(A), A),

given concretely by the formula (f. #)(A’) = # (A" x4 B). The functor f, admits
a left adjoint f* : Shvg (Spec(A),A) — Shvg (Spec(B),A), which we refer to as
pullback along f.

2.3. The Solution Functor.

Construction 2.3.1. Let R be a commutative F,-algebra and let M be a Frobe-
nius module over R. For every étale R-algebra A, we regard the tensor product
A®p M as a Frobenius module over A (see Construction 2.1.6). We define

Sol(M)(A) ={z e (A®r M) : pagpm(z) = x}.

The construction A ~ Sol(M) determines a functor CAlgy - Modg,, which we
will refer to as the solution sheaf of M.

Proposition 2.3.2. Let R be a commutative Fp,-algebra and let M be a Frobenius
module over R. Then Sol(M) is an étale sheaf of F,-modules on Spec(R).
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Proof. Let M denote the quasi-coherent sheaf associated to M (Example 2.2.5).
It follows immediately from the definition that Sol(M) can be described as the
kernel of the map

(id=@ar) : M — M.
Since M is an étale sheaf of F-modules on Spec(R), the functor Sol(M) has the
same property. [

Definition 2.3.3. Let R be a commutative Fp-algebra. We will regard the con-
struction

(M e Mody) = (Sol(M) € Shvg (Spec(R), F,))

as a functor Sol : Mod}y — Shvg (Spec(R), F,). We will refer to Sol as the solution
functor.

Remark 2.3.4. The solution functor Sol : Mod}; — Shvg (Spec(R),F,) is left
exact. However, it is usually not right exact.

2.4. The Riemann-Hilbert Correspondence. We now introduce a class of
Frobenius modules on which the solution functor of Definition 2.3.3 is particularly
well-behaved.

Definition 2.4.1. Let R be a commutative F,-algebra and let M be a Frobe-
nius module over R. We will say that M is algebraic if it satisfies the following
conditions:

(a) The map @y : M — M is an isomorphism of abelian groups.
(b) Every element x € M satisfies an equation of the form

o () + a1 (z) + -+ anz =0

for some coefficients a; € R.

We let Modj,%g denote the full subcategory of Modﬁ,@r spanned by the algebraic
Frobenius modules over R.

Remark 2.4.2. Let R be a commutative F,-algebra and let M be a Frobenius
module over R. Then condition (b) of Definition 2.4.1 is equivalent to the follow-
ing:
(b") For every finitely generated R-submodule My € M, the Frobenius sub-
module of M generated by M, is also finitely generated as an R-module.

To see that (b) implies ('), suppose that My € M is the R-submodule generated
by finitely many elements {x;};;. Then condition (b) guarantees that the R-
submodule generated by {(% (;) }ier k<n is stable under the action of ¢, for some
n > 0; this is clearly the smallest ¢,,-stable submodule of M which contains M.

Conversely, suppose that (b') is satisfied and let x be an element of M. Ap-
plying condition (b') to the submodule My = Rx ¢ M, we see that the sum
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Yrs0 Bk (x) € M is generated by finitely many elements, and is therefore con-
tained in Yoz, Re%, (2) for some integer n. It follows that ¢, (z) can be written
as a linear combination a;¢";(x)+---+a,x for some coefficients a1, as, ..., a, € R.

We can now formulate the main result of this paper:

Theorem 2.4.3. Let R be a commutative Fy-algebra. Then the solution sheaf
functor Sol : Mod?%g — Shv(Spec(R),F,) is an equivalence of categories.

Note that Theorem 2.4.3 immediately implies Theorem 1.0.2: assuming Theo-
rem 2.4.3, the Riemann-Hilbert functor RH can be defined as the composition

Sol™! alg Fr
Shve (Spec(R),F),) —— Mod®* = Modp .
We will give a different (but ultimately equivalent) definition of the functor RH
in §6: the construction of this functor is one of the key ingredients in our proof
of Theorem 2.4.3, which we present in §7.
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3. THE CATEGORY OF FROBENIUS MODULES

Let R be a commutative F,-algebra. Our goal in this section is to establish
some elementary properties of the abelian category Mod% of Frobenius modules
over R. We begin in §3.1 by studying the forgetful functor from Mod} to the
category of R-modules. The main observation is that the ring R admits a very
simple resolution

0- R[F] <=5 R[F]> R -0

in the category of left modules over the noncommutative ring R[F'| appearing in
Notation 2.1.5. This allows us to reduce calculations of Ext-groups in the category
MoleQr to calculations of Ext-groups in the category Modpg: see Construction 3.1.7.

In §3.2, we restrict our attention to the class of perfect Frobenius modules:
that is, Frobenius modules M for which the map ¢y : M — M is bijective (Def-
inition 3.2.1). The collection of Frobenius modules with this property form a

category which we denote by Mod%erf. Our main result is that the inclusion func-

tor 1\/Iodf,)%erf < Mody admits an exact left adjoint M — MY/P™ | given informally
by “inverting the Frobenius” (Proposition 3.2.7).

Let f : A - B be a homomorphism of commutative F,-algebras. In §2.1,
we observed that extension of scalars along f determines a functor fj : Modir -
Modlg. Beware that this construction does not carry perfect Frobenius modules to
perfect Frobenius modules. To remedy this, we introduce in §3.3 another functor
£o r Mod®™ - Mod®™, given concretely by the formula fo(M) = (fzM)Ve™.
The functors f° and fj are generally different, but they agree when the ring
homomorphism f is étale (Corollary 3.4.7). The proof of this fact will require
some elementary facts about perfect rings of characteristic p, which we review in
§3.4.

3.1. Comparison of R[F]-Modules with R-Modules. Throughout this sec-
tion, we fix a commutative F,-algebra R.

Notation 3.1.1. Let Modg denote the abelian category of R-modules. For each
n > 0, restriction of scalars along the nth power of the Frobenius map ¢r: R - R
determines a forgetful functor from Modg to itself, which we will denote by
M+~ MYP",

Let M be an R-module. Then there is a canonical isomorphism of abelian
groups M =~ MYP" . For each element x € M, we will denote the image of x under
this isomorphism by z!/?". The action of R on M/P" can then be described by
the formula A(z'/?") = (A\P"z)/P" for A€ R and = € M.

Construction 3.1.2. Let N be an R-module. We let Nt denote the R-module
given by the product [],.o N'/7". We identify elements of NT with the collection
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of all sequences (xg,z1,9,...) in N, where the action of R is given by
>\(LE‘0,LE1,LE2, .. ) = ()\LU(), >\p.§(71, )\pzl’g, .. )
We regard NT as an Frobenius module over R, with endomorphism ¢yt : NT — NT
given by
Nt (Lo, 1, @2,) = (21, T2, T3, ).

Lemma 3.1.3. Let M be a Frobenius module over R, let N be an arbitrary R-
module, and let v: NT — N be the R-module homomorphism given by

U(l’o,.ﬁ(}l,l’g, .. ) =Xg-.
Then composition with v induces a bijection Hom}y (M, NT) - Homg(M, N).

Proof. For every R-module homomorphism f : M — N, define f*: M — Nt
by the formula f*(z) = (f(z), f(em(x)), f(¢3,(z)),...). An elementary calcu-
lation shows that the construction f —~ f* determines an inverse to the map
Hom{y (M, N1) - Hompg(M, N) given by composition with v. O

Remark 3.1.4. It follows from Lemma 3.1.3 that we can regard the construction
N ~ Nt as a right adjoint to the forgetful functor Mod}y - Modp.

Remark 3.1.5. Using the equivalence of Notation 2.1.5, we can identify the
forgetful map Mod}, — Mody with the functor given by restriction of scalars
along the ring homomorphism R — R[F']. The right adjoint to this restriction
of scalars functor is given by M — Hompg(R[F'], M), which we can identify with
MT using the canonical left R-module basis of R[F] given by {F"},.0.

Remark 3.1.6. Let M be a Frobenius module over R and let N be an arbitrary
R-module. Then the identification Hompgppj(M,NT) ~ Homg(M, N) of Lemma
3.1.3 extends to an isomorphism of graded abelian groups

Ext g (M, NT) ~Exth(M,N).
This isomorphism can be described explicitly by choosing a projective resolution
> PP P> M

in the abelian category Modyy. Note that each P, is also projective when re-
garded as an R-module (this follows from the observation that the algebra R[F]
of Notation 2.1.5 is free as a left R-module), so that both Ext (M, NT) and
Extyi(M,N) can be computed as the cohomology of the cochain complex of
abelian groups Hompg[pj(Py, NT) ~ Hompg(P., N).

Construction 3.1.7. Let N be a Frobenius module over R. Then the con-
struction (z € N) = (z,¢on(x), 9% (), ) determines a morphism of Frobenius
modules u : N - NT (which is a unit map for the adjunction of Remark 3.1.4).
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Note that u is a monomorphism which fits into a short exact sequence of Frobenius
modules

0> N5 NS (NP S,

where « is given by the formula

04(36’0,361,3627 - ) = (SON(IO) —I1790N($1) —I2790N($2) — T3, )

It follows that for any other Frobenius module M over R, we have a short exact
sequence of abelian groups

0 - Hom (M, N) - Homp(M, N) > Homp(M, N'/?),

where 3 is given by the formula 8(f)(x) = on(f(2))? - f (o (z))P. Moreover,
if M is a projective object of Mod};, then 3 is surjective. More generally, Remark
3.1.6 supplies a long exact sequence of abelian groups

+ = Bxty; (M, N'7) > Extiy oy (M, N) > Ext (M, N) - Extp(M, N'P) — ...

Remark 3.1.8. Let R be a commutative F,-algebra and let M be a Frobenius
module over R. It follows from Construction 3.1.7 that if M has projective
(injective) dimension < n as a module over R, then it has projective (injective)
dimension < n + 1 as a module over R[F].

3.2. Perfect Frobenius Modules. Let R be a commutative F,-algebra, which
we regard as fixed throughout this section.

Definition 3.2.1. Let M be a Frobenius module over R. We will say that M
is perfect if the map o, : M — M is an isomorphism of abelian groups. We let
1\/Iodf,§zerf denote the full subcategory of Modly spanned by the perfect Frobenius
modules over R.

Remark 3.2.2. The full subcategory Mod%Crf c Mod}y is closed under limits,
colimits, and extensions. In particular, Mod%Crf is an abelian category, and the

. . £ Fr .
inclusion functor Mod,™ < Modp is exact.

Notation 3.2.3. Let M be a Frobenius module over R. We let M/P” denote
the colimit of the sequence

M Z2M ppie 2M e s
We will refer to M/?™ as the perfection of M.

Example 3.2.4. Let us regard R as a Frobenius module over itself as in Example
2.1.4. Then RYP™ is the perfection of R in the sense of commutative algebra:
that is, it is an initial object in the category of R-algebras in which every element
admits a unique pth root.
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Example 3.2.5. Let R[F'] be as in Notation 2.1.5, which we regard as a Frobe-
nius module over R. We will denote the perfection of R[F] by RYVP™[F*1].
Unwinding the definitions, we can identify elements of R'/P”[F*!'] with expres-
sions of the form ¥,z c,F™ where the coefficients ¢, € RY/P” vanish for all but
finitely many integers n.

Remark 3.2.6. The set RY/P”[ F*!] has the structure of an associative ring, with
multiplication given by the formula

(X ™) (D e F") =3 () e )FE

meZ neZ keZ i+j=k
This ring can be obtained from the associative ring R[F'] by formally adjoining
an inverse of the element F. It follows that the equivalence of Mod} with the
category of left R[F]-modules restricts to an equivalence of Mod%Orf with the

category of left R/P™ [ F*1]-modules. In particular, Mod%Orf is an abelian category
which has enough projective objects and enough injective objects.

In the situation of Notation 3.2.3, the perfection M/ inherits the structure
of a Frobenius module. Moreover, it enjoys the following universal property:

Proposition 3.2.7. The inclusion functor v : Mod}pzCrf > Mody admits a left
adjoint, which carries a Frobenius module M to its perfection M/P~ .

Proof. Under the equivalence of Remark 3.2.6, a left adjoint to ¢ corresponds to
the functor of extension of scalars along the map R[F] - RY?™[F*!] which is
given by M ~ M/P~, O

Remark 3.2.8. The perfection functor M ~ M/P” is exact. It follows that the

inclusion functor Mod%erf < Mod® carries injective objects to injective objects. In

particular, if M and N are perfect Frobenius module over R, then the canonical

map Ext) er(M,N) — Ext{ df{(M ,IN) is an isomorphism. We will denote
R

either of these Ext-groups by Extp (M, N).

For the purpose of comparing Frobenius modules with étale sheaves, there is
no harm in restricting our considerations to perfect Frobenius modules:

Proposition 3.2.9. Let f: M — N be a morphism of Frobenius modules over
R. If the induced map MY~ — NYVP™ js an isomorphism of perfect Frobenius
modules, then the induced map Sol(M) — Sol(N) is an isomorphism of étale
sheaves.

Proof. Factoring f as a composition M — im(f) - N, we can reduce to proving
Proposition 3.2.9 in the special case where f is assumed to be either surjective
or injective. Suppose first that f is injective. Our hypothesis that f induces an
isomorphism M1/P* — N1/P™ guarantees that the perfection (N/M)/P* vanishes:
that is, the Frobenius map ¢/ is locally nilpotent. It follows that for any étale
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R-algebra A, the Frobenius map ¢ ag,(n/a) is also locally nilpotent, and therefore
has no nonzero fixed points. It follows that the étale sheaf Sol(N/M) vanishes.
Since the solution functor is left exact (Remark 2.3.4), we have an exact sequence
of étale sheaves 0 - Sol(M) — Sol(N) — Sol(N/M), which proves that Sol(f) is
an isomorphism.

We now treat the case where f is surjective. We wish to prove that f induces
an isomorphism Sol(M)(A) — Sol(N)(A) for every étale R-algebra A. Replacing
M and N by A®r M and A®g N (which does not injure our assumption that
f induces an equivalence of perfections: see Proposition 3.3.2), we can reduce to
the case A= R. We have a commutative diagram of short exact sequence

0 ——ker(f) M-LoN 0

J{id “Prer(f) |id-pnm |id-pN

0——ker(f) — M —L= N ——0

which gives a short exact sequence
ker (id —per(fy) = Sol(M)(R) — Sol(NN)(R) — coker(id —pyer(s))-

It will therefore suffice to show that the map id —yer(f) is an isomorphism. This
is clear: our assumption that f induces an equivalence of perfections guarantees
that @er(r) is locally nilpotent, so that id —pye sy has an inverse given by the
infinite sum Y5 Pleer(f)- OJ

3.3. Restriction and Extension of Scalars. Let f: A - B be a homomor-
phism of commutative F,-algebras and let M be a Frobenius module over B.
Then M is perfect as a Frobenius module over B if and only if it is perfect when
regarded as a Frobenius module over A. In particular, the restriction of scalars
functor f, : Mody - Mody" carries Mod®™ into Mod®™. We will abuse notation
by denoting the induced map Mod%erf - Modierf also by f., so that we have a
commutative diagram o :

Mod?™ ——— Mody

|

Mod?™ —— Mod} .

Remark 3.3.1. Let f: A — B be a homomorphism of commutative F-algebras
and let M be a Frobenius module over B. Then the canonical map u: M — M1/P™
induces a map f,(u) : fo(M) — f.(M'/?™) of Frobenius modules over A whose
target is perfect. It follows that f,(u) extends uniquely to a map v : f,(M)/P” —
f«(M/P™). Moreover, the map v is an isomorphism: this follows by inspecting the
construction of the perfection given in §3.2. Put more informally, the formation
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of the perfection M1/?™ does not depend on whether we regard M as a Frobenius
module over B or over A (or over F,,).

In the situation of Remark 3.3.1, the extension of scalars functor fy : Mod —
Modgr usually does not carry perfect Frobenius modules to perfect Frobenius
modules. However, we do have the following:

Proposition 3.3.2. Let f : A - B be a homomorphism of commutative F,-
algebras. Then the forgetful functor Mod%erf - Modierf admits a left adjoint f°.
Moreover, the diagram of categories

oo

()

Mod Mod%™
15 k
_\1/p*°
Modr & Mod?e™!

commutes up to canonical isomorphism. More precisely, for every object M e
Mod'y, the canonical map fo(MYVP™) — (fz M)YP™ is an equivalence.

Proof. Defining f° by the formula f°(M) = (fgM)Y?” | it follows immediately
from the definitions that f° is left adjoint to the forgetful functor f, : Mod%Crf N

Modierf. The desired commutativity follows from the commutativity of the dia-
gram o above (by passing to left adjoints). O

In the situation of Proposition 3.3.2, the functors
fiv:Modly > Modj;  f°: Mod™ - Mod™"

are right exact, but generally not left exact (unless B is flat over A). We can
therefore consider their left derived functors.

Construction 3.3.3. Let f: A - B be a homomorphism of F,-algebras. The
abelian category Mod'y has enough projective objects, so that the extension of
scalars functor fj : Mod'f - Mod}} has left derived functors L, T Mod’y —
Modj for n > 0. More concretely, for M € Mody, we can describe L, fi M as the
nth homology of the chain complex f{ (P.), where P, is a projective resolution of
M in the abelian category Mod'y. Note that P, is then also a projective resolution
of M in the category Moda of A-modules, and that the chain complex fz (Px)
can be identified with B ® 4 P.. It follows that for n > 0, we have canonical B-
module isomorphisms L, fi M = Tor; (M, B). We can summarize the situation
as follows:
(%) If f: A > Bisahomomorphism of F,-algebras and M is a Frobenius mod-
ule over A, then the Tor-groups Torf(M , B) can be regarded as Frobenius
modules over B. Moreover, the construction

Mody = Modly M — Tor (M, B)
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can be identified with the nth left derived functor of the construction
M~ fiB.

Variant 3.3.4. In the situation of Construction, the abelian category ModiOrf
also has enough projective objects, so we can consider the left derived func-
tors L, f° of the functor f° : Modierf - Mod%erf. Note that if M is a perfect
Frobenius module over A and P, is a projective resolution of M in the category
Mod'{" of all Frobenius modules over A, then PYP s a projective resolution of
MY ~ M in the category Mod®™ of perfect Frobenius modules over A. We can
therefore identify (L, f°)(M) with the nth homology group of the chain complex

FopirT o (f5P.)Y/P™. Using the exactness of the functor N — N1/P% we obtain
isomorphisms

(Laf*)(M) = (L fit) (M)!/P™ = Toryy (M, B)'/P".

3.4. Perfect Rings. Let R be a commutative F,-algebra. Recall that R is said
to be perfect if the Frobenius homomorphism ¢g: R — R is an isomorphism.

Remark 3.4.1. A commutative F,-algebra R is perfect if and only if it is perfect
when regarded as a Frobenius module over itself, in the sense of Definition 3.2.1.

Example 3.4.2. Let R be any commutative F,-algebra. Then the perfection
RY/?% of Example 3.2.4 is a perfect F,-algebra.

Let R be an F,-algebra. If M is a perfect Frobenius module over R, then
M admits the structure of a module over RY/P™. More precisely, we have the
following result, whose proof is left to the reader:

Proposition 3.4.3. Let R be an algebra over F,,. Then the restriction of scalars

f £ . .
functor Mod?T) .. > Mody™ is an equivalence of categories.

Remark 3.4.4. Let R be a Noetherian F,-algebra of finite Krull dimension d,
and suppose that the Frobenius map ¢r : R — RYP exhibits RY? as a finite
module over R. Then the abelian category of all RY/P”-modules has global di-
mension < 2d + 1 (see [1, Remark 11.33]). It follows from Proposition 3.4.3 and
Construction 3.1.7 that the category Mod%erf has global dimension < 2d + 2.

Proposition 3.4.5. Let f : A = B be a homomorphism of perfect F,-algebras.
Then the extension of scalars functor fg : Mody — Mod} carries Modierf into
Mod®™.
Proof. Let M be a perfect Frobenius module over A. Then the maps

op:B— B o A—> A oy M —> M

are isomorphisms, so the induced map ¢pg,nm: B®4 M - B ®4 M is also an
isomorphism. O
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Warning 3.4.6. In the proof of Proposition 3.4.5, it is not enough to assume that
M and B are perfect. For example, the tensor product Fy,[2]V/P” @, ;) F,[2]'/P"
is not a perfect ring.

Corollary 3.4.7. Let f: A— B be an étale morphism of Fp,-algebras. Then the
extension of scalars functor fg, : Mod'y - Mod}y carries Mod®™ into Mod%™.

Proof. Let M be a perfect Frobenius module over A. Then we can also regard M
as a Frobenius module over AY/P™. Since f is étale, the diagram of commutative
rings

A B

L

Aoy Bl
is a pushout square. It follows that we can identify fX M with the tensor product
BYP% ® 415 M, which is perfect by Proposition 3.4.5. O

3.5. Exactness Properties of f°. Our final goal in this section is to establish
the following fundamental exactness property for pullbacks of algebraic Frobenius
modules:

Theorem 3.5.1. Let f: A— B be a homomorphism of commutative F,-algebras
and let M be an algebraic Frobenius module over A. Then the abelian groups
Tor (M, B)Y*™ wanish for n> 0.

Before giving the proof of Theorem 3.5.1, let us collect some consequences:

Corollary 3.5.2. Let f : A - B be a homomorphism of commutative F,-algebras

and suppose we are given an exact sequence 0 - M’ - M — M" - 0 in Modiorf.
If M" is algebraic, then the sequence 0 - f°M' — f°M — f°M" — 0 is also

ezxact.

Proof. Variant 3.3.4 supplies an exact sequence
Tor!(M", B)/?™ — f°M' — f°M — f°M" -0,
where the first term vanishes by virtue of Theorem 3.5.1. U

Corollary 3.5.3. Let f: A - B be a morphism of F,-algebras and suppose we
are given objects M € Modir, N € Modg. If M is algebraic and N 1is perfect, then
the canonical map Ext}yp(M, N) - Extpp (f°M,N) is an isomorphism.

Proof. Let P, be a projective resolution of M in the category Modgerf. Then The-
orem 3.5.1 guarantees that f°P, is a projective resolution of f*M in the category
Mod%™ | so that both Ext )y p) (M, N) and Extpp e (f°M, N) can be identified with
the cohomology of the cochain complex Homupp)(P., N) =~ Hompp(f°P.,N).

[
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We now turn to the proof of Theorem 3.5.1. The main ingredient is the follow-
ing observation from [1]:

Lemma 3.5.4. Let A be a perfect Fy-algebra containing an element a, and let
I = (a,ar al?®,...) denote the kernel of the map A - (A/(a))Y/?”. Then the
elements a'/?" € I determine an A-module isomorphism of I with the direct limit
of the diagram

2 2 ., 3 3 4,4
al-1/p al/p-1/p al/p“-1/p al/P”-1/p

A

Proof. Unwinding the definitions, we must show that if an element = € A satisfies
the equation xa'/P™ = 0 for some m > 0, then we have zal/?"-1/P" = ( for some
n > m. We now compute

za/Pm YR o (=D)L (p-2) [P
O )1/1056(17—1)/10a(p—2)/10’”+1

0.

O

Proof of Theorem 3.5.1. Let f: A — B be a homomorphism of commutative F,-
algebras and let M be an algebraic Frobenius module over A; we wish to show
that the groups Tor’ (M, B)Y/*~ vanish for n > 0. Writing B as a filtered direct
limit of finitely generated A-algebras, we can assume that B is finitely presented

over A: that is, we can write B ~ A[xy,...,x;]/I for some finitely generated
ideal I € A[xy,...,x]. Set N = (A[z1,..., 2] ®4 M)Y/P”. Using the flatness of
Alxy,...,z] over A, we obtain isomorphisms

Tor? (M, B)Y/*™ = Tor, " (N, B)/P™.

Moreover, N is an algebraic Frobenius module over A[xy,...,zx] (see Corollary
4.2.8). We may therefore replace A by A[z1,..., 2] (and M by N) and thereby
reduce to the case where f is surjective.

Proceeding by induction on the number of generators of I, we can reduce to
the case where I = (a) is a principal ideal. Since M is perfect, we can regard M
as a module over the perfection AY/P” so that we have canonical isomorphisms

Tor (M, B)Y/P~ ~ Torfl/pw (M, BY/?). We have an exact sequence
0 = JV/PT 5 AVPT 5 BI/P™

in the category of modules over AY/P™ where IV/P” is flat over AYP™ by virtue
of Lemma 3.5.4. It follows that the groups Tor’ (M, B)Y/?” vanish for n > 2, and
Tord (M, B)Y/** can be identified with the kernel of the map

P M ® g IVPT 5 M @ y1jpe AYPT ~ M.
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We will complete the proof by showing that p is injective Using the description of
I/ supplied by Lemma 3.5.4, we see that the injectivity of p can be reformulated
as follows:

(*) Let z be an element of M which satisfies the equation a!/?™ x = 0, for some
integer m. Then a!/P™-1/P"™ 1 =0 for some m’ > m.
To prove (*), we use our assumption that M is algebraic to write

oh(x) =i (@) + -+

for some coefficients c¢q,...,c, € A. We then compute
P (@) = e (x)
= Y@ (@)

~
—_

3

CiSOTJ(/fi(apiil/pmf)

<
Il
—_

e

m+1

Using the bijectivity of yy, it follows that a'/?™" z = 0, which immediately implies
(*)- 0

Remark 3.5.5. The reasoning used to prove Theorem 3.5.1 can also be used
to show the following result (see [1]): if B <« A - C is a diagram of perfect
rings, then Tor’y(B,C) = 0 for i > 0. Indeed, as in the proof of Theorem 3.5.1,
one reduces to the case B = A/I, where I = U, f1/?" A is the radical of an ideal
generated by a single element f € A. In this case, the presentation given in
Lemma 3.5.4 and the perfectness of C' imply that [ is a flat A-module, and that
I®,C ~J, where J =U, f/»?"C c C is also an ideal. The desired claim follows
immediately.
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4. HorLoNnoMIC FROBENIUS MODULES

Let R be a commutative Fp-algebra and let Mod%r denote the category of
Frobenius modules over R. In this section, we consider a full subcategory Modl}’z01 c
Mod}y whose objects we refer to as holonomic Frobenius modules. Roughly speak-
ing, the class of holonomic Frobenius modules can be regarded as a characteristic
p analogue of the class of (regular) holonomic D-modules on complex analytic va-
rieties. We will later show that the category Mod}j%01 can be characterized as the
essential image of the category Shvg, (Spec(R),F,) of constructible étale sheaves

under the Riemann-Hilbert equivalence
RH : Shvg (Spec(R), F,)) = Mod® ¢ Mod%

of Theorem 1.0.2 (see Theorem 7.4.1). Our goal in this section is to lay the
groundwork by establishing the basic formal properties of Mod}}fl.

We begin in §4.1 by defining the class of holonomic Frobenius modules (Defi-
nition 4.1.1) and verifying some elementary closure properties. In §4.2, we show
that every holonomic Frobenius module is algebraic (Proposition 4.2.1) and that,
conversely, every algebraic Frobenius module can be realized as a filtered colimit
of holonomic Frobenius modules (Theorem 4.2.9). This result will allow us to re-
duce certain questions about algebraic modules to the case of holonomic modules,
which enjoy good finiteness properties. For example, we prove in §4.3 that if R is
Noetherian, then the category Mod¥" is also Noetherian (Proposition 4.3.1). In
§4.4 we associate to each holonomic Frobenius module M a constructible subset
supp(M) <€ Spec(R) which we refer to as the support of M. We will see later that
the support supp(M) exerts strong control over the behavior of M: for example,
it is empty if and only if M ~ 0 (Proposition 5.3.3).

4.1. Holonomicity.

Definition 4.1.1. Let R be a commutative F,-algebra and let M be a Frobenius
module over R. We will say that M is holonomic if there exists an isomorphism

M =~ M&/ pw, where M, ¢ Modﬁ%r is finitely presented as an R-module. We let
Mod""' denote the full subcategory of Mod%Crf spanned by the holonomic Frobe-
nius modules over R.

Proposition 4.1.2. Let f: A - B be a homomorphism of Fy-algebras. If M e
1\/[odf,)%erf is holonomic, then f°M € Mod%erf is holonomic.

Proof. Without loss of generality we may assume that M = Mé /" for some My €
Mod} which is finitely presented as an A-module. Then foM =~ (B ®4 My)¥/P™,
and B ® 4 M, is finitely presented as a B-module. 0

We also have the following converse of Proposition 4.1.2, whose proof we leave
to the reader:
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Proposition 4.1.3. Let R be an Fy-algebra and let M be a holonomic Frobenius
module over R. Then there exists an inclusion ¢ : R' - R where R’ s finitely
generated over F, and an isomorphism M =~ °M’', where M’ is a holonomic
Frobenius module over R’.

Remark 4.1.4. Let R be a commutative F,-algebra and suppose we are given
objects M, N ¢ Mod}pfrf, where M is holonomic. Then we can choose an iso-
morphism M =~ Mol/ P for some My € Mod%r which is finitely presented as an

R-module. Using Construction 3.1.7 (and the observation that oy : N — NP is
an isomorphism), we obtain a long exact sequence

Ext iy (M, N) > Extj(Mo, N) = Ext},(Mo, N) — Extj ' (Mo, N),

where 7 is the map given by v(f) = f — ¢ o f o oy
Proposition 4.1.5. Let R be an F,-algebra and let M be a Frobenius module

over R which is holonomic. Then M is a compact object of the category Mod%Crf :
that is, the functor N v Hom® (M, N) commutes with filtered colimits.

Proof. Choose an isomorphism M ~ .MO1 /" for some My e Mod}y which is finitely
presented as an R-module, and observe that the exact sequence of Remark 4.1.4
depends functorially on N. O

4.2. Comparison with Algebraic Frobenius Modules. Our next goal is to
compare the theory of holonomic Frobenius modules (introduced in Definition
4.1.1) with the theory of algebraic Frobenius (introduced in Definition 2.4.1).
Our starting point is the following:

Proposition 4.2.1. Let R be a commutative F,-algebra and let M be a holonomic
Frobenius module over R. Then M 1is algebraic.

Proof. Let x be an element of M. Using Proposition 4.1.3, we can choose a
finitely generated subalgebra R’ ¢ R and an isomorphism M =~ (R ®g M')Y/?~
for some M’ € Modl}‘{f. Enlarging R’ if necessary, we may assume that x is the
image of some element x’ € M’. Since M’ is holonomic, we can write M’ =
Mél/ " for some M} € Mod}, which is finitely presented as an R’-module. We
can then write 2/ = p¥,(y) for some y € M’ which lifts to an element yo € M.
Since M| is a Noetherian R’-module, the submodule generated by the elements
{gp’J\L/[é (Y0) }nso 1s finitely generated. It follows that yq satisfies an equation P (y)+

a1t (y) + -+ any = 0 for some elements a; € R', so that x satisfies the equation
0 k k
o (z) +a] et () +-+ah =0, O

Corollary 4.2.2. Let R be a commutative F,-algebra. Then the collection of
holonomic Frobenius modules over R is closed under finite direct sums and cok-
ernels.
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Remark 4.2.3. We will see later that the collection of holonomic Frobenius
modules is also closed under the formation of kernels and extensions; in particular,
it is an abelian subcategory of Mod} (Corollary 4.3.3).

Proof of Corollary 4.2.2. Closure under finite direct sums is obvious. Let v : M —
N be a morphism in Mod}}fl. Then we can choose isomorphisms M ~ MS /" and

N =~ Nol/ P” for some objects My, Ny € Mod}; which are finitely presented as R-
modules. Let x1,...,z, be a set of generators for My as an R-module. Let us
abuse notation by writing u(z;) for the image of x; under the composite map My —
M 5 N. Then we can choose some integer n > 0 for which each u(z;) has the
form ¢ (y;) for some y; which lifts to an element ¥; € Ny. Since N is holonomic,

it is algebraic (Proposition 4.2.1). It follows that each y; satisfies some equation
© di—l+€

Priyi)+eriohn (i) +++cq, iy = 0in N = N(}/pooa so that 90%;6(@)%11771901\/0 i)+
et N (T;) = 0in No for e > 0. In particular, the elements {¢4, (¥;)} generate
a Frobenius submodule N/ ¢ Ny which is finitely generated as an R-module.

Then Ny/N| is finitely presented as an R-module. Using evident isomorphism
coker(u) ~ (No/N{)V/P™, we conclude that coker(u) is holonomic. O

Our next goal is to establish a converse to Proposition 4.2.1, which asserts
that every algebraic Frobenius module can be “built from” holonomic Frobenius
modules (Theorem 4.2.9). First, we need some general facts about algebraicity.

Proposition 4.2.4. Let R be an Fy-algebra. Then Modjf%g 15 a localizing subcat-
egory of Mod%erf. That is:
(a) Given a short exact sequence 0 > M’ — M — M" — 0 of perfect Frobenius
modules over R, M is algebraic if and only if M' and M" are algebraic.
(b) The collection of algebraic Frobenius modules is closed under (possibly
infinite) direct sums.

Proof. The “only if” direction of (a) follows immediately from the definitions.
To prove the reverse direction, suppose we are given an exact sequence 0 —
M % M - M" - 0 where M’ and M" are algebraic. Let 2 be an element
of M. Since M" is algebraic, we deduce that there is an equation of the form
o (z) + a1t (x) + - + amx = a(y) for some a; € R and some y € M’. Since M’
is algebraic, we obtain an equation of the form @7, (y) + b1t (y) + -+ by =0
for some b; € R. It follows that
> alt gy (x) =0
0<i<m,0<j<n

with the convention that ag = by = 1. Allowing x to vary, we deduce that M is
algebraic.

To prove (b), we observe that the general case immediately reduces to the case
of a finite direct sum, which follows from (a). O
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Proposition 4.2.5. Let R be a commutative F,-algebra, let M be a perfect Frobe-
nius module over R, and let x € M be an element. The following conditions are
equivalent:

(1) There exists a map of Frobenius modules f: M' — M, where M’ is holo-
nomic, and an element x' € M' satisfying f(x') = x.

(2) There exists an algebraic Frobenius submodule My S M which contains x.

(3) The element x satisfies an equation

o () + arel () + o+ an
for some coefficients aq,...,a, € R.

Proof. We first show that (1) implies (2). Let f: M’ - M be a morphism of
Frobenius modules. If M’ is holonomic, then it is also algebraic (Proposition
4.2.1). Consequently, if there exists an element z’ € M’ satisfying f(z') = =,
then = belongs to the submodule im(f) ¢ M, which is algebraic by virtue of
Proposition 4.2.4.

The implication (2) = (3) is immediate from the definitions. We will complete
the proof by showing that (3) = (1). Assume that x satisfies an equation %, (z)+

a1t (x)++-+a,x = 0. Let N denote the free R-module on a basis {yo, ..., yn-1},
which we regard as a Frobenius module over R by setting
Yi+1 ifi<n-1
on(yi) = .
—1Yp-1 — Q2Yp-o — - —apYo ifi=n-1.

Then the construction y; — ¢, (z) determines a map of Frobenius modules f; :
N — M. Since M is perfect, we can extend fy to a map f: NP — M. It follows
immediately from the construction that N/ is holonomic and that x belongs
to the image of f. O

Corollary 4.2.6. Let R be a commutative Fp,-algebra and let M be an algebraic
Frobenius module over R. Then there exists an epimorphism of Frobenius modules
@ M, - M, where each M, is holonomic.

Corollary 4.2.7. Let R be a commutative Fy-algebra and let M be a perfect
Frobenius module over R. Then there exists a largest Frobenius submodule My S
M which is algebraic. Moreover, an element x € M belongs to My if and only if
it satisfies an equation

o () + areli () + o+ ana

for some coefficients aq,...,a, € R.

Proof. Let My be the sum of all algebraic Frobenius submodules of M. It follows
from Proposition 4.2.4 that M, is also algebraic, so that each element x € M,
satisfies an equation @7, (x)+ a1 0% (x) +---+a,x for some coefficients ay, ..., a, €
R. The reverse implication follows from Proposition 4.2.5. U
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Corollary 4.2.8. Let f : A - B be a homomorphism of commutative F-algebras
and let M be an algebraic Frobenius module over A. Then f°(M) is an algebraic
Frobenius module over B.

Proof. Applying Corollary 4.2.7, we deduce that there is a largest algebraic sub-
module N ¢ f°(M), and that N contains the image of the map

M - f°(M) ~ (B &y M)YP™,

Since N is a B-submodule of f°(M) which is stable under the automorphism

7ty it follows that N = fo(M). -

Theorem 4.2.9. Let R be a commutative Fp,-algebra. Then the inclusion functor
Mod! < Mod%# extends to an equivalence of categories Ind(Modj') = Mod%e.

Proof. It follows from Proposition 4.1.5 that the inclusion Mod%' < Mod%erf
extends to a fully faithful embedding ¢ : Ind(Mod}¥") — ModpRCrf. Since every
holonomic Frobenius module is algebraic (Proposition 4.2.1) and the collection
of algebraic Frobenius modules is closed under filtered colimits, the essential
image of ¢ is contained in the full subcategory Mod?%g c Mod%erf. To complete
the proof, it will suffice to verify the reverse inclusion. Let M be an algebraic
Frobenius module; we wish to show that M can be written as a filtered colimit
li_I)nMa, where each M, is holonomic. Using Corollary 4.2.6, we can choose an
epimorphism p: @,y M, = M for some set I, where each M, is holonomic. The
kernel ker(p) is then algebraic (Proposition 4.2.4), so we can apply Corollary
4.2.6 again to choose an epimorphism p’ : @gc; Mj — ker(p), where each Mj is
holonomic. We can identify p’ with a system of maps {p;ﬂ t Mg~ Mo} et ge-
Using Proposition 4.1.5, we see that for each [ € J there are only finitely many
a € I for which pj, 5 is nonzero. It follows that we can write M as a filtered colimit
of Frobenius modules of the form coker(@ s, M 5 = Bacr, M,) where Iy c I and

Jo € Jy are finite. Each of these Frobenius modules is holonomic by virtue of
Corollary 4.2.2. O

Let f: A - B be a morphism of commutative F,-algebras. In general, the
restriction of scalars functor f, : Mody — Mod'} does not preserve holonomicity.
However, we do have the following:

Proposition 4.2.10. Let f : A - B be an F,-algebra homomorphism which is
finite and of finite presentation. Then the restriction of scalars functor Modgr -
Mod’ carries Modly" into Mod'y" and Mod3%# into Mod*®.

Proof. Because restriction of scalars commutes with filtered colimits, it will suffice
to show that if A/ € Mod®; is a holonomic Frobenius module over B, then it is also

a holonomic Frobenius module over A (Theorem 4.2.9). Write M = Mé/ " for

some M, € Mod'; which is finitely presented as a B-module. We now complete the



32 BHARGAV BHATT AND JACOB LURIE

proof by observing that our assumption on f guarantees that M, is also finitely
presented as an A-module. O

Warning 4.2.11. The finite presentation hypothesis in Proposition 4.2.10 cannot
be relaxed to finite generation. For example, take A = F,[x1,22,23,...] to be a
polynomial ring on countably many generators, and let B = A/(z1,22,23,...) = F,
be its residue field at the origin. Then B is holonomic when regarded as a
Frobenius module over itself, but not when regarded as a Frobenius module over
A; one can see this directly, but a quick proof is provided by Theorem 4.4.4 (note
that Spec(B) is not a constructible subset of Spec(A)).

4.3. The Noetherian Case. Recall that an object X of an abelian category A
is said to be Noetherian if the collection of subobjects of X satisfies the ascending
chain condition. A Grothendieck abelian category A is said to be locally Noether-
ian if every object of A can be written as a union of Noetherian subobjects.

Proposition 4.3.1. Let R be a Noetherian Fy,-algebra. Then the abelian category
Mod?%g is locally Noetherian. Moreover, an object of Mod?%g 1s Noetherian if and
and only if it is holonomic.

Proof. We first show that every holonomic R-module M is a Noetherian ob-
ject of the abelian category Mod%orf. Write M = M&/ " for some M, € Modr
which is finitely generated as an R-module. Replacing M, by its image in M,
we can assume without loss of generality that M, is a submodule of M. For
any subobject M’ ¢ M in the abelian category Mod%g, let M| = M'n M,.
Note that for any z € M’, we have ¢}, (x) € My for n > 0. It follows that
M' = {x e M : (3In)[¢h(z) € M{]} =~ M(;l/pw. Consequently, the construction
M’ — M determines an monomorphism from the partially ordered set of sub-
objects of M (in the abelian category Mod%erf) to the partially ordered set of
subobjects of M (in the abelian category Modg). Since M is a Noetherian R-
module, the latter partially ordered set satisfies the ascending chain condition,
so the former does as well.

Now suppose that M is an arbitrary algebraic Frobenius module over R. Using
Corollary 4.2.6, we can choose an epimorphism of Frobenius modules @,.; M, —
M, where each M, is holonomic. For every finite subset I, ¢ I, let Mj, denote
the image of the composite map

@ M, -~ @ M, - M.

acelp aely
Then M = Uy, Mj,, and the first part of the proof shows that each M, is Noether-
ian. This proves that the category Modi‘zlg is locally Noetherian. It follows that

every Noetherian object of Modjf%g is compact, and therefore arises as a direct
summand of a holonomic Frobenius module by virtue of Theorem 4.2.9. Since
the collection of holonomic Frobenius modules is closed under passage to direct
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summands, it follows that Mod]j’%01 is precisely the collection of Noetherian objects
of Mod®#. 0

Remark 4.3.2. Let R be a Noetherian Fp-algebra and let M be a holonomic
Frobenius module over R. Then, for every integer k, the construction N
Ext’;%[F](M ,IN) commutes with filtered direct limits when restricted to perfect
Frobenius modules over R. This follows from the exact sequence of Remark 4.1.4
(together with the fact that the construction N ~ Ext¥(My, N) commutes with
filtered colimits, whenever M, is a finitely generated R-module).

Corollary 4.3.3. Let R be a commutative Fp-algebra. Then Modll?zOl 15 an abelian

subcategory of 1\/[odf,)%erf which 1s closed under the formation of kernels, cokernels,
and extensions.

Proof. Closure under the formation of cokernels was established in Corollary 4.2.2.
We next show that it is closed under kernels. Let u : M — N be a morphism of
holonomic Frobenius modules over R; we wish to show that the kernel ker(u) is
holonomic. Using a direct limit argument, we can write u = f°(ug) for some map
f+ Ry - R where Ry is a finitely generated F,-algebra and some wg : My — Ny
in Mod}ﬁf. Since Ry is Noetherian, Proposition 4.3.1 guarantees that M is a
Noetherian object of Mod}}’%. It follows that ker(ug) € My is also a Noetherian
object of Mod}}%. Corollary 3.5.2 supplies an isomorphism ker(u) ~ f°ker(uy),
so that ker(u) is a holonomic Frobenius module over R by virtue of Proposition
4.1.2.

We now prove closure under extensions. Suppose that we are given a short
exact sequence of Frobenius modules over R,

0->M —->M->M"-0,
where M’ and M" are holonomic; we wish to show that M is also holonomic.
Using Proposition 4.1.3, we can write M’ = f°M/| and M" = f°M[/, where f : Ry <
R is the inclusion of a finitely generated subring and the Frobenius modules M

and M/ are holonomic over Ry. The preceding exact sequence is then classified
by an element

1 € Extprp (M", M") = Extp, o (M{', R ®g, Mp).

Applying Remark 4.3.2, we can arrange (after enlarging Ry if necessary) that 7
can be lifted to an element 7, € Ext}zo[ F (Mg, M), which classifies a short exact
sequence

00— Mj—- My— M) -0,
of Frobenius modules over Ry. Since Ry is Noetherian, we can regard M) and M
as Noetherian objects of the category Mod%%rf (Proposition 4.3.1). Tt follows that
M, is also a Noetherian object of the abelian category Mod%eorf, and is therefore a
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holonomic Frobenius module over Ry (Proposition 4.3.1). Applying Proposition
4.1.2, we deduce that M ~ f° M, is a holonomic Frobenius module over R. O

4.4. The Support of a Holonomic Frobenius Module.

Definition 4.4.1. Let R be a commutative Fp-algebra and let M be a perfect
Frobenius module over R. For each point x € Spec(R), we let x(x) denote the
residue field of R at z, and we let f, : R — r(z) denote the canonical map We let
supp(M) denote the set {x € Spec(R) : fS(M) + 0}. We will refer to supp(M)
as the support of M.

Remark 4.4.2. Let R be an Fp-algebra, let M € Mod%erf, and let x be a point
of Spec(R), corresponding to a prime ideal p € R. The following conditions are
equivalent:

(1) The point = belongs to the support of M.

(2) There exists a field k and an R-algebra homomorphism f : R — x such
that ker(f) =p and f°M # 0.

(3) For every field k and every map f : R - k with ker(f) = p, we have
feM #0.

To see this, we note that any map f: R — k with ker(f) = p factors uniquely as
a composition R Je, r(z) = K, so that we have a canonical isomorphism
fOM > K,l/pw ®K(x)1/p°° f;(M)

Remark 4.4.3. Let f : A - B be an F,-algebra homomorphism and let M ¢
Modgerf. Then supp(f°M) is the inverse image of supp(M) under the map

Spec(B) — Spec(A) determined by f (this follows immediately from Remark
4.4.2).

The support supp(M) of Definition 4.4.1 is well-behaved when M is holonomic:

Theorem 4.4.4. Let R be a commutative Fy-algebra and let be a holonomic
Frobenius module over R. Then supp(M) is a constructible subset of Spec(R).

Proof. Using a direct limit argument, we can choose a finitely generated subring
R’ € R and an isomorphism M =~ (R®g M')1/*~ for some M’ € Mody'. Replacing
R by R’ and M by M’, we can reduce to the case where R is Noetherian. By
general nonsense, it will suffice to prove the following:
(a) If x € Spec(R) belongs to the support of M, then there exists an open
subset U ¢ {z} which is contained in supp(M).
(b) If x € Spec(R) does not belong to the support M, then there exists an
open subset U < {z} which is disjoint from supp(M).
Let p € R be the prime ideal determined by the point x. Using Remark 4.4.3,
we can replace R by R/p and thereby reduce to the case where R is an integral
domain and z is the generic point of Spec(R).
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Write M = M&/ pw, where M, is finitely generated as an R-module. Let K
denote the fraction field of R. Then V = KYP” @z M, is a finite-dimensional
vector space over K1/P™  equipped with a Frobenius-semilinear endomorphism
vV — V. Then U, ker(p}) is a K'/P”-subspace of V, which admits a basis
{v; }1<i<.- Replacing R by a localization R[t~!] for some nonzero element ¢ € R, we
can assume that each v; can be lifted to an element of RY/?™ ®z M,, and therefore
also to an element U; € R’ ® My for some subalgebra R’ ¢ RY/?P™ which is finitely
generated over R. Note that the inclusion R — R’ induces a homeomorphism
Spec(R’) - Spec(R). We may therefore replace R by R’ (and My by R’ ® g M)
and thereby reduce to the case where each v; belongs to M. Replacing R by
a localization if necessary, we may further assume that each v; is annihilated
by some power of ¢y,. Then the set {T;}1<<r generates a Frobenius submodule
M/ < My whose perfection vanishes. We may therefore replace My by My/M/ and
thereby reduce to the case where the map ¢y is injective.

Let us identify ¢, with an R-linear map [ : Mél) — My, where Mél) is ob-
tained from Mj by extension of scalars along the Frobenius map ¢g : R > R. Note
that the induced map Brip= : K1/P7 ®p MO(I) — K/7" ®@p M, can be identified
with ¢y and is therefore a monomorphism. Since the domain and codomain of
By are vector spaces of the same dimension over K1/P7 it follows that Sy1/p>
is an isomorphism. Replacing R by a localization R[t~!] if necessary, we can
assume that M, is a free module of finite rank r and that 3 is an isomorphism.

S R) ifr>0
In this case, it is easy to see that supp(M) = {@pec( ) ifr> from which

if r=0,
assertions (a) and (b) follow immediately. O
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5. COMPACTLY SUPPORTED DIRECT IMAGES

Let f: A - B be a morphism of commutative rings. Then the direct im-
age functor f, : Shvg (Spec(B),F,) - Shvg (Spec(A),F,) admits a left adjoint,
which we denote by f* : Shve (Spec(A),F,) - Shvg (Spec(B),F,) and refer to
as pullback along f. In the special case where f is étale, the pullback functor
can be described concretely by the formula (f* % )(B’) = % (B'). In particular,
f* preserves inverse limits. It follows (either by the adjoint functor theorem, or
by direct construction) that the functor f* admits a further left adjoint, which
we denote by fi : Shvg(Spec(B),A) — Shvg(Spec(A),A) and refer to as the
compactly supported direct image functor.

Now suppose that f: A — B is a homomorphism of commutative F,-algebras.
Under the Riemann-Hilbert correspondence of Theorem 1.0.2, the pullback func-
tor f* : Shve (Spec(A),F,) - Shv(Spec(B),F,) on étale sheaves corresponds
to the extension of scalars functor f¢ : Modzlg - ModaB}g on algebraic Frobenius
modules (see Proposition 6.2.2). One consequence of this is that, if the morphism
f is étale, the functor f°: Mod%® - Mod%¢ must also admit a left adjoint. Our
goal in this section is to give a direct proof of this statement, which does not
appeal to the Riemann-Hilbert correspondence (in fact, the work of this section
will be needed in §6 to construct the Riemann-Hilbert functor).

We begin in §5.1 by introducing a notion of compactly supported direct image
in the setting of Frobenius modules (Definition 5.1.2). From the definition, it
will be immediately clear that if f: A - B is an étale morphism of commutative
F,-algebras, then the formation of compactly supported direct images supplies a
partially defined functor f; : Modfﬁ‘lg - Mod%lg. Our main result, which we prove
in §5.4, is that this functor is actually total: that is, compactly supported direct
images of algebraic modules always exist (Theorem 5.4.1). The strategy of proof
is to use the structure theory of étale morphisms to reduce to the case where B is
a localization A[¢~!], which we handle in §5.2. In this case, compactly supported
direct images of holonomic Frobenius modules admit a very simple characteriza-
tion (Proposition 5.2.2) which makes them easy to construct explicitly. In §5.3,
we apply this characterization prove an analogue of Kashiwara’s theorem for for
Frobenius modules: the datum of a holonomic Frobenius module over a quotient
ring R/(t) is equivalent to the datum of a holonomic Frobenius module over R
whose support is contained in the vanishing locus of ¢ (Theorem 5.3.1).

5.1. Definitions. We begin by introducing some terminology.

Definition 5.1.1. Let f : A — B be an étale morphism of F-algebras. Let M be
a perfect Frobenius module over B and let M be a perfect Frobenius module over
A. We will say that a morphism wu: M — f°M exhibits M as a weak compactly
supported direct image of M if, for every perfect Frobenius module N over A, the
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composite map
_— -_— ou
HomA[F](Ma N) - HomB[F](fon fON) - HomB[F](Mv fON)
is a bijection.

Let f: A — B be an étale morphism of F,-algebras and let M be a perfect
Frobenius module over B. It follows immediately from the definition that if
there exists a morphism u : M — f°M which exhibits M as a weak compactly
supported direct image of M, then the Frobenius module M (and the morphism
u) are determined up to canonical isomorphism. In general, such a module need
not exist. The main result of this section (Theorem 5.4.1) asserts that every
algebraic Frobenius module M over B admits a weak compactly supported direct
image M. Moreover, we will have the following additional properties:

(a) The module M is also algebraic (as a Frobenius module over A).
(b) For every perfect Frobenius module N over A, the canonical map

Exty (M, N) = Extip e (M, f°N)

is an isomorphism for all integers n, rather than merely for n = 0.

(¢) The Frobenius module M remains a weak compactly supported direct
image of M after any extension of scalars. More precisely, for any pushout
diagram of commutative rings

A—f>B

b, b

AL
the induced map g'*(u) : g°(M) — g (fo(M)) ~ fro(g°(M)) exhibits
g°(M) as a weak compactly supported direct image of ¢g’°(M).

Our proof for the existence of weak compactly supported direct images will pro-
ceed by a somewhat complicated induction on the structure of the étale morphism
f+A— B. In order to carry out the details, it will be important to strengthen
our inductive hypothesis: that is, we need to show not only that weak compactly
supported direct images exist, but also that they have the properties listed above.
For this reason, it will be convenient to introduce a more complicated version of
Definition 5.1.1 which incorporates properties (@), (b), and (¢) automatically.

Definition 5.1.2. Let f: A — B be an étale morphism of F-algebras. Suppose
we are given algebraic Frobenius modules M ¢ Mod;’;lg and M e Modzlg. We will

say that a morphism u: M — f°M exhibits M as a compactly supported direct
image of M if the following conditions is satisfied:
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(%) For every pushout diagram of commutative rings

A—f>B
I )
A/LB/

and every object N € Modi{irf, the composite map

EXtZ’[F] (QIOM, N) — EXt*B’[F] (f,ogloﬁ, f/ON)
Exte(9°f "M, f°N)
— EXt*B’[F] (gOM, f’ON).

1R

is an isomorphism.

Remark 5.1.3. Let f: A > B and u: M — f°M be as in Definition 5.1.2. If
f exhibits M as a compactly supported direct image of M, then it also exhibits
M as a weak compactly supported direct image of M. In fact, the converse
holds as well (assuming that M is algebraic): this follows from the uniqueness
of weak compactly supported direct images, once we have shown that compactly
supported direct images exist (Theorem 5.4.1).

Notation 5.1.4. Let f: A -» B be an étale morphism of F-algebras and let
M € Mod%€. Tf there exists an object M € Mod%# and a morphism u: M — f°M
which exhibits M as a compactly supported direct image of M, then we will
denote M by fiM. In this case, we will say that fiM ezists. Note that, in this
event, the Frobenius module fiM depends functorially on M.

5.2. Extension by Zero. Our next goal is to prove the existence of compactly
supported direct images in the case of an elementary open immersion

Spec(A[t™!]) = Spec(A)

(Proposition 5.2.4). In this case, Definition 5.1.2 can be formulated more simply,
at least for holonomic Frobenius modules.

Definition 5.2.1. Let A be a commutative F,-algebra containing an element ¢
and let M be a holonomic Frobenius module over A[t~']. An extension by zero
of M is a holonomic Frobenius module M over A such that M[t~!] is isomorphic
to M and (M /tM)'/»~ ~0.

Proposition 5.2.2. Let A be an F,-algebra containing an element t, and let
f:A— A[t'] be the canonical map. Suppose we are given holonomic Frobenius
modules M € Modzo[lfl] and M € Mod™' together with a map w: M — foM =

M][t=1]. The following conditions are equivalent:
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(a) The morphism u exhibits M as a compactly supported direct image of M,
in the sense of Definition 5.1.2.

(b) The morphism u exhibits M as an estension by zero of M: that is, u is
an isomorphism and the Frobenius module (M [tM)Y?™ vanishes.

The proof of Proposition 5.2.2 will require an elementary fact from commutative
algebra:

Lemma 5.2.3. Let M and N be modules over a commutative ring A, and let
be an element of Exty (M, N) for some n > 0. Suppose that M is Noetherian. If
v 1s annihilated by some power of an element t € A, then there exists d > 0 such
that the image of v vanishes in Ext’y(t?M, N).

Proof. Let My ¢ M be the submodule consisting of those elements which are
annihilated by some power of t. Since M is Noetherian, we can choose an integer
k > 0 such that M, is annihilated by ¢*. For each d > k, the kernel of the surjection

d
M 55 4] is annihilated by t*, so there exists a dotted arrow as indicated in the
diagram

tk
M—M

7
\Ltd L7 ltd-k
tiM —— M.

It follows that the restriction map Ext’y (M, N) » Ext’; (t¢M, N) factors through
the map t4°% : Ext"y (M, N) - Exty (M, N). It therefore suffices to choose d large
enough that 4%~ = 0. O

Proof of Proposition 5.2.2. Assume first that (a) is satisfied. Applying condition
(*) of Definition 5.1.2 in the case A’ = A[t7!], we deduce that u is an isomorphism.
Applying condition () of Definition 5.1.2 in the case A’ = A/(t), we deduce that
(M [tM)Y/P™ ~ 0.

We now prove the converse. Assume that u is an isomorphism and that
(M [tM)Y/?” ~ 0, and suppose we are given a pushout diagram of F,-algebras

AL ap
o
A/i)A/[t—l]

and an object N € Mod®". To verify condition (*) of Definition 5.1.2, it will
suffice to show that the canonical map

0 : Eth{’[F] (g/OM, N) - EXtZ/[t—l][F](flogloﬁu f,oN)
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is an isomorphism. Replacing A by A’ and M by ¢’°M, we can reduce to the case
A=A Let Q¢ Modierf denote the image of the unit map N — f°N ~ N[t71], so
that we have short exact sequences

0-K->N->Q-0 0-Q—>N[t']-K —0.
In order to show that the composite map

Extypy (M, N) = Extarey- (M, Q) — Extly g (M, N[t™'])

is an isomorphism, it will suffice to show that the groups Ext}p (M K) and
Extyp (M K") vanish. This is a special case of the following:

(+) If M e Mod'y" satisfies (M /tM)/?™ ~ 0 and N € Mod®™ satisfies N[t~1] =
0, then Extyp (M N) vanishes.

Write M = TV/P™ for some Frobenius module T € Mod} in A which is finitely
presented as an A-module. Using our assumption that (M /tM)Y/P™ ~ 0, we
deduce that ¢7'T ¢ tT" for m > 0. By a direct limit argument, we can assume
that T'~ A ®4, Ty for some finitely generated subalgebra Ay ¢ A which contains
t and some Ty € Modﬂr which is finitely presented as an Ap-module, and that Tj
satisfies @i T € t7p. Using Corollary 3.5.3, we can replace A by Ay and T by T,
and thereby reduce to proving (*) in the special case where A is Noetherian.
Using Remark 4.1.4, we obtain a long exact sequence

Ext’y (M, N) — Ext’y(T, N) =% Ext’y (T, N) - Ext itk (M, N),
where U is the endomorphism of Ext (7, N) given by U(7y) = ¢ oyopr. To prove
(%), it will suffice to show that the map 1 - U is an isomorphism of Ext’ (7, N)
with itself. In fact, we will show that U is locally nilpotent (so that 1 - U has an
inverse given by the formal infinite sum 1+ U + U2 +---).

Fix an element 7 € Ext¥ (T, N); we wish to show that U™(y) = 0 for m > 0.
Since A is Noetherian and T is a finitely generated A-module, the construction
S — Ext¥(T,S) commutes with filtered colimits. In particular, there exists a
finitely generated A-submodule Ny € N such that v can be lifted to an element
Yo € Extf (T, Ny). Using our assumption that N[¢t1] =~ 0, we deduce that Nj is
annihilated by t¢ for ¢ > 0. Tt follows that the image of v, in Ext® (t<T, Ny)
vanishes for ¢/ > ¢ (Lemma 5.2.3). We now observe that for m > 0, the map ¢,
factors through t¢'T', so that v o ¢ = 0 and therefore U™ () = 0 as desired. O

Proposition 5.2.4. Let A be an F,-algebra containing an element t, and let
f:+A— A[t'] be the canonical map. Then every algebraic Frobenius module M
over A[t™] admits a compactly supported direct image along f.

Proof. Using Theorem 4.2.9, we can reduce to the case where M is holonomic.
Write M = M, /P where M ¢ Mod?[t_l] is finitely presented as an A[¢t~!]-module.
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Then we can choose an isomorphism o : My ~ M[t~] for some finitely presented
object My € Mody. Then ¢y, determines an A-module homomorphism p: M, —
Mo[t=1]47. Since M, is finitely presented as an A-module, we can assume that
p factors as a composition

—1/p "

MO g MO —> Mo[til]l/p

for some integer m. Multiplying the isomorphism « by a suitable power of t,
we can arrange that n > 0. Set M = Mé/p . Then « induces an isomorphism
M ~ M[t'] and 57 is locally nilpotent on M /tM, so that a exhibits M as an
extension by zero of M, which is also a compactly supported direct image of M
by virtue of Proposition 5.2.2. O

5.3. Kashiwara’s Theorem. Let X be a smooth algebraic variety over the field
C of complex numbers, and let Y ¢ X be a smooth subvariety of X. A theorem
of Kashiwara (see [9, §1.6]) asserts that the category of algebraic D-modules on Y
is equivalent to the category of algebraic D-modules on X which vanish over the
open set X — Y. In this section, we prove the following analogue for (holonomic)
Frobenius modules:

Theorem 5.3.1. Let M be a holonomic Frobenius module over a commutative
F,-algebra A, and let I ¢ A be an ideal. The following conditions are equivalent:

e The support supp(M) is contained in the vanishing locus Spec(R/I) ¢
Spec(R).

e The submodule IM < M vanishes: that is, M has the structure of a Frobe-
nius module over R/I.

Remark 5.3.2. If the equivalent conditions of Theorem 5.3.1 are satisfied, then
M is also holonomic when regarded as a Frobenius module over R/I. Conversely,
if the ideal I is finitely generated, then any holonomic Frobenius module over
R/I is a holonomic Frobenius module over R which satisfies the conditions of

Theorem 5.3.1 (see Proposition 4.2.10). In other words, the category Mod%"/ll

can be identified with the full subcategory of Mod}j%01 spanned by objects set-
theoretically supported on Spec(R/I) ¢ Spec(R). Beware that this is generally
not true if 7 is not finitely generated (Warning 4.2.11).

We begin by treating the following special case of Theorem 5.3.1 (which is the
only case we will actually need):

Proposition 5.3.3. Let M be a holonomic Frobenius module over a commutative
F,-algebra A. Then M ~0 if and only if the support supp(M) is empty.

Proof. The “only if” direction is obvious. To prove the converse, let us assume
that supp(M) = @; we wish to prove that M ~ 0. Using Proposition 4.1.3, we can
choose a finitely generated subring A’ ¢ A and an equivalence M ~ (A® 4 M')/?*
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for some M’ € Mod". Set K = supp(M’) ¢ Spec(A’). Then K is constructible
(Theorem 4.4.4). Using Remark 4.4.3, we deduce that the image of the map
Spec(A) — Spec(A’) is disjoint from K. Enlarging R’ if necessary, we can arrange
that K = @. We may therefore replace A by A’ and M by M’, and thereby reduce
to the case where A is Noetherian.

Proceeding by Noetherian induction, we may assume that for every nonzero
ideal I ¢ A, we have (M/IM)'/?™ ~ (. We may assume that A # 0 (otherwise,
there is nothing to prove). If A is not reduced, then taking I to be the nilradical of
A we deduce that M = MY?™ ~ (M/IM)Y/?* ~ 0. We may therefore assume that
A is reduced. Using Proposition 5.2.2, we deduce that M is the compactly sup-
ported direct image of M[xz~!] for every nonzero element x € A. It will therefore
suffice to show that we can choose a nonzero element z € A such that M[x~1] ~ 0.
Since A is reduced and Noetherian, we can choose a non-zero divisor ¢ € A such
that A[t71] is an integral domain. Replacing A by A[t7], we can assume that A

is an integral domain. Write M = M&/ " for some M, ¢ Mod’" which is finitely
presented as an A-module. Let K be the fraction field of A. Since the support
supp(M) does not contain the generic point of Spec(A), the Frobenius module
(K ®4 My)'/?™ vanishes. Using the finite generation of My, we conclude that the
Frobenius endomorphism of K ® 4 M, is nilpotent. It follows that there exists a
nonzero element x € A for which the Frobenius map .17 is nilpotent, so that
M[z '] ~ Mp[z~']Y/*7 ~ 0 as desired. O

Proof of Theorem 5.3.1. Let M be a holonomic Frobenius module over a commu-
tative F,-algebra A and let I ¢ A be an ideal. It follows immediately from the
definitions that if M is annihilated by I, then the support supp(M) is contained
in the vanishing locus of I. Conversely, suppose that supp(M) < Spec(A/I); we
wish to show that M is annihilated by each element x € I. Note that the in-
clusion supp(M) ¢ Spec(A/I) guarantees that the support of M[x~1] is empty,
where we regard M[x~1] as a holonomic Frobenius module over A[z~']. Applying
Proposition 5.3.3, we conclude that M[z~1] ~ 0.

Choose an isomorphism M =~ Mol/ poo, where M, is a Frobenius module over A
which is finitely presented as an A-module. Let N denote the image of the map
My - M, so that N ¢ M is a Frobenius submodule which is finitely generated
over A. The vanishing of M[z~'] guarantees that z*N = 0 for some k > 0.

Applying ¢;7, we conclude that 2 NP = 0 for all n > 0. As M = lim NP*,

it follows that 277 M = 0 for all n > 0 (here we regard M as a Frobenius module
over the perfection A/P™). For n > 0, this implies M =0, as desired. O

5.4. Existence of Compactly Supported Direct Images. Our goal in this
section is to prove the following:
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Theorem 5.4.1. Let f: A - B be an étale morphism of F,-algebras. Then,
for every object M ¢ Modjgg, there exists a compactly supported direct image

fiM e Modfﬁ‘lg (see Notation 5.1.4). Moreover, the functor fi :Modajglg - Modzlg is
exact.

Remark 5.4.2. In the situation of Theorem 5.4.1, the right exactness of the
functor fi: Modj’glg - Modzlg is automatic (since f; is left adjoint to the functor
fo : Mod%® — Mod%#, which is exact by virtue of Corollary 3.5.2). Moreover,
since the functor f°: Modzlg - Modajglg preserves filtered colimits, the functor f

preserves compact objects: that is, it carries Mod%Ol into ModiOl (see Theorem
4.2.9).

The proof of Theorem 5.4.1 will require some preliminaries. We begin with
some elementary remarks, whose proofs follow immediately from our definitions.

Lemma 5.4.3. Suppose we are given a pushout diagram of F,-algebras

AL B

ok

A—— D

where f is étale. If M € Modajglg andu: M — f°M is a morphism in Modzlg which
exhibits M as a compactly supported direct image of M, then the induced map
g°M — g°feM ~ f'°g’°M exhibits g'°M as a compactly supported direct image of
g° M.

In particular, if fiM exists, then f/(g°M) exists (and is canonically isomorphic
to g"(jiM).

Lemma 5.4.4. Let f: A— B and g: B — C be étale morphisms of F,-algebras.
Suppose we are given an objects Mq € Modgg, a morphism u : Mg — g°M¢ in
Mod;}g, and a morphism v: My — f°Mp in Modzlg. Assume that u exhibits Mp
as a compactly supported direct image of M. Then v exhibits My as a compactly

supported direct image of Mg if and only if the composite map
Ma = f*Mp £, 9°f*Mc
exhibits M4 as a compactly supported direct image of Mc.

In particular, if M exists, then fi(gtM) ezists if and only if (go f) 1M exists
(and, in this case, they are canonically isomorphic).

Lemma 5.4.5. Let f: A — B be an étale morphism of F,-algebras and suppose

we are given an exact sequence 0 — M' = M — M" — 0 in the abelian category
Modjgg. Suppose that fiM' and fiM exist, and that the canonical map fi(u) :
fiM" - fiM is a monomorphism. Then fiM" exists, and is given by coker(fi(u)).
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Lemma 5.4.6. Let f: A — B be a faithfully flat étale morphism of F,-algebras
and let M € Modiorf. Then M 1is algebraic if and only if f°M is algebraic.

Proof. The “only if” direction follows from Corollary 4.2.8. Conversely, suppose
that f°M is algebraic. Choose an element x € M. For each n > 0, let M(n)
denote the A-submodule of M generated by the elements {% (2)}i<n, so we
have inclusions of A-submodules

{0} =M(0)c M(1)c M(2)c--c M.
Using Corollary 3.4.7, we can identify f°M with B®4 M, so that each B®4 M (n)
can be identified with the B-submodule M’(n) ¢ f°M generated by {¢}g ,(1®
2) }ken. Since foM is algebraic, there exists an integer n such that M'(n) =

M'(n+1). The faithful flatness of B over A then guarantees that M (n) = M(n+1),
so that x satisfies an equation of the form o7, (z) + a;¢5 (z) + - +a,xz =0. O

Lemma 5.4.7. Suppose we are given a pushout square of étale morphisms be-
tween F,-algebras

A—f>B

L, b

AL

where the vertical maps are faithfully flat. Let M ¢ ModaB}g. If f{(g°M) euwists,
then fiM exists.

Proof. Use faithfully flat descent together with Lemma 5.4.6. O

Lemma 5.4.8. Let A be an Fy-algebra containing an elementt, let f: A — A[t™1]
be the canonical map, and suppose we are given objects M € Modji_l] and a

morphism u : fiM — N in Modillg. If fo(u) is a monomorphism, then u is a
monomorphism.

Proof. Set K = ker(fi(u)). Then fiM/K is algebraic (Proposition 4.2.4), so
Corollary 3.5.2 implies that the map (K/tK)Y?™ — ((fiM)/t(fiM))/P" is a
monomorphism. Invoking Proposition 5.2.2, we deduce that the natural map
fif°K - K is an equivalence. Since f°K =~ ker(f°u) ~0, we conclude that K ~0
so that u is a monomorphism as desired. O

Proof of Theorem 5.4.1. Let us say that an étale ring homomorphism f: A - B
is good if the functor f : Modajglg - Moda;llg is well-defined and exact. Our proof
now proceeds in several steps:

(i) Every localization f: A - A[t~'] is good. The existence of f, follows from

Proposition 5.2.4, and the exactness of f, follows from Remark 5.4.2 and
Lemma 5.4.8.
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(i)

(iii)

(i)

Let f: A— B and g: B — C be étale ring homorphisms. If f and g are
good, then (go f): A — C'is good. This follows immediately from Lemma
5.4.4.

Let f: A — B be an étale Fj-algebra homomorphism and suppose we are
given elements to,t; € B which generate the unit ideal. Set By = B[t;'],
By = B[t7'], and By = Blty',t;']. If the induced maps fy: A - By and
fi+ A = Bj are good, then f, exists. To prove this, choose any object
M ¢ Mod;}g, and define

My = M[t5'] e Mody? My = M[t;'] € Mod3?

Moy = M[t",#7'] € ModE .

We have a commutative diagram

B—". B,

[

g1 h
By — Bn

which yields a short exact sequence

0 = gouMor = g Mo ® guM; - M — 0

in Modagg. Using our assumptions that fo and f; are good (which also
implies that the induced map fo; : A - By is good, using (i¢) and (iii))
together with Lemma 5.4.4, we deduce that fi(gonMo1) and fi(go My &
guMy) exist. By virtue of Lemma 5.4.5, to prove the existence of fiM, it
will suffice to show that fiu is a monomorphism. In fact, we claim that
the composite map

fru
figou Moy — fi(gaMo & guMy) - fignMy

is a monomorphism. Using Lemma 5.4.4 and our assumption that fy is
exact, we are reduced to showing that the map h) My, - M, is a monomor-
phism in Modaéf, which is a special case of Lemma 5.4.8.

Let f: A— Bbe asin (ii7). Then f is good. To prove this, we must show
that for every short exact sequence 0 - M’ - M — M" - 0 in Mod;}g,
the induced map fiM’ - fiM is a monomorphism. Define My, M;, and
My, as above, and define M|, M{, M/,, M}, M{', and M[, similarly. We
then have a diagram of short exact sequences

0 — fouM{, — foMj e full] hM’ 0

| I ¥

0 — fouMor — fo My ® fuM; HM 0
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Using the exactness of the functors fo, fi, and fo, the snake lemma
yields an exact sequence

0 > ker(y) = fouljy 2 fo My @ fiM]'.

It will therefore suffice to show that p is a monomorphism, which was
established in the proof of (iii).

(v) Let f: A— B be an étale Fj-algebra homomorphism, and suppose that
there exist elements {t; € B}ic<, such that each of the induced maps
A - B[t;'] is good. Then f is good. This follows from (ii7) and (iv),
using induction on n.

(vi) Suppose we are given a pushout square of étale maps

Al B

L, b

Ao p

where the vertical maps are faithfully flat. If f’ is good, then f is good.
This follows from Lemma 5.4.7.

We now wish to prove that every étale morphism f : A - B is good. For
each point z € Spec(A), let k(x) denote the residue field of A at z and let d(x)
denote the dimension dim,)(r(x) ®4 B). Set d(B) = Sup,egpec(a) d(z). We
proceed by induction on d(B). If d = 0, then B ~ 0 and there is nothing to
prove. To carry out the inductive step, we note that since f is étale, the induced
map Spec(B) - Spec(A) has open image. The complement of this image can be
written as the vanishing locus of an ideal I = (ay,...,a,) € A. Then I generates
the unit ideal of B. By virtue of (v), to prove that f is good, it will suffice to

show that each of the composite maps A - A[a;!] LN Bla;'] is good. Using (i)
and (i7), we are reduced to showing that the maps f; : A[a;'] = B[a;!] are good.
Replacing f by f;, we may reduce to the case where f is faithfully flat. Form a
pushout square

A—T . p

.

B-'.Be,B

By virtue of (vi), we can replace f by f’ and thereby reduce to the case where
B splits as a direct product A x B’. We then have d(B’) = d(B) -1 < d(B), so
our inductive hypothesis implies that the map A — B’ is good. From this, we
immediately deduce that f is also good. O
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6. THE RIEMANN-HILBERT FUNCTOR

Let R be a commutative Fp-algebra. In §2, we defined the solution functor
Sol : Mod}y — Shve, (Spec(R), F,)

and asserted that it becomes an equivalence of categories when restricted to the
category Mod® ¢ Mod}y of algebraic Frobenius modules (Theorem 2.4.3). We
will prove this by defining a functor RH : Shvg (Spec(R),F,) —» Modjt%lg , which we
will refer to as the Riemann-Hilbert functor, and then showing that it is an inverse
to the solution functor. Our goal in this section is to construct the Riemann-
Hilbert functor and to establish its basic properties. Our principal results can be
summarized as follows:

(a) When restricted to perfect Frobenius modules, the solution functor Sol :
Mod?™ — Shve, (Spec(R), F,) admits a left adjoint (Theorem 6.1.1). We
will take this left adjoint as a definition of the Riemann-Hilbert functor.

(b) The Riemann-Hilbert functor RH : Shvg(Spec(R),F,) - Mod>%™ de-
pends functorially on R, in the sense that it is compatible with pullback
(Proposition 6.2.2). We also show that it compatible with compactly
supported direct images along étale morphisms (Proposition 6.2.3), and
direct images along morphisms which are finite and of finite presentation
(Theorem 6.5.1).

(¢) The Riemann-Hilbert functor RH : Shvg (Spec(R),F,) — 1\/Iod§,§zerf carries
constructible étale sheaves on Spec(R) to holonomic Frobenius modules
over R (Theorem 6.3.1).

(d) The Riemann-Hilbert functor RH : Shvg (Spec(R), F,) - Mod2™ is exact
(Proposition 6.4.1).

In §7, we will apply these results to show that RH is an inverse of the solu-
tion functor (once we restrict our attention to algebraic Frobenius modules), and
thereby obtain a proof of Theorem 1.0.2.

6.1. Existence of the Riemann-Hilbert Functor. Our starting point is the
following;:

Theorem 6.1.1. Let R be a commutative F,-algebra. Then the solution functor
Sol : Mod%erf — Shvg(Spec(R),F,) admits a left adjoint

RH : Shv(Spec(R),F,) - Mod}pfrf.

Moreover, for every p-torsion étale sheaf F € Shv4(Spec(R),F)), the Frobenius
module RH(.Z) is algebraic.

Warning 6.1.2. In the statement of Theorem 6.1.1, it is important to restriction
the solution functor Sol to the category of perfect Frobenius modules. The defining
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property of the Riemann-Hilbert functor RH is that we have bijections
Homp, (7, Sol(M)) ~ Hompp)(RH(.F), M)

for .# € Shvg (Spec(R),F,) and M a perfect Frobenius module over R. One does
not generally have such a bijection when M is not perfect.

To prove Theorem 6.1.1, it will be convenient to introduce a temporary bit of
terminology. Let R be a commutative Fp-algebra, and suppose we are given a p-

torsion étale sheaf .#. A Riemann-Hilbert associate of % is an object of Mod%Orf
which corepresents the functor
Mod?%™ - Set M = Homg, (F,Sol(M)).

If .7 is a perfect Frobenius module over R which admits a Riemann-Hilbert
associate, we will denote that associate by RH(.%); note that it is well-defined up
to unique isomorphism and depends functorially on .%#. Theorem 6.1.1 can then
be reformulated as the statement that every étale sheaf .# € Shv (Spec(R),F))
admits an algebraic Riemann-Hilbert associate. The proof of this assertion is
based on three simple observations:

Proposition 6.1.3. Let R be a commutative Fy,-algebra. Then the perfection

Rrett 4s o Riemann-Hilbert associate of the constant sheaf ).

Proof. For every perfect Frobenius module M over R, we have canonical bijections
Hom gppy (RP, M) Homp (R, M)

{zweM:pu(z) =1z}

Sol(M)(R)

Homg, (Fp,, Sol(M)).

1R

1R

1R

1R

O

Proposition 6.1.4. Let R be a commutative F-algebra, and suppose we are given
some diagram of étale sheaves {.F .} having a colimit F = li_ngfa in the category
Shv(Spec(R),F,). Suppose that each F, admits a Riemann-Hilbert associate
RH(%#,.). Then # admits a Riemann-Hilbert associate, given by li_I)IlRH(?a)

(where the colimit is formed in the category Mod%erf ).

Proof. For any perfect Frobenius module M, we have canonical bijections
Hompp)(lim RH(.Z ), M) lim Hom g (RH(Z ), M)

lim Homp, (:# o, Sol(M))

«

1R

1R

1R

Homp, (:#,Sol(M)).
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Proposition 6.1.5. Let f : A - B be an étale morphism of commutative F,-
algebras and let F be a p-torsion étale sheaf on Spec(B). Suppose that F
admits a Riemann-Hilbert associate RH(.Z) which is algebraic. Then the com-
pactly supported direct image fiRH(.F) is a Riemann-Hilbert associate of fi F €
Shv ¢ (Spec(A),F,).

Proof. Let M be a perfect Frobenius module over A. It follows immediately from
the definitions that the solution sheaf Sol(f°M) e Shvg (Spec(B),F,) can be
identified with the pullback f*Sol(M). We therefore obtain canonical bijections

Hom a1 (fi RH(F), M)

1R

Hompp(RH(F), f°M)
Homp, (.7, Sol(f°M))
Homp, (Z, f* Sol(M))
Homg, (f,. 7, Sol(M)).

1R

1R

1R

O

Proof of Theorem 6.1.1. Let R be a commutative F,-algebra and let .% be a p-
torsion étale sheaf on Spec(R); we wish to show that % admits an algebraic
Riemann-Hilbert associate. For every étale ring homomorphism j : R - R’ and
element n € # (R'), we can identify n with a map of étale sheaves u, : jF, > .Z.

Amalgamating these, we obtain an epimorphism u : .%’ — .% in the category
Shve (Spec(R),F,), where .Z' is a direct sum of étale sheaves of the form jF,

(where j varies over étale morphisms R — R’). Repeating this argument for
ker(u), we can construct an exact sequence
F'SF 5 F 50

where Z" is also a direct sum of sheaves of the form jF,. By virtue of Proposition
6.1.4, it will suffice to show that each of the sheaves j1F, admits an algebraic

Riemann-Hilbert associate. Using Proposition 6.1.5, we are reduced to showing
that if R’ is an étale R-algebra, then the constant sheaf F, € Shvg (Spec(R’),F))

admits an algebraic Riemann-Hilbert associate. This follows from Proposition
6.1.3. N

6.2. Functoriality. We now study the behavior of the Riemann-Hilbert functor
RH : Shvg (Spec(R), F,) - Modb™

as the commutative F)-algebra R varies. We begin with a simple observation:
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Proposition 6.2.1. Let f : A - B be a homomorphism of commutative F,-
algebras. Then the diagram of categories

fx

perf perf
Mod; Mod

\L Sol l Sol

Shv(Spec(B), F,) — Shv(Spec(A), F,)
commutes up to canonical isomorphism.

Proof. Let M be a perfect Frobenius module over B, let A’ be an étale A-algebra,
and set B’ = A’ ® 4 B. We then have canonical bijections

(f«Sol(M))(A") = Sol(M)(B')

{reB & M : ppg,u(r) =2}
{xe A@sM:poug,mu(z) =1}
Sol(f. M)(A").

2

1R

1R

1R

O

Proposition 6.2.2. Let f: A - B be an Fy-algebra homomorphism. Then the
diagram of categories

Shva(Spec(A), F,) —— Shv(Spec(B), F,)

s s

perf fe perf
Mod Mod;

commutes up to canonical isomorphism.

Proof. This follows immediately from Proposition 6.2.1 by passing to left adjoints.
O

In the situation of Proposition 6.2.2, the vertical maps carry étale sheaves to
algebraic Frobenius modules, so we also have a commutative diagram

Shve (Spec(A), F,) —— Shvg (Spec(B), F,)

s o

lg fe lg
Mod’ Mod3® .

In the case where f : A — B is étale, the horizontal maps in this diagram admit left
adjoints (Theorem 5.4.1). We therefore obtain a natural transformation fioRH —
RHof, in the category of functors from Shve (Spec(B),F,) to Mod*®.
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Proposition 6.2.3. Let f: A - B be an étale morphism of F,-algebras. Then
the Beck-Chevalley transformation fio RH — RHof, described above is an iso-
morphism. In other words, the diagram of categories

Shv (Spec(A), F,) <2~ Shvy(Spec(B), F,)

[ o

lg hi lg
Mod’ Modj

commutes up to canonical isomorphism.

Proof. This is a translation of Proposition 6.1.5 (or, more precisely, of its proof).
O

Remark 6.2.4. We can also formulate Proposition 6.2.3 in terms of solution
sheaves: it follows from the commutativity of the diagram

fx-

perf perf
Mod}, Mod’y

l Sol l Sol

Shve: (Spec(B), F,) —~ Shve (Spec(A), F,)

when f: A — B is an étale morphism of F,-algebras, which follows immediately
from the definitions (and was invoked in the proof of Proposition 6.1.5).

6.3. Constructible Sheaves. Let R be a commutative ring. Recall (see [14,
Tag 05BE]) that a sheaf .# € Shv(Spec(R),F),) is said to be constructible if
there is finite stratification

@=Xpc X1 <X, =Spec(R),
where each open stratum X,, - X,,,_1 is a constructible subset of Spec(R) and
admits an étale surjection U,, - (X, = X,,,-1) such that the restriction .7 |y, is
isomorphic to a constant sheaf V| for some finite-dimensional vector space V' over
F,. We let Shv{, (Spec(R),F,) denote the full subcategory of Shve (Spec(R),F))
spanned by the constructible sheaves. Note that Shvg (Spec(R),F,) is closed
under the formation of kernels and cokernels in Shve (Spec(R),F)); in particular,
it is an abelian category.
Theorem 6.1.1 admits the following refinement:

Theorem 6.3.1. Let R be a commutative Fy,-algebra. Then the Riemann-Hilbert
functor RH : Shvg(Spec(R), F,) - Mod>™ carries constructible étale sheaves to
holonomic Frobenius modules over R.

Notation 6.3.2. For every F,-algebra R, we let RH® : Shv{, (Spec(R),F,) —

Mod%"! denote the restriction of the Riemann-Hilbert functor RH to constructible
sheaves.
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For the proof of Theorem 6.3.1, we will need a few standard facts about con-
structible sheaves, which we assert here without proof:

Proposition 6.3.3. Let f : A - B be an étale ring homomorphism. Then
the functor fi : Shv4(Spec(B),F,) - Shvg(Spec(A),F,) carries constructible
sheaves to constructible sheaves.

Proof. This is contained in [14, Tag 03S8]. O

Proposition 6.3.4. Let A be a commutative ring and let F € Shv,(Spec(A),F,).
Then there exists an étale morphism f: A - B and an epimorphism fiF, - %

in the abelian category Shv4(Spec(A),F)).
Proof. This follows from [14, Tag 09YT]. O

Proof of Theorem 6.3.1. Let R be a commutative F,-algebra and let .# be a con-
structible p-torsion étale sheaf on Spec(R). We wish to show that the Frobenius
module RH(.%) is holonomic. We first apply Proposition 6.3.4 to choose an epi-
morphism u : F' - Z, where %' has the form fiF, for some étale morphism

f:A— B. Then .#' is constructible, so ker(u) is also constructible. Applying
Proposition 6.3.4 again, we can choose an epimorphism v : #" — ker(u), where
Z" has the form gF, for some étale morphism g : A — C. We then have an exact
sequence o

F' 575 F 0.
The Riemann-Hilbert functor RH is right exact (since it is a left adjoint), so we
obtain an exact sequence of Frobenius modules

RH(Z") - RH(Z') > RH(Z) - 0.

Since the collection of holonomic Frobenius modules over R is closed under the
formation of cokernels (Corollary 4.2.2), it will suffice to show that RH(.#") and
RH(#') are holonomic. Using Propositions 6.2.3 and 6.1.3, we obtain isomor-
phisms RH(#") ~ fiBref and RH(F") ~ gCPef. The desired holonomicity now
follows from Remark 5.4.2. 0J

We close this section by recording (without proof) a few more elementary facts
about constructible sheaves which will be needed in the proof of Theorem 1.0.2.
First, we have the following duals to Propositions 6.3.3 and 6.3.4:

Proposition 6.3.5. Let f: A - B be a ring homomorphism which is finite and
of finite presentation. Then the direct image functor f,. : Shvg(Spec(B),F,) —
Shv e (Spec(A),F,) carries constructible sheaves to constructible sheaves.

Proof. See [7, §1, Lemma 4.11]. O

Proposition 6.3.6. Let A be a commutative ring and let F € Shv,(Spec(A),F,).
Then there exists a ring homomorphism f : A - B which is finite and of finite
presentation and a monomorphism F — f,F, in the category Shv4(Spec(A),F)).
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Proof. See [7, §1, Proposition 4.12]. O

Proposition 6.3.7. Let R be a commutative ring. Then the inclusion functor
Shv§,(Spec(R),F,) = Shvg(Spec(R),F,) extends to an equivalence of categories
Ind(Shv¢,(Spec(R),F,)) ~ Shvg(Spec(R), F,).

Proof. See [14, Tag 03SA]. O

6.4. Exactness of the Riemann-Hilbert Functor.

Proposition 6.4.1. Let R be a commutative Fp-algebra. Then the Riemann-
Hilbert functor RH : Shvg(Spec(R), F,) - Mod>™ is evact.

Proof. Since the Riemann-Hilbert functor RH is defined as the left adjoint to the
solution functor, it is automatically right exact. It will therefore suffice to show
that if v : # — ¢ is a monomorphism of p-torsion étale sheaves on Spec(R), then
the induced map RH(u) : RH(:%#) — RH(¥) is also a monomorphism. Using
Proposition 6.3.7, we can reduce to the case where .# and ¢ are constructible,
so that the Frobenius modules RH(.#) and RH(¥) are holonomic (Theorem
6.3.1). It follows that the kernel of the map RH(u) is also holonomic (Corollary
4.3.3). By virtue of Proposition 5.3.3, to show that RH(u) is a monomorphism,
it will suffice to show that the support supp(ker(RH(w))) is empty. Fix a point
x € Spec(R); we will show that x ¢ supp(ker(RH(u))) ¢ Spec(R). Let k be an
algebraic closure of the residue field of R at the point x and let f: R — x be the
canonical map; we wish to show that f°(ker(RH(u))) vanishes. Since the functor
fe is exact on algebraic Frobenius modules (Corollary 3.5.2) and compatible with
the Riemann-Hilbert functor (Proposition 6.2.2), we have

f°(ker(RH(u))) = ker(f°(RH(u))) = ker(RH(f"(u))).

We can therefore replace R by x and thereby reduce to the case where R is an alge-
braically closed field. In this case, the category Shve (Spec(R),F)) is equivalent
to the category of vector spaces over F,,. It follows that every exact sequence in
the category Shve (Spec(R),F),) is split, so the exactness of the Riemann-Hilbert
functor RH is automatic. OJ

Corollary 6.4.2. Let R be a commutative Fy,-algebra. Then the solution functor
Sol : 1\/Iodf,§zerf — Shv(Spec(R), F,) carries injective objects of the abelian category
Mod}pzCrf to injective objects of the abelian category Shv(Spec(R),F,).
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6.5. Comparison of Finite Direct Images. Let f : A - B be a homomor-
phism of commutative F,-algebras, so that Proposition 6.2.2 supplies a commu-
tative diagram of categories

Shve (Spec(A), F,) —— Shvg (Spec(B), F,)

s o

perf fe perf
Mod Modj;™ .

Note that the horizontal maps in this diagram admit right adjoints
fe: Mod%™ - Mod"™ f+ : Shve (Spec(B),F,) - Shvg (Spec(A), F,).

By general nonsense, we obtain a Beck-Chevalley transformation RHo f, — f.ocRH
in the category of functors from Shve (Spec(B),F,) to Modierf. In general, this
map need not be an isomorphism: for example, if BPf = (f, o RH)(F,) is not
algebraic when regarded as a Frobenius module over A, then it cannot belong to
the essential image of the Riemann-Hilbert functor RH : Shvg (Spec(A),F,) —

Modi’frf. However, under some mild finiteness hypotheses, this phenomenon does
not arise:

Theorem 6.5.1. Let f: A - B be a morphism of commutative F,-algebras which
is finite and of finite presentation. Then, for every p-torsion étale sheaf .F on
Spec(DB), the canonical map €5 : RH(f. ) - f.(RH(.%)) is an isomorphism of
Frobenius modules over A. Consequently, the diagram of categories

Shv(Spec(A), F,) < Shva(Spec(B), F,)

s s

perf fx perf
Mod’; Mod}y

commutes (up to canonical isomorphism,).

Remark 6.5.2. In §10, we will prove a more general version of Theorem 6.5.1,
which applies in the situation of a morphism f: X - Y of F,-schemes which is
proper and of finite presentation (Corollary 10.5.6).

Proof of Theorem 6.5.1. The functors
RH : Shv (Spec(A), F,) - Mod?™ RH : Shv (Spec(B),F,) - Modb™

f+ : Shve (Spec(B), F,) - Shv (Spec(A), F,) fe: Mod%™ - Mod5™
all commute with filtered colimits. Consequently, to show that the map €4 is an
equivalence for every object .# € Shvg (Spec(B),F)), it will suffice to show that
€z is an equivalence when the sheaf .# is constructible (Proposition 6.3.7). In this
case, the direct image f,.# € Shvg (Spec(A),F,) is constructible (Proposition
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6.3.5). Applying Theorem 6.3.1, we deduce that RH(.%#) and RH(f..%#) are
holonomic. It follows from Proposition 4.2.10 that f, RH() is also holonomic.
Applying Corollary 4.3.3, we deduce that ker(es) and coker(e#) are holonomic.
By virtue of Propositions 5.3.3 and 4.2.4, to show that ez is an isomorphism,
it will suffice to show that ¢g°(es) is an isomorphism for every map g : A - &
where £ is an algebraically closed field. Using Proposition 6.2.2 (and the fact
that pushforward of étale sheaves along finite morphisms commutes with base
change), we can replace A by k and thereby reduce to the case where A is an
algebraically closed field. In this case, B is a finite-dimensional algebra over k.
Writing B as a product of local rings, we can assume that B is local with residue
field k. Then the constructible sheaf .# € Shvg (Spec(B),F),) has the form V for
some finite-dimensional vector space V' over F,. Choosing a basis for V', we can
reduce to the case where V = F,,. Using Proposition 6.1.3, we see that ez can be
identified with the canonical map AY/?P™ — BYP™ which is an isomorphism since
the radical of B is nilpotent. O
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7. THE RIEMANN-HILBERT CORRESPONDENCE

Let R be a commutative F,-algebra. Our goal in this section is to prove
Theorem 1.0.2 by showing that the Riemann-Hilbert functor

RH : Shvg (Spec(R), F,) - Mod%#

is an equivalence of categories. Let us outline the strategy we will use. Our first
objective (which is achieved in §7.2) is to show that the Riemann-Hilbert functor
is fully faithful: that is, that the unit map .% — Sol(RH(.%#)) is an isomorphism
for any p-torsion étale sheaf .# on Spec(R) (see Proposition 7.2.1). One obstacle
to proving this is that the solution functor Sol : Mod%™" — Shve, (Spec(R), F,) is
not exact. However, we show in §7.1 that it is almost exact: more precisely, it has
only one derived functor, which can be explicitly described (Proposition 7.1.1).

The rest of this section is devoted to showing that every algebraic Frobenius
module M over R belongs to the essential image of the Riemann-Hilbert functor.
To prove this, we may assume without loss of generality that M is holonomic. In
this case, we prove something stronger: the Frobenius module M can be realized
as RH(.7), where .7 is a constructible p-torsion étale sheaf on Spec(R) (Theorem
7.4.1). In the case where R is a field, this assertion is classical; we give a proof in
§7.3 for the reader’s convenience (Proposition 7.3.1). The general case is treated
in §7.4, using a dévissage which reduces to the case where R is a field.

7.1. Derived Solution Functors. Let R be a commutative F,-algebra. The
solution functor

Sol : Mod%Crf — Shvg (Spec(R), F,)
of Construction 2.3.1 is left exact (Remark 2.3.4), but is usually not exact.
Since the category Sol%Crf has enough injective objects (Remark 3.2.6), we can
consider its right derived functors. For each n > 0, we let Sol” : 1\/Iodf,§zerf -

Shv¢ (Spec(R),F,) denote the nth right derived functor of Sol. These derived
functors admit a simple explicit description:

Proposition 7.1.1. Let R be a commutative F,-algebra and let M be a perfect
Frobenius module over R. Then we have a canonical short exact sequence

0 = Sol(M) — M L2 77 & Sol' (M) > 0
and the sheaves Sol" (M) wvanish for n > 2.

Here M denotes the quasi-coherent sheaf associated to the R-module M (see
Example 2.2.5). We will deduce Proposition 7.1.1 from the following:

Lemma 7.1.2. Let R be a commutative Fy,-algebra. If M is an injective object

of Mod%erf, then the sequence 0 — Sol(M) — M 9TV, AT > 0 ds exact in the
category of abelian presheaves on the category CAlgy.
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Proof. Choose an étale morphism f: R - A. We then have a diagram of exact
sequences

0 0

Sol(M)(A) —— Exty (A, A @ M)

M

Ext’y p (A[F], A®r M)

id—¢p

M —— Extly - (A[F], A®r M)

EXtA (A A®R )

To complete the proof, it will suffice to show that the group Ext’ A[F (A A Qg

M) ~ ExtA (AYPT A ®@r M) vanishes. Using Theorem 5.4.1, we obtaln an
1somorphlsm

ExtA (Al/p JA®R M) ~ ExtR (flAl/p M),

where the right hand side vanishes by virtue of our assumption that M is injective.
O

Proof of Proposition 7.1.1. Let M be a perfect Frobenius module over a commu-
tative F,-algebra R, and choose an injective resolution 0 -~ M - Q% - Q! -
in the abelian category Mod%orf. Using Lemma 7.1.2, we obtain a short exact
sequence of cochain complexes

i

0 Sol(Q*) = 0" L% 0% - 0.

Since the construction N + N is exact, the chain complex Q* is an acyclic
resolution of M. The associated long exact sequence now supplies the desired
isomorphisms. O

Corollary 7.1.3. Let R be a commutative F,-algebra. Then the functor Sol"
Mod®>™ — Shv(Spec(R),F,) commutes with filtered colimits for each n > 0.

Corollary 7.1.4. Let R be a commutative F,-algebra, let F be a p-torsion étale
sheaf on Spec(R), and let let M be a perfect Frobenius module over R. Then we
have canonical short exact sequences

0~ Extg, (7, Sol(M)) — Extpypm (RH(F), M) Extg ' (F,Sol' (M)) - 0
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Proof. Since the solution functor Sol : Mod?™ — Shv (Spec(R), F,) carries in-

jective objects of Mod%Orf to injective objects of Shve (Spec(R),F,) (Corollary
6.4.2), we have a Grothendieck spectral sequence

Exty (F,Sol'(M)) = Extiim (RH(F), M).

The existence of the desired short exact sequences now follows from the vanishing
of the groups Sol’ (M) for t > 2 (Proposition 7.1.1). O

7.2. Full Faithfulness of the Riemann-Hilbert Functor. We are now ready
to prove a weak version of Theorem 1.0.2.

Proposition 7.2.1. Let R be a commutative Fy-algebra and let F be a p-torsion
étale sheaf on Spec(R). Then the unit map uz : F — Sol(RH(.%)) is an isomor-
phism and the sheaf Sol'(RH(.F)) vanishes.

We first treat a special case of Proposition 7.2.1:

Lemma 7.2.2. Let R be a commutative Fp-algebra. Then the unit map u:F, —
Sol(RH(F})) is an isomorphism and the sheaf Sol'(RH(F,)) vanishes.

Proof. Without loss of generality, we may assume that R is perfect. Using Propo-
sitions 6.1.3 and 7.1.1, we see that Lemma 7.2.2 is equivalent to the exactness of
the Artin-Schreier sequence

0-F,>R L R0
in the category Shve (Spec(R),F,). O

Proof of Proposition 7.2.1. Using Corollary 7.1.3 and Proposition 6.3.7, we can
reduce to the case where the sheaf .# is constructible. Using Proposition 6.3.6,
we can choose an exact sequence of constructible sheaves

0.7 >9 > -0,

where ¢ = f.F, for some F,-algebra homomorphism f: R - A which is finite and
of finite presentation. Using Proposition 6.4.1 and Proposition 7.1.1, we obtain
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a commutative diagram
F —Z > Sol(RH(.Z))
¢ — - Sol(RH(¥))
A > Sol(RH(7))

é

0 —— Sol'(RH(.%))

Sol' (RH(#))

whose columns are exact. It follows from Lemma 7.2.2, Theorem 6.5.1, and
Proposition 6.2.1 that uy is an isomorphism and Sol'(RH(%)) vanishes. Inspect-
ing the diagram, we deduce that uz is a monomorphism. Applying the same
argument to 77, we see that u_ is also monomorphism, so a diagram chase
shows that uz is an epimorphism. Applying the same argument to ¢, we con-
clude that u s is also an epimorphism. The commutativity of the diagram shows
that o ur vanishes, so that 6 = 0. Since ¢ is an epimorphism, we conclude that

Sol'(RH(.%)) = 0. O

It follows from Proposition 7.2.1 that the Riemann-Hilbert functor is fully
faithful, even at the “derived” level:

Corollary 7.2.3. Let R be a commutative F-algebra. Then the Riemann-Hilbert
functor RH : Shv(Spec(R),F,) — Mod}pzOrf is fully faithful. Moreover, for ev-
ery pair of objects F#,9 € Shvg(Spec(R),Fy), the induced map Exty (F#,9) —
Extpp)(RH(F),RH(Y)) is an isomorphism. o

Proof. Combine Proposition 7.2.1 with Corollary 7.1.4. O

7.3. The Case of a Field. It follows from Corollary 7.2.3 that, for any commu-
tative Fp-algebra R, the functor

RHC : Shv§, (Spec(R), F,) - Mod!

of Notation 6.3.2 is fully faithful. We now show that it is an equivalence in the
special case where R is a field, which is essentially a restatement of Theorem ?7:
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Proposition 7.3.1. [10, Proposition 4.1.1] Let k be a field of characteristic p.
Then the functor RHC : Shv,(Spec(x),F,) - Mod™ is an equivalence of cate-
gories.

We begin by treating the case where & is algebraically closed (compare [5, §III,
Lemma 3.3]):

Lemma 7.3.2. Let k be an algebraically closed field of characteristic p. Then
the functor RH® : ShvS,(Spec(k), F,) = Mod™ is an equivalence of categories.

Proof. Using Corollary 7.2.3 and Proposition 6.4.1, we see that RH® is a fully
faithful embedding whose essential image C ¢ Modg01 is an abelian subcategory
which is closed under extensions. We wish to show that C contains every object
M € Mod™. Applying Proposition 4.3.1, we see that M is a Noetherian object
of the abelian category Modzlg. Consequently, there exists a subobject M’ ¢ M
(in the abelian category Mod™®) which is maximal among those subobjects which
belong to C. It follows from the maximality of M’ (and the stability of C under
extensions) that the quotient M /M’ does not contain any nonzero subobjects
which belong to C. Replacing M by M/M’, we can reduce to the case where M
does not have any nonzero subobjects which belong to C.

Suppose that M is nonzero. Choose a nonzero element x € M. Since M is
algebraic, the element z satisfies an equation

o (@) + M () + -+ Az =0

for some coefficients Aj, Ao, ..., A, € k. We may assume that x has been chosen so
that n is as small as possible; this guarantees that the set {z, par (), ..., ¢4 (x)}
is linearly independent over k, and therefore A, # 0. Since x # 0, we must have
n > 0.

Note that

FE) =t N T T s A
is a separable polynomial of degree p" > 1, and therefore has p™ distinct roots in
the field k. Consequently, there exists a nonzero element a € x such that f(a) = 0.
Let

n—1 n—2

y:aa7+(ap+a)\1)gpM(¢E)+...+(ap +aP )\ﬁ,n—2+...+a)\n_1)¢§(/}1($).

Since the elements {¢’ () }o<i<n are linearly independent and a # 0, y is a nonzero
element of M. An explicit calculation gives

ax + Z aXioh () + (ar, = f(a)) el ()

O<i<n
= a(z+Mepp () + -+ Aol ()
0.

y—oum(y)
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It follows that y generates a nonzero Frobenius submodule of M which is isomor-
phic to k ~ RH(F,), contradicting our assumption that M does not contain any
nonzero subobjects which belong to C. O

Proof of Proposition 7.3.1. Let k be an arbitrary field of characteristic p. As in
the proof of Lemma 7.3.2, we see that the functor RH® : Shvg, (Spec(k),F,) —
ModgOl is a fully faithful embedding whose essential image C € Modg01 is an abelian
category which is closed under extensions. We wish to show that C contains every
object M € Modg‘)l. Let K be an algebraic closure of k. Lemma 7.3.2 shows that
(F®, M)Y/P* e Mod™ belongs to the essential image of the functor RH® : Shv& —
Modg’l. Using a direct limit argument, we see that there exists a finite algebraic
extension ' of k such that M’ = (k' ®, M)'/P™ belongs to the essential image of
the functor RH : Shv{, — Modﬁ?l. By restriction of scalars, we can regard M’ as
an object of Mod™" (Proposition 4.2.10), and the resulting object belongs to the
subcategory C (Theorem 6.5.1). We have an evident monomorphism M — M’ in
the abelian category Modzd. Applying the same argument to the quotient M /M’,
we can choose a monomorphism M /M’ < M" for some M" € C. It follows that
M can be identified with the kernel of the composite map M’ - M /M’ - M",
and therefore belongs to C (since C is an abelian subcategory of Modzd). U

7.4. Proof of the Main Theorem. We now generalize Proposition 7.3.1 to the
case of an arbitrary F,-algebra:

Theorem 7.4.1. Let R be a commutative F,-algebra. Then the Riemann-Hilbert
functor RH® : Shv’,(Spec(R),F,) - Mody" (see Notation 6.3.2) is an equivalence
of categories.

Before giving the proof of Theorem 7.4.1, let us collect some of its consequences.
First, we note that it immediately implies the results of this paper:

Proof of Theorem 1.0.2 from Theorem 7.4.1. Let R be an F,-algebra. It follows
from Theorem 7.4.1 that the functor RH® = RH |Shvgt(Spec( Rr),F,) 18 a fully faithful

embedding, those essential image consists of compact objects of Mod%Orf (see
Proposition 4.1.5). Moreover, the functor RH preserves filtered colimits (by virtue
of the fact that it is left adjoint to the solution functor). Using Proposition 6.3.7,
we deduce that RH is a fully faithful embedding whose essential image consists
of those perfect Frobenius modules which can be realized as filtered colimits of
holonomic Frobenius modules. By virtue of Theorem 4.2.9, this essential image
is exactly Mod%g. O

Proof of Theorem 2.4.3 from Theorem 7.4.1. Let R be an Fj-algebra. Then Sol :
Modjf%g — Shvg (Spec(R), F,) is right adjoint to the Riemann-Hilbert functor RH :

Shvg (Spec(R), F,) — Modi‘%lg . Since the latter is an equivalence of categories, the
former must also be an equivalence of categories. O
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Corollary 7.4.2. Let f: A - B be a homomorphism of F,-algebras and let M
be an algebraic A-module. Then the comparison map f*(Sol(M)) — Sol(f°M) is
an isomorphism in Shv 4(Spec(B), F,).

Proof. Combine Theorem 2.4.3 with Proposition 6.2.2. 0J

Corollary 7.4.3. Let A - B be a homomorphism of commutative F,-algebras
which 1s étale and faithfully flat, and let M be a perfect Frobenius module over
A. If fo(M) = B®4 M is a holonomic Frobenius module over B, then M is a

holonomic Frobenius module over A.

Proof. 1t follows from Lemma 5.4.6 that M is algebraic. Consequently, to show
that M is holonomic, it will suffice (by virtue of Theorems 1.0.2 and 7.4.1) to
show that Sol(M) is a constructible sheaf. This follows from Remark 6.2.4, since
constructibility of étale sheaves can be tested locally with respect to the étale
topology. 0

Corollary 7.4.4. Let R be a commutative Fp,-algebra and let M be an algebraic
Frobenius module over R. Then Sol"(M) ~0 fori>0.

Proof. By virtue of Theorem 1.0.2 we can write M = RH(.%) for some .7 ¢
Shve (Spec(R),F,). In this case, the desired result follows from Proposition
7.2.1. 0

Proof of Theorem 7.4.1. Let R be a commutative F,-algebra. As in the proof of
Lemma 7.3.2, we see that the functor RH is a fully faithful embedding whose
essential image C ¢ Modlj?%Ol is an abelian subcategory which is closed under exten-
sions. We wish to show that C contains every object M ¢ Modlﬁ’l. Using a direct
limit argument, we can choose an F,-algebra homomorphism ¢ : Ry - R and an
equivalence M ~ ° M, for some M, € Mod}}%, where Ry is finitely generated over
F,. By virtue of Proposition 6.2.2, it will suffice to show that M, belongs to the
essential image of the functor RH® : Shv — Mod}}’%. We may therefore replace
R by Ry (and M by M,) and thereby reduce to the case where R is Noetherian.

Applying Proposition 4.3.1, we see that M is a Noetherian object of the abelian
category Mod%g. Consequently, there exists a subobject M’ <€ M (in the abelian
category Mod%g) which is maximal among those subobjects which belong to C.
It follows from the maximality of M’ (and the stability of C under extensions)
that the quotient M /M’ does not contain any nonzero subobjects which belong
to C. Replacing M by M/M', we can reduce to the case where M does not have
any nonzero subobjects which belong to C.

Let K ¢ Spec(R) be the closure of the support supp(M). Then K is the
vanishing locus of a radical ideal I ¢ Spec(R). Using Theorem 5.3.1, we see that
M can be regarded as a holonomic Frobenius module over the quotient ring R/I.
Using Theorem 6.5.1, we can replace A by A/I and thereby reduce to the case
where R is reduced and K = Spec(R).
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If R~0, then M ~ 0 and there is nothing to prove. Otherwise, R contains a
minimal prime ideal p. Since R is reduced, the localization R, is a field. Applying
Proposition 7.3.1, we deduce that M, belongs to the essential image of the functor
RH®: Shvi — Mod}}‘il. It follows by a direct limit argument that there exists some
element ¢t € R—p for which the localization M[¢~1] belongs to the essential image
of the functor RH®: Shvi1y - Mod%o[ltfl]. Let f: R — R[t"!] be the localization
map, and set M’ = fiM[t~!]; using Proposition 6.2.3, we deduce that M’ belongs
to the essential image of the Riemann-Hilbert functor RH® : Shv$, » Mod"%". Note
that Lemma 5.4.8 guarantees that that the counit map M’ = fif*M — M is a
monomorphism, so we must have M’ ~ 0. Tt follows that the localization M[t™!]
vanishes, so that the prime ideal p cannot belong to the support of M. Using
the constructibility of supp(M) (Theorem 4.4.4), we deduce that there exists an
open neighborhood of p which does not intersection supp(M'), contradicting the
equality K = Spec(R). O



64 BHARGAV BHATT AND JACOB LURIE

8. TENSOR PRODUCTS

Let A be a commutative ring and let Shve (Spec(A),F,) denote the category
of p-torsion étale sheaves on Spec(A). This category is equipped with a tensor
product functor

®F, : Shve (Spec(A),Fp) x Shvg (Spec(A), F,) — Shve (Spec(A), F))
which carries a pair of étale sheaves (% ,%) to the sheafification of the presheaf
(B € CAlg}) = Z(B) ®, 9(B).

In the case where A is an F,-algebra, Theorem 2.4.3 supplies an equivalence of
categories
Sol : Mod®® — Shve(Spec(A), F,)

Our goal this section is to promote the solution functor Sol to an equivalence of
symmetric monoidal categories: that is, to show that it is compatible with tensor
products.

We begin in §8.1 by studying an analogous tensor product operation on the cat-
egory Mod'y" of Frobenius modules over A. In fact, there are two such operations
(which are closely related):

e If M and N are Frobenius modules over A, then the tensor product M® 4 N
inherits the structure of a Frobenius module over A (Construction 8.1.1).
o If M and N are perfect Frobenius modules over A, then they can also
be regarded as modules of the perfection A/P”; in this case, the tensor

product M ® 41/p N inherits the structure of a perfect Frobenius module
over A (Remark 8.1.5).

Like the usual tensor product on the category of A-modules, the tensor product
on Frobenius modules is right exact but generally not left exact. One can partially
remedy this failure of exactness by studying left derived functors of the tensor
product: in §8.2, we show that these agree with the usual Tor-functors of commu-
tative algebra (Proposition 8.2.1). The central result of this section asserts that
if we restrict our attention to algebraic Frobenius modules, then these Tor-groups
automatically vanish (when computed relative to the perfection A/P”: see Theo-
rem 8.3.1). We prove this statement in §8.3, and apply it in §8.4 to show that the
Riemann-Hilbert correspondence is compatible with tensor products (Theorem
8.4.1).

8.1. Tensor Products of Frobenius Modules. We begin with some general
remarks.

Construction 8.1.1. Let A be a commutative F,-algebra. If M and N are
Frobenius modules over A, then we regard the tensor product M ®4 N as a
Frobenius module over A, with Frobenius map

@M@AN:M@)AN_’M@AN
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given by the formula ¢y, n(2 ®y) = op(z) ® on(y). Note that the commuta-
tivity and associativity isomorphisms

MO s N~Nos M (M@AN)@)APEM@A(N@AP)

are isomorphisms of Frobenius modules, and therefore endow Mod?r with the
structure of a symmetric monoidal category.

Example 8.1.2 (Tensor Products of Free Modules). Let A be a commutative F-
algebra and let M and N be Frobenius modules over A which are freely generated
(as left A[F']-modules) by elements x € M and y € N. Then the tensor product
M ®4 N is freely generated by the elements F"z®y and x ® Fy (which coincide
when n = 0).

Remark 8.1.3 (Compatibility with Extension of Scalars). Let f: A - B be
a homomorphism of commutative F,-algebras, and let fz : Mod)y - Mod} be
the functor of extension of scalars along f (given by M — B ®4 M). Then fg
is a symmetric monoidal functor: in particular, we have canonical isomorphisms

fix(M e N) = (fi.M) @5 (fiN).

Remark 8.1.4. Let A be an F,-algebra. If M and N are Frobenius modules
over A, then we have a canonical isomorphism

(M ®4 N)YP™ o MYPT @ 41 jpe0 NPT

In particular, if A, M, and N are perfect, then the tensor product M ® 4 N is
also perfect.

Remark 8.1.5. Let A be a perfect F,-algebra. It follows from Remark 8.1.4
that the full subcategory Mod%™ ¢ Mod{ is closed under tensor products, and
therefore inherits the structure of a symmetric monoidal category (with tensor
product ®4).

More generally, if A is an arbitrary Fp-algebra, then the restriction-of-scalars
functor 6 : Modiir/fpm — Mod%™ is an equivalence of categories (Proposition 3.4.3).
It follows that there is an essentially unique symmetric monoidal structure on the
category Modf’i‘erf for which the functor 6 is symmetric monoidal. We will denote
the underlying tensor product by (M, N) —» M ® sip~ N (note that if M and N
are perfect Frobenius modules over A, then they can be regarded as modules over
AYPT in an essentially unique way).

Warning 8.1.6. Let A be a commutative F,-algebra. Then the inclusion functor
Mod%™ < Mod'} is usually not a symmetric monoidal functor, if we regard Mod'y
as equipped with the symmetric monoidal structure of Construction 8.1.1 (given
by tensor product over A) and Modgerf with the symmetric monoidal structure of
Remark 8.1.5 (given by tensor product over A/P™). However, it has a symmetric
monoidal left adjoint, given by the perfection construction M ~ M/P™ (note
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that Remark 8.1.4 supplies an isomorphism (M ®4 N)Y/P™ ~ M ® 415~ N in the
case where M and N are perfect).

Remark 8.1.7 (Compatibility with Extension of Scalars). Let f: A - B be a
homomorphism of commutative F,-algebras, and let f° : Mod%erf - Mod%erf be
the functor of Proposition 3.3.2. Then f° is symmetric monoidal with respect
to the tensor products described in Remark 8.1.5: in particular, if M and N
are perfect Frobenius modules over A, then we have a canonical isomorphism
fo(M & 100 N) = (f°M)®pip= (fN). This follows from Remark 8.1.3, applied
to the map f1/P™ : AVP™ - B1/p%,

8.2. Derived Tensor Products. Let A be an F,-algebra and let M be a Frobe-
nius module over A. Then the construction N —» M ® 4 N determines a right
exact functor from the abelian category Mod'y to itself. Since the abelian cate-
gory Modir has enough projective objects (it is equivalent to the category of left
modules over the noncommutative ring A[F'] of Notation 2.1.5), the construction
N~ M ®,4 N admits left derived functors, which we will temporarily denote by
N — T, (M,N). More concretely, we define T,(M,N) to be the kth homology
group of the chain complex

..._>M®AP2—>M®AP1_>M®APO_>O7

where -+ > P, - P, - Py - N — 0 is a projective resolution of NV in the cate-
gory Modir (it follows from elementary homological algebra that the Frobenius
modules T, (M, N) are independent of the choice of resolution, up to canonical
isomorphism).

Proposition 8.2.1. Let A be an Fp-algebra. For every pair of Frobenius modules

M and N over A, we have canonical A-module isomorphisms Tor(M,N) =
T.(M,N).

Proof. Since A[F] is free as a left A-module, every projective left A[F']-module
is also projective when viewed as a left A-module. Consequently, if P, is a
resolution of N by projective left A[ F']-modules, then it is also a resolution of N
by projective A-modules, so the homology groups of the chain complex M ® 4 P,
can be identified with Tor? (M, N). O

We can formulate Proposition 8.2.1 more informally as follows: if M and N are
Frobenius modules over A, then the Tor-groups Tor? (M, N) inherit the structure
of Frobenius modules over A.

Remark 8.2.2. Our description of the Frobenius structure on the Tor-groups
Torf(M ,IN) is a priori asymmetric in M and N, since it depends on taking the
left derived functors of the construction M ® 4 o. However, one can give a more
symmetric description as follows. Let C denote the category whose objects are
triples (A, M, N), where A is an associative ring, M is a right module over A,
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and N is a left module over A. For each integer k, the construction (A, M, N) ~
Tori (M, N ) can be regarded as a functor from C to the category of abelian groups.
In the special case where A is a commutative Fj-algebra and M, N € Modir, we
can regard the triple (¢4, @ar, pn) as a morphism from (A, M, N) to itself in the
category C, and therefore induces a map of abelian groups ¢ : Tory (M, N) —
Torf(M ,IN). Tt is easy to check that ¢ corresponds to the Frobenius map on
Tx(M, N) under the isomorphism of Proposition 8.2.1.

Proposition 8.2.3. Let A be a perfect F,-algebra. If M and N are perfect Frobe-
nius modules over A, then the Tor-groups Torf(M ,IN) are also perfect Frobenius
modules over A.

Proof. This follows immediately from the description of the Frobenius structure
on Tor(M,N) given in Remark 8.2.2. Alternatively, we can show that each
Tory (M, N) is perfect using induction on k. When k = 0, the desired result
follows from Remark 8.1.4. For k > 0, we can choose a short exact sequence
0> N'"—- P - N — 0, where P is a free module over AY/P”[F*!] (see Example
3.2.5). Then N’ is also a perfect Frobenius module over A. Moreover, since A is
perfect, the ring AY/P*[F*1] is free as a left A-module, so the groups Tor? (M, P)
vanish for = > 0. We therefore have a short exact sequence

0 - Tory (M, N) - Torj , (M, N") - Torj , (M, P)
which exhibits Tory (M, N) as the kernel of a map between perfect Frobenius
modules, so that Tory (M, N) is itself perfect. O

Variant 8.2.4. Let A be an arbitrary F,-algebra, and let M and N be perfect
Frobenius modules over A. Then we can regard M and N as Frobenius modules
over AP in an essentially unique way (Proposition 3.4.3). Using Proposition

8.2.3, we can regard the Tor-groups Torfl/p (M, N) as perfect Frobenius modules
over AYP™ and therefore also (by restriction of scalars) as perfect Frobenius
modules over A.

Proposition 8.2.5. Let A be an F,-algebra and let M and N be Frobenius mod-

ules over A. Then the canonical map Tor?(M,N) — Torfl/pm (MV/P™ N1/p™)
induces an isomorphism of Frobenius modules

ps : Tord (M, N)V/P™ T()rfl/pm(Ml/pw,Nl/pm).

Proof. Let us regard M as fixed. We will show that for every Frobenius module
N and every nonnegative integer k, the map

pre Torf (M, N)YVP™ = Torid ™™ (MVP™ NVP™)

is an isomorphism. The proof proceeds by induction on k. When k = 0, the
desired result is the content of Remark 8.1.4. Assume that k > 0, and choose a
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short exact sequence of Frobenius modules 0 - N’ - P - N - 0 where P is a free
left module over A[F]. Then P/ is a free left module over AY/PT[F*!] and
is therefore also free as an A1/?*-module. It follows that the groups Torj (M, P)

and Torﬁl/p (M/?= | P1/P%) both vanish. Consequently, the map pj, fits into a
commutative diagram of exact sequences

0 0

Torf (M, N)Up™ 2o Tor™™ (M1/0=, NV/5™)

Tor;"; (M, N")1/p~ B Tor?_l{poo (M= N'1/p%)

Tor (M, P)V/e™ —L o Tor ™™ (Mo~ P1/o™),

The maps p’ and p” are isomorphisms by our inductive hypothesis, so that p is
an isomorphism as well. O]

Remark 8.2.6 (Compatibility with Extension of Scalars). Let f: A - B be a
homomorphism of F,-algebras. Then the extension of scalars functor

£ s ModY - Modjy

is right exact, having left derived functors N ~ Tor? (B, N). Let M be a Frobe-
nius module over B. Then we can regard the functors {Torj (M, e)}4so the the
left derived functor of the construction N ~ M ®p (fiN). Since the functor

it Modir - Modlj;r carries projective objects to projective objects, we have a
Grothendieck spectral sequence (in the abelian category Mod%')
Tor?(M, Tor (B, N)) = Tor2,(M, N).

If M and N are perfect, then we can apply the same reasoning to the induced
map AYPT — B1/P¥ to obtain a Grothendieck spectral sequence

Torfl/poo (M, Torfl/poo (B'?*" N)) > TorA/™” (M,N).

s+t

8.3. Tensor Products of Holonomic Modules. Our next goal is to prove the
following variant of Theorem 3.5.1:

Theorem 8.3.1. Let A be an Fy,-algebra and let M and N be algebraic Frobenius
modules over A. Then:

(1) The tensor product M ® yip N is algebraic.

(2) The Tor-groups Torfl/p (M, N) vanish for = > 0.
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(3) If M and N are holonomic, then M ® 41/p~ N is holonomic.
The proof of Theorem 8.3.1 will require some preliminaries.

Lemma 8.3.2. Let A be a Noetherian F,-algebra, and let M and N be holonomic
Frobenius modules over A. Theoroz:
(1) The Tor-groups Torfl/p (M,N) are also holonomic Frobenius modules
over A.
(2) Let f: A - B be any homomorphism of commutative rings. Then the
canonical map

FoTor™"™ (M, N) - Tor5""" (f°M, f°N)
s an 1somorphism.

Proof. Since M and N are holonomic, we can write M = Mé/pm and N = Ng/pm,
where My, Ny € Mod} are finitely generated as A-modules. The assumption
that A is Noetherian guarantees that the Tor-groups Tory (Mo, Ny) is finitely

generated as an A-module. Using the isomorphisms Torfl/p (Mol/ pw,N&/ pm) ~

Tori (My, No)V/P™ of Proposition 8.2.5, we conclude that each Torﬁl/p (M,N) is
holonomic. This proves (1).

We now prove (2). Let f: A - B be a homomorphism of commutative rings.
Let P, and @, be resolutions of M and N by projective objects of Modzerf.
Then P, and Q. are also resolutions of M and N by projective AP~ -modules.
It follows that the homology groups of the complexes fOP;’ and f°Q, can be
identified with the groups Torj?l/p (BY/»% M) and Torj?l/p (B/?% N), which
vanish for = >0 by virtue of Theorem 3.5.1. In other words, we can regard f°P,
and fog* as projective resolutions of f°M and f°N, respectively. It follows that
Tor? e (f°M, f°N) can be identified with the homology of the tensor product
complex

(foP) ®pup= (f°Q4) = BYP" @ 1 (Pe ® g1 Q).

We therefore have a convergent spectral sequence
E2, = Tor!" (BY"", Tor"™" (M, N)) = Torkl" (f°M, f°N).

To prove assertion (2), it will suffice to show that the groups EZ, vanish for s > 0,
which follows from assertion (1) and Theorem 3.5.1. O

Proof of Theorem 8.53.1. Let M and N be algebraic Frobenius modules over an
F,-algebra A; we wish to prove that the tensor product M ® 410~ N is alge-

braic and that the Tor-groups Torfl/p (M, N) vanish for = > 0. Using Theorem
4.2.9, we can write M as a filtered colimit of holonomic Frobenius modules and
thereby reduce to the case where M is holonomic. Similarly, we can assume
that N is holonomic. Applying Proposition 4.1.3, we can assume that M = (> M’
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and N = (°N’, where ¢ : A’ - A is the inclusion of a finitely generated subal-
gebra and M’, N’ € Mod'. In this case, Lemma 8.3.2 supplies isomorphisms
Torfl/p (M,N) ~° Torfll/p (M’,N"). We may therefore replace A by A’, and
thereby reduce to the case where A is Noetherian. It now follows from Lemma
8.3.2 that the Tor-groups Torfl/p (M, N) are holonomic for each s > 0; we wish
to show that they vanish for s > 0. By virtue of Proposition 5.3.3, it will suffice
to show that f° Tor‘;‘l/p (M, N) ~ 0 for every homomorphism f: A - k, where K
is a field. Applying Lemma 8.3.2 again, we can reduce to the case where A = k,
in which case the vanishing is automatic. 0

8.4. Compatibility with the Riemann-Hilbert Correspondence. Let A
be a commutative F,-algebra and let Sol : Mod%™ — Shvg (Spec(A),F,) be the
solution sheaf functor (Construction 9.3.1), given by the formula

Sol(M)(B) = {z € (B®s M) : ppe,(x) =z}

Note that if x € Sol(M)(B) and y € Sol(N)(B), then the tensor x ® y can be
regarded as an element of Sol(M ® 410~ N)(B). This observation determines a
bilinear map

Sol(M)(B) x Sol(N)(B) = Sol(M ® yup= N)(B)

which depends functorially on B, and therefore gives rise to a map of sheaves
SOl(M) ®Fp SOl(N) - SOI(M ® g1/p*° N)

Theorem 8.4.1. Let A be a commutative F,-algebra and suppose that M and N
are algebraic A-modules. Then the comparison map

6 : Sol(M) ®, Sol(IN) = Sol(M & 410 N)
is an isomorphism in the category Shvg(Spec(A),F,).

Proof. Tt will suffice to show that for every algebraically closed field x and every
homomorphism f: A - k, the pullback f*(#) is an isomorphism in Shvf;t. Since
M, N, and M ® 410~ N are algebraic (Theorem 8.3.1), we can identify f*(8) with
the tautological map

Sol(f° M) &, Sol(f°N) - Sol(f°M &, f°N).

We may therefore replace A by x and thereby reduce to the case where A is
an algebraically closed field. In this case, Theorem 2.4.3 implies that Modzlg is
equivalent to the category of vector spaces over F,. Consequently, the Frobenius
modules M and N can be decomposed as a direct sum of copies of AYP™ = g,

and the desired result is obvious. O

Corollary 8.4.2. Let A be a commutative Fy,-algebra. Then the Riemann-Hilbert

functor RH : Shv 4 (Spec(A), F,) - Mod%™ admits the structure of a symmetric
monoidal functor (where the symmetric monoidal structure on Shv4(Spec(A),F,)
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1s given by the usual tensor product of sheaves, and the symmetric monoidal
structure on Mod"™ is given by the tensor product ® i of Remark 8.1.5).

Proof. 1t follows from Theorem 8.4.1 that the lax symmetric monoidal functor
Sol : Mod%™ — Shvg (Spec(A),F,) is symmetric monoidal when restricted to
Modjlg. Combining this observation with Theorem 2.4.3, we see that the func-
tor Sol |y, avle is an equivalence of symmetric monoidal categories. We conclude
by observing that the functor RH can be obtained by composing an inverse of
Sol |z, 4%s with the inclusion functor Mod%® < Mod®™. O
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9. THE p"-TORSION CASE

Let R be a commutative F-algebra. Theorem 1.0.2 supplies a fully faithful em-
bedding from the category Shve (Spec(R),F),) p-torsion étale sheaves on Spec(R)
to the category of Frobenius modules over R. Our goal in this section is to prove
a generalization of Theorem 1.0.2, which gives an analogous realization for the
category Shvg (Spec(R),Z/p"Z) of Z[p™Z-torsion étale sheaves, for any nonneg-
ative integer n. Our first step will be to introduce an analogous enlargement of
the category Mod}y of Frobenius module over R. In §9.1, we define a notion of
Frobenius module over W,,(R), where W, (R) is the ring of length n Witt vec-
tors over R (Definition 9.1.1). The collection of such Frobenius modules can be
organized into a category Modaﬁn( r)- In §9.2, we study the dependence of this
category on the Fj-algebra R (emphasizing in particular the effect of replacing R
by its perfection RYP” | which makes Witt vectors much more pleasant to work
with). In §9.3, we introduce a solution functor

Sol : Modyy, gy = Shve(Spec(R), Z/p"Z)

connecting Frobenius modules over W,,(R) to p"-torsion étale sheaves (which
reduces to Construction 2.3.1 in the case n = 1). Like its p-torsion counterpart,
this solution functor is not exact. However, we show in §9.4 that it is almost
exact when restricted to perfect Frobenius modules, in the sense that it has
only one nonvanishing derived functor (Proposition 9.4.1). We apply this result
in §9.6 to show that the functor Sol restricts to an equivalence of categories

Modi%,gn(m ~ Shvg (Spec(R),Z/p"Z) (Theorem 9.6.1). Here Modi%,gn(m denotes
the full subcategory of Mod™® = spanned by the algebraic Frobenius modules

W (R)
over W, (R), which we introduce in §9.5 (Definition 9.5.2).

9.1. Frobenius Modules over the Witt Vectors. We begin by extending
some of the notions introduced in §3. Let R be a commutative F,-algebra. For
every nonnegative integer n, we let W, (R) denote the ring of length n Witt
vectors of R. The Frobenius map ¢r : R - R induces a ring homomorphism
F:W,(R) - W,(R), which we will refer to as the Witt vector Frobenius.

Definition 9.1.1. Let R be a commutative Fj-algebra and let n > 0 be an
integer. A Frobenius module over W,(R) is an W,,(R)-module M equipped with
an additive map ¢y : M — M satisfying the identity pp(Ax) = F(N)puy(x) for
xeM, e W,(R). We will say that a Frobenius module M is perfect if the map
ou s M - M is an isomorphism of abelian groups.

Let (M, py) and (N, @n) be Frobenius modules over W, (R). A morphism of

Frobenius modules from (M, @) to (N, ¢y ) is an W,,(R)-module homomorphism



A RIEMANN-HILBERT CORRESPONDENCE IN POSITIVE CHARACTERISTIC 73

p: M — N for which the diagram

M- N

o Jon

ML My

commutes. We let Modr{,?}n( r) denote the category whose objects are Frobenius
modules (M, ¢y ) over W, (R), and whose morphisms are morphisms of Frobenius
modules. We let Moda‘zf( R) denote the full subcategory of Modaﬁn( r) Spanned by
the perfect Frobenius modules over W, (R).

Remark 9.1.2. In the special case n =1, Definition 9.1.1 reduces to Definitions
2.1.1 and 3.2.1. In particular, we have an equivalence of categories Modr{,?;l( R) ¥

Mod}y, which restricts to an equivalence Mod%ﬁi R~ Mod%erf.

Remark 9.1.3. Let R be a commutative ring in which p = 0 and let n > 0.
Then Modaﬂn( g) can be identified with the category of modules over the noncom-
mutative ring W, (R)[F'] whose elements are finite sums Y., ¢;F?, where each
coefficient ¢; belongs to W,,(R), with multiplication given by

(ZCZF’)(ZCQFJ) = Z( Z ciFi(cj))Fk.

120 320 k>0 i+j=k

In particular, Modaﬁn( r) is an abelian category with enough projective objects
and enough injective objects.

Remark 9.1.4. In the situation of Definition 9.1.1, the full subcategory

erf Fr
MOd‘PiVn(R) c MOde(R)

perf
Wn(R)

abelian category, and the inclusion functor Modszf( R < Modaﬂn( ) Is exact.

is closed under limits, colimits, and extensions. In particular, Mod is an

Remark 9.1.5. For each n > 0, we can identify Modaﬁn_l (ry With the full subcat-

egory of Modaﬁn( r) spanned by those objects (M, @) where M is annihilated by
the kernel of the restriction map W,,(R) - W,,_1(R). We therefore obtain (exact)
fully faithful embeddings

MOdFr o MOdE{l}l(R) > MOdE{I}Q(R) > MOdE{I}S(R) > e
Similarly, we have fully faithful embeddings

erf erf erf erf
Mody™ =~ MOd‘I;Vl(R) > MOdIv)VQ(R) > MOdIv)VS(R) > e
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Remark 9.1.6. In the situation of Definition 9.1.1, the inclusion Modszf(R) >
Modaﬂn( gy admits a left adjoint. Concretely, this left adjoint carries a Frobenius
module M to the direct limit of the sequence

MM AFT EM A ET L
here M¥™ denotes the W, (R)-module obtained from M by restriction of scalars
along the ring homomorphism F*: W, (R) - W, (R). We will denote this direct

limit by M/ and refer to it as the perfection of M. Note that when n = 1, this
agrees with the construction of Notation 3.2.3.

Example 9.1.7. Let R be a commutative F,-algebra. For each n > 0, we can
regard M = W, (R) as a Frobenius module over itself by taking ), to be the Witt
vector Frobenius map F : W,(R) - W,,(R). Then the perfection M'/P” can be
identified with W, (R/P™).

9.2. Functoriality. If f: A - B is a homomorphism of F,-algebras, then there
is an evident forgetful functor Modr{,?}n( B) Modaﬁn( 4)- This functor admits a

left adjoint fj : ModFV?}n( )~ Modaﬁn( ), given by extension of scalars along the
evident ring homomorphism W, (A)[F] - W,(B)[F]. Since the natural map
Wo(B) ®w,a) Wn(A)[F] - W,(B)[F] is an isomorphism, we have canonical
isomorphisms fi M ~ W, (B) ®w, ) M in the category of W, (B)-modules.

Remark 9.2.1. Let f: A —» B be a homomorphism of commutative F,-algebras
and let M be a Frobenius module over W,,(B). Then M is perfect as a Frobenius
module over W, (B) if and only if it is perfect when regarded as a Frobenius
module over W,,(A). Moreover, the perfection M'/?” does not depend on whether
we regard M as a Frobenius module over W,,(B) or over W,,(A). It follows that
the diagram of forgetful functors

erf Fr
MOdEVn(B) e MOde(B)

| l

erf Fr
MOdTP;Vn(A) —— MOde(A)

commutes (up to canonical isomorphism).
The following result is a formal consequence of Remark 9.2.1:

Proposition 9.2.2. Let f : A - B be a homomorphism of commutative F,-

algebras. Then the forgetful functor Mod%ﬁif(B) - ModIV’;f(A) admits a left adjoint
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fe. Moreover, the diagram of categories

Fr (_)1/p°° erf
MOde(A) I MOdEVn(A)

lf;r l/“

M dFr _)1/p°°M C1perf
0w, (B) — MOy, ()

commutes up to canonical isomorphism. More precisely, for every object M e
Mod'y, the canonical map fo(MVP~) - (fz M)Y/P" is an equivalence.

Proposition 9.2.3. Let R be a commutative F,-algebra. For each n > 0, the

c g perf perf . .
restriction of scalars functor Mode (RUp=) Mode( R) s an equivalence of cat-

egories.

Proof. Let f: R — RYP” be the tautological map. Since the restriction of scalars
functor is evidently conservative, it suffices to observe that for each object M ¢
ModP® . the unit map

Wn(R)’
M — fo(M) = (W, (RYP7) ®w,(r) M)"/P"
is an isomorphism of (perfect) Frobenius modules over W, (R). O

Corollary 9.2.4. Let R be an F,-algebra and let 0 < m <n. Then the essential
image of the tautological map Modﬁ{i:(m - Mod%jf(m consists of those perfect
Frobenius modules over W,,(R) which are annihilated by p™.

Proof. By virtue of Proposition 9.2.3, we can assume without loss of generality
that R is perfect. In this case, the desired result follows from Remark 9.1.5, since
the kernel of the restriction map W,,(R) - W,,(R) is the principal ideal (p™). O

Proposition 9.2.5. Let f : A = B be a homomorphism of perfect F,-algebras.
Then the extension of scalars functor fg : Modaﬁn(m - Modaﬁn(m carries perfect
Frobenius modules over W,,(A) to perfet Frobenius modules over W, (B).

Proof. Let M be a perfect Frobenius module over A. Then the maps
Fg:W,(B) > W,(B) Fa:W,(A) > W,(A) oy M- M
are isomorphisms, so the induced map
Pz Wa(B) @w, 4y M — W, (B) ®w,a) M
is also an isomorphism. O

Corollary 9.2.6. Let f: A— B be an étale morphism of Fp-algebras. Then the

dperf

extension of scalars functor fy, : Modsén(A) - Modaﬁn(B) carries Mo Wi (A) into

erf
Modsvn (3"
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Proof. Let M be a perfect Frobenius module over A. Then we can also regard M
as a Frobenius module over AY/P™. Since f is étale, the diagram of commutative
rings

Wy (4) W,(B)

l l

V[/n(,éll/p"o ) - I/Vn(Bl/p"o )

is a pushout square by the result [15, 2.4] of van der Kallen. It follows that we
can identify fi M with the tensor product W, (BY?™) ®y, (a1/p=y M, which is
perfect by Proposition 9.2.5. O

9.3. The Solution Functor. We now adapt Construction 2.3.1 to the setting
of Frobenius modules over the Witt vectors.

Construction 9.3.1. Let R be a commutative F-algebra and let M be a Frobe-
nius module over W, (R). We let Sol(M) denote the functor CAlg}y — Modz/pnz
given by the formula

Sol(M)(R') = {z e (W,(R) ®w,(r) M) : @Wn(R')chn(R)M(ZE) =}
We will refer to Sol(M) as the solution sheaf of M.
Remark 9.3.2. In the situation of Construction 9.3.1, suppose that the action of
W, (R) on M factors through the restriction map W, (R) - R, so that M can be
regarded as a Frobenius module over R (if M is perfect, this is equivalent to the
requirement that pM = 0, by virtue of Corollary 9.2.4). Then the functor Sol(M)

of Construction 9.3.1 agrees with the functor Sol(M) of Construction 2.3.1: this
follows from the fact that the diagram of commutative rings

Wi (R) —— W, (R')
l l
R R

is a pushout square, for any étale R-algebra R'.

Our first goal is to show that the functor Sol(M) of Construction 9.3.1 is
actually a sheaf with respect to the étale topology on Spec(R). To prove this, it
will be convenient to consider the following variant of Example 2.2.5:

Notation 9.3.3. Let R be a commutative Fp-algebra and let M be a module
over W,(R). We let M € Shvg(Spec(R),Z/p"Z) denote the sheaf given by the
formula M(R') = W,,(R") ®w, gy M. Note that, when M is annihilated by the
kernel of the restriction map W, (R) - R (so that M can be regarded as an
R-module), this agrees with the sheaf of Z/pZ-modules introduced in Example
2.2.5.
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Remark 9.3.4. Let R be a commutative F,-algebra. Then the construction
R~ W, (R") induces an equivalence from the category of étale R-algebras to the
category of étale W, (R)-algebras. In particular, the category of étale sheaves on
Spec(R) is equivalent to the category of étale sheaves on Spec(W,,(R)). If M is a
module over W, (R), then it determines a quasi-coherent sheaf on Spec(W,,(R)),
which corresponds (under the preceding equivalence) to the functor M : CAlg?’.{@t -
Modz/,nz of Notation 9.3.3. In particular, the functor M is always a sheaf with
respect to the étale topology on CAlg%.

Remark 9.3.5. In the situation of Notation 9.3.3, suppose that R is perfect and
that M is flat as a module over Z/p"Z. Then, for each R’ € CAlg%, the abelian
group M(R') is also flat as a Z/p"Z-module. In particular, the sheaf M is flat
over Z/p"Z.

If M is a Frobenius module over W,,(R), then the Frobenius map ¢, deter-
mines an endomorphism of the associated étale sheaf M. By construction, we
have an exact sequence of presheaves

0 — Sol(M) —» M =%, 77,
It follows that Sol(M) is always a sheaf with respect to the étale topology. We
may therefore regard the construction M ~ Sol(M) as a functor from the cate-
gory of Frobenius modules over W,,(R) to the category of p™-torsion sheaves on
Spec(R). We will denote this functor by

Sol : Modyy, () = Shve(Spec(R), Z/p"Z)
and refer to it as the solution sheaf functor.

Proposition 9.3.6. Let R be a commutative F-algebra and let M be an injective

object of the abelian category ModP™

W (R)" Then we have a short exact sequence

0 — Sol(M) - M AT 50 in the category of abelian presheaves on CAlgS.
The proof of Proposition 9.3.6 is based on the following:

Lemma 9.3.7. Let R be an F,-algebra and let M be an injective object of the

qrert Then M is free when regarded as a module over

abelian category Mo W (R)"

Z/p"Z.

Proof. Choose a collection of elements {x;};; of M, whose images form a basis
for M/pM as a vector space over F,. Then the elements z; determine a map
of Z/p*Z-modules f : @;; Z/p"Z — M. The map f is surjective by virtue of
Nakayama’s lemma; we will complete the proof by showing that it is injective.
Assume otherwise: then there exists some nonzero element ¢ € ker(f), which we
can identify with a collection of elements {¢;};; of Z/p"Z (almost all of which
vanish). Let us assume that ¢ has been chosen so that the ideal (¢;)r € Z/p"Z
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is as large as possible. Since the elements x; have images in M /pM which are
linearly independent over F,, we must have (c¢;)ier # Z/p"Z. It follows that we
can write & = pb for some element b € @;; Z/p"Z. Then pf(l;) = f(¢) =0, so there
is a unique map of (perfect) Frobenius modules g : RY/PT[F*1] - M satisfying
g9(1) = f(b).

Let W, (RY/P™)[ F*!] denote the perfection of the Frobenius module W,,(R)[F].
Note that multiplication by p»~! induces a monomorphism

Rl/p“ [Fil] N Wn(Rl/pw)[Fil].

Invoking our assumption that M is injective, we conclude that g factors as a

n—1
composition RYVP™[F+1] Z— W, (RYP™)[F*!] L M. Since f is surjective, we

can write h(1) = f(a) for some element d € @;c; Z/p"Z. We then have
F(h=p ) = f(B) - p" 7 f(@) = g(1) -p"*h(1) =
so that B—p"‘ld belongs to ker(f). However, the ideal generated by the coefficients

of b - p"~'d is strictly larger than the ideal (¢i)ier, which contradicts our choice
of ¢. O

Proof of Proposition 9.3.6. Let M be an injective object of the abelian category

Modssrf( > We wish to show that the map

id -y - M- M
is a epimorphism of Z/p"Z-valued presheaves. We proceed by induction on n.
The case n = 0 is vacuous and the case n = 1 follows from Lemma 7.1.2, so we
may assume that n > 2. For each k > 0, let M[p*] denote the kernel of the map
pF: M — M. Write n =i+ 7, for some positive integers 7 and j. Since M is
injective, Lemma 9.3.7 implies that we have a short exact sequence of (perfect)
Frobenius modules

0> M[p'] > M = M[p’] - 0.
Applying the construction N — N, we obtain a commutative diagram of short
exact sequences

Mp] —= M 2 M[pi] —=0
lld Puipi] | id-om lid_@M[pJ‘]
0 — M[p'] —= M 2~ M[p/] —=0

in the category of presheaves of abelian groups on CAlg%. Since M is an injective
object of ModP?™ _ the submodules M[pi] and M[p’] are injective objects of

W (R)
Modssr(fm and Mod{fER), respectively (this follows from Corollary 9.2.4, since
the inclusion functors Mod%ir§R) Mod%irf( R) Mod%iri R are exact). Applying
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our inductive hypothesis, we deduce that the outer vertical maps in the preceding
diagram are epimorphisms, so that the middle vertical map is also an epimorphism
(by the snake lemma). O

9.4. Derived Solution Functors. For every commutative F,-algebra R and
every integer n > 0, the solution functor Sol : Mod%if( R~ Shve (Spec(R),Z/p"Z)
is left exact, and therefore admits right derived functors

Sol™ : Modszf(R) — Shvg (Spec(R), Z/p"Z)

for m > 0. These functors are described by the following generalization of Propo-
sition 7.1.1:

Proposition 9.4.1. Let R be a commutative F,-algebra and let M be a perfect
Frobenius module over W,,(R). Then we have a canonical short exact sequence

0 = Sol®(M) — M L22Y, 7T - Sol' (M) - 0,
and the sheaves Sol™ (M) wvanish for m > 2.

Proof. Choose an injective resolution 0 - M — Q° - Q! - --- in the abelian
category Modﬁ{if( R)" Using Proposition 9.3.6, we obtain a short exact sequence
of cochain complexes

0 Sol(Q*) = 0" L4 0% - 0.

Since the construction N + N is exact, the chain complex Q* is an acyclic
resolution of M. The associated long exact sequence now supplies the desired
isomorphisms. O

Remark 9.4.2. Let R be a commutative F,-algebra and let M be a perfect
Frobenius module over W,,(R). Then M can also be regarded as a perfect Frobe-
nius module over W,,,(R) for m > n. The étale sheaf Sol"(M) depends a priori on

whether we choose to regard M as an object of the abelian category Mod%if( R)

(in which case Sol’(M) is defined as sheaf of Z/pnZ-modules on Spec(R)), or
as an object of the larger abelian category MOds;;f( R) (in which case Sol"(M) is
defined as a sheaf of Z/p™Z-modules on Spec(R)). However, Proposition 9.4.1

shows that the resulting étale sheaves are canonically isomorphic.
We will also need a generalization of Corollary 6.4.2:

Proposition 9.4.3. Let R be a commutative F-algebra and let () be an injective
object ofModszf(R). Then Sol(Q) is an injective object of Shv g (Spec(R), Z/p"Z).

The proof of Proposition 9.4.3 will require the following:
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Lemma 9.4.4. Let R be a commutative F,-algebra, let M be a W, (R)-module
which is flat over Z[p"Z, and let F € Shvg(Spec(R),F,). Then the canonical
map

EXt%‘p(ﬁ> M[p]) - EXtIZ/p”Z(ga M)
15 bijective.
Proof. Suppose we are given an extension 0 > M - 4 - .Z — 0 in the abelian

category Shvg (Spec(R),Z/p"Z). We wish to show that there exists a commuta-
tive diagram of short exact sequences

0 — M[p] g’ F 0
0 M @ F 0,

where ¢’ is annihilated by p, and that the extension class of the upper exact
sequence is uniquely determined. The uniqueness is clear: note that if such a
diagram exists, then it induces an isomorphism ¢’ ~ ¢[p] = ker(p: ¥4 - ¥4). To
prove existence, it will suffice to show that the composite map ¥[p] > 4 - Z is
an epimorphism. To prove this, we note that the commutative diagram

0—¥|p] % P9 0

|

0 F 9.z 0 0

yields a long exact sequence
M~ % [9[p] - coker(¥[p] -~ F) — coker(4 - .F),

where the last term vanishes (since the map ¢ — .% is an epimorphism). We are
therefore reduced to showing that the canonical map M — ¢ /%[p] is an epimor-
phism. Since .% is annihilated by p, the map p: ¥ — ¢ induces a monomorphism
v:9 |9 [p] - M. It will therefore suffice to show that the image of v is contained
in the image of the map p: M — M. This follows from Remark 9.3.5, since im(v)
is annihilated by p"1. O
Proof of Proposition 9.4.3. Let () be an injective object of Modszf(R). We wish to
show that Sol(Q) is an injective object of Shvg (Spec(R),Z/p"Z): that is, that the
group Extlz/pnz(f, Sol(Q)) vanishes for every sheaf .# € Shvg (Spec(R),Z/p"Z).

Since the collection of those objects .% for which the group Ext, oz (F,S0l(Q))

vanishes is closed under extensions, we may assume without loss of generality
that .%# is annihilated by p.
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By virtue of Proposition 9.3.6, we have short exact sequences of étale sheaves

== 1d-¢qp

0 - Sol(Q[p]) - Q[p] ——= Q[p] - 0

~ id-— ~
0~ Sol(Q) » @ —>Q -0
which supply a commutative diagram of long exact sequences

EXt%_p(yaQ[p]) = EXtOZ/an(gaé)

id=¢q(p) id-¢q

Bxth, (. Q[p]) —"— Extiyz(7.Q)

Extpy (7, Sol(Q[p])) ——= Extl, 7 (-7, S0l(Q))

T Y

Extg, (F, Q[p]) Exty)pnz(7, Q)

id=¢q(p) id-¢q

Extr, (7, Q[p]) ——— Exty,n2(Z, Q).

The map « is obviously an isomorphism, and v is an isomorphism by virtue of
Lemma 9.4.4. It follows that (8 is also an isomorphism. We are therefore reduced
to proving that the group Extiﬂp(gf ,Sol(Q[p])) vanishes. In fact, we claim that

Sol(Q[p]) is an injective object of the abelian category Shve (Spec(R),F,): this
is a special case of Corollary 6.4.2, since Q[p] is an injective object of the abelian
category Mod%erf. O

9.5. Algebraic Frobenius Modules over W, (R). Let R be a commutative
F,-algebra and let M be a perfect Frobenius module over W,,(R). We let M|p]
and M /pM denote the kernel and cokernel of the map p: M — M. Then M|[p]
and M [pM are perfect Frobenius modules over W,,( R) which are annihilated by p,
and can therefore be identified with perfect Frobenius modules over R (Corollary
0.2.4).

Proposition 9.5.1. Let R be a commutative F,-algebra and let M be a perfect
Frobenius module over W,,(R). The following conditions are equivalent:

(1) The quotient M/pM e Mod>™ is algebraic, in the sense of Definition
2.4.1.

(2) The submodule M[p] € Mod%Crf is algebraic, in the sense of Definition
2.4.1.
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(3) Every element x € M satisfies an equation of the form
ok (2) + a1 N () + o+ apr =0
for some coefficients a; € W, (R).

Definition 9.5.2. Let R be a commutative Fp-algebra and let M be a perfect
Frobenius module over W,(R). We will say that M is algebraic if it satisfies

the equivalent conditions of Proposition 9.5.1. We let Mod?%,gn( R) denote the full

perfspanned by the algebraic Frobenius modules over W, (R).

subcatgory of Mode( R

Remark 9.5.3. In the situation of Definition 9.5.2, an object M ¢ Modaﬁn(R) is
algebraic if and only if it is algebraic when viewed as a Frobenius module over
W, (R), for any m > n.

Remark 9.5.4. In the situation of Definition 9.5.2, let M be a perfect Frobenius
module over W,,(R) which is annihilated by p. Then M can be regarded as a
perfect Frobenius module over R (Corollary 9.2.4). Moreover, M is algebraic in

the sense of Definition 9.5.2 if and only if it is algebraic in the sense of Definition
2.4.1.

Proof of Proposition 9.5.1. The implication (3) = (2) is obvious. We now show
that (2) = (1). Assume that M is a perfect Frobenius module over W, (R) and
that the p-torsion submodule M([p] is algebraic (as a perfect Frobenius module
over R). For each integer i > 0, we have a short exact sequence

0~ (M[p] np'M)/(M[p] np™ M) - p'M/[p™* M 5 p"™ M [p™2 M - 0

Since the collection of algebraic objects of Mod%Crf is closed under the formation

of subobjects and quotient objects (Proposition 4.2.4), condition (2) guarantees
that each (M[p] npM)/(M[p] np**tM) is algebraic. Since the collection of
algebraic objects of Mod%™ is closed under extensions (Proposition 4.2.4), it
follows by descending induction on ¢ that each p*M /p**tM is algebraic. Taking
i =0, we deduce that (1) is satisfied.

We now complete the proof by showing that (1) implies (3). We proceed by
induction on n, the case n = 0 being trivial. Assume that n >0 and let  be an
element of M having image T € M/pM. Condition (1) guarantees that we can
find an element @ = F™ + @ F™ ' + - + @1 F' + @y, € R[F] such that 7z(T) = 0.
Lift 7z to an element p = F™ + a; F™ ' + - + a,,, € W, (R)[F'], so that u(x) € pM.
Note that pM/p>*M is a quotient of M /pM, and is therefore algebraic by virtue
of Proposition 4.2.4. The Frobenius module pM is annihilated by p”!, and can
therefore be regarded as a perfect Frobenius module over W,,_1(R) by virtue of
Corollary 9.2.4. Applying our inductive hypothesis, we deduce that there exists an
expression v = F™ + b F™ 14 1b, 1 F+by € W, (R)[F] such that v(u(z)) =0,
so that z is annihilated by vp e W,(R)[F']. O
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We have the following generalization of Proposition 4.2.4:

Proposition 9.5.5. Let R be a commutative Fp-algebra and let n > 0. Then

Mod?;/gn( Ry 5@ localizing subcategory of Moda‘zf( Ry That is:

(a) Given a short exact sequence 0 - M’ — M — M" — 0 of perfect Frobenius
modules over R, M 1is algebraic if and only if M' and M" are algebraic.

(b) The collection of algebraic Frobenius modules over W, (R) is closed under
(possibly infinite) direct sums.

Proof. We will prove (a); assertion (b) is immediate from the definitions. Suppose
we are given an exact sequence 0 - M’ - M — M'" — 0 of perfect Frobenius
modules over W, (R). Then we also have an exact sequence M'/pM' — M [pM —
M"[pM" — 0. If M'/pM’ is algebraic, then Proposition 4.2.4 implies that M /[pM
is algebraic if and only if M"”/pM" is algebraic. Using characterization (1) of
Proposition 9.5.1, we conclude that if M’ is algebraic, then M is algebraic if
and only if M" is algebraic. Applying the same argument to the exact sequence
0 - M'[p] - M[p] - M"[p] (and using characterization (2) of Proposition
9.5.1), we deduce that if M" is algebraic, then M is algebraic if and only if M’ is
algebraic. 0

Proposition 9.5.6. Let R be a commutative Fy,-algebra, let n > 0, and let M
be an algebraic Frobenius module over W, (R). Then the étale sheaves Sol'(M) €
Shv ¢ (Spec(R),Z/p"Z) vanish for i+ 0.

Proof. We prove the following assertion by induction on m:

(*) Let M be an algebraic Frobenius module over W,,(R) which is annihilated
by p™. Then Sol*(M) = 0.

Note that assertion (x*¢) is trivial, and assertion (%, ) implies Proposition 9.5.6.
It will therefore suffice to show that (x,,) implies (%,,,1). Note that if M is an
algebraic Frobenius module which is annihilated by p™*!, then the the short ex-
act sequence 0 - M[p] - M — pM — 0 yields an exact sequence of sheaves
Sol'(M[p]) - Sol’(M) - Sol'(pM). Here pM and M[p] are also algebraic
(Proposition 9.5.5), and pM is annihilated by p™. Our inductive hypothesis
then guarantees that Sol’(pM) = 0. To complete the proof, it will suffice to show
that Sol’(M[p]) = 0. To prove this, we can replace W, (R) by R (Remark 9.4.2),
in which case the desired result follows from Corollary 7.4.4. O

9.6. The Riemann-Hilbert Correspondence for Z/p"Z-Sheaves. We can
now formulate the main result of this section:

Theorem 9.6.1 (Riemann-Hilbert Correspondence). Let R be a commutative F,-

algebra and let n > 0. Then the functor Sol : Modaif(R) — Shvg(Spec(R),Z/p"Z)

induces an equivalence of categories MOdE;II/i(R) — Shvg(Spec(R),Z/p"7Z).
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We will deduce Theorem 9.6.1 from the following comparison result:

Proposition 9.6.2. Let R be a commutative Fp-algebra and let M and N be
perfect Frobenius modules over W,,(R). Assume that M is algebraic and that
Sol'(N) ~0. Then the canonical map

EXtW (R)[F (M N) nd Eth/pnz(SOI(M) SOI(N))
s an isomorphism for i > 0.

Proof of Theorem 9.6.1 from Proposition 9.6.2. We first claim that the compos-
ite functor

Sol

Modav}l,g (R) Mod%‘jrf(m — Shvg (Spec(R),Z/p"Z)

is fully faithful. Let M and N be algebraic Frobenius modules over W, (R); we
wish to show that the canonical map

Homyy, (r)(r) (M, N) — Homp, (Sol(M),Sol(N))

is an isomorphism. This is a special case of Proposition 9.6.2, since Sol'(N) =~ 0
by virtue of Proposition 9.5.6.

Let C ¢ Shvg (Spec(R),Z/p"Z) denote the full subcategory spanned by those
sheaves of the form Sol(M), where M is an algebraic Frobenius module over
W, (R). To complete the proof of Theorem 9.6.1, it will suffice to show that
every object of Shvg (Spec(R),Z/p"Z) belongs to C. Note that Theorem 2.4.3
guarantees C contains every sheaf of Z/pZ-modules on Spec(R). We will complete
the proof by showing that C is closed under the formation of extensions. Suppose
we are given a short exact sequence of étale sheaves

0> F > F > F" >0,

where .Z#' and .#" belong to C; we wish to show that .# also belongs to C. With-
out loss of generality, we may assume that .#' = Sol(M’) and .Z" = Sol(M"") for
some algebraic Frobenius modules M’ and M" over W,,(R). In this case, the pre-
ceding exact sequence is classified by an element 7 € Exty, sz (Sol(M"),Sol(M")).
Invoking Proposition 9.6.2 again, we deduce that 7 can be lifted (uniquely) to
an element 7 € Extyy, (ryr(M", M"), which classifies a short exact sequence of
Frobenius modules 0 — M "> M - M" - 0. Proposition 9.5.5 guarantees that
M is algebraic, so that # ~ Sol(M) also belongs to the category C. O

We now turn to the proof of Proposition 9.6.2. We begin with some special
cases.

Lemma 9.6.3. Let R be an Fy-algebra and let M be an algebraic Frobenius

module over R, and let N be any object of Modssrf(R)

0 : Homyy, (ry (M, N') > Homgynz(Sol(M),Sol(N))

Then the canonical map
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s an isomorphism.

Proof. Since the functor Sol is left exact, we have an isomorphism Sol(N)[p] ~
Sol(N[p]). Since M and Sol(M) are annihilated by p, we can identify 6 with the
canonical map

Homp(r) (M, N[p]) » Homg, (Sol(M), Sol(N[p])).

We may therefore replace N by N[p] and thereby reduce to the case n = 1. Using
Theorem 2.4.3, we can choose an isomorphism M ~ RH(.%) for some object
F € Shvg (Spec(R),F,). In this case, we 6 has a left inverse, given by the map

Homp, (Sol(RH(F)),Sol(N)) — Homg, (F, Sol(N))

given by precomposition with the unit map u :.% — Sol(RH(.%#)). This map is
an isomorphism by virtue of Proposition 7.2.1. 0

Lemma 9.6.4. Let R be an F,-algebra and let M be an algebraic Frobenius
module over R. Let N be any perfect Frobenius module over W,(R). If Sol'(N) =~
0, then the canonical map

ExtW7 (] (M, N) — Extz/an(Sol(M) Sol(N))
s an isomorphism for i > 0.

Proof. Choose an injective resolution 0 - N —» Q° - Q' — -+ in the abelian
category Moda‘zf( R): Our hypothesis that Sol'(N) vanishes guarantees that the
complex 0 - Sol(N) - Sol(Q°) - Sol(Q!) — - is exact in the abelian category
Shvg (Spec(R),Z/p"Z) (Proposition 9.4.1). Moreover, each Sol(Q?) is an injec-
tive object of Shve (Spec(R),Z/p"Z) (Proposition 9.4.3). It will therefore suffice
to show that the canonical map

Homy,, (r)(r) (M, Q") — Homgpnz(Sol(M), Sol(Q"))

is a quasi-isomorphism of chain complexes. In fact, this map is an isomorphism
of chain complexes: this is a special case of Lemma 9.6.3. 0

Proof of Proposition 9.6.2. Let N be a perfect Frobenius module over W, (R),
and suppose that Sol' (V) ~ 0. Let us say that an object M € Mod®® . is good
if the canonical map

pi 2 Bxtiy, gy (M, N) = Bxtiy gz (Sol(M), Sol(N))

Wn(R)

is an isomorphism for ¢ > 0. It follows from Lemma 9.6.4 that if M € Mod@%,g ( R)

annihilated by p, then M is good. We wish to show that every object of Mod;l/% (R)
is good. For this, it will suffice to establish the following:
(*) Let 0 > M'" - M — M"” — 0 be a short exact sequence of algebraic
Frobenius modules over W,,(R). If M’ and M" are good, then M is also
good.
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To prove (), we note that the vanishing of Sol'(M’) (Proposition 9.5.6) guar-
antees the exactness of the sequence 0 — Sol(M’) — Sol(M) — Sol(M") - 0. It
follows that each p; fits into a commutative diagram of exact sequences

pzl

ExtW (R)[F (M N) — Extz/an(SOI(M ), Sol(N))
i " Pl ) l "
Extiy, (pyr) (M, N) —— Exty ,nz(Sol(M"), Sol(N))

Extiy, (i) (M, N) —— Exty 5 (Sol(M), Sol (N))

( / i ( /

Extiy! gy (M, N) - LN Excty iz (Sol(M"), Sol(N)).

Our hypothesis that M’ and M" are good guarantees that the maps p}_;, p/, pf,
and p! , are isomorphisms, so that p; is also an isomorphism. O
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10. GLOBALIZATION

For any commutative Fp-algebra R, the Riemann-Hilbert correspondence of
Theorem 1.0.2 supplies a description of the category of p-torsion étale sheaves on
the affine F)-scheme X = Spec(R) in terms of Frobenius modules over R. Our
goal in this section is to extend the Riemann-Hilbert correspondence to the case
of an arbitrary F,-scheme X. We begin in §10.1 by introducing the notion of
a Frobenius sheaf on X: that is, a quasi-coherent sheaf & on X equipped with
a Frobenius-semilinear endomorphism ¢g (Definition 10.1.2). The collection of
Frobenius sheaves on X forms a category, which we will denote by QCoh%. In
§10.2 we construct an equivalence RH from the category Shve (X; F,) of p-torsion
étale sheaves on X to a full subcategory QCOh;}g c QCohE;r (Theorem 10.2.7 and
Notation 10.2.10). This is essentially a formal exercise (given the earlier results of
this paper): roughly speaking, the Riemann-Hilbert functor RH is constructed by
amalgamating the equivalences Shvg (U; F)) ~ QCohaUlg where U ranges over affine
open subsets of X. Consequently, any local question about the the functor RH
can be reduced to the affine case: we use this observation in §10.3 to argue that
the Riemann-Hilbert correspondence is compatible with the formation of pull-
backs along an arbitrary morphism of F,-schemes f : X — Y (Variant 10.3.12).
However, we do encounter a genuinely new global phenomenon: the Riemann-
Hilbert correspondence is also compatible with direct images (and higher direct
images) along a morphism f : X — Y which is proper and of finite presentation
(Theorem 10.5.5). We prove this in §10.5 using a global characterization for holo-
nomic Frobenius sheaves (Theorem 10.4.1), which we establish in §10.4. In §10.6,
we apply these ideas to give a proof of the proper base change theorem in étale
cohomology (in the special case of p-torsion sheaves on F,-schemes; see Corollary
10.6.2).

Remark 10.0.1. Throughout this section, we confine our study of Frobenius
sheaves on X to the case where X is an F,-scheme. However, the results of
this section can be extended to more general geometric objects, such as algebraic
spaces over F,. Similarly, the results can also be extended to have “coefficients
in Z/p™” in the sense of §9. We leave such extensions to the reader.

10.1. Frobenius Sheaves on a Scheme. We begin by introducing some termi-
nology.

Notation 10.1.1. For any scheme X, we let QCohy denote the category of
quasi-coherent sheaves on X. If X is an F,-scheme, we let px : X - X denote
the absolute Frobenius morphism from X to itself.

Definition 10.1.2. Let X be an F,-scheme. A Frobenius sheaf on X is a pair
(€, ps), where £ is a quasi-coherent sheaf on X and g : £ - px, £ is a morphism
of quasi-coherent sheaves. If (£, p¢) and (F,@s) are Frobenius sheaves on X,
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then we will say that a Ox-module map f : & — F is a morphism of Frobenius
sheaves if the diagram

!

& F

pE l PF

«(f)
PX 6SDX—> SOX*]:

commutes. We let Q,Cohir denote the category whose objects are Frobenius
sheaves on X and whose morphisms are morphisms of Frobenius sheaves.

We will generally abuse terminology by identifying a Frobenius sheaf (&, p¢)
with its underlying quasi-coherent sheaf £, and simply referring to £ as a Frobe-
nius sheaf on X.

Example 10.1.3. Let X = Spec(R) be an affine F,-scheme. Then the the global
sections functor & — T'(X,€) induces an equivalence of categories QCohE(r -
Modj; .

Remark 10.1.4. Let X be an F,-scheme. Then the category Q,Cohg;r is abelian.
Moreover, the forgetful functor QCohE(r — QCohy is exact.

Variant 10.1.5. Let X be an F,-scheme. Using the adjointness of the functors

vx. and %, we can obtain a slightly different description of the category QCoh’}
of Frobenius sheaves:

e The objects of QCoh’y can be identified with pairs (€,¢), where £ is
a quasi-coherent sheaf on X and v¢ : o5 & — € is a morphism of quasi-
coherent sheaves.

e A morphism from (&, 1¢) to (F,1#) in the category QCohk is a morphism
of quasi-coherent sheaves f: & — F for which the diagram

L o ox()
‘PX5X—>90X7:

luzg lw

e . r

commutes.

In what follows, we will regard quasi-coherent sheaves on a scheme X as sheaves
on the étale site of X (see Example 2.2.5). Given a quasi-coherent sheaf £ e
QCohy and an étale morphism f:U — X, we let £(U) denote the abelian group
of global sections I'(U, f* £). Note that if U = Spec(R) is affine, then £(U) has
the structure of an R-module; if X is an Fj,-scheme and £ is a Frobenius sheaf,
then £(U) inherits the structure of a Frobenius module over R.

Proposition 10.1.6. Let X be an Fp-scheme and let € be a Frobenius sheaf on
X. The following conditions are equivalent:
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(1) For every étale morphism f : U — X where U ~ Spec(R) is affine, the
group of sections E(U) is perfect (respectively algebraic, holonomic) when
regarded as a Frobenius module over R.

(2) For every open subset U ¢ X where U ~ Spec(R) is affine, the group of
sections & is perfect (respectively algebraic, holonomic) when regarded as
a Frobenius module over R.

(3) There exists an étale covering {U, - X} where each U, ~ Spec(Ry) is
affine, and each E(U,) is perfect (respectively algebraic, holonomic) when
regarded as a Frobenius module over R,.

Proof. The implications (1) = (2) = (3) are obvious. The implication (3) = (1)
follows from Corollary 3.4.7 (respectively Lemma 5.4.6, Corollary 7.4.3). O

Definition 10.1.7. Let X be an F,-scheme and let £ be a Frobenius sheaf on
X. We will say that £ is perfect (respectively algebraic, holonomic) if it satis-
fies the equivalent conditions of Proposition 10.1.6. We let QCohg(e]rf (respectively
QCohiég, QCoh}}fl) denote the full subcategory of QCohE;r spanned by those Frobe-
nius sheaves which are perfect (respectively algebraic, holonomic), so that we have
inclusions

QCoh%! ¢ QCoh%® ¢ QCoh%™ ¢ QCoh'y .

Example 10.1.8. Let X = Spec(R) be an affine F-scheme. Then a Frobenius
sheaf & € QCohE}r is perfect (respectively algebraic, holonomic) if and only if
['(X, ) is perfect (respectively algebraic, holonomic) when regarded as a Frobe-
nius module over R.

Remark 10.1.9. Let X be an F,-scheme. Then the subcategories
QCoh’! € QCoh%E ¢ QCoh%™ ¢ QCoh’y

are closed under the formation of kernels, cokernels, and extensions. In particular,
they are abelian subcategories of QCohEE. Moreover, the subcategories QCohiég c
QCohﬁfrf c QCoh y are closed under (possibly infinite) direct sums (and therefore
under all colimits). To prove these assertions, we can work locally and thereby

reduce to the case where X is affine: in this case, the desired results follow from
Remark 3.2.2, Proposition 4.2.4, and Corollary 4.3.3.

Remark 10.1.10 (Descent). Let X be an F)-scheme. Then the theory of Frobe-
nius sheaves satisfies effective descent with respect to the étale topology on X,
and is therefore determined (in some sense) by its behavior when X is affine. In
other words, the construction (U — X)) = QCoh;} determines a stack on the étale
site of X. The same remark applies to the subcategories QCoh}{}’l, QCohaUlg, and
QCoh}}erf (by virtue of Proposition 10.1.6).
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Remark 10.1.11 (Perfection). Let X be an F,-scheme and let £ be a Frobenius
sheaf on X. We let £/P7 denote the direct limit of the diagram

€ wx+(pe)

Sﬁﬂpx* (pg(*g_)...

Then we have a canonical isomorphism Y7 =~ ¢y, £YP” which endows /P
with the structure of a perfect Frobenius sheaf on X. Moreover, the canonical
map u: € - EYP7 is a morphism of Frobenius sheaves with the following universal
property: for any perfect Frobenius sheaf F on X, composition with u induces a
bijection

HomQCOhE{crf(El/pw ,F) > Homgegpee (€, F).

In other words, we can regard the construction & — EYP” as a left adjoint to
the inclusion functor QCohgfrf c QCoh’. Note that the the perfection functor

£~ EYP7 s exact (since filtered direct limits in QCohy are exact; see see [14,
Tag 077K]).

10.2. The Riemann-Hilbert Correspondence. We now extend the Riemann-
Hilbert correspondence of Theorem 1.0.2 to the case of a general F,-scheme.

Notation 10.2.1. For any scheme X, we let Shvg (X, F,) denote the abelian
category of p-torsion sheaves on the étale site of X. If X is an F,-scheme, then
we have a forgetful functor QCohy — Shve (X, F,) which carries a sheaf of Ox-
modules to its underlying sheaf of F,-modules. We will generally abuse notation
by not distinguishing between a quasi-coherent sheaf £ and its image under this
functor. Moreover, we will also abuse notation by identify & with its direct
image ¢x. & under the absolute Frobenius map ¢x : X — X: note that there
is a canonical isomorphism £ ~ ¢, € in the category Shvg (X, F,), though this
isomorphism is not O x-linear.

Construction 10.2.2 (The Solution Functor). Let X be an F,-scheme and let
(€, ¢s) be a Frobenius sheaf on X. We let Sol(€) denote the kernel of the map
(id-pg) : € = &, formed in the abelian category Shve (X, F,). The construction
(€,0¢) = Sol(€) determines a functor Sol : QCoh'y — Shve (X, F,), which we
will refer to as the solution functor.

Remark 10.2.3. In the special case where X = Spec(R) is affine, the solution
functor of Construction 10.2.2 agrees with the solution functor of Construction

2.3.1. More precisely, for any Frobenius sheaf £ on X, we have a canonical
isomorphism Sol(€) ~ Sol(I'(X,€)) in the category Shve (X, F),).

Remark 10.2.4. Construction 10.2.2 is local with respect to the étale topology.
More precisely, if f: U — X is an étale morphism of F-schemes, then we have a
canonical isomorphism f* Sol(€) ~ Sol(f* &) for every Frobenius sheaf £ on X.
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Remark 10.2.5. Let X be an F,-scheme and let £ be a Frobenius sheaf on
X. Then the canonical map £ - £YP” induces an isomorphism of étale sheaves
Sol(€) - Sol(EYP™). To prove this, we can reduce to the case where X is affine,
in which case the desired result follows from Proposition 3.2.9.

Remark 10.2.6. Let X be an F,-scheme and let £ be an algebraic Frobenius
sheaf on X. Then the sequence

id-pg

0—>Sol(§) =& ——E -0

is exact (in the abelian category Shve (X, F,). To prove this, we can work locally
on X and thereby reduce to the case where X is affine, in which case the desired
result follows from Propositions 7.1.1 and 7.2.1.

Theorem 10.2.7. Let X be an F,-scheme. Then the solution functor Sol induces
equivalences of abelian categories

QCoh%® = Shv (X, F,)  QCoh%! — Shv%,(X,F,).

Here Shv§,(X,F,) denotes the full subcategory of Shv (X, F,) spanned by those
p-torsion étale sheaves F which are locally constructible (that is, for which the
restriction F |y € Shva(U, F)) is constructible for each affine open subset U ¢ X ).

Remark 10.2.8. If the scheme X is quasi-compact and quasi-separated, then a
sheaf .# € Shv¢ (X, F,) belongs to the subcategory Shvg (X, F,) if and only if
it is constructible: that is, if and only if it becomes locally constant along some
constructible stratification of X.

Proof of Theorem 10.2.7. Since the constructions
(U € X) = QCohy?', QCoh®, Shvy (U, F,), Shvé (U, F,)

satisfy effective descent with respect to the Zariski topology (or even the étale
topology), we can reduce to the case where X = Spec(R) is affine. In this case,
the desired equivalences follow from Theorems 1.0.2 and 7.4.1. O

Corollary 10.2.9. Let X be an F,-scheme which is quasi-compact and quasi-
separated. Then the inclusion functor QCoh}}?I > QCOh;}g extends to an equiva-

lence of categories Ind(QCoh’¥!) ~ QCohiég.

Proof. By virtue of Theorem 10.2.7, it will suffice to show that the inclusion func-
tor Shvg (X, F,) < Shve (X, F,) extends to an equivalence Ind(Shvg, (X, F,)) ~
Shve (X, F,), which follows from [14, Tag 03SA]. O

Notation 10.2.10. Let X be an F,-scheme. We let RH : Shvy (X, F,) - QCoh%#
denote an inverse of the solution functor. We will refer to RH as the Riemann-
Hilbert functor.
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Remark 10.2.11. Let X be an Fj-scheme and let .# € Shvg (X, F,) be a p-
torsion étale sheaf on X. Then the Frobenius sheaf RH(.%) is characterized by
the following universal property: for every perfect Frobenius sheaf £ on X, the
canonical map

HomQCOhgfrf(RH(gf), €) - Homg, (Sol(RH(F)), Sol(£)) ~ Homg, (F, Sol(€))

is a bijection. To prove this, we can reduce to the case where X is affine, in which
case the desired result follows from the properties of the Riemann-Hilbert functor
given in Theorem 6.1.1.

We can summarize the situation as follows: when regarded as a functor from
Shv (X, F,) to QCohI)’frf, the Riemann-Hilbert functor of Notation 10.2.10 is left

adjoint to the solution functor Sol : QCohf;{erf — Shvg (X, F,).

10.3. Functoriality. We now consider the behavior of Frobenius sheaves as the
F,-scheme X varies.

Construction 10.3.1 (Pullback of Frobenius Sheaves). Let f : X — Y be a
morphism of F,-schemes, so that we have a commutative diagram of schemes

Xty

lwxf |~

X —Y

and therefore a canonical isomorphism f*op3 ~ ¢% o f* in the category of functors
from QCohy to QCohy.

Let &£ be a Frobenius sheaf on Y, and let ¢¢ : ¢}, & — € be as in Variant 10.1.5.
We let 14+ ¢ denote the composite map

* * * * f*w *
P E = [Ty E— fTE.
The construction (£,v¢) = (f* €, ¢) determines a functor QCohif - QCoh%.
We will denote this functor also by f*, and refer to it as the functor of pullback
along f.

Remark 10.3.2. In the special case where X and Y are affine, the pullback
functor of Construction 10.3.1 agrees with the extension of scalars functor of
Construction 2.1.6.

Under some mild assumptions, the pullback functor f* of Construction 10.3.1
admits a right adjoint:

Proposition 10.3.3. Let f: X = Y be a morphism of schemes which is quasi-
compact and quasi-separated. Then the pullback functor f* : QCohf)r - QCohE(r
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admits a right adjoint f, : QCoh — QCohi*. Moreover, the functor f. is com-
patible with the usual direct image functor on quasi-coherent sheaves: that is, the
diagram

QCoh™T I~ QContr

.

QCohy —~ QCohy,
commutes up to canonical isomorphism.

Proof. The assumption that f is quasi-compact and quasi-separated guarantees
that the pullback functor f* : QCoh, - QCohy admits a right adjoint f, :
QCohy — QCoh,.. If £ is a Frobenius sheaf on X, we can equip the direct image
f+ & with the structure of a Frobenius sheaf on Y by defining ¢y, ¢ to be the
composition

fx
fo €5 feox €= oy E.

We leave it to the reader to verify that the construction (£,¢¢) = (f. €, ¢y, ¢)
determines a functor from QCoh’ to QCoh;* which is right adjoint to the pullback
functor of Construction 10.3.1. O
Remark 10.3.4. In the situation of Proposition 10.3.3, if £ € QCoh’} has the
property that ¢g is an isomorphism, then ¢y, ¢ is also an isomorphism. In other
words, the direct image functor f, carries QCth)(e]rf into QCOh?,erf.

The pullback functor of Construction 10.3.1 generally does not carry perfect

Frobenius sheaves to perfect Frobenius sheaves. To remedy this, we consider the
following variant:

Construction 10.3.5. Let f: X - Y be a morphism of F,-schemes. We define
a functor f°: QCoh?™ - QCoh%™ by the formula fo(€) = (f*&)W/»~.

Remark 10.3.6. If f : X - Y is a quasi-compact, quasi-separated morphism
of F,-schemes, then the functor f° : QCohip,Crf - QCohgfrf is left adjoint to the
direct image functor f, : QCohf;(Orf - QCohpyorf.

Remark 10.3.7. In the situation where X and Y are affine, the functor f° :

QCohP™ — QCoh%™ agrees (using the identification of Example 10.1.3) with the
functor described in Proposition 3.3.2.

In some cases, there is no difference between the functors f* and f°:

Proposition 10.3.8. Let f : X — Y be a morphism of Fj,-schemes. Assume
either that f is étale, or that both X and Y are perfect (that is, the Frobenius
maps px : X - X and ¢y : Y - Y are isomorphisms). Then the pullback
functor f* : QCohyf - QCohy carries QCohip,Crf into QCohI;frf. Consequently,
the functors f* and f° coincide on QCOh?,erf.



94 BHARGAV BHATT AND JACOB LURIE

Proof. The assertion is local on both X and Y, and therefore follows from Corol-
lary 3.4.7 (in the case where f is étale) and Proposition 3.4.5 (in the case where
X and Y are perfect). O

Proposition 10.3.9. Let f: X =Y be a morphism of Fp,-schemes and let £ be
an algebraic Frobenius sheaf on'Y. Then f°& is an algebraic Frobenius sheaf on
X. If € is holonomic, then f°& is also holonomic.

Proof. Both assertions are local on X and Y. We may therefore assume that X
and Y are affine, in which case the desired results follow from Corollary 4.2.8 and
Proposition 4.1.2. O

Proposition 10.3.10. Let X be an F,-scheme and let XP* denote the perfection
of X (so that O xpert = (’)ﬁ(/pm). Then the canonical map f: XPt - X induces an

, ; . perf perf
equivalence of categories f.: QCohi . > QCohi™ .

Proof. The assertion is local on X and we may therefore assume that X is affine,
in which case the desired conclusion follows from Proposition 3.4.3. 0

We now consider behavior of direct and inverse image functors under the
Riemann-Hilbert correspondence. We first observe that any morphism of schemes
f X - Y induces a left exact functor f, : Shve (X, F,) - Shve (Y, F,), which
is compatible with the direct image functor on quasi-coherent sheaves when f is
quasi-compact and quasi-separated. We therefore obtain the following:

Proposition 10.3.11. Let f : X = Y be a morphism of Fj,-schemes which is
quasi-compact and quasi-separated. Then the diagram of functors

Sol

QCoh’y =%~ Shv4(X,F,)

lf* lf*
QCohf 2L Shv (Y, F,)

commutes (up to canonical isomorphism,).

Variant 10.3.12. Let f: X - Y be any morphism of F,-schemes. Then the
diagram of functors

Shve (Y, F,) —2> Shve (X, F,)

% l
QCoht™ —L + QCony
commutes (up to canonical isomorphism). In the case where f is quasi-compact
and quasi-separated, this follows formally from Proposition 10.3.11 (by passing to
left adjoints; see Remark 10.2.11). The general case can be handled by working
locally on X and Y (which reduces us to the situation of Proposition 6.2.2).
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Construction 10.3.13 (Etale Compactly Supported Direct Images). Let f :
X — Y be an étale morphism of F-schemes. Then the functor f* : Shv (Y, F,) —
Shve (X, F,) admits a left adjoint f : Shve (X, F,) - Shve (Y, F,). Using Theo-
rem 10.2.7, we deduce that there is an essentially unique functor f, : Q(]ohi%g -
QCoh®® for which the diagram

Shve (X, F,) 2= QCoh#

o

Shve (Y, F,) ——> QCoh

commutes up to isomorphism. We will refer to f; as the functor of compactly
supported direct image along f.

Example 10.3.14. In the situation of Construction 10.3.13, if X and Y are étale,
then fi: QCohf;ég - QCoh?}g agrees with the functor constructed in Section 5.

In the situation of Construction 10.3.13, the functor f; : QCOh;}g - QCohi‘,lg
can be characterized a left adjoint to the pullback functor f* ~ f°: QCoh?,lg -
QCohiég. However, it has a slightly stronger property:

Proposition 10.3.15. Let f: X - Y be an étale morphism of F,-schemes and
let £ be an algebraic Frobenius sheaf on X. Then, for any perfect Frobenius sheaf
F onY, the canonical map

9 : HOmQCOh]}J/crf (fl 5, f) g HOmQCOh;}J(crf (f*fl g, f<> f) g HOmQCOh;}J(crf (g, f* f)
1S a bijection.

Proof. By virtue of Theorem 10.2.7, we can assume that & = RH(&") for some
p-torsion étale sheaf & on X. In this case, the map 6 fits into a commutative
diagram

HomQCthyerf(f, RH(€), F) - Hochohgfrf(RH(éa)a [ F)

| |

Homg, (fi &, Sol(F)) Homp, (&, Sol(f* F))

where the bottom horizontal map is an isomorphism because the formation of
solution sheaves is local for the étale topology, and the vertical maps are isomor-
phisms by virtue of Remark 10.2.11. O

Example 10.3.16. Let j : U - X be a quasi-compact open immersion of F-

schemes. Then the functor j : QCohaUlg - QCOhi}g can be described explicitly as
follows: if Z € O xpert denotes the (necessarily quasi-coherent) radical ideal sheaf
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defining (X - U)Pf| then the Frobenius automorphism of O xperr endows Z with
the structure of a holonomic Frobenius module on X, and we have j," g Oppert) > T.
More generally, for any E € QCOhi}g, we have jM8(j°E) ~Z® E.

10.4. Holonomic Frobenius Sheaves. Recall that a Frobenius module M over
a commutative F,-algebra R is holonomic if and only if there exists an isomor-

phism M ~ Mol/ pw, where M, € Mod} is finitely presented as an R-module. We
now show that holonomic Frobenius sheaves admit an analogous characterization:

Theorem 10.4.1. Let X be a Noetherian F,-scheme and let £ be a Frobenius
sheaf on X. The following conditions are equivalent:

(1) There exists a Frobenius subsheaf £y € € such that £y is coherent as an

Ox-module and the inclusion £y — &€ induces an isomorphism Sé/p ~ €.

2) There exists an isomorphism € ~ EYP" for some &, € QCohY™ which is
( 0 X

coherent as a Ox-module.
(3) The Frobenius sheaf £ is holonomic.

The proof of Theorem 10.4.1 will require some preliminaries.

Remark 10.4.2. Let X and £ be as in Theorem 10.4.1, and suppose that we
are given Frobenius subsheaves £y € £; € £. If the inclusion £y - £ induces an
isomorphism 5(1]/ T E , then the inclusion £; < £ has the same property. This
follows immediately from the exactness of the perfection construction F — FY/P~.

Lemma 10.4.3. Let X be an F,-scheme, let £ be a Frobenius sheaf on X, and
let £g € &€ be a quasi-coherent O x-submodule of £. Then there exists a smallest
Frobenius subsheaf £ € € which contains E,.

Proof. Take &' to be the image of the composite map

w’l’b
Dns0(P%) E0 = Dnso(px) € — €.
O

Remark 10.4.4. In the situation of Lemma 10.4.3, the construction £y = &' is
compatible with pullbacks along flat morphisms; in particular, it is compatible
with restrictions to open sets.

Lemma 10.4.5. Let X be a Noetherian Fy,-scheme, let £ be an algebraic Frobe-
nius sheaf on X, and let £y € € be a coherent Ox-submodule of £. Then the
Frobenius subsheaf £' € € of Lemma 10.4.3 is also coherent as a Ox-module.

Proof. By virtue of Remark 10.4.4, we can assume without loss of generality
that X = Spec(R) is affine. In this case, the desired result follows from Remark
2.4.2. O
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Proof of Theorem 10.4.1. The implications (1) = (2) = (3) are obvious. We will
prove that (3) implies (1). Let £ be a holonomic Frobenius sheaf on X. Choose
a finite cover {U;} of X by affine open sets U; ~ Spec(R;), and set M; = E(U;).
Then each M; is a holonomic Frobenius module over R;. We can therefore choose
isomorphisms M; ~ Nil/ pm, where each N; € Mod,F%ri is finitely generated as a
module over R;. Replacing each N; with its image in M;, we can assume that N;
corresponds to a Frobenius-stable subsheaf F; ¢ € |y,. Applying [14, Tag 01PF],
we can find choose a coherent subsheaf F; ¢ £ satisfying F; | = F;. Let F denote
the smallest Frobenius subsheaf of £ which contains each F; (Lemma 10.4.3). It
follows from Lemma 10.4.5 that F is coherent as a Ox-module. We claim that
the inclusion F < &£ induces an isomorphism F P ~ € To prove this, it suffices
to show that each restriction & |y, is the perfection of F|y,. This follows from

Remark 10.4.2, since F |y, contains JF; by construction. OJ

Remark 10.4.6. Theorem 10.4.1 can be generalized to the non-Noetherian case.
If X is an F,-scheme which is quasi-compact and quasi-separated and & is a
holonomic Frobenius sheaf on X, then there exists an isomorphism & ~ 8(1)/ poo,
where &g € QCohgf is locally finitely presented as a Ox-module. To prove this,
we first apply Theorem 10.2.7 to choose an isomorphism & = RH(.%) for some
constructible p-torsion étale sheaf .# on X. Using a Noetherian approximation
argument, we can choose amap f: X — Y and an isomorphism .Z ~ f*.%' where
Y is a Noetherian F,-scheme and .’ is a constructible p-torsion étale sheaf on

11/p*
0

Y. Applying Lemma 10.4.1, we can choose an isomorphism RH(F') ~ & for

some £) € QCohy" which is coherent as an Oy-module. Then
€ =RH(F) x RH(f* F') = f*(RH(F")) = [*(£,77) = (f* €1)'/"7,
where f* & is locally finitely presented as a O x-module.

10.5. Proper Direct Images. In §6.5, we proved that the Riemann-Hilbert
equivalence Sol : Modi‘zlg ~ Shvg (Spec(R),F,) is compatible with direct images
along ring homomorphisms which are finite and of finite presentation (Theo-
rem 6.5.1). In this section, we prove a generalization of this result: the global
Riemann-Hilbert correspondence of Theorem 10.2.7 is compatible with direct im-
ages along morphisms of F,-schemes f : X - Y which are proper and of finite
presentation. In the global setting, there is more to the story, since neither of the
direct image functors

f. : QCohy - QCohy! fe 1 Shve (X, F,) = Shvg (Y, F,)

is necessarily exact. In this case, we also have a comparison result for higher
direct images (see Theorem 10.5.5 below).

We begin with some general remarks. Let f: X — Y be a quasi-compact and
quasi-separated morphism of schemes. Then we have higher direct image func-
tors R'f. : QCohy — QCohy (see [14, Tag 01XJ]). These functors are equipped
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with canonical isomorphisms ¢y, o R'f, =~ Rif, o ¢x ., and therefore carry (per-
fect) Frobenius sheaves on X to (perfect) Frobenius sheaves on Y. The central
observation is the following:

Theorem 10.5.1. Let f: X =Y be a morphism of F,-schemes which is proper
and of finite presentation. If £ is an algebraic Frobenius sheaf on X, then the
higher direct images R f, E are algebraic Frobenius sheaves on'Y .

We begin by studying the Noetherian case.

Lemma 10.5.2. Let f : X =Y be a proper morphism of Noetherian F,-schemes.
If € is a holonomic Frobenius sheaf on X, then the higher direct images R'f, &
are holonomic Frobenius sheaves on'Y .

Proof. Invoking Theorem 10.4.1, we can write &£ = 8(1)/ pw, where &y is a Frobenius
sheaf on X which is coherent as an Ox-module. It follows from the direct image
theorem [14, Tag 0203] that the higher direct images Rf, &, are coherent Oy-
modules. Since the functors R’f, commute with filtered direct limits, we have
canonical isomorphisms

Rf.E=RIf(E) = (R'f, &)
Applying Theorem 10.4.1 again, we see that each R!f, £ is holonomic. U

Lemma 10.5.3. Let R be a commutative F,-algebra, let f: X — Spec(R) be a
morphism of schemes which is proper and of finite presentation, and let £ be an
holonomic Frobenius sheaf on X. Then, for every integer i, the cohomology group
H (X, &) is an algebraic Frobenius module over R.

Remark 10.5.4. In the situation of Lemma 10.5.3, one can say more: the coho-
mology groups H(X, &) are actually holonomic Frobenius modules over R (see
Corollary 10.6.3 below).

Proof of Lemma 10.5.3. Applying Theorem 10.2.7, we can choose an isomor-
phism £ ~ RH(.%#) for some constructible sheaf .# € Shv, (X, F,). Using Noether-
ian approximation [14, Tags 01ZM and 081F], we can choose a finitely generated
F,-subalgebra Ry ¢ R and a pullback diagram of schemes

X il Xo

L
Spec(R) — Spec(Ry),

where fy is proper. Enlarging R, if necessary, we can further arrange that
F = 1 Fy, where F, is a constructible p-torsion étale sheaf on X, (see [7,
§1, Proposition 4.17]). Set £y = RH(.%y), so that £ ~ 1° & (see Variant 10.3.12).

Write R as a filtered direct limit of finitely generated subrings R, ¢ R con-
taining Ry. For each index o, set X, = Spec(Ra) Xspec(ry) X0, let mq + Xo = Xo
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be the projection onto the second factor, and set £, = ¢ Ey. Then each &, is a
holonomic Frobenius sheaf on X, (Proposition 10.3.9). Invoking Lemma 10.5.2,
we see that the cohomology group H*(X,,&,) is a holonomic Frobenius module
over R,, so that the tensor product R/P~ ® RL/P €. is a holonomic Frobenius

module over R (Proposition 4.1.2). We now compute
HI(X,) ~ lmH (X&)

RYP™ @ pajpeo h_n)lHi(Xa,Sa)

lim RYP” @ 1o H (X, Ea).

1R

1R

Since the collection of holonomic Frobenius modules over R is closed under direct
limits (Proposition 4.2.4), it follows that Hi (X, &) is algebraic. O

Proof of Theorem 10.5.1. Let f : X - Y be a morphism of F,-schemes which
is proper and of finite presentation, and let £ be an algebraic Frobenius sheaf
on X. We wish to show that each higher direct image R'f, & is an algebraic
Frobenius sheaf on Y. This assertion is local on Y, so we may assume without
loss of generality that Y = Spec(R) is affine. In this case, X is quasi-compact and
quasi-separated, so Corollary 10.2.9 guarantees that we can write £ as a filtered
direct limit lim &4, where each &, is holonomic. Since the functor &~ H'(X, )
commutes with filtered direct limits and the collection of algebraic R-modules
is closed under direct limits (Proposition 4.2.4), we may replace £ by &, and

thereby reduce to the case where £ is holonomic. In this case, the desired result
follows from Lemma 10.5.3. U

We now apply Theorem 10.5.1 to the study of our Riemann-Hilbert correspon-
dence.

Theorem 10.5.5. Let f: X =Y be a morphism of F,-schemes which is proper
and of finite presentation. For every algebraic Frobenius sheaf & on X, we have
canonical isomorphisms Sol(Rif. E) ~ R f, Sol(&) in the category Shv4(Y,F,).
Proof. Since & is algebraic, we have an exact sequence

id-pg

0->Sol(§) =€ ——E -0

in the category of étale sheaves on X (Remark 10.2.6). This gives rise to a long
exact sequence of higher direct images

RV €L RISE € L RIFSOl(E) > RIS € 5 Rif €
which gives rise to short exact sequence of étale sheaves

0—.F > R f,Sol(E) - Sol(R' f, &) - 0,

where .Z denotes the cokernel of the map (id-¢) : R f, & - R-I1f, €. It
will therefore suffice to show that the map (id-¢) : R f, & - R71f, € is an
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epimorphism of étale sheaves on Y. This follows from Remark 10.2.6, since the
Frobenius sheaf R f, £ is algebraic by virtue of Theorem 10.5.1. O

Corollary 10.5.6. Let f: X =Y be a morphism of Fp-schemes which is proper
and of finite presentation. Then, for any p-torsion étale sheaf % on X, we have
canonical isomorphisms RH(R! f, %) ~ R f, RH(.%).

Proof. Using Theorem 10.5.5, we a canonical isomorphism
Rf,. 7 ~ R'f,Sol(RH(Z)) ~ Sol(R' f, RH(.%)),
which is adjoint to a comparison map 7 : RH(R!f, #) - R'f, RH(.%) (Remark

10.2.11). Since the Frobenius sheaf R'f, RH(.#) is algebraic (Theorem 10.5.1),
the map ~ is an isomorphism. O

10.6. Application: The Proper Base Change Theorem. Suppose we are
given a pullback diagram of schemes o :

x 2. x

o

Y! L Y.
For every étale sheaf .% on X and every integer n > 0, we have a natural compar-
ison map «a: g*R"f, % — R"flg"* % in the category of étale sheaves on Y’. The
proper base change theorem in étale cohomology asserts that, if the morphism f
is proper and .7 is a torsion sheaf, then the map « is an isomorphism [14, Tag
095S]. Our goal in this section is to show that, in special case where o is a diagram
of F,-schemes and .# is a p-torsion sheaf, the proper base change theorem can
be deduced from the results of this paper in an essentially formal way.

We begin with some general remarks. Let o be as above, and suppose that the
morphisms f and f’ are quasi-compact and quasi-separated. In this case, we can
associate to every quasi-coherent sheaf £ on X a comparison map

Big'Rf.E > Rflg" €
in the category QCoh, of quasi-coherent sheaves on Y’. Moreover, if ¢ is a
diagram of F,-schemes and £ is a Frobenius sheaf on X, then 3 is a morphism
of Frobenius sheaves. If, in addition, the Frobenius sheaf £ is perfect, then
the perfection of 3 supplies a comparison map v : g°R"f. € - R"f.g’° € in the

perf

category QCohy,, .

Proposition 10.6.1. Suppose we are given a pullback diagram of F,-schemes

X/L/)X

o

y' 2oy,
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where [ is proper and of finite presentation. Then, for any algebraic Frobenius
sheaf & on X, the comparison maps v : g°R*"f, & - R"fl¢'* &€ are isomorphisms.

Proof. The assertion is local on Y and Y’; we may therefore assume without loss
of generality that Y = Spec(R) and Y’ = Spec(S) are affine. In this case, we
wish to show that the canonical map S/P” ® pi/p H*(X,E) > H* (X', g’* £) is an
isomorphism. Choose a finite covering {U;} of X by affine open subsets and let
{U’} denote the open covering of X’ given by U’ = g/-LU;. Let C* denote the Cech
complex of {U;} with coefficients in the sheaf £, so that we can identify H*(X, )
with the cohomology of the cochain complex C*. Note that for any affine open
subset U € X having inverse image U’ € X', we have a canonical isomorphism
(g"° E)(U") = SYP™ ®puijp E(U), so that SYP™ ®pijpe O is the Cech complex
of the open covering {U/} with coefficients in the sheaf ¢’°£. We can therefore
identify v with the canonical map

SUP™ @ e H(CF) = HO(SYP™ @ e CF).

For every affine open subset U ¢ X with inverse image U’ ¢ X', Remark 3.5.5
supplies isomorphisms

OYPT(U")  ifm=0
0 otherwise.

oty (5107, 0 () - |
It follows that the canonical maps

1/p% - 1/p™ oo
Tor™"™" (817 £(U)) » Tal X (O™ ("), £(1))

are isomorphisms. Our assumption that £ is algebraic guarantees that £(U) is
an algebraic Frobenius module over Ox(U), so that the groups

1/p* oo
Tory > OV (U),€(U))

vanish for £ > 0. We therefore also have Tor,}fl/p (S/p= E(U)) ~ 0 for k > 0.
Allowing U to vary, we conclude that the tensor product SVP™ ®pijpe C* is
equivalent to the left derived tensor product S1/p~ ®}L%1 »e C*. We therefore have
a convergent spectral sequence

Bt Tor™ ™ (Y2 HE(CF)) = HE5(RYP™ @1 CF),

in which v appears as an edge map. To show that v is an isomorphism, it suffices
to show that the groups E;t vanish for s > 0. This follows from Theorem 3.5.1,
since each H{(C*) ~ HY(X, &) is an algebraic Frobenius module over R by virtue
of Proposition 10.5.1. 0
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Corollary 10.6.2 (Proper Base Change). Suppose we are given a pullback dia-
gram of F,-schemes

x 2. x

T

y'—2sy,

where f is proper and of finite presentation. Then, for every p-torsion étale sheaf
F on X, the comparison map o : g* R*f, F — R"flg"™ F is an isomorphism

Proof. Using Corollary 10.5.6, we can identify the image of o under the Riemann-
Hilbert correspondence RH : Shvg, (Y7, F,) = QCohS" with the comparison map
v:g°R'f.RH(ZF) - R"flg"° RH(.%) of Proposition 10.6.1. Since RH(%) is
algebraic, the map ~ is an isomorphism, so that « is also an isomorphism. O]

We can use Proposition 10.6.1 to show that Lemma 10.5.2 holds in the non-
Noetherian case:

Corollary 10.6.3. Let f: X =Y be a morphism of Fp-schemes which is proper
and of finite presentation. If € is a holonomic Frobenius sheaf on X, then the
higher direct images R™f, £ are holonomic Frobenius sheaves on'Y .

Proof of Corollary 10.6.3. The assertion is local on Y, so we may assume without
loss of generality that Y = Spec(R) is affine. Proceeding as in the proof of Lemma
10.5.3, we can choose a pullback diagram

X = Xo

Tk

Spec(R) —= Spec(Ry)

where fy is proper, Ry € R is a finitely generated F,-subalgebra, and £ ~ 7° &
for some holonomic Frobenius module £y on Xy. Lemma 10.5.2 guarantees that
R™ fo. o is holonomic, so that 7’°R™ fy, €y is also holonomic (Proposition 4.1.2).
Proposition 10.6.1 supplies an isomorphism

v R fo. Eg > R fom®Eg~ R" [, E,
so that R"f, £ is holonomic as well. O
Corollary 10.6.4. Let f : X - Y be a morphism of F,-schemes which is

proper and of finite presentation. Then the higher direct image functors R f, :
Shv (X, F,) - Shva (Y, F,) carry constructible sheaves to constructible sheaves.

Proof. Combine Corollary 10.6.3 with Theorem 10.2.7 and Corollary 10.5.6. [



A RIEMANN-HILBERT CORRESPONDENCE IN POSITIVE CHARACTERISTIC 103

Remark 10.6.5. Let f: R — S be a morphism of Fj-algebras, let X be an R-
scheme which is proper and of finite presentation, and set Xg = X xgpec(r)Spec(S).
In this situation, we have a comparison map

R H*(X, Ox) ®r S — H*(XS7OXS)’

In general, this map need not be an isomorphism, even if X is assumed to be
smooth and projective over R (see Example 10.6.6). However, the domain and
codomain of § can be regarded as Frobenius modules over S, and Proposition
10.6.1 implies that 8Y/P” is an isomorphism: in other words, every element of
ker(3) or coker(/3) is annihilated by some power of the Frobenius. In other words,
the proper base change theorem holds in the setting of coherent cohomology,
provided that we work “up to perfection.”

Example 10.6.6. Let k£ be a field of characteristic p and set R = Ek[t]. Let
G — Spec(R) be a finite flat group scheme with generic fibre p,, and special fibre
a,. For each k > 2, we can approximate the stack BG' - Spec(R) by a smooth pro-
jective R-scheme X with geometrically connected fibres, i.e., the O-cohomology
of the generic fibre X, agrees with that of B(p,) in degrees < k, while that for
the special fibre X agrees with that of B(ay,) in degrees < k; an explicit example
is provided when p = £ = 2 by degenerating a “classical” Enriques surface X, to a
“supersingular” Enriques surface X,;. Assume now that & = 2 for simplicity. As p,
is linearly reductive, it follows that H(X,,Ox,) =0 for i € {1,2}. On the other
hand, Hi(X,Ox,) # 0 for ¢ = 1,2. Now consider the R-module H'(X,Ox).
Since HY(X,,0x,) = 0, it is easy to see that H'(X,Ox) is t-torsionfree. But
HY(X,0x)[1] = H'(X,,Ox,) = 0, so it follows that H'(X,0x) = 0. On the
other hand, H'(X,,Ox,) # 0, so we have constructed an example where the base
change map
Hl(X, Ox) ®r k— Hl(XS,OXS)

is not an isomorphism.
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11. THE CONTRAVARIANT RIEMANN-HILBERT CORRESPONDENCE

Let R be a smooth algebra over a field k of characteristic p. In [6], Emerton
and Kisin construct an equivalence of triangulated categories

RSolex : Dy, (R[F])™ = D!(Spec(R).F,).

where Dp (R[F]) denotes the full subcategory of D(R[F]) spanned by the co-
homologically bounded chain complexes whose cohomology groups finitely gen-
erated unit Frobenius modules and D?(Spec(R),F,) the constructible derived
category of Spec(R): that is, the full subcategory of the derived category of
Shv (Spec(R), F,) spanned by those chain complexes which are cohomologically
bounded with constructible cohomology.

Our goal in this section is to review (and generalize) the construction of the
functor RSolgk. We begin in §11.1 by reviewing the notion of a finitely generated
unit Frobenius module over a commutative F-algebra R (Definition 11.1.3), fol-
lowing [11] and [6]. The collection of finitely generated unit modules is always
closed under the formation of cokernels and extensions (Propositions 11.1.4 and
11.1.5). In §11.2 we show that, when R is a regular Noetherian F,-algebra, it is
also closed under the formation of kernels (Proposition 11.2.1). In this case, we let
D? ' «(L[F]) denote the full subcategory of the derived category D(R[F]) spanned
by those cochain complexes M = M* whose cohomology groups H"(M) are lo-
cally finitely generated unit Frobenius modules which vanish for all but finitely
many values of n. In §11.3, we show that there is a sensible way to define the
definition of the subcategory D?gu(R[F 1) € D(R[F]) for an arbitrary F,-algebra
R, by restricting our attention to cochain complexes which satisfy suitable “de-
rived” versions of the requirements defining finitely generated unit modules (see
Definition 11.3.4 and Proposition 11.3.9). In §11.4 we define a solution functor

RSolgk : DY (Mod§ )P — D(Shvg (Spec(R),F,)) and assert that it restricts to

fgu
an equivalence of categories Dé’gu(l\/[odg)op ~ Db(Spec(R),F,) (Theorem 11.4.4).
Taking R to be a smooth algebra of finite type over a field k, this recovers the
main result of [6] in the case of the affine scheme X = Spec(R). However, our
equivalence is a bit more general, since we allow R to be an arbitrary F,-algebra.
The proof of Theorem 11.4.4 will be given in §12 by comparing the functor RSolgk

with the solution functor Sol of Construction 2.3.1 (and its derived functors).

11.1. Finitely Generated Unit Frobenius Modules. We now introduce the
class of finitely generated unit Frobenius modules, following [6].

Notation 11.1.1. Let R be a commutative Fp-algebra and let M be an R-
module. We let p7, M denote the R-module obtained from M by extending scalars
along the Frobenius homomorphism ¢g : R - R. If M is a Frobenius module
over R, then the Frobenius map ¢, : M — M1/P determines an R-module homo-
morphism ¢ M — M, which we will denote by ;.
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Remark 11.1.2. In the situation of Notation 11.1.1, we can regard ¢ M as a
Frobenius module over R (Construction 2.1.6), and 1y, is a morphism of Frobe-
nius modules over R. Moreover, the morphism ), induces an isomorphism
of perfections (@pM)Y/P™ — MYP™. To prove this, we can extend scalars to
the perfection RY/P” and thereby reduce to the case where R is perfect. In
this case, the morphism vy, coincides with (the Frobenius pullback of) the map
oyt M — MY?, which is evidently an isomorphism of perfections.

Definition 11.1.3. Let R be a commutative F,-algebra and let M be a Frobenius
module over R. We will say that M is finitely generated unit if it satisfies the
following pair of conditions:

(a) The module M is finitely generated as a left module over the noncommu-
tative ring R[F'] of Notation 2.1.5.
(b) The map v : 95, M — M of Notation 11.1.1 is an isomorphism.

We now record some easy closure properties of the class finitely generated unit
Frobenius modules.

Proposition 11.1.4. Let R be a commutative Fy-algebra and let f: M — N be a
morphism of Frobenius modules over R. If M and N are finitely generated unit,
then the cokernel coker(f) is finitely generated unit.

Proof. Since N is finitely generated as a left module over R[F'], the quotient
coker(f) is also finitely generated as a left module over R[F']. We have a com-
mutative diagram of exact sequences

eR(f)
oM f RN 3 (coker(f)) —=0

l w]M l wN l wcoker(f)

M N coker(f) —— 0.

!

Since 1y and ¢y are isomorphisms, it follows that Ycorer(sy is also an isomor-
phism. O

Proposition 11.1.5. Let R be a commutative F,-algebra and suppose we are
given an exact sequence of Frobenius modules 0 - M' - M — M" — 0. If M' and
M" are finitely generated unit, then M 1is finitely generated unit.

Proof. Since the collection of finitely generated left R[F']-modules is closed under
extensions, the module M is finitely generated over R[F']. It will therefore suffice
to show that the map vy : ¢ M — M is an isomorphism. Let K denote the
kernel of the map M — @3 M". The morphism 9, fits into a commutative
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diagram of exact sequences

00— K — @M —= @3, M" —— 0

b e

0 M’ M M 0.

Note that the map vy, factors as a composition ¢}, M’ Ny NV, ' where g is
surjective. Since M’ is finitely generated unit, the map 1 is an isomorphism. It
follows that f is also an isomorphism. Applying the five lemma to the preceding
diagram, we conclude that 1), is also an isomorphism. ([

11.2. Existence of Kernels. Our next goal is to prove a counterpart of Propo-
sition 11.1.4 for kernels of morphisms between finitely generated unit Frobenius
modules. This will require a stronger assumption on R:

Proposition 11.2.1. Let R be a reqular Noetherian ¥,-algebra and let f : M - N
be a morphism of Frobenius modules over R. If M and N are finitely generated
unit, then K =ker(f) is also finitely generated unit.

The proof of Proposition 11.2.1 is essentially contained in [11] (see also [6]).
We include a proof here for the convenience of the reader, and because the proof
uses an auxiliary construction which will play a central role in §12.

Construction 11.2.2 (Unitalization). Let R be a commutative F,-algebra and
let M be an R-module equipped with an R-linear map ay : M — oM. We let
M denote the direct limit of the diagram

2
SDR%OU\/I

g N Gen

‘P;{O‘]\/I

M =5 ppM
We will refer to M* as the unitalization of the pair (M, ayy). Note that there is a

canonical isomorphism M* =~ ¢}, M*, whose inverse endows M* with the structure
of a Frobenius module over R.

Example 11.2.3. Let R be a commutative F,-algebra and let M be a Frobenius
module over R for which the map ¢y : M — M of Notation 11.1.1 is an
isomorphism. Then the unitalization of the pair (M,;}) can be identified with
M.

Remark 11.2.4 (Functoriality). Let R be a commutative F,-algebra and suppose
we are given a commutative diagram of R-modules

M—L N
lalvf l/aN
PR(f)
@EMR—>¢}}N.

Then f induces a map of unitalizations f*: M* — N%. Moreover:
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e The cokernel of f* can be identified with the unitalization of coker(f)
(with respect to the induced map Qoker(sy @ coker(f) — coker(yyf) =
@7, coker(f)).

e If the Frobenius map ¢r : R — R is flat (for example, if R is regular and
Noetherian), then the kernel of f* can be identified with the unitalization
of ker(f) (with respect to the map ker(f) — ker(¢%f) ~ ¢ ker(f)).

Let R be a commutative F,-algebra and let R[F'] denote the noncommutative
ring of Notation 2.1.5. For any R-module M, we have a canonical isomorphism

R[F1®@r M ~M @ opM & o3 M @ ---.

Suppose that M is equipped with a map ays : M — @3 M. Then the construction
z = (x,—ap(2)) determines an R-linear map M — M & oM ¢ R[F]| ®p M,
which extends to an R[F]-linear map o' : R[F]®r M — R[F]®r M. A simple
calculation shows that the map o’ is a monomorphism with cokernel M*. We
therefore obtain the following:

Proposition 11.2.5. Let R be a commutative F,-algebra and let M be an R-
module equipped with an R-linear map vy + M — @R M. Then the preceding
construction determines an exact sequence of Frobenius modules 0 — R[F]| ®g
M - R[F]®r M - M" - 0.

Corollary 11.2.6. Let R be a commutative Fy-algebra and let M be a finitely
generated R-module equipped with an R-linear map o« M — pp M. Then the
unitalization M is a finitely generated unit Frobenius module.

Proof. Condition (a) of Definition 11.1.3 follows from Proposition 11.2.5, and
condition (b) is immediate from the construction. O

We will be primarily interested in the following special case of Construction
11.2.2:

Construction 11.2.7. Let R be a commutative F,-algebra and let M be a
Frobenius module over R, which we regard as an R-module equipped with an
R-linear map s : M — M (Notation 11.1.1). Suppose that M is finitely
generated and projective as an R-module, with R-linear dual MV = Homg(M, R).
Then the dual of ¥ is an R-linear map 9y, : MV — 5 MY. We let D(M) denote
the unitalization of the pair (M",vy,).

Example 11.2.8. Let R be a commutative F,-algebra and let M be a Frobenius
module over R. Suppose that M is a projective R-module of finite rank and
that the map vy : @M — M is an isomorphism. In this case, the Frobenius
module D(M) of Construction 11.2.7 can be identified with the R-linear dual MV,
endowed with the Frobenius structure characterized by the formula 1y = (¢),)!
(Example 11.2.3).
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Proposition 11.2.9. Let R be a commutative Fp-algebra and let M be a Frobe-
nius module over R which is finitely generated and projective as an R-module.
Then D(M) has projective dimension <1 as a left R[F']-module.

Proof. Use the exact sequence 0 - R[F]®r MV - R[F]|®r MY - D(M) - 0
supplied by Proposition 11.2.5. 0

Remark 11.2.10. In the situation of Construction 11.2.7, the R-module D(M)
is presented as a filtered direct limit of projective R-modules of finite rank, and
is therefore flat over R.

In the case where R is a smooth algebra over a field k, Emerton and Kisin
prove a converse to Corollary 11.2.6: every finitely generated unit Frobenius
module arises as the unitalization of a finitely generated R-module M, equipped
with some map oy : M — p5M. The proof given in [6] applies more generally
whenever R is a regular Noetherian F-algebra (Corollary 11.2.12). We begin
with an observation which is valid for any F,-algebra R:

Proposition 11.2.11. Let R be a commutative Fp-algebra and let M be a finitely
generated unit Frobenius module over R. Then there exists a Frobenius module N
over R which is finitely generated and free as an R-module and a surjective map
of Frobenius modules f : D(N) — M (here D(N) is the Frobenius module given
by Construction 11.2.7).

Proof. Choose a finite collection of elements {z;};.; of M which generate M as
a left R[F]-module. Invoking the assumption that the map oy : oM — M
is an isomorphism, we conclude that M is generated as an R-module by the
elements F*x; for k>0 and j € I. We may therefore choose some integer n > 0
such that each x; belongs to the R-submodule of M generated by the elements
{F*z;}jes1<k<n- Replacing the set {x;}ier by the finite set {F*x;}ies gen, we can
reduce to the case n = 1: that is, we can arrange that there are relations z; =
Y jer @iy (x;) for some coefficients a; ; € R. Let N = R” be the free R-module
on generators y; for ¢ € I, and equip N with the structure of a Frobenius module
by setting o (yy) = ¥jerajiy;. Using Proposition 11.2.5 (or by inspection), we
see that D(NV) can be identified with the left R[F']-module generated by symbols
{Yi}ier, subject to the relations y; = 3y a; jF'x;. It follows that there is a unique
morphism of Frobenius modules f : D(N) - M satisfying f(y;) = ;. Since the
elements x; generate M as an R[F]-module, the morphism f is surjective. 0J

Proof of Proposition 11.2.1. Let R be a regular Noetherian F,-algebra and let
f: M — N be a morphism of finitely generated unit Frobenius modules over R.
We wish to show that the kernel K = ker(f) is also finitely generated unit. The
regularity of R guarantees that the Frobenius morphism ¢g : R - R is flat. It
follows that we can identify the pullback 3, K with the kernel of the induced map
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©R(f) oM - 3 N. We therefore have a commutative diagram of short exact
sequences

©r(f)
0 oK oM~ ot N

lIﬁK le lwzv
0 K M N.

Since 1), and ¥y are isomorphisms, it follows that g is also an isomorphism.

We now complete the proof by showing that K is finitely generated as a left
R[F]-module. Using Proposition 11.2.11, we can choose a finitely generated
projective R-module My, a map oy, : My — ¢ Mo, and a surjection of Frobenius
modules g : MY — M. It follows that the induced map ker(go f) - K is also
surjective. We may therefore replace f by ¢go f and thereby reduce to the case
M = MY. Let fy denote the composition of f with the tautological map M, —
M ~ M. Applying Remark 11.2.4 to the commutative diagram

f

MOLN

s

@;{MO - SOF{Na

we deduce that the kernel of f can be identified with the unitalization of ker( fy).
Since R is Noetherian, the kernel ker(fy) is finitely generated as an R-module,

so that ker(f) is finitely generated as an R[F']-module by virtue of Proposition
11.2.5. 0

Corollary 11.2.12 ([6]). Let R be a regular Noetherian F,-algebra and let M be
a finitely generated unit Frobenius module over R. Then there exists an isomor-
phism M ~ Mg, where My is a finitely generated R-module equipped with a map
Qo MO - @;{MO

Proof. Using Proposition 11.2.11, we can choose a surjection of Frobenius modules
f:N*—> M, where N is a free R-module of finite rank equipped with a map ay :
N — ¢35 N. As in the proof of Proposition 11.2.1, we can write ker(f) ~ K*, where

K denotes the kernel of the composite map N — N¥ ER M and o : K — oK is
the restriction of ay. Applying Remark 11.2.4 to the diagram

K N
e e

we deduce that M ~ coker( K* — N*) can be identified with the unitalization of
the quotient N/K (with respect to the map ay/x : N/K - ¢3(N/K) induced
by OéN). [
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11.3. Finitely Generated Unit Complexes. Our next goal is to introduce an
analogue of Definition 11.1.3 for cochain complexes M = M* of Frobenius modules
over a commutative F,-algebra R. When R is a regular Noetherian F,-algebra,
the collection of finitely generated unit Frobenius modules span an abelian sub-
category of Mody which is closed under extensions (Propositions 11.1.4, 11.1.5,
and 11.2.1), so we obtain a sensible finiteness condition on cochain complexes by
requiring that the cohomology groups H*(M) are finitely generated unit. How-
ever, to get a theory which works well for arbitrary F,-algebras, we must abandon
the idea of having a finiteness condition that can be tested at the level of individ-
ual cohomology groups: instead, we will require that the entire cochain complex
M~ satisfies suitable analogues of conditions (@) and (b) of Definition 11.1.3,
when regarded as an object of a suitable derived category.

Notation 11.3.1. For every associative ring A, we let D(A) denote the derived
category of the abelian category of left A-modules. We will be particularly in-
terested in the case where A = R[F'] for some commutative F,-algebra R; in this
case, we refer to D(R[F]) as the derived category of Frobenius modules over R.
We will generally abuse notation by identifying Modﬁr with its essential image
in D(R[F]) (by regarding every Frobenius module over R as a chain complex
concentrated in degree zero).

Remark 11.3.2. Let R be a commutative Fj-algebra and let M be an object
of D(R[F']). We will generally abuse notation by identifying M with its image
under the forgetful functor D(R[F]) - D(R). Note that we have a canonical
map M — M'/? in D(R) (where M'? denotes the image of M under the functor
D(R) - D(R) given by restriction of scalars along the Frobenius). We will denote
this map by ¢, and refer to it as the Frobenius morphism of M.

Remark 11.3.3 (Comparison with D(R)). Let R be a commutative F,-algebra.
Recall that the forgetful functor Mod}y — Modp has an exact right adjoint, given
by the functor M — M of Construction 3.1.2. Passing to derived categories, we
see that the forgetful functor D(R[F']) — D(R) also has a right adjoint, given
by applying the functor M ~ M levelwise. For any cochain complex N = N* of
Frobenius modules over R, Construction 3.1.7 produces a short exact sequence
of cochain complexes 0 - N* — N°*f — (N*)/rt — 0, which we can regard as a
distinguished triangle in the derived category D(R[F]). It follows that for any
object M € D(R[F]), we have a long exact sequence

s HOITID(R)(M7 Nl/p[—l]) - HomD(R[F])(Ma N) - HOTHD(R)(M7 N) -y

which specializes to the exact sequence of Construction 3.1.7 in the special case
where M and N are concentrated in a single degree.

We now introduce a “derived” analogue of Definiton 11.1.3:
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Definition 11.3.4. Let R be a commutative Fp-algebra and let M be an object
of D(R[F]). We will say that M is derived finitely generated unit if it satisfies
the following pair of conditions:

(a) The module M is a compact object of the triangulated category D(R[F']):
that is, it is quasi-isomorphic to a bounded chain complex of finitely gen-
erated projective left R[F]-modules.

(b) The Frobenius map ¢y : M — M'Y? induces an isomorphism RY/? @% M —
M in the derived category D(R).

We let Dp (R[F']) denote the full subcategory of D(R[F]) spanned by the de-
rived finitely generated unit objects.

Remark 11.3.5. Let R be a commutative F-algebra. Then Dg (R[F]) is a
triangulated subcategory of D(R[F]). In other words, for any distinguished
triangle M’ - M — M" — M'[1] in D(R[F]), if any two of the objects M, M’,

and M'" are derived finitely generated unit, then so it the third.

Example 11.3.6. Let R be a commutative F,-algebra and let M be a Frobenius
module over R which is finitely generated and projective as an R-module. Then
the Frobenius module D(M) of Construction 11.2.7 belongs to D, (R[F]). Con-
dition (b) of Definition 11.3.4 follows from Corollary 11.2.6 (note that the derived
pullback RYP @LD(M) agrees with ¢3D(M), since D(M) is flat over R by virtue
of Remark 11.2.10). Condition (a) of Definition 11.3.4 follows from the exact
sequence 0 > R[F|®r MV - R[F|®r MY - D(M) - 0 of Proposition 11.2.5.

We now study the relationship between the collection of derived finitely gener-
ated unit objects of D(R[F']) and the collection of finitely generated unit objects
of Modg. We begin with a simple observation which is valid for any F,-algebra

R:

Proposition 11.3.7. Let R be a commutative Fp,-algebra and let M be a nonzero
object of DY, (R[F]). Then:
(1) There exists a largest integer n for which the Frobenius module H*(M) is
nonzero.

(2) For the integer n of (1), the Frobenius module H*(M) is finitely generated
unit.

Proof. Without loss of generality, we can assume that M is a bounded cochain
complex of finitely generated projective left R[F]-modules. Assertion (1) is im-
mediate. To prove (2), we first note that we can arrange (replacing M by a
quasi-isomorphic complex if necessary) that M™ = 0 for m > n; in this case,
we have H?(M) = coker(M"1 — M"), which guarantees that H*(M) is finitely
generated as a left R[F']-module. The spectral sequence

Tor?(RYP HY(M)) = H=*(RY? @ M)
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supplies an isomorphism H"(RY? @& M) ~ ¢rH"(M), so that condition (b) of
Definition 11.1.3 follows from condition (b) of Definition 11.3.4. O

Corollary 11.3.8. Let R be a commutative F,-algebra and let M be a nonzero
object of D?gu(R[F]), and let n be an integer for which the cohomology groups
H™ (M) wanish for m > n. Then there exists an object N € Mody which is
finitely generated and projective as an R-module and a map f:D(N)[-n] - M

in D(R[F]) for which the induced map D(N) - H*(M) is surjective.

Proof. Applying Proposition 11.3.7, we conclude that H*(M) a finitely generated
unit, Using Proposition 11.2.11, we can choose an object N ¢ Modlj;r which is
finitely generated and projective as an R-module and a surjection of Frobenius
modules go : D(N) - H*(M). It follows from Proposition 11.2.9 that the map
Homp(ppyy (D(N)[-n], M) - Hompp1(D(N),H*(M)) is surjective, so we can
lift gy to a morphism g: D(N)[-n] = M in the derived category D(R[F']). O

When the F,-algebra R is sufficiently nice, there is a very close relationship
between Definitions 11.1.3 and 11.3.4:

Proposition 11.3.9. Let R be a regular Noetherian Fp-algebra. Then an ob-
ject M € D(R[F]) belongs to D?gu(R[F]) if and only if it satisfies the following
conditions:
(1) For every integer n, the cohomology group H*(M) is a finitely generated
unit Frobenius module (in the sense of Definition 11.1.3).
(2) The cohomology groups H*(M) wvanish for n < 0 and for n > 0.

The proof of Proposition 11.3.9 will require a few preliminary remarks.

Lemma 11.3.10. Let R be a reqular Noetherian ring and let M be a finitely
generated R-module. Then M has finite projective dimension as an R-module.

Remark 11.3.11. In the situation of Lemma 11.3.10, it is not necessarily true
that every R-module has finite projective dimension: this holds if and only if R
has finite Krull dimension.

Proof of Lemma 11.3.10. We define finitely generated R-modules {M(n)},50 by
recursion as follows: set M (0) = M, and for n > 0 let M(n) denote the kernel
of some surjection R¥ - M(n —1). For each n >0, let U(n) € Spec(R) denote
the set of prime ideals p ¢ R for which the localization M(n), is a projective
R-module. Then U(n) is an open subset of Spec(R): more precisely, it is the
largest open subset on which the coherent sheaf associated to M (n) is locally
free. Note that a point p belongs to U(n) if and only if the localization M,
has projective dimension < n as an Ry-module. Since R is regular, the set U(n)
contains every prime ideal of height < n. We therefore have U,,sq U(n) = Spec(R).
Since the spectrum Spec(R) is quasi-compact, we must have U(n) = Spec(R) for
some n > 0, which guarantees that M has projective dimension < n. O
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Lemma 11.3.12. Let R be a reqular Noetherian F,-algebra and let M be a finitely
generated unit Frobenius module over R. Then M has finite projective dimension
as a left R[F']-module.

Proof. Using Corollary 11.2.12, we can assume that M is the unitalization M},
where M is a finitely generated R-module equipped with a map o : My — @7, M,.
Invoking Lemma 11.3.10, we deduce that there exists an integer n > 0 such
that My has finite projective dimension < n as an R-module. Note that R[F] is
isomorphic to the direct sum @,,50 RY?™ as a right R-module, and is therefore
flat over R since the Frobenius map g is flat. It follows that the tensor product
R[F|®gr M, has projective dimension < n as a left R[F']-module. Using the exact
sequence 0 > R[F|®r My — R[F|®p My - M} — 0 of Proposition 11.2.5, we see
that M} ~ M has projective dimension <n +1 as a left R[F']-module. O

Proof of Proposition 11.3.9. Let R be a commutative F,-algebra and let M e
D(R[F]). We first show that if M satisfies conditions (1) and (2), then M is
derived finitely generated unit. Since ngu(R[F ]) is a triangulated subcategory of
D(R[F’]), we may assume without loss of generality that M is a finitely generated
unit Frobenius module, regarded as a cochain complex concentrated in a single
degree. Then the map ¥y : ¢;,M — M is an isomorphism. Since R is a regular
Noetherian F-algebra, the Frobenius morphism ¢p : R - R is flat; we may
therefore identify M with the derived pullback RYP ®@% M. It follows that M
satisfies condition (b) of Definition 11.3.4). We now verify (a). Using Lemma
11.3.12, we see that there exists an integer n > 1 that M has projective dimension
< n as a left module over R[F]. We proceed by induction on n. Assume first
that n > 1. Using Proposition 11.2.11, we can choose a short exact sequence of
Frobenius modules

0->K->D(N)-M-0

where N € Mod}F%r is finitely generated and projective as an R-module. Since D(V)
has projective dimension < 1 over R[F'] (Proposition 11.2.9), it follows that K has
projective dimension < n—-1 as a left module over R[F']. Using Proposition 11.2.1,
we deduce that K is a finitely generated unit Frobenius module. Applying our
inductive hypothesis, we conclude that K belongs to D} (R[F]). Since D(N)
also belongs to D?gu(R[F]) (Example 11.3.6), we conclude that M belongs to
Dt (R[F]) as desired.

fgu

%Ve now treat the case where M has projective dimension < 1 over R[F].
Choose an exact sequence of Frobenius modules 0 - @) - P - M — 0, where
P is a finitely generated free left R[F']-module. Our assumption that M has
projective dimension < 1 guarantees that ) is a projective R[F']-module. Con-
sequently, to verify condition (a) of Definition 11.3.4, it will suffice to show that
@ is finitely generated as an R[F']-module. Equivalently, it will suffice to show

that the module M is finitely presented as an R[F']-module. This follows from
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the exact sequence 0 - K - D(N) - M — 0 above, since D(N) is a finitely
presented left R[F']-module (Proposition 11.2.5) and K is a finitely presented
left R[F']-module (Proposition 11.2.1).

We now prove the converse. Suppose that M is an object of ngu(R[F ]); we
wish to show that M satisfies conditions (1) and (2). Condition (2) is obvious
(since M is quasi-isomorphic to a bounded chain complex of projective left mod-
ules over R[F']). Suppose that condition (1) fails: then there exists some largest
integer n such that H*(M) is not a finitely generated unit Frobenius module.

Form a distinguished triangle M’ oMM s M '[1], where f induces an iso-
morphism H*(M') - H*(M) for k < n, and the groups H*(M") vanish for k > n.
Then M satisfies conditions (1) and (2), and therefore belongs to D, (R[F1]). It

follows that M also belongs to Dy, (R[F]). This contradicts Proposition 11.3.7,
since the top cohomology group H*(M') ~ H*(M) is not a finitely generated unit

Frobenius module. O

11.4. The Emerton-Kisin Correspondence. We now introduce a variant of
Construction 2.3.1.

Construction 11.4.1. Let R be a commutative F,-algebra and let M be a
Frobenius module over R. We define a functor

Solgk (M) : CAlgy - Modp,

by the formula Solgk (M )(A) = Hompgp)(M,A). It is not difficult to see that
the functor Solgk (M) is a sheaf for the étale topology, which is contravariantly
functorial in M. We can therefore regard the functor M ~ Solgk (M) as a functor
of abelian categories Solgk : (Mod} )P — Shvg (Spec(R),F,). We will refer to
Solgk as the Emerton-Kisin solution functor.

Example 11.4.2. Let R be a commutative Fp-algebra. Then the Emerton-Kisin
solution functor Solgyk carries the Frobenius module R[F'] to the structure sheaf
of Spec(R): that is, to the quasi-coherent sheaf R of Example 2.2.5.

Construction 11.4.3. Let R be a commutative F,-algebra. We let D~(R[F])
denote the subcategory of D(R[F']) spanned by those cochain complexes M which
are cohomologically bounded above: that is, which satisfy H*(M) ~ 0 for n >
0. Note that D~(R[F]) contains the subcategory Df (R[F]) ¢ D(R[F]) of
Definition 11.3.4.

Let D¢ (Spec(R),F,) denote the derived category of the abelian category
Shvg (Spec(R), F,). It follows immediately from the definitions that the Emerton-
Kisin solution functor Solgk : (Modfy )°P — Shve (Spec(R),F,) is left exact. It
therefore admits a right derived functor

RSolgk : D™(R[F])® - D¢ (Spec(R),F)).
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We can now formulate the main result:

Theorem 11.4.4. Let R be a commutative Fp-algebra. Then the functor RSolgk :
D=(R[F])°» - Dga(Spec(R),F,) induces a fully faithful embedding

D?gu(R[F])Op - Dét(speC(R)’ Fp)>

whose essential image is the subcategory DY(Spec(R),F,) ¢ Da(Spec(R),F,)
spanned by those complexes of sheaves which are cohomologically bounded with
constructible cohomology sheaves.

Remark 11.4.5. In the special case where R is a smooth algebra of finite type
over a field k, Theorem 11.4.4 essentially follows from Theorem 11.3 of [6], applied
to the affine scheme X = Spec(R). Beware that the functor RSolgk is not quite
the same as the functor appearing in [6]: they differ by a cohomological shift by
the dimension of X. Of course, this is an issue of normalization and has no effect
on the conclusion of Theorem 11.4.4.

We will give a proof of Theorem 11.4.4 in §12 by developing a theory of duality
for Frobenius modules, which will allow us to relate RSolgk to the solution functor
Sol studied earlier in this paper (see §12.6).
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12. DUALITY FOR FROBENIUS MODULES

Let R be a commutative F,-algebra. Our goal in this section is to prove
Theorem 11.4.4 by showing that the functor

RSolgk : Db, (R[F])® - D%(Spec(R);F,)

is an equivalence of triangulated categories. Our strategy is to construct a com-
mutative diagram of triangulated categories o :

lelol(R[F])

DY (R[F])* R8olexc Db(Spec(R); F,),

where D} (R[F']) is the holonomic derived category of Frobenius modules, RSol
is a derived version of the solution functor of Construction 7?7, and D is a form
of R-linear duality.

We begin in §12.1 with a general discussion of the derived category of Frobe-
nius modules D(R[F]); in particular, we define the subcategory D} (R[F]), the
functor RSol, and show that it is an equivalence of categories (Corollary 12.1.7).
This is essentially a formal consequence of the analogous equivalence at the level
of abelian categories (Theorem 7.4.1), since we have already shown that the
Riemann-Hilbert correspondence is compatible with the formation of Ext-groups
(Corollary 7.2.3).

Most of this section is devoted to the study of the duality functor D. In §12.3,
we introduce the notion of a weak dual for an object of the derived category
D(R[F]) (Definition 12.3.4). The weak dual of an object M € D(R[F]) depends
functorially on M, provided that it exists: in other words, the formation of weak
duals determines a partially defined (contravariant) functor from the derived cat-
egory D(R[F]) to itself. We have already met this functor in a special case:
if M is a Frobenius module which is finitely generated and projective as an R-
module, then the weak dual of M coincides with the Frobenius module D(M)
given by Construction 11.2.7. This follows from a universal property of Construc-
tion 11.2.7, which we establish in §12.2 (Proposition 12.2.1). In §12.5, we exploit
this fact to show that every object of D (R[F']) admits a weak dual (Proposi-
tion 12.5.1); the proof uses a characterization of the holonomic derived category
which we establish in §12.4 (Theorem 12.4.1). It follows that the construction
M + D(M) determines a functor D(M) : D? (R[F]) - D(R[F])°P, which we
prove to be fully faithful with essential image DY, (R[F]) (Theorem 12.5.4. In
§12.6 we show that the diagram ¢ commutes (up to canonical isomorphism),
thereby completing the proof of Theorem 11.4.4.
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12.1. The Derived Riemann-Hilbert Correspondence. Our first goal is to
to extend the equivalence Sol : Mody! - Shvs (Spec(R), F,) of Theorem 7.4.1 to
the level of derived categories. We begin by establishing some notation.

Notation 12.1.1. Let R be a commutative F,-algebra. We define subcategories
Do (R[F]) € Dag(R[F]) € Dpert (R[F']) € D(R[F])

as follows: an object M € D(R[F]) belongs to the subcategory Dyet(R[F]) (re-
spectively Dag(Mod} ), Dyoi(R[F])) if each cohomology group Hi(M) is perfect
(respectively algebraic, holonomic) when regarded as a Frobenius module over
R. Tt follows from Remark 3.2.2, Proposition 4.2.4, and Corollary 4.3.3, we see
that Dpert(R[F]), Dag(R[F']), and Dy (R[F]) are triangulated subcategories of
D(R[F)).

We let D*(R[F]) denote the full subcategory of D(R[F]) spanned by those
objects M which are (cohomologically) bounded below: that is, for which the
cohomology groups H¥(M) vanish for i < 0. We let D*(R[F]) denote the full
subcategory of D(R[F']) spanned by those objects which are bounded above and
below: that is, for which the cohomology groups H*(M) vanish both for i < 0
and ¢ > (0. Similarly, we have full subcategories

Dy (R[F]) € Do (RIF]) € Dy (RIF]) € DT (R[F])

alg

Dy (RIF]) € Dy (R[F]) € Dy (R[F]) € D*(R[F])

alg per
which are defined in the obvious way.

For any commutative F,-algebra R, the inclusion functor Mod%erf < Modly
is exact, and therefore extends to a functor of derived categories D(Mod?™") —

D(R[F]).

Proposition 12.1.2. Let R be a commutative Fp-algebra. Then the forgetful

functor D(Mod%orf) — D(R[F]) is a fully faithful embedding, whose essential
image is the full subcategory Dpes(R[F']) € D(R[F]).

Proof. The inclusion functor Mod%erf < Mod!y has a left adjoint, given by the
perfection functor M ~ M'YP™ of Notation 3.2.3. This functor is exact, and
therefore extends to a functor of derived categories F' : D(R[F]) - D(Mod%™")
which is left adjoint to the forgetful functor. It now suffices to observe that the
counit map (FoG)(M) — M is an isomorphism for every object M € D(Mod®™),
and that the unit map N — (G o F')(N) is an isomorphism precisely when N
belongs to the full subcategory Dye(R[F]) € D(R[F]) (since both of these
assertions can be checked at the level of cohomology). 0J

We now wish to compare the derived categories of Notation 12.1.1 with suitable
derived categories of étale sheaves.
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Notation 12.1.3. Let R be any commutative ring. We let D¢ (Spec(R),F))
denote the derived category of the abelian category Shve (Spec(R),F,) of p-
torsion étale sheaves on Spec(R). We define full subcategories

Dg(Spec(R),Fp) c D} (Spec(R),F,) € Dg(Spec(R),F,)

as follows:
e An object .# € D¢ (Spec(R),F,) belongs to D}, (Spec(R),F,) if and only
if the cohomology sheaves H"(.%#) vanish for n <« 0.
e An object .Z € D¢ (Spec(R),F,) belongs to D%(Spec(R),F,) if and only
if the cohomology sheaves H"(.%) are constructible for all n and vanish
for |n| > 0.

If R is a commutative F,-algebra, then the Riemann-Hilbert functor RH :

Shve (Spec(R), F,) - Mod¥™ ¢ Mod® is exact, and therefore extends to a func-
tor of derived categories

RH : Dy (Spec(R),F,) - D(Mod>™) = Dy (R[F]).

This functor is t-exact, and therefore restricts to a functor D}, (Spec(R),F,) —
D*(Mod®™) =~ D*_(R[F]). This restriction admits a right adjoint

per
RSol: D} (R[F]) = D*(Mod};™) ~ Dgy(Spec(R), Fy),
given by the total right derived functor of Sol : 1\/IodpRerf — Shve (Spec(R),F)).

Remark 12.1.4. For every object M € D! .(R[F]), we have a hypercohomol-
ogy spectral sequence Sol*(H!(M)) = Hs*(RSol(M)). Note that the groups
Sol*(H!(M)) vanish for s > 2 (Proposition 7.2.1 and Theorem 2.4.3, or Proposi-
tion 9.4.1), so this spectral sequence degenerates to yield short exact sequences

0 - Sol' (H"Y(M)) - H"RSol(M) - Sol(H"(M)) — 0.
If M belongs to the subcategory Dy (R[F]) € D ((R[F]), then the sheaves

Sol' (H"-1(M)) vanish (Proposition 9.5.6); we therefore obtain isomorphisms
H* (RSol(M)) = Sol(H*(M)).

Theorem 12.1.5. Let R be a commutative Fy-algebra. Then the functor RH :
D?,(Spec(R),F,) - D*(R[F]) is a fully faithful embedding, whose essential im-
age is the full subcategory Dy (R[F']) € D*(R[F]).

Proof. Since the Riemann-Hilbert functor RH : Shve (Spec(R),F,) — Mody™
is exact at the level of abelian categories, its extension to the level of derived
categories is t-exact: that is, we have canonical isomorphisms H*(RH(.%#)) ~
RH(H* (%)) for each .# € D}, (Spec(R),F,). It follows from Theorem 6.1.1 that

t
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the functor RH carries Df (Spec(R),F,) into Dy, (R[F]). Combining this ob-
servation with Remark 12.1.4, we obtain isomorphisms

H*((RSol o RH) (7)) = Sol(H* (RH(.Z))) = (Sol o RH)(H* (F)).

It follows from Proposition 7.2.1 that the unit map .# — (RSolo RH)(.%) is an
isomorphism: that is, the derived Riemann-Hilbert functor is fully faithful. To
complete the proof, it will suffice to show that for every object M € D} (R[F]),
the counit map (RHoRSol)(M) — M is an isomorphism. Applying Remark

12.1.4 again, we obtain isomorphisms
H*((RHoRSol)(M)) ~ RH(H*(RSol(M)) ~ (RHo Sol)(H*(M)),
so that the desired result follows from Theorem 2.4.3. O

Remark 12.1.6. If R is a Noetherian F-algebra of finite Krull dimension, then
one can show that the category of étale sheaves Shvg (Spec(R),F,) has finite
injective dimension. In this case, it is not hard to see that Theorem 12.1.5 can be
extended to yield an equivalence RH : D¢ (Spec(R),F,) - D(R[F']) of unbounded
derived categories. We do not know if this holds in general.

Combining Theorem 12.1.5 with Theorem 7.4.1, we obtain the following:

Corollary 12.1.7. Let R be a commutative F,-algebra. Then the Riemann-
Hilbert functor RH : Shvg(Spec(R),F,) - Mod}y induces an equivalence of tri-
angulated categories Db(Spec(R),F,) — Db (R[F]); an inverse equivalence is
giwen by applying the derived solution functor RSol.

Theorem 12.1.5 also implies that a slightly weaker version Proposition 12.1.2
holds for algebraic Frobenius modules:

Corollary 12.1.8. Let R be a commutative Fy-algebra. Then the inclusion
functor Modi‘%lg < Mod}y extends to a fully faithful embedding of derived cate-
gories D*(Mod?%lg) — D*(R[F]), whose essential image is the full subcategory
D+ (Mod}) € D*(R[F]).

alg

Proof. Since the Riemann-Hilbert functor RH : Shvg (Spec(R),F,) — Modjt%lg is
an equivalence of categories (Theorem 1.0.2), Corollary 12.1.8 is a reformulation
of Theorem 12.1.5. O

12.2. Duality for R-Projective Frobenius Modules. Let R be a commu-
tative F,-algebra and let M ¢ Modﬁr be finitely generated and projective as an
R-module. In §11.2, we introduced a Frobenius module D(M), given by the direct
limit of the sequence

MY Vi SDEMV PRYM (p%*MV N
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As the notation suggests, we can think of (M) as a kind of dual of M in the
setting of Frobenius modules. Our goal in this section is to make this idea precise.
We begin by observing that there is a canonical map

c:R—>Mep M’ - MerD(M).

It is not hard to see that ¢ is a map of Frobenius modules (where we regard
the tensor product M ® g D(M) as a Frobenius module via Construction 8.1.1).
Moreover, it enjoys the following universal property:

Proposition 12.2.1. Let R be a commutative Fp-algebra and let M and N be
Frobenius modules over R, where M is finitely generated and projective as an

R-module. Then composition with the map ¢: R - M ® g D(M) induces isomor-
phisms Extiy g (D(M), N) — Exty m (R, M ®r N).

Proof. Using Proposition 11.2.5 and Remark 11.3.3, we see that both sides can
be computed as the cohomology groups of the two-term chain complex
M @y N 2222298, (g N
OJ

Remark 12.2.2. The abelian groups Extlp m(D(M), N) = Extpyp (R, M ®r N)
of Proposition 12.2.1 vanish for n > 2.

We also have the following dual version of Proposition 12.2.1:

Proposition 12.2.3. Let R be a commutative Fp-algebra and let M and N be
Frobenius modules over R, where M is finitely generated and projective as an
R-module. If N is perfect, then composition with the map ¢: R - M @ D(M)
induces isomorphisms Extp o (M, N) - Extpp (R, N @ D(M)).

Proof. Using Remark 11.3.3, we can identify Extp (R, N ®g D(M)) with the
direct limit of the diagram

Extpp) (M, N) = Extppm (9 M, N) - Ext}’%[F](gpf%*M, N) -
where the transition maps are given by precomposition with the map 9y : oM —
M of Notation 11.1.1. It will therefore suffice to show that each of the transition
maps Ext oy (95 M, N) — Extiy ](<Pg€+1)*M , V) is an isomorphism. This follows
from the assumptlon that N is perfect, since the map 1, induces an isomorphism
of perfections (ks M)1/P™ — (@¥F+** A1)1/p™ (Remark 11.1.2). O

12.3. Weak Duality in D(R[F']). We now introduce some language to place
Proposition 12.2.1 in a more general context. First, we need a bit of notation.

Construction 12.3.1 (Derived Tensor Products). Let R be a commutative F,-
algebra. Then we can identify D(R[F']) with the category whose objects are K-
projective cochain complexes of left R[ F']-modules (in the sense of Spaltenstein,
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see [14, Tag 070G] for a summary), and whose morphisms are homotopy classes
of chain maps. Using Example 8.1.2) it is not hard to show that if M* and
N* are K-projective cochain complexes, then the tensor product M*® ®z N* is
also K-projective (where we regard the tensor product as a chain complex of left
R[ F']-modules via Construction 8.1.1). This construction gives rise to a functor

® : D(R[F]) x D(R[F]) > D(R[F])
which we will refer to as the derived tensor product.

Remark 12.3.2. Let R be a commutative F-algebra. Then the forgetful functor
D(R[F]) - D(R) is compatible with derived tensor products.

Remark 12.3.3. Let R be a commutative F,-algebra and let M and N be
Frobenius modules over R, which we regard as objects of D(R[F']). Then we have
canonical isomorphisms H™(M ®% N') = Tor® (M, N) in the category of Frobenius
modules. More generally, if M and N are arbitrary object of D(R[F]), we have
a convergent spectral sequence

P Torf(H!(M),HI(N)) = H"*(M &% N).

i+j=t
Definition 12.3.4. Let R be a commutative F)-algebras and let M and M’ be
objects of the derived category D(R[F']). We will say that a morphism c¢: R —
M &% M'" exhibits M' as a weak dual of M if, for every object N € D(R[F]),
composition with ¢ induces a bijection

Homp(g(ryy(M', N) = Homp(g(ry) (R, M ®F% N).

Proposition 12.3.5. Let R be a commutative F,-algebra and let M € Mod}y
be a projective R-module of finite rank. Then the map ¢ : R - M ®r D(M) of
Proposition 12.2.1 exhibits D(M) as a weak dual of M.

Proof. We first observe that M ® gID(M) can be identified with the derived tensor
product M ®%D(M) (since both M and D(M) are flat R-modules). We wish to
show that, for every object N € D(R[F']), composition with ¢ induces an isomor-
phism Hompg(ry) (D(M), N) - Homp(gry) (R, M ®% N). Using the fact that
D(M) has finite projective dimension as an R[F']-module (Proposition 11.2.9),
we can reduce to the case where N is concentrated in a single degree, in which
case the desired result is a translation of Proposition 12.2.1. O

Notation 12.3.6. Let R be a commutative F,-algebra and let M € D(R[F]). It
follows immediately from the definitions that if there exists a morphism c¢: R —
M ®% M’ which exhibits M’ as a weak dual of M, then the object M’ (and the
morphism c¢) are well-defined up to unique isomorphism (in the derived category
D(R[F])). In this case, we will say that M is weakly dualizable and denote its
weak dual M’ by D(M). Note that, by virtue of Proposition 12.3.5, this notation
is consistent with that of Construction 11.2.7.
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Warning 12.3.7. In the situation Definition 12.3.4, the roles of M and M’ are
not symmetric. A morphism ¢ : R - M ®% M’ which exhibits M’ as a weak
dual of M generally does not exhibit M as a weak dual of M’ (see Example
12.3.10). This asymmetry already appeared in §12.2: note that in the statement
of Proposition 12.2.3 we required the Frobenius module N to be perfect, but no
corresponding hypothesis was needed in the statement of Proposition 12.2.1.

Proposition 12.3.8. Let R be a commutative Fy,-algebra and let ¢ : R — M &% M’
be a morphism in D(R[F]) which exhibits M' as a weak dual of M. Then the
composite map

RS M ek M — MYP™ ok M’
exhibits M’ as a weak dual of the perfection MYP™ .

We will deduce Proposition 12.3.8 from the following variant of Proposition
3.2.9:

Lemma 12.3.9. Let R be a commutative F,-algebra and let f: M — M’ be a
morphism in D(R[F]) which induces an isomorphism MY?™ — M'1/»%  Then
the induced map

Hom p(gpryy (R, M) - Hompgpry) (R, M")
18 an isomorphism.

Proof. Let N denote the cone of the morphism M — M’; we will show that
Homp(ppry) (R, N[k]) vanishes for every integer k. By virtue of Remark 11.3.3,
it will suffice to show that the map id —px : H*(N) - H*(N) is an isomorphism.
This is clear: the assumption that f induces an equivalence M/P™ ~ MNf/1/p%

guarantees that N1/P” vanishes, so that the action of ¢y is locally nilpotent on
H*(N). OJ

Proof of Proposition 12.3.8. Let ¢ : R -— M ®% M’ be a morphism in D(R[F])
which exhibits M’ as a weak dual of M, and let N be any object of D(R[F]).
Then the composite map

Homp(riryy (M', N) - Homp(gpry) (R, M % N) - Homp(ppry) (R, MYPT ®p V)

is an isomorphism, since the left map is an isomorphism (by virtue of our as-
sumption that M’ is a weak dual of M) and the right map is an isomorphism
(Lemma 12.3.9). Allowing N to vary, we deduce that M’ is also a weak dual of
M=, O

Example 12.3.10. Let R be a commutative Fj-algebra. Then the canonical
isomorphism R ~ R ®% R exhibits R as a weak dual of itself. It follows from
Proposition 12.3.8 that unit map u: R - RY/P” ~ RY/»™ @L R also exhibits R as a
weak dual of RY/?”. However, u cannot exhibit RY/P” as a weak dual of R (unless
R is perfect), since the weak dual of R is determined uniquely up to isomorphism.
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We conclude this section with another application of Lemma 12.3.9:

Proposition 12.3.11. Let R be a commutative Fy,-algebra and let ¢: R — M &%
M'" be a morphism in D(R[F]) which exhibits M' as a weak dual of M. Then
M’ belongs to D8 _(R[F]).

fgu

Proof. From the isomorphism Hompgry) (M’,®) =~ Hompgry) (R, M ®% o) (and
the compactness of R as an object of D(R[F'])), we conclude that M’ is a compact
object of D(R[F]). It will therefore suffice to show that the canonical map
Yy RYP @ M’ — M’ is an isomorphism. Note that ¢y, can be regarded
as a morphism in D(R[F]); it will therefore suffice to show that for each N €
D(R[F]), composition with 1, induces an isomorphism

0 : HOIHD(R[F])(M’,N) - HOHID(R[F])(Rl/p ®§% M’,N) - HOIHD(R[F])(M',NUP).

Invoking the universal property of M’ we can identify # with the natural map
Homppiry) (R, M ®%5 N) — Hompgpry) (R, M ® g N1/P) (induced by the Frobenius
map ¢y : N — N/P). This map is an isomorphism, since the induced map
M®LEN - M &% NP induces an isomorphism of perfections (Lemma 12.3.9). O

12.4. Presentations of Holonomic Complexes. Let R be a commutative F-
algebra and let M be a Frobenius module over R. By definition, M is holonomic if
and only if there exists an isomorphism M =~ MS / pw, where M, € Mod}; is finitely
presented as an R-module. Our goal in this section is to prove an analogous
statement for objects of the derived category D(R[F]):

Theorem 12.4.1. Let R be a commutative Fp,-algebra and let M be an object of
D(R[F]). The following conditions are equivalent:

(1) The complex M belongs to the subcategory D} (R[F']) ¢ D(R[F]): that
18, 1t 15 cohomologically bounded with holonomic cohomologies.

(2) There exists an isomorphism M ~ M&/pw in the category D(R[F']), where
My € D(R[F]) has the property that its image in D(R) is compact.

The proof of Theorem 12.4.1 will require some preliminaries. We first study
condition (2) of Theorem 12.4.1. Note that an object M € D(R[F']) has com-
pact image in D(R) if and only if it is quasi-isomorphic to a bounded cochain
complex N* of finitely generated projective R-modules. We now show that, in
this situation, we can arrange that N* is also a cochain complex of Frobenius
modules:

Lemma 12.4.2. Let R be a commutative Fp-algebra and let M be an object of
the derived category D(R[F']). The following conditions are equivalent:
(1) The object M is isomorphic (in D(R[F'])) to a bounded cochain complex

of Frobenius modules, each of which is projective of finite rank as an R-
module.
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(2) The image of M in D(R) is compact: that is, it is isomorphic to a bounded
cochain complex of projective R-modules of finite rank.

Proof. The implication (1) = (2) is clear. Conversely, suppose that (2) is satis-
fied; we will prove (1). Assume that, as an object of D(R), the complex M is
quasi-isomorphic to a finite cochain complex of finitely generated projective R-
modules concentrated in degrees {a —n,a-n+1,...,a}. Replacing M by a shift
if necessary, we can assume a = 0. We claim that, as an object of D(R[F]), the
complex M is quasi-isomorphic to a finite cochain complex of Frobenius modules,
which are finitely generated and projective over R, also concentrated in degrees
{-n,-n+1,...,0}. We proceed by induction on n. If n =0, then the coho-
mology groups H(M) vanish for i # 0 and H°(M) is a projective R-module of
finite rank. In this case, the desired result follows from the observation that M
is isomorphic to H°(M) as an object of D(R[F]). Let us therefore suppose that
n >0, and set N = HO(M). Then N is finitely presented as an R-module, so that
NP7 is a holonomic Frobenius module over R. Choose elements x1,2s, ..., T}
which generate N as an R-module. It follows from Proposition 4.2.1 that the
image of each z; in N'/” is annihilated by some element P; € R[F] of the form
Fmi 4 ¢, Fmi~l 4+ ... + ¢, ;. Replacing P, by FeP; for a > 0, we may assume
that P;(x;) = 0. Choose a cocycle T; € M? representing x;, so that we can write
Pi(;) = dy; for some elements y; € M~1. The elements T; and y; determine a map
of cochain complexes f: M’ — M, where M’ is the two-term complex

0o R[F] LT RrpE S0 o
Note that M’ is isomorphic, as an object of D(R[F]), to the Frobenius module
K =@, R[F]|/R[F]P;, which is projective of finite rank as an R-module. Extend

f to a distinguished triangle Q % M’ ERY Vg Q[1] in D(R[F]). Then, as an
object of D(R), the complex @) is quasi-isomorphic to a chain complex of finitely
generated projective R-modules concentrated in degrees {1-n,...,0}. Applying
our inductive hypothesis, we may assume that each Q' is a projective R-module
of finite rank and that Q* vanishes unless —n < < 0. Then g determines a map of
Frobenius modules Q° - K, and M is quasi-isomorphic to the cochain complex
of Frobenius modules

--—>0—>Q_n+l—>Q_"+2—>---—>QO—>K—>O—>---
O

Remark 12.4.3. Let R be a commutative Fj-algebra and let M € D(R[F]) be
an object whose image in D(R) is compact. Then M is also compact as an object
of D(R[F]): this follows immediately from Remark 11.3.3. However, the converse
is false: the Frobenius module R[F'] is compact as an object of D(R[F']), but its
image in D(R) is not compact unless R ~ 0.
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We now apply Lemma 12.4.2 to give a simple characterization of the holonomic
derived category D} (R[F]).

Lemma 12.4.4. Let R be a commutative F,-algebra. Then D? (R[F]) is the
smallest triangulated subcategory of D(R[F']) which contains every object of the
form MY»” | where M e Modyy is finitely generated and projective as an R-
module.

Proof. Let C be a triangulated subcategory of D(R[F']) which contains every
object of the form M/P™ where M € Mod}y is finitely generated and projective
over R. We wish to show that C contains every object of D? (R[F]). Using
our assumption that C is a triangulated subcategory, we are reduced to showing
that C contains every holonomic Frobenius module N over R (regarded as a chain
complex concentrated in degree zero). Using Proposition 4.1.3, we can assume
that N has the form (R ®g, N')/P™ where Ry is a finitely generated subring
of R and N’ is a holonomic Frobenius module over Ry. Choose a surjection
A — Ry, where A is a polynomial ring over F,,. Then N’ is also holonomic when
regarded as a Frobenius module over A (Remark 5.3.2). Choose an isomorphism

N' =~ Nél/ pw, where Nj is a Frobenius module over A which is finitely generated
as an A-module. Since A is a regular Noetherian ring, the A-module N/ admits
a finite resolution by projective A-modules of finite rank. It follows from Lemma
12.4.2 that N admits a finite resolution

> Py>Py—> P> P> Nj—>0

in the category of Frobenius modules over A, where each P; is projective of finite
rank as an A-module. Then (R ®,4 P.)Y/?” is a finite resolution of N by objects
of Mod}; which belong to C. Since C is a triangulated subcategory of D(R[F]),
we deduce that N also belongs to C. O

Proof of Theorem 12.4.1. Let R be a commutative F,-algebra and let C denote
the full subcategory of D(R[F']) spanned by those objects which are isomorphic
to Mol/pw, for some My € D(R[F]) having compact image in D(R). We wish
to show that C = D} (R[F']). We first show that C is contained in D? (R[F]).
Let My € D(R[F]) have compact image in D(R); we wish to show that M&/pw
belongs to D} | (R[F]). Using Lemma 12.4.2, we can assume that My is a bounded
cochain complex consisting of Frobenius modules which are finitely generated and
projective over R. Since D? (R[F]) is a triangulated subcategory of D(R[F]),
we can reduce to the case where M, is a finitely generated projective R-module,
concentrated in degree zero. In this case, the inclusion is clear (since Mol/ P is a
holonomic Frobenius module over R).

We now show that Df (R[F]) is contained in C. By virtue of Lemma 12.4.4,
it will suffice to show that C is a triangulated subcategory of D(R[F']). It is
clear that C contains zero objects of D(R[F']) and is closed under shifts; it will
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therefore suffice to show that it contains the cone of any morphism f: M — N
where M and N belong to C. Write M = Mol/pw and N = N01/p°°’ where M, and
Ny are objects of D(R[F]) having compact image in D(R). Using Lemma 12.4.2,
we can further assume that Mj is a cochain complex of Frobenius modules which
are finitely generated and projective over R. Note that N can be identified with
the homotopy colimit of the diagram

N 28, NUp 2N, NP L
Since M, is a compact object of D(R[F']) (Remark 12.4.3), the composite map

My - M J. N factors through some map f’: My - Ng/p" for n > 0. Then f’ is
adjoint to a map f" : ¢ My - Ny, where ¢'1* M, is the cochain complex obtained
from M, by applying the pullback functor ¢};* degreewise. Note that o} M is
also a bounded cochain complex of finitely generated projective R-modules, and
therefore has compact image in D(R). Let Cy be a cone of f”. Using Remark
11.1.2 (and the exactness of the functor K ~ K/P%) we see that the cone of f

can be identified with C’é/ pw, and therefore belongs to C as desired. U

Remark 12.4.5. With a bit more effort, one can prove the following stronger ver-
sion of Theorem 12.4.1: the construction M + M/P™ induces an equivalence of
triangulated categories C /Co ~ D? | (R[F']), where C denotes the triangulated sub-
category of D(R[F’]) spanned by those objects having compact image in D(R),
Co € C is the triangulated subcategory spanned by those objects M € C satisfying
M/p* ~ 0, and C /Cy denotes the Verdier quotient of C by Cy. Since we will not
need this fact, the proof is left to the reader.

12.5. The Duality Functor. We now return to the study of the duality con-
struction M ~ D(M) of §12.3.

Proposition 12.5.1. Let R be a commutative F-algebra and let M be an object
of Db (R[F]). Then M is weakly dualizable (in the sense of Notation 12.3.6).

Proof. Using Theorem 12.4.1, we can assume M = Mé/poo, where My € D(R[F])
has compact image in D(R). By virtue of Lemma 12.4.2, we may assume that
My is a bounded cochain complex of finitely generated projective R-modules. Let
My denote its R-linear dual (which we also regard as a cochain complex of finitely
generated projective R-modules) and let D(M;y) denote the cochain complex of
Frobenius modules obtained by applying Construction 11.2.2 termwise. Let ¢
denote the composite map

R — My®g M(;/ - MyQ®pg ]D(Mo)

A simple calculation shows that ¢ is a morphism of (cochain complexes of) Frobe-
nius modules. Note that the tensor product My ® g D(My) is equivalent to the
derived tensor product My ®% D(My) (since both My and D(My) are bounded
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cochain complexes of flat R-modules). We claim that ¢ exhibits D(M,) as a weak
dual of Mj in the derived category D(R[F]). In other words, we claim that for
every object N € D(R[F']), composition with ¢ induces a bijection

Hompgpr)y (D(Mo), N) - Hompgpryy (R, My ®F N).

To prove this, we can proceed by induction on the length of the cochain complex
M, and thereby reduce to the case where Mj is concentrated in a single degree,
which follows from Proposition 12.3.5. Applying Proposition 12.3.8, we deduce
that the composite map

RS My L D(My) » MyP™ @5 D(My) = M @4 D(My)

exhibits D(My) as a weak dual of M, so that M is weakly dualizable as desired.
O

Recall that a morphism ¢ : R - M ®% M’ which exhibits M’ as a weak dual
of M need not exhibit M as a weak dual of M’. However, holonomic Frobenius
complexes do enjoy the following weak form of biduality.

Notation 12.5.2. Let R be a commutative F,-algebra. We let Dpe(R[F])
denote the full subcategory of D(R[F']) spanned by those cochain complexes M
whose cohomology groups H*(M) are perfect Frobenius modules.

Proposition 12.5.3. Let R be a commutative F-algebra and let M be an object
of Db (R[F]) with weak dual D(M). Then, for every object N € Dyere(R[F]),
composition with the canonical map ¢: R - M @%D(M) induces an isomorphism

HOHID(R (M N) - HOHID(R (R N®R ]D)(M))

Proof. Let us say that an object M e D! (R[F]) is good if, for every object
N € Dperi(R[F']), the canonical map Hompgppy)(M, N) = Hompgry) (R, N ®%
D(M)) is an isomorphism. We wish to show that every object of M € D? (R[F])
is good. It is easy to see that the good objects of D |(R[F']) span a triangulated
subcategory. By virtue of Lemma 12.4.4, it will suffice to show that every object
of the form MS P s good, where M, € MoleQr is finitely generated and projective
as an R-module. In this case, for each N € D,¢(R[F]), we have a commutative
diagram

HOIIlD(R )(M N) —>HOII1D(R )(R N®L ]D(M))
| 9 l
HOITID(R[F])(M(],N) AN HomD(R[F])(R,N@)é ]D)(M(])),

here the right vertical map is bijective by virtue of Proposition 12.3.8, and the
left vertical map is bijective by virtue of our assumption that N is perfect. It
will therefore suffice to show that the map 6y is an isomorphism for every perfect
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object N € Dyere(R[F]). Using the fact that My and R admit finite resolutions
by projective left R[F']-modules (Remark 12.4.3), we can reduce to the situation
where N is concentrated in a single degree. In this case, the desired result follows
from Proposition 12.2.3. 0

We are now ready to prove the main result of this section:

Theorem 12.5.4. Let R be a commutative F,-algebra. Then the construction

M = D(M) induces an equivalence of categories D} (R[F]) - D¢ (R[F])°.

Proof. Tt follows from Propositions 12.5.1 and 12.3.11 that the duality functor
D : D) (R[F]) » Dy (R[F])°r is well-defined. We next claim that it is fully
faithful. Let M and N be objects of D (R[F]); we wish to show that the

canonical map
0 : HOIHD(R[F])(M, N) g HOHID(R[F])(]D(N),]D(M)).

Using the definition of D(N), we can identify the codomain of 6 with the set
Hompppry) (R, N ®% D(M)). Under this identification, ¢ corresponds to the
comparison map of Proposition 12.5.3, which is an isomorphism because N is
perfect.

Let C denote the essential image of the weak duality functor D: D? (R[F]) -
D¢ (R[F])°P, so that C is a triangulated subcategory of D (R[F]). We will
complete the proof by showing that every object N € Dﬁ’gu(R[F ]) belongs to C.
We will deduce this from the following assertion:

(*) There exists a diagram

in the derived category D(R[F]), where each N(k) belongs to C and
each of the maps H*(N(k)) — H*(NV) is an isomorphism for n > k and a
surjection for n = k.

Assume (*) for the moment. Then N can be identified with the homotopy colimit
of the diagram {N(k)}rez in the triangulated category D(R[F']). Since N is a
compact object of D(R[F']), it follows that the identity map idy : N - N factors
through N(k) for some integer k: that is, N is a direct summand of N(k).
Consequently, to prove that N belongs to C, it will suffice to show that the
category C is idempotent complete. Using the equivalence D : D? (R[F]) - CP,
we are reduced to proving that the category DP (R[F']) is idempotent complete,
which is clear (since any direct summand of a holonomic Frobenius module over
R is itself holonomic).

It remains to prove (*). We will construct the objects N (k) by descending
induction on k, taking N(k) = 0 for k£ > 0. To carry out the induction, it will
suffice to prove the following:
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(") Let f: N(k+1) - N be a morphism in D(R[F]), where N(k+1) €C
and the induced map H*(N(k + 1)) —» H*(N) is an isomorphism for n >
k +1 and a surjection for n = k+ 1. Then the morphism f factors as
a composition N(k + 1) i N(k) L N, where N(k) € C and the map
H?(N(k)) - H*(N) is an isomorphism for n > k and a surjection for

n=k.
To prove (#'), let C' denote the cone of f, so that C' belongs to D?gu(R[F]) and
the cohomology groups H"(C') vanish for n > k. Using Corollary 11.3.8, we can
choose an object M € Modﬁ%r which is finitely generated and projective as an R-
module and a map g : D(M)[-n] - C which induces a surjection D(M) - H*(C).
Invoking the octahedral axiom, we conclude that f factors as a composition N (k+
1) iR N(k) L N, where the cone of f’ is isomorphic to D(M)[-k] (which
guarantees that N (k) belongs to C) and the cone of f” is isomorphic to the cone
of g (and therefore has vanishing cohomology in degrees > k). 0

12.6. Comparison of Solution Functors. We will deduce Theorem 11.4.4
from the following comparison result:

Theorem 12.6.1. Let R be a commutative F,-algebra. Then the diagram of
categories

Dgol(R[F])

Dy, (R[] ol D4 (Spec(R),F,)

commutes up canonical isomorphism. Here RSol denotes the derived solution
functor of §12.1, D s the duality functor of Theorem 12.5.4, and RSolgk is the
derived Emerton-Kisin solution functor of Construction 11.4.3.

Proof of Theorem 11.4.4 from Theorem 12.6.1. Theorem 12.5.4 asserts that the
functor D : Dp | (R[F]) — D, (R[F])°P is an equivalence of categories, and Corol-
lary 12.1.7 asserts that the functor RSol : D! (R[F]) - D(Spec(R),F,) is a
fully faithful embedding whose essential image is the constructible derived cat-
egory D!(Spec(R),F,) € D¢ (Spec(R),F,). Using the commutative diagram of
Theorem 12.6.1, we deduce that RSolgk : Df, (R[F])* — De(Spec(R),F,) is
also a fully faithful embedding with essential image D?(Spec(R),F)). O

The proof of Theorem 12.6.1 will require some auxiliary constructions. We
begin by introducing a slight modification of the derived solution functor RSol.

Construction 12.6.2. Let R be a commutative F,-algebra and let M = M*

be a cochain complex of Frobenius modules. We let M denote the associated
cochain complex of quasi-coherent sheaves on Spec(R) (Example 2.2.5), so that
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the Frobenius morphism ¢,; determines an endomorphism of M , which we will
denote by p37. We let Sol'(M) denote the cochain complex of étale sheaves on
Spec(R) given by the shifted mapping cone cn(id —pz7)[-1]. It is clear that the
construction M ~ Sol’ (M) respects quasi-isomorphisms and therefore determines
a functor of derived categories Sol": D(R[F']) — D¢ (Spec(R),F,). By construc-
tion, we have a distinguished triangle

— id—prr —
Sol' (M) - M —25% 3T - Sol'(M)[1],
depending functorially on M.

Remark 12.6.3. In the special case where M* is a bounded below cochain
complex of injective objects of Mod%erf, we can identify RSol(M) with the ker-
nel (formed in the category of chain complexes of étale sheaves) of the map
id —p57: M — M. We therefore obtain a canonical map RSol(M) — Sol'(M), and
Lemma 7.1.2 guarantees that this map is a quasi-isomorphism (even at the level of
presheaves). It follows that the functor RSol: DY (R[F]) — D (Spec(R),F))

is canonically isomorphic to the restriction Sol’ | D} (RIF))-

Construction 12.6.4. Let R be a commutative Fj-algebra and let P denote the
two-term cochain complex

1-F

=0~ R[F] X5 RIF] 50 -

which we regard as a projective representative for R in the derived category
D(R[F]). Let M’ be a bounded above cochain complex of projective left R[F']-
modules, let M be an arbitrary cochain complex of left R[F']-modules, and sup-
pose we are given a morphism of cochain complexes ¢: P - M ®r M', which
represents a morphism ¢ from R to M ®% M’ in the derived category D(R[F]).
Note that we can identify RSolgx(M’) and Sol’(M) with the cochain complexes
of étale sheaves given concretely by the formulae

RSolgk (M')(A) = Hompgp(M', A) Sol'(M)(A) = Hompppy (P, M ®5 A).
It follows that ¢ determines a map of cochain complexes
RSolgk(M') = Hompppy(M',e)
Hompp (M ®r M', M ®p o)

HomR[F](P,M ®r ‘)

= Sol'(M).
Note that the chain homotopy class of this map depends only on the chain ho-
motopy class of &. We therefore obtain a morphism 7. : RSolgx (M’) — Sol (M)

in the derived category D¢ (Spec(R),F,) which depends only the map ¢: R —
R—> M &%k M’ in D(R[FY]).

&
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Proof of Theorem 12.6.1 . By virtue of Remark 12.6.3, it will suffice to show that
the functors

Sol’, RSolgk oD : D} (R[F]) = De(Spec(R),F,)

are naturally isomorphic. Fix an object M € D? (R[F]) and let ¢: R - M &%
D(M) be a morphism in D(R[F]) which exhibits D(M) as a weak dual of M.
Applying Construction 12.6.4, we obtain a morphism 7. : (RSolgk oD)(M) —
Sol'(M) in the derived category Dg (Spec(R),F,). It is not difficult to see that
this morphism depends functorially on M, and therefore determines a natural
transformation of functors 7 : RSolgk oD — Sol’. To complete the proof, it will
suffice to show that this natural transformation is invertible: that is, 7. is a
quasi-isomorphism for each M e D! (R[F]). To prove this, we may assume
without loss of generality that D(M) is represented by a bounded above cochain
complex of projective left R[F]-modules and that ¢ is represented by a morphism
of cochain complexes ¢: P - M ®r D(M), so that 7, is represented by the map
of cochain complexes of étale sheaves

HOHIR[F](]D(M),.) — HOHIR[F](P,M@R .)

appearing in Construction 12.6.4. We wish to show that this map is a quasi-
isomorphism of étale sheaves. In fact, we claim that it is already a quasi-
isomorphism of presheaves: that is, for every étale R-algebra A, the map of
complexes Homppp1(D(M), A) - Hompp) (P, M ®r A) is a quasi-isomorphism.
This is a special case of our assumption that ¢ exhibits D(M) as a weak dual of
M. O
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