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Abstract 

The inherent structural heterogeneity of biomolecules is an important biophysical property that is 

essential to their function, but is challenging to characterize experimentally. We present a workflow that 

rapidly and quantitatively assesses the conformational heterogeneity of peptides and proteins in the gas 

phase using traveling wave ion mobility (TWIM) arrival time distributions (ATDs). We have established a 

set of semi-empirical equations that model the TWIM ATD peak width and resolution across a wide 

range of wave amplitudes (V) and wave velocities (v). In addition, a conformational broadening 

parameter, δ, can be extracted from this analysis that reports on the contribution of conformational 

heterogeneity to the broadening of TWIM ATD peak width during ion mobility separation. We use this δ 

value to evaluate the conformational heterogeneity of a set of helical peptides, and our analysis 

correlates well with previous peak width observations reported for these ions. Furthermore, we use 

molecular dynamics simulations to independently investigate the general flexibility of these peptides in 

the gas phase, and generate similar trends found in experimental TWIM data. Finally, we extended our 

analysis to Avidin, a 64 kDa homotetramer, and quantify the structural heterogeneity of this intact 

complex using TWIM ATD data as a function of cross-linking. We observe an initial reduction in δ values 

as a function of cross-linker concentration, demonstrating the sensitivity of our δ value analysis to 

changes in flexibility of the assembly. 
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Introduction 

The functions of biomolecules are inherently linked to their structures, making their study 

critical for wide-ranging research efforts in biochemistry and human disease[1]. Ultimately, protein 

functions depend upon discrete motions on the atomic scale, giving rise to structural ensembles that are 

responsible for carrying out various cellular processes[2]. As such, the quantitative assessment of 

structural ensembles is critically important in understanding the mechanistic details of biomolecular 

function. For example, proteins adapt their structure to many different binding partners, and therefore, 

can exhibit large conformational heterogeneity[3]. In addition, a significant fraction of the proteins in 

eukaryotes contain disordered regions that are involved in many important biophysical processes, but 

are currently insufficiently understood[4]. The prevalence of dynamics and flexibility in our 

understanding of protein biophysics has stimulated the development of many novel analytical 

techniques and computational modeling tools aimed at the detailed assessment of proteins in 

motion[5]. 

Despite the importance of dynamic motion in protein function, its quantification and 

characterization has remained a challenge for biophysical measurement techniques for decades. Nuclear 

magnetic resonance (NMR) spectroscopy is able to probe protein movements on timescales ranging 

from nanoseconds to milliseconds with atomic resolution[6]. In addition, small angle X-ray scattering 

(SAXS) measurements have more recently begun to provide information on protein dynamics[7]. In 

conjunction with experimental data, ensembles of structures have been generated computationally in 

order to study structural microstates and functional disorder in proteins[8, 9]. Despite technical 

advancements, however, the experimental techniques described above require pure, monodisperse, 

high concentration samples, which severely limit the biomolecular ensembles that can be probed. 

Furthermore, the computational sampling of protein dynamics remains challenging due to the 
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difficulties in extending simulation times to match those relevant for most biological processes and a 

general inability to completely account for configurational entropy in such simulations[10]. 

 By virtue of soft ionization techniques that enable the introduction of solvent-free biomolecular 

structures in the gas phase[11], mass spectrometry (MS) methods such as native MS[12–14], tandem MS 

in combination with ion activation methods[15–17], hydrogen deuterium exchange (HDX) MS[18, 19], 

and chemical cross-linking (CXL) MS[20, 21] have been used to study the structure of proteins and 

protein complexes using small amounts of sample[22]. Ion mobility (IM)-MS is a structural MS method 

currently undergoing a period of rapid development, capable of separating protein ions according to 

their orientationally-averaged size on the millisecond timescale[23]. Several types of IM separators have 

been coupled to MS, each having their own strengths and weaknesses[24, 25]. For instance, drift tube 

IM (DTIM) works by introducing a time-defined packet of ions into a chamber containing both a weak 

electric field (E) and an inert buffer gas[26]. Under typical DTIM conditions, ion arrival times are directly 

proportional to their orientationally-averaged collision cross sections (CCSs), values which serve as 

coarse-grained structural restraints in biomolecular modeling efforts[27, 28]. DTIM arrival time 

distributions (ATDs) are well characterized by theory, and have previously been used to assess the 

structural heterogeneity of biomolecules in the gas phase[29–33]. The characterization of such 

heterogeneity can report on the ensemble of biomolecular structures in solution, as well as the 

structural heterogeneity of such systems in the gas phase. Despite this, traveling wave ion mobility 

(TWIM)[34–36], which uses time-varying electric fields to achieve IM separations, is the most prevalent 

form of IM-MS for work in the area of structural biology[25]. In contrast to DTIM, assessments of TWIM  

peak widths in an effort to elucidate the structural heterogeneity of biomolecules, as has been done 

previously in DTIM measurements, remains challenging due to our currently incomplete understanding 

of ion transport within TWIM analyzers [37–40]. 
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 In this report, we construct a semi-empirical model that describes the widths of TWIM ATDs 

across a wide range of TWIM parameters, and is capable of predicting ATD peak widths for nominally 

mono-conformational biomolecules for use in assessing the structural polydispersity of biomolecules 

generally. By using a group of model peptides known to have rigid structures in the gas phase, we tested 

our empirical expression and detected a subtle structural transition in the peptides as a function of 

sequence length. Furthermore, we correlated our IM-MS measurements with molecular dynamics (MD) 

simulations, observing strong correlations between computed structural ensembles and our 

experimental TWIM ATDs. Finally, we applied our model to analyze the TWIM ATDs of unmodified and 

cross-linked Avidin ions detecting shifts in protein complex peak widths in a manner correlated with the 

attachment of CXL agents.  We conclude by projecting the general utility of quantitative TWIM peak 

width assessments for gas-phase structural biology. 

Experimental Section 

Chemicals and Materials 

 Ac-Alan-Lys peptides were custom made from Anaspec, CA. The peptides were dissolved in 90% 

TFA (Fisher Scientific, O4901) in water to achieve a final concentration of 1 mg/ml for nano-ESI analysis. 

Avidin (Sigma-Aldrich, A9275) was prepared in 200mM ammonium acetate at a final concentration of 50 

μM (Sigma-Aldrich, 09689). BS3 (Thermo Scientific Pierce, PI-21580) was freshly prepared in HEPES 

(Sigma-Aldrich, H3375) at pH 7.3 before CXL experiments. DL-polyalanine (Sigma-Aldrich, P9003) was 

used at a final concentration of 1mg/ml in 49.5/49.5/1 ratio of water/acetonitrile (Fisher Scientific, 

A9984)/acetic acid (Fisher Scientific, A38212). 

Chemical Cross-linking 

 Avidin samples were buffer exchanged into 200mM HEPES, pH 7.3, using micro biospin 6 

columns (Bio-rad, CA). BS3 was added to these samples in the following protein to cross-linking reagent 
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ratios: 1:1, 1:50, 1:150, 1:500, 1:1000, 1:1500, and 1:2000. After incubating the samples for 30 minutes 

at room temperature, the reaction was quenched by buffer exchanging the cross-linked samples into 

200mM ammonium acetate. 

TWIM-MS 

 All data was collected on a Synapt G2 TWIM-MS instrument (Waters, Milford MA). 

Instrumentation details can be found elsewhere[41]. Briefly, ions were generated using nano ESI, and 

then pulsed into the TWIM cell with 100μs gate pulse width. The TWIM cell is comprised of a stacked 

ring ion guide (SRIG), where direct current (DC) voltage is applied to two pairs of ring electrodes in a 

repeating pattern throughout the cell. A series of DC pulses generates a time varying potential, defined 

by its wave amplitude (V) and wave velocity (v). The ultimate structure of the resultant waveform is 

nominally sinusoidal [34–37]. In our experiments, the TWIM separator was operated both at a pressure 

of 3.5 mbar (200 ml/min and 90 ml/min flow rates for He and N2, respectively) and 4 mbar (200 ml/min 

and 100 ml/min flow rates for He and N2, respectively), for peptide and Avidin ion separations, 

respectively. TWIM-MS data was acquired at values of V ranging from 20 V to 40 V in 2 V increments and 

values of v ranging from 200 m/s to 500 m/s in 20 m/s increments. After the TWIM cell, ions travel to a 

transfer region that transports the mobility separated ions into the orthogonal acceleration (oa) time of 

flight mass analyzer (ToF). TWIM ATD is recorded by synchronization of the oa-ToF acquisition with the 

gated release of ions from trap into the TWIM cell. CCS was calibrated using D,L polyalanine peptides at 

a v value of 520 m/s and V values of 20, 25, and 30 V. He CCS values were used to construct calibration 

function, which was then used to predict He CCS values in our experiments. Three replicate 

measurements taken at different days were used for calibration in order to obtain uncertainty values as 

described previously[41].  

SIMION Modeling 
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A Synapt G2 TWIM cell was simulated using SIMION 8.1 (Scientific Instrument Services Inc., 

Ringoes, NJ, USA)[42]. Potential array (PA) files were created in order to apply potential to 4 electrodes 

at once and create a 4 repeat pattern that mirrors the implementation of traveling wave dc voltage in 

TWIM cell[34, 36]. A specific script was written to obtain the voltage and electric field strength in the G2 

model for downstream analysis. 

MD Simulations 

 Given the challenges listed above, we have chosen to adopt a targeted MD strategy to aid the 

interpretation of our TWIM peak width data.  Our targeted strategy aims to map the gas-phase 

conformational landscapes for a series of well-characterized peptides, known to adopt helical structures 

in the gas phase [32].  We do not aim to produce quantitative depictions of the peptide structural 

ensemble from these simulations that can be directly compared to TWIM peak width data, but rather 

capture the qualitative trends observed in our experimental data that are related to the general 

flexibility of these systems in the gas phase.  Furthermore, since our peak width analysis procedures 

cannot discriminate between broadening modes that result from ensembles of static structures 

(resulting in Gaussian peak shapes) or slowly interconverting structural families having similar CCS 

values (resulting in pseudo-Gaussian peak shapes), our MD approach is aimed only at probing the 

general gas-phase flexibilities of the peptide ions studied here.  MD simulations were performed with 

CHARMM on a workstation with an Intel Xeon processor with eight CPU cores at 2.50 GHz. CHARMM22 

force field was employed as it contains the CMAP correction for improved treatment of peptide 

backbones to achieve more accurate peptide conformations[43]. Helical Ac-Alan-Lys peptides with n 

from 6 to 19 were constructed in CHARMM by fixing the phi and psi angles to -47 and -67 degrees, 

respectively, and placing the charge on the Lys residue. Peptides were energy minimized using a 10 step 

conjugate gradient, followed by 100 steps of an adopted basis Newton Raphson (ABNR) method 

minimization in vacuo. The models were then equilibrated at 300 K for 50 ps, after which, they were 
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subjected to a simulated annealing (SA) cycle. Briefly, the system was heated from 300 K to 1000 K in 10 

K increments and cooled to 0 K in 10 K decrements, with each temperature step lasting for a minimum 

of 100 ps. The system was then equilibrated at 0 K for 500 ps. The lowest energy structure from the SA 

run was then subjected to gradual heating with final temperature of 300 K, 400 K, and 500 K 100 ns of 

constant temperature MD simulation was performed at those temperatures saving coordinates every 5 

ps, generating 20,000 structures. This procedure was performed for three replicas having different 

random initial velocities. Our total analysis for each peptide ion, therefore, incorporates a total of nine 

replicas produced by SA, tracked over three different temperatures.  It is important to note that our MD 

protocol does not provide accurate quantitative data on the energy barriers or interconversion 

timescales of the structures captured for our analysis.  As such, all models generated during the 

procedures described above were collected and compared to our TWIM data in a qualitative manner.  

All CHARMM input script files were written in house. 

Hierarchical Clustering 

 A hierarchical clustering method[44, 45] from scipy[46, 47] was used to classify structural 

families extracted from MD simulations. For each constant temperature run, 1000 structures were 

selected at regular intervals in 100 ns runs for classification. Pair-wise RMSD values were calculated for 

all combinations of structures using an in-house script. Pairwise euclidean distance matrix was 

generated using RMSD matrix using scipy. The resulting distance matrix was then used for hierarchical 

clustering using average method. 

Theoretical CCS Calculations 

 IMPACT[48] and IMOS[49, 50] were used for CCS calculations for model structures. IMPACT was 

used for CCS calculations on all the structures resulting from MD simulations. The IMOS diffusive 

trajectory method, which accounts for diffuse scattering in momentum transfer calculation, was used 



9 
 

with He gas at 300 K with 50,000 total gas molecules. Non-integer partial charges were included in the 

structure from CHARMM. Overall, IMOS trajectory method calculations were employed on 280 total 

structures from our 300K constant temperature run, with 20 structures extracted from each peptide 

system, in order the test and validate the IMPACT results obtained. 

Data Analysis 

TWIM ATD data was extracted using TWIMExtract[51]. For CHARMM output trajectory files, in house 

scripts were written to analyze the trajectories and extract the structures. IM-MS 3D plots were 

generated using Driftscope (Waters, Milford MA). Data was analyzed using python, numpy, and scipy[46, 

47]. Matplotlib[52] was used to generate all the output plots shown in this work. Additional details are 

provided in the Supporting Information. 

Theory: A Semi-empirical Width and Resolution Expression for TWIM 

 For DTIM separations, Equation 1 is an analytical solution to the general transport expression 

that describes the ATD of a single conformation ion species: 

𝑭(𝒛, 𝒕) = 𝑪
𝟏

𝟒(𝝅𝑫𝒕)𝟏/𝟐
(𝒗𝒅 +

𝒛

𝒕
) [𝟏 − 𝐞𝐱𝐩⁡(−

𝒓𝟎
𝟐

𝟒𝑫𝒕
)] 𝒆𝒙𝒑 [−

(𝒛−𝒗𝒅𝒕)
𝟐

𝟒𝑫𝒕
]    (1) 

where F(z,t) is the function estimating the ATD of an ion, D is diffusion constant, t is arrival time, vd is 

drift velocity, z is the position of the ion in traverse direction, r0 is the radius of the drift tube entrance 

aperture, and C is a constant that is dependent on the initial formation of ion packet[53]. As discussed 

above, a similar expression is not currently available for TWIM ATD analyses [37]. 

 Generally, we can define the widths of IM ATDs as a sum of a series of band broadening terms: 

𝑾 =𝑾𝑫 +𝑾𝑷 +𝑾𝑺𝑪 +𝑾𝑹𝑿𝑵 +𝑾𝑪        (2) 

where W is the width of an IM ATD, and each subscript in Equation 2 indicates the origin of the 

broadening factor indicated, where D is diffusion, P is gate pulse width, SC is space charge, RXN is 
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reaction chemistry, and C is conformational heterogeneity exhibited in the timescale of IM 

separation[54–56]. WSC and WRXN typically have a negligible impact on W, as ion number densities are 

kept low and inert neutrals are used for IM separation. As such, practical estimates of W depend only on 

ion diffusion, pulse width, and conformational heterogeneity. As expressed previously for DTIM 

separations, we  model TWIM peak widths using[54]: 

𝒘𝟐 = 𝜸 + 𝜷𝒕𝒈
𝟐 + 𝜹𝒕𝒅𝒊𝒇𝒇

𝟐         (3) 

where w is the experimental TWIM ATD width (full width at half the maximum peak height, or fwhm), tg 

is gate pulse width, tdiff is diffusion limited width, and we define δ as a parameter that describes any non-

diffusion broadening incorporated into the total TWIM peak width model to achieve a good fit, referred 

to below as the conformational broadening parameter. By substituting an expression for diffusion-

limited TWIM peak width as defined previously[37] into Equation 3, we obtain: 

𝒘𝟐 = 𝜸 + 𝜷𝒕𝒈
𝟐 + 𝜹

𝟏𝟔𝒌𝑻𝒗𝒍𝒏𝟐

𝒒𝑳𝑲𝑬𝟐
𝒕𝟐         (4) 

where k is Boltzmann’s constant, T is the temperature, v is wave velocity, q is the charge of the ion, L is 

the length of the TWIM cell, K is ion mobility, E is electric field, and t is arrival time of the ion. By 

simplifying Equation 4 we arrive at: 

𝒘𝟐 = 𝜸 + 𝜷𝒕𝒈
𝟐 + 𝜶

𝒗

𝑲𝑬𝟐
𝒕𝟐         (5) 

where 

𝜶 = 𝜹
𝟏𝟔𝒌𝑻𝒍𝒏𝟐

𝒒𝑳
           (6) 

In Equations 5 and 6, α, β, and γ are fitting parameters, where α and (γ + β tg
2) are the slope and 

intercept, respectively, obtained from a linear regression between w2 and vt2/KE2. Similarly, β is the 

slope obtained from the linear regression between w2 and tg
2 as previously determined in DTIM 

systems[54]. In contrast to DTIM however, a linear relationship does not exist between w2 and tg
2(Figure 
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S1), and instead exhibit a complex relationship that is also dependent on other factors such as V and v. In 

order to simplify downstream expressions of TWIM peak width, we set β equal to 1 in the analyses 

reported here. In order to validate this approach, we probed β values ranging from 1x10-3 to 1x103, but 

observed no significant improvement in TWIM ATD fit quality (data not shown). 

 In order to effectively utilize Equation 5 to predict TWIM peak widths, estimates of ion velocities 

are required to provide ion arrival time values (t). A previous description of TWIM ion transport 

theory[37] provides the following relationship between ion mobility, the structure of the TW electric 

field, and overall ion transit time: 

𝒕 =
𝑳𝒗

𝑲𝟐(
𝑽

𝒙
)
𝟐 + 𝒃           (8) 

This expression, upon rearrangement, becomes: 

𝒕 = 𝒙𝟐
𝑳𝒗

𝑲𝟐𝑽𝟐
+ 𝒃           (9) 

Linear regression analysis of Equation 9 yields a slope of x2 and an intercept of b (Figure S3a and Table 

S2). The V/x ratio shown in Equation 8 is equivalent to the effective E an ion experiences during its flight 

during TWIM separation, and can be used in Equation 7 to estimate TWIM ion arrival times (Figure S3b 

and Table S3). The x values shown in Equations 8 and 9 vary as a function of K (Figure S3c) which 

necessitates calibration across a range of V and v in order to be able to predict TWIM arrival times. 

 We have further extended these empirical equations in order to predict TWIM resolution. By 

dividing Equation 5 through on both sides by t2 we arrive at: 

(
𝒘

𝒕
)
𝟐
=

𝜸+𝜷𝒕𝒈
𝟐

𝒕𝟐
+ 𝜶

𝒗

𝑲𝑬𝟐
          (10) 

IM resolution is typically defined as: 

𝑹 = ⁡
𝒕

𝒘
            (11) 

where R is the resolution. Substituting R into Equation 10 we produce: 
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𝑹−𝟐 = 𝑹𝒑
−𝟐 + 𝑹𝒅

−𝟐          (12) 

where Rp and Rd are the contributions to IM resolution related to the initial ion pulse width and 

diffusion, respectively. Using Equations 10 and 12 we can define Rp and Rd individually as: 

𝑹𝒑 =⁡
𝒕

(𝜸+𝜷𝒕𝒈
𝟐)

𝟏/𝟐          (13) 

𝑹𝒅 = (
𝑬𝟐𝑲

𝜶𝒗
)
𝟏/𝟐

           (14) 

Further, we can use Equations 5, 7, and 11 to obtain a complete R expression: 

𝑹 =
𝑳𝒗

𝑲𝟐𝑬𝟐(𝜸+𝜷𝒕𝒈
𝟐+

𝜶𝑳𝟐𝒗𝟑

𝑲𝟓𝑬𝟓
)
𝟏/𝟐         (15) 

Additionally, by setting 
𝒅𝑹

𝒅(
𝑬𝟐

𝒗
)
= 𝟎 we find the optimal E2/v to be: 

𝑬𝟐

𝒗 𝒐𝒑𝒕𝒊𝒎𝒂𝒍
= [

𝜶𝑳𝟐

𝟐𝑲𝟓(𝜸+𝜷𝒕𝒈
𝟐)
]
𝟏/𝟑

         (16) 

In this work, we test the above empirical sets of equations in order to model the TWIM ATD width and 

resolution for a range of biomolecular ions. In addition, we similarly evaluate the conformational 

broadening parameter δ for specific peptides and protein complexes. 

Results and Discussion 

 To test our set of semi-empirical equations describing TWIM peak width, we used a series of Ac-

Alan-Lys peptides , which have previously been observed to adopt rigid helical structures in the gas 

phase[57, 58]. Figure 1a and 1b shows TWIM-MS data collected for Ac-Alan-Lys peptides contained 

within our n=19 sample. Within this sample, we observe a distribution of Ac-Alan-Lys peptides, with n 

ranging from 6 to 19. The appearance of n < 19 peptide signals is likely due to the hydrolysis of n=19 

peptides under the acidic conditions used to dissolve the original hydrophobic peptide sample, and such 

conditions mirror those used previously to analyze the gas-phase structures of these sequences[32, 57, 
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58]. We observe both [M+H]+ and [M+2H]2+ peptide ions in our IM-MS data, with the latter group 

detected having relatively low signal intensities. Due to the significantly larger signal intensity for the 

singly-charged peptide ions in our dataset, our detailed peak width analysis focuses on these signals 

exclusively. 

 Our peptide TWIM ATD data were acquired for a range of V and v settings at 3.5 mbar of 

pressure in the TWIM cell. ATDs were extracted for individual peptide systems and fitted with a Gaussian 

function to obtain a centroid arrival time, full width half max (fwhm), and resolution values, which were 

calculated using Equation 11. A contour plot of resolution and fwhm as a function of V and v is shown in 

figure 1c and figure 1d, respectively, for Ac-Ala18-Lys1+ . In this data, the fwhm decreases as V increases 

and v decreases, reaching a maximum at the smallest V and highest v values probed here. On the other 

hand, the TWIM resolution trend seen in figure 1c does not mirror the fwhm trend, and instead reaches 

optimally large values at a V to v ratio of 0.075-0.125 (Figure S4), as observed previously for TWIM 

analyzers[56]. The resolution values observed in this study differ from those reported previously [56, 59], 

which discussed TWIM resolution in CCS space. We computed resolution values reported here [60] in 

drift time space in order to directly link our experimental measurements to the semi-empirical model we 

devised.  After adjusting the effective E field to yield an accurate estimation of centroid arrival 

times (Equation9, Figure S3, and Table S3), we implemented Equations 5 and 15 to fit our experimental 

dataset in terms of fwhm and R, respectively. Figure 2a shows a plot of fwhm2 vs vt2/KE2 for Ac-Ala18-

Lys1+ data. Through linear regression, and the application of Equation 5, we extract an α value for these 

data, an umbrella term that includes conformationally-derived peak broadening, with a strong 

correlation coefficient (R2 = 0.9751) indicating that our model fits the experimental data well. In addition, 

we utilize the standard error resulting from our linear regression to estimate the error associated with δ 

value determined in this way. We compared measured R, Rd, and Rp values with computed resolution R 

values as a function of E2/v in Figure 2b. As E2/v increases, Rd increases whereas Rp decreases, as 
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expected. R, which is the weighted sum of Rp and Rd from Equation 15 models the functional form 

observed experimentally. The red dashed line indicates the E2/voptimal value (from Equation 16) where 

maximum R is observed is predicted to be observed. A summary of the fitting parameters and E2/voptimal 

for all the peptides is shown in Table S4. Figure 2c plots measured and computed fwhm as a function of 

E2/v. Computed fwhm values agree well with those measured by TWIM, as indicated by the linear 

regression analysis shown. Specifically, our semi-empirical TWIM width relationship models the fwhm 

values for the peptides studied here with an average relative standard deviation of about 5% (Table S5 

and Figure S5). 

 In order to quantitatively evaluate the peak broadening observed in our TWIM peptide data 

related to conformational polydispersity, we evaluated the conformational broadening parameter, δ, by 

separating this value from the remainder of  the α term found in Equation 6. When the δ term that de- 

scribes a TWIM peak approaches a value of 1, the width of that peak is diffusion-limited. Any increase in 

the δ value needed to describe the width of a TWIM ATD is, therefore, evidence of non-diffusional 

broadening, specifically those related to the ensemble of gas-phase structures occupied by the ion. 

Figure 3 displays the δ values for Ac-Alan-Lys peptides required to fit the TWIM peak widths recorded in 

our experiments. 

 We observe δ values near to 1 for Ac-Alan-Lys peptides where n = 6 – 11, indicating negligible 

contributions to observed TWIM peak widths from the peptide conformational ensemble. Furthermore, 

we observe a sharp transition in the magnitude of the δ values required to fit our TWIM peak widths at a 

peptide length of n=12, after which δ values remain above 1.2 for peptides with lengths of n = 13 – 19.  

Some of our TWIM peak widths require  values slightly below 1 in order to generate accurate fits, likely 

due to minor inaccuracies in our empirical relationships (Table S5 and Figure S5). We observe a large 

shift in  δ value as the length of the Ac-Alan-Lys1+ peptides increases, indicating significant increases in 

peptide structural heterogeneity for sequences with n >11. This result correlates well with previous 
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DTIM measurements, where singly-charged Ac-Alan-Lys ions were generally observed to be helical and 

rigid.  In addition, DTIM widths for similar, singly-charged polyalanine peptides were reported to scale 

from diffusion-limited values for short sequences, to values 1.5 times higher for n = 20 peptides[32]. 

 In order to model the ensemble of peptide structures present in our TWIM-MS experiments, we 

utilized MD simulations to generate a large population of Ac-Alan-Lys peptide structures, equilibrated at 

300 K, 400 K, and 500 K. At each temperature, we pooled all low energy structures generated, and 

plotted these as a histogram to create CCS distributions, which were subsequently fit to Gaussian 

functions for comparison with TWIM datasets (Figure S6). Weighted mean values for each distribution 

were plotted against the number of alanine residues in the peptide analyzed, as shown in Figure 4a. 

 To further evaluate the quantitative agreement between our computed structural ensembles 

and those observed experimentally by TWIM, we evaluated the weighted mean CCS values generated 

from both IMPACT and IMOS, and observed good agreement with experimental CCS values, regardless of 

the temperature used in our MD simulations (Figure S7). Importantly, we find that two linear regression 

models provide the best fit for the experimental data shown in Figure 4a (Figure S8) with a first linear 

trend covering peptides with n = 6-13and a second trend covering n = 14-19. Slope values for these two 

trend lines are 14.9 Å2/Alanine for shorter peptides and 16.5 Å2/Alanine for those that are longer. We 

observe similar variance in the fit when the two trends described above are restructured so that the first 

linear regression covers peptides with n=6-12, and the second covers those with n = 13-19 (Figure S8), 

clearly indicating a shift in CCS increase per-alanine value observed at either n = 12 or 13.  Importantly, 

the transition point recorded for our CCS trend lines occurs at the same peptide lengths where we 

observe a sharp increase in δ values in Figure 3. 

 In pursuit of a deeper structural interpretation for our TWIM data, we interrogated our MD 

results by classifying the resulting structural ensembles in terms of the conformational families produced 

during our simulations. Hierarchical clustering on a reduced dataset of ~1000 structures extracted from 
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each constant temperature run was used to classify structural families. Families accounting for greater 

than 2% of the total population were considered for assessing peptide flexibility (Tables S7 and S8). 

Figures 4b, 4c, and 4d show our classification results for  n = 6 peptide models at 300K, 400K, and 500K, 

respectively, whereas Figures 4e, 4f, and 4g show classifications for n = 19 peptides similarly structured 

with respect to temperature. In general, our simulations reveal broader ranges of ion CCS values for 

longer peptides, in agreement with our TWIM peak width data.  Our cluster analysis indicates that while 

primarily helical, structural heterogeneity occurs in Ac-Alan-Lys peptide ions at their   C-termini (Figure S9 

and Tables S6, S7, and S8). Notably, MD simulations for shorter peptide sequences, from n = 6-10, 

contain a structural family where helicity is not maintained throughout the peptide.  For example, cluster 

1 in 500K dataset for singly-charged Ac-Ala6-Lys exhibits a more random coil type conformation (Figures 

4d and S-9). Despite these structural differences, random coil and helical peptide families have very 

similar mean CCS values (Tables S6, S7, and S8). For larger peptides, the helical structural families in our 

MD simulations appear to more completely dominate the structural landscape, with significant 

variations in the C-termini (Figure 4e, 4f, 4g, and Figure S9). While the widths of our MD-generated 

ensembles in CCS space to not quantitatively correlate with our experimental peak widths from TWIM 

data,  such agreement is not likely given the unknown temperatures of the ions measured and the 

relative simplicity of our simulations (Figure S-10)[37, 61, 62]. Overall, however, our MD simulations 

point to the conformational diversity of helical peptide ion C-termini as the main driver of the increased 

 values observed in Figure 3. 

 The ultimate aim of our TWIM width analysis workflow is the rapid assessment of protein 

structural heterogeneity. To demonstrate the capabilities of our TWIM method, we measured δ values 

for Avidin, a 64 kDa homo-tetrameric protein complex, as a function of the concentration of added CXL 

reagent in solution. We anticipate that CXL reactions will, in general act to constrain the Avidin structure, 

yielding a population of gas-phase ion structures of reduced structural heterogeneity, and thus 
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decreased  values. Figure 5 shows δ values recorded for Avidin as a function the ratio between BS3, a 

CXL reagent that targets primary amines, and the available Lys residues within the Avidin sequence. 

Remarkably, we note  values for Avidin ions between 10-20 times those observed for Ac-Alan-Lys 

peptide ions, indicating a dramatically increased level of structural polydispersity for the protein 

complex. As the BS3/Lys ratio is increased, we observe a significant decrease in the δ values required to 

accurately fit our TWIM peak widths, indicative of a restrained population of Avidin ion structures across 

both charge states probed.  We note that different  values are required to fit different Avidin charges 

states, and that changes in Avidin TWIM peak width appear non-uniform across those Avidin charge 

states probed here, indicating that each protein complex charge state is comprised of a unique structural 

ensemble. We observe minimal δ values BS3/Lys ratios of 1.38 and 13.8 for 15+ and 16+ ions 

respectively. As the BS3/Lys ratio is increased beyond 13.8, we further observe an increase in δ values for 

both charge states, indicating an increase in structural polydispersity, likely driven by the prevalence of 

dead-end reaction products known to dominate under such reaction conditions previously[63–65].  

Overall, our Avidin results illustrate the performance of our empirical TWIM peak width analysis 

approach.  The changes in we observe match our expectations for CXL modified Avidin complex ions, as 

well as revealing new quantitative insights into gas-phase protein complex structures. 

Conclusions 

 Dynamic ensembles, rather than static structures, dictate the function of active biomolecules. 

The TWIM width analysis approach presented here provides a rapid assay of protein structure 

heterogeneity. We develop and validate a semi-empirical relationship that accurately models TWIM ATD 

widths and resolutions across a wide range of instrument settings. In addition, we use this workflow to 

examine the structure of peptide and protein complex model systems.  By extracting a conformational 

broadening parameter, δ, from our empirical formulae, we quantified the conformational broadening for 

a series of Ac-Alan-Lys peptides, with n = 6 – 19. Our width analyses allowed us to classify these peptide 
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ions into two families in terms of their structural heterogeneity, with n=6-11 having δ values indicating a 

diffusion-limited peak width, and n ≥ 12 exhibiting δ values congruent with more significant 

conformational broadening. Furthermore, we utilized MD simulations in combination with hierarchical 

clustering analysis in order to locate the likely source of the structural polydispersity in our TWIM 

peptide data to the C-terminal regions of the longer sequences studied.  Finally, we implemented our 

TWIM width analysis approach to study the influence of chemical cross-linking on the structural 

ensemble occupied by the Avidin tetramer, recovering large δ values that decrease sharply upon CXL 

treatments, followed by increases at when CXL agent excesses drive the formation of dead-end reaction 

products. Our quantitative TWIM peak width analyses also detected charge state dependent effects, 

indicating the presence of distinct structural ensembles for Avidin tetramers previously hidden within 

iso-CCS TWIM features. 

 We envision that our TWIM peak width analysis approach will enable a broad spectrum of 

applications in protein structural biology and biophysics. Examples include, but are not necessarily 

limited to, the study protein aggregation, evaluating the functional ensembles of intrinsically disordered 

proteins (IDPs), and rapidly monitoring the effect of ligand binding on proteins targets. Generating 

accurate estimates of biomolecular ensembles remains a challenge for computational biochemistry, and 

such difficulties extend directly to our ability to accurately model structural distributions in vacuo in a 

manner that corresponds to our TWIM-MS experiments.  Furthermore, untangling the influence of 

charge state on the biomolecular ensembles quantified in our Avidin measurements will likely require 

the long-term application of charge manipulation, high resolution IM, and tandem IM experiments in 

combination with sophisticated MD simulations. However, it is clear from the data presented here that 

our empirical relationships describing TWIM peak width performs well across a wide range of protein 

analytes, and is readily accessible  (within seconds) of sample introduction. Future applications of TWIM, 
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in combination with other gas-phase structural biology approaches, will undoubtedly lead to an 

improved understanding of the structural ensembles associated with function biomolecules. 

Acknowledgements 

We thank Kevin Giles and David Langridge at Waters for providing initial SIMION files to build G2 model 

and extract voltage and electric field. We further thank Kevin Giles for helpful discussions with TWIM 

theory. We would also like to thank Efrosini Artikis from the Brooks group at University of Michigan for 

helpful MD discussions. Finally, we gratefully acknowledge funding from the National Science Foundation 

Division of Chemistry under Grants 1808541 and 1253384 (with co-funding from the Division of 

Molecular and Cellular Biosciences) for supporting our efforts in TWIM theory development 

 

 

 

 

 

 

 

 

 

 

 

 

 



20 
 

References 

1.  Osadchy, M., Kolodny, R.: Maps of protein structure space reveal a fundamental relationship 

between protein structure and function. Proceedings of the National Academy of Sciences. 108, 

12301–12306 (2011). doi:10.1073/pnas.1102727108 

2.  Sutto, L., Marsili, S., Valencia, A., Gervasio, F.L.: From residue coevolution to protein 

conformational ensembles and functional dynamics. Proc Natl Acad Sci U S A. 112, 13567–13572 

(2015). doi:10.1073/pnas.1508584112 

3.  Boehr, D.D., Nussinov, R., Wright, P.E.: The role of dynamic conformational ensembles in 

biomolecular recognition. Nature chemical biology. 5, 789–796 (2009) 

4.  van der Lee, R., Buljan, M., Lang, B., Weatheritt, R.J., Daughdrill, G.W., Dunker, A.K., Fuxreiter, 

M., Gough, J., Gsponer, J., Jones, D.T., Kim, P.M., Kriwacki, R.W., Oldfield, C.J., Pappu, R. V, 

Tompa, P., Uversky, V.N., Wright, P.E., Babu, M.M.: Classification of intrinsically disordered 

regions and proteins. Chem Rev. 114, 6589–6631 (2014). doi:10.1021/cr400525m 

5.  Oldfield, C.J., Dunker, A.K.: Intrinsically disordered proteins and intrinsically disordered protein 

regions. Annu Rev Biochem. 83, 553–584 (2014). doi:10.1146/annurev-biochem-072711-164947 

6.  Lange, O.F., Lakomek, N.A., Fares, C., Schroder, G.F., Walter, K.F., Becker, S., Meiler, J., 

Grubmuller, H., Griesinger, C., de Groot, B.L.: Recognition dynamics up to microseconds revealed 

from an RDC-derived ubiquitin ensemble in solution. Science. 320, 1471–1475 (2008). 

doi:10.1126/science.1157092 

7.  Bernado, P., Mylonas, E., Petoukhov, M. V, Blackledge, M., Svergun, D.I.: Structural 

characterization of flexible proteins using small-angle X-ray scattering. J Am Chem Soc. 129, 

5656–5664 (2007). doi:10.1021/ja069124n 

8.  Dedmon, M.M., Lindorff-Larsen, K., Christodoulou, J., Vendruscolo, M., Dobson, C.M.: Mapping 



21 
 

long-range interactions in alpha-synuclein using spin-label NMR and ensemble molecular 

dynamics simulations. J Am Chem Soc. 127, 476–477 (2005). doi:10.1021/ja044834j 

9.  Nakajima, N., Nakamura, H., Kidera, A.: Multicanonical ensemble generated by molecular 

dynamics simulation for enhanced conformational sampling of peptides. Journal of Physical 

Chemistry B. 101, 817–824 (1997). doi:DOI 10.1021/jp962142e 

10.  van Gunsteren, W.F., Bakowies, D., Baron, R., Chandrasekhar, I., Christen, M., Daura, X., Gee, P., 

Geerke, D.P., Glattli, A., Hunenberger, P.H., Kastenholz, M.A., Ostenbrink, C., Schenk, M., 

Trzesniak, D., van der Vegt, N.F.A., Yu, H.B.: Biomolecular modeling: Goals, problems, 

perspectives. Angewandte Chemie-International Edition. 45, 4064–4092 (2006). 

doi:10.1002/anie.200502655 

11.  Kelleher, N.L.: From primary structure to function: Biological insights from large-molecule mass 

spectra. Chemistry and Biology. 7, 37–45 (2000). doi:10.1016/S1074-5521(00)00081-8 

12.  Heck, A.J.R.: Native mass spectrometry: a bridge between interactomics and structural biology. 

Nature Methods. 5, 927–933 (2008). doi:10.1038/nmeth.1265 

13.  van den Heuvel, R.H., Heck, A.J.R.: Native protein mass spectrometry: from intact oligomers to 

functional machineries. Current Opinion in Chemical Biology. 8, 519–526 (2004) 

14.  Mehmood, S., Marcoux, J., Gault, J., Quigley, A., Michaelis, S., Young, S.G., Carpenter, E.P., 

Robinson, C. V.: Mass spectrometry captures off-target drug binding and provides mechanistic 

insights into the human metalloprotease ZMPSTE24. Nature Chemistry. 8, 1152–1158 (2016). 

doi:10.1038/nchem.2591 

15.  Chan, D.S.-H., Kavanagh, M.E., McLean, K.J., Munro, A.W., Matak-Vinković, D., Coyne, A.G., Abell, 

C.: Effect of DMSO on Protein Structure and Interactions Assessed by Collision-Induced 

Dissociation and Unfolding. Analytical Chemistry. 89, 9976–9983 (2017). 



22 
 

doi:10.1021/acs.analchem.7b02329 

16.  Zhang, Z., Browne, S.J., Vachet, R.W.: Exploring salt bridge structures of gas-phase protein ions 

using multiple stages of electron transfer and collision induced dissociation. J Am Soc Mass 

Spectrom. 25, 604–613 (2014). doi:10.1007/s13361-013-0821-8 

17.  O’Brien, J.P., Li, W.Z., Zhang, Y., Brodbelt, J.S.: Characterization of Native Protein Complexes 

Using Ultraviolet Photodissociation Mass Spectrometry. Journal of the American Chemical 

Society. 136, 12920–12928 (2014). doi:10.1021/ja505217w 

18.  Mistarz, U.H., Brown, J.M., Haselmann, K.F., Rand, K.D.: Probing the Binding Interfaces of Protein 

Complexes Using Gas-Phase H/D Exchange Mass Spectrometry. Structure. 24, 310–318 (2016). 

doi:10.1016/j.str.2015.11.013 

19.  Zhang, A., Fang, J., Chou, R.Y., Bondarenko, P. V, Zhang, Z.: Conformational difference in human 

IgG2 disulfide isoforms revealed by hydrogen/deuterium exchange mass spectrometry. 

Biochemistry. 54, 1956–1962 (2015). doi:10.1021/bi5015216 

20.  Leitner, A., Faini, M., Stengel, F., Aebersold, R.: Crosslinking and Mass Spectrometry: An 

Integrated Technology to Understand the Structure and Function of Molecular Machines. Trends 

Biochem Sci. 41, 20–32 (2016). doi:10.1016/j.tibs.2015.10.008 

21.  Shi, Y., Fernandez-Martinez, J., Tjioe, E., Pellarin, R., Kim, S.J., Williams, R., Schneidman-Duhovny, 

D., Sali, A., Rout, M.P., Chait, B.T.: Structural characterization by cross-linking reveals the detailed 

architecture of a coatomer-related heptameric module from the nuclear pore complex. Mol Cell 

Proteomics. 13, 2927–2943 (2014). doi:10.1074/mcp.M114.041673 

22.  Konermann, L., Vahidi, S., Sowole, M.A.: Mass spectrometry methods for studying structure and 

dynamics of biological macromolecules. Anal Chem. 86, 213–232 (2014). doi:10.1021/ac4039306 

23.  Lanucara, F., Holman, S.W., Gray, C.J., Eyers, C.E.: The power of ion mobility-mass spectrometry 



23 
 

for structural characterization and the study of conformational dynamics. Nature Chemistry. 6, 

281–294 (2014). doi:10.1038/nchem.1889 

24.  May, J.C., McLean, J.A.: Ion Mobility-Mass Spectrometry: Time-Dispersive Instrumentation. 

Analytical Chemistry. 87, 1422–1436 (2015). doi:10.1021/ac504720m 

25.  May, J.C., Morris, C.B., McLean, J.A.: Ion Mobility Collision Cross Section Compendium. Anal 

Chem. 89, 1032–1044 (2017). doi:10.1021/acs.analchem.6b04905 

26.  Allen, S.J., Giles, K., Gilbert, T., Bush, M.F.: Ion mobility mass spectrometry of peptide, protein, 

and protein complex ions using a radio-frequency confining drift cell. The Analyst. 141, 884–891 

(2016). doi:10.1039/C5AN02107C 

27.  Politis, A., Park, A.Y., Hall, Z., Ruotolo, B.T., Robinson, C. V.: Integrative modelling coupled with 

ion mobility mass spectrometry reveals structural features of the clamp loader in complex with 

single-stranded DNA binding protein. Journal of Molecular Biology. 425, 4790–4801 (2013). 

doi:10.1016/j.jmb.2013.04.006 

28.  Eschweiler, J.D., Frank, A.T., Ruotolo, B.T.: Coming to Grips with Ambiguity: Ion Mobility-Mass 

Spectrometry for Protein Quaternary Structure Assignment. J Am Soc Mass Spectrom. (2017). 

doi:10.1007/s13361-017-1757-1 

29.  Shelimov, K.B., Jarrold, M.F.: Conformations, Unfolding, and Refolding of Apomyoglobin in 

Vacuum: An Activation Barrier for Gas-Phase Protein Folding. J. Am. Chem. Soc. 119, 2987–2994 

(1997). doi:10.1021/ja962914k 

30.  Shelimov, K.B., Clemmer, D.E., Hudgins, R.R., Jarrold, M.F.: Protein structure in Vacuo: Gas-phase 

conformations of BPTI and cytochrome c. Journal of the American Chemical Society. 119, 2240–

2248 (1997). doi:10.1021/ja9619059 

31.  Shi, H., Pierson, N. a., Valentine, S.J., Clemmer, D.E.: Conformation types of ubiquitin [M+8H] 8+ 



24 
 

ions from water:methanol solutions: Evidence for the N and A states in aqueous solution. Journal 

of Physical Chemistry B. 116, 3344–3352 (2012). doi:10.1021/jp210797x 

32.  Hudgins, R.R., Mao, Y., Ratner, M.A., Jarrold, M.F.: Conformations of Gly(n)H+ and Ala(n)H+ 

peptides in the gas phase. Biophysical journal. 76, 1591–7 (1999). doi:10.1016/S0006-

3495(99)77318-2 

33.  Wyttenbach, T., Von Helden, G., Bowers, M.T.: Gas-phase conformation of biological molecules: 

Bradykinin. Journal of the American Chemical Society. 118, 8355–8364 (1996). 

doi:10.1021/ja9535928 

34.  Giles, K., Pringle, S.D., Worthington, K.R., Little, D., Wildgoose, J.L., Bateman, R.H.: Applications of 

a travelling wave-based radio-frequency-only stacked ring ion guide. Rapid Communications in 

Mass Spectrometry. 18, 2401–2414 (2004). doi:10.1002/rcm.1641 

35.  Pringle, S.D., Giles, K., Wildgoose, J.L., Williams, J.P., Slade, S.E., Thalassinos, K., Bateman, R.H., 

Bowers, M.T., Scrivens, J.H.: An investigation of the mobility separation of some peptide and 

protein ions using a new hybrid quadrupole/travelling wave IMS/oa-ToF instrument. 

International Journal of Mass Spectrometry. 261, 1–12 (2007). doi:10.1016/j.ijms.2006.07.021 

36.  Giles, K., Williams, J.P., Campuzano, I.: Enhancements in travelling wave ion mobility resolution. 

Rapid Communications in Mass Spectrometry. 25, 1559–1566 (2011). doi:10.1002/rcm.5013 

37.  Shvartsburg, A.A., Smith, R.D.: Fundamentals of traveling wave ion mobility spectrometry. 

Analytical Chemistry. 80, 9689–99 (2008). doi:10.1021/ac8016295 

38.  Kune, C., Far, J., De Pauw, E.: Accurate Drift Time Determination by Traveling Wave Ion Mobility 

Spectrometry: The Concept of the Diffusion Calibration. Anal Chem. 88, 11639–11646 (2016). 

doi:10.1021/acs.analchem.6b03215 

39.  Mortensen, D.N., Susa, A.C., Williams, E.R.: Collisional Cross-Sections with T-Wave Ion Mobility 



25 
 

Spectrometry without Experimental Calibration. J Am Soc Mass Spectrom. 28, 1282–1292 (2017). 

doi:10.1007/s13361-017-1669-0 

40.  Richardson, K., Langridge, D., Giles, K.: Fundamentals of travelling wave ion mobility revisited: I. 

Smoothly moving waves. International Journal of Mass Spectrometry. 428, 71–80 (2018). 

doi:10.1016/J.IJMS.2018.03.007 

41.  Ruotolo, B.T., Benesch, J.L.P., Sandercock, A.M., Hyung, S.-J., Robinson, C. V: Ion mobility–mass 

spectrometry analysis of large protein complexes. Nature Protocols. 3, 1139–1152 (2008). 

doi:10.1038/nprot.2008.78 

42.  Manura, D., Dahl, D.: SIMION (R) 8.0/8.1 User Manual. Scientific Instrument Services, Ringoes, NJ 

(2011) 

43.  Buck, M., Bouguet-Bonnet, S., Pastor, R.W., MacKerell  Jr., A.D.: Importance of the CMAP 

correction to the CHARMM22 protein force field: dynamics of hen lysozyme. Biophys J. 90, L36-8 

(2006). doi:10.1529/biophysj.105.078154 

44.  Mullner, D.: Modern hierarchical, agglomerative clustering algorithms. eprint arXiv:1109.2378. 

(2011) 

45.  Zepeda-Mendoza, M.L., Resendis-Antonio, O.: Hierarchical Agglomerative Clustering. In: 

Dubitzky, W., Wolkenhauer, O., Cho, K.-H., and Yokota, H. (eds.) Encyclopedia of Systems Biology. 

pp. 886–887. Springer New York, New York, NY (2013) 

46.  Walt, S. van der, Colbert, S.C., Varoquaux, G.: The NumPy Array: A Structure for Efficient 

Numerical Computation. Computing in Science & Engineering. 13, 22–30 (2011). 

doi:10.1109/mcse.2011.37 

47.  Oliphant, T.E.: Python for scientific computing. Computing in Science and Engineering. 9, 10–20 

(2007). doi:10.1109/MCSE.2007.58 



26 
 

48.  Marklund, E.G., Degiacomi, M.T., Robinson, C. V, Baldwin, A.J., Benesch, J.L.: Collision cross 

sections for structural proteomics. Structure. 23, 791–799 (2015). doi:10.1016/j.str.2015.02.010 

49.  Larriba, C., Hogan, C.J.: Free molecular collision cross section calculation methods for 

nanoparticles and complex ions with energy accommodation. Journal of Computational Physics. 

251, 344–363 (2013). doi:http://dx.doi.org/10.1016/j.jcp.2013.05.038 

50.  Larriba, C., Hogan, C.J.: Ion Mobilities in Diatomic Gases: Measurement versus Prediction with 

Non-Specular Scattering Models. The Journal of Physical Chemistry A. 117, 3887–3901 (2013). 

doi:10.1021/jp312432z 

51.  Haynes, S.E., Polasky, D.A., Dixit, S.M., Majmudar, J.D., Neeson, K., Ruotolo, B.T., Martin, B.R.: 

Variable-Velocity Traveling-Wave Ion Mobility Separation Enhancing Peak Capacity for Data-

Independent Acquisition Proteomics. Analytical Chemistry. 89, 5669–5672 (2017). 

doi:10.1021/acs.analchem.7b00112 

52.  Hunter, J.D.: Matplotlib: A 2D graphics environment. Computing in Science and Engineering. 9, 

99–104 (2007). doi:10.1109/MCSE.2007.55 

53.  Mason, E.A., McDaniel, E.W.: Transport properties of ions in gases. Wiley, New York (1988) 

54.  Siems, W.F., Wu, C., Tarver, E.E., Hill, H.H.J., Larsen, P.R., McMinn, D.G.: Measuring the Resolving 

Power of Ion Mobility Spectrometers. Analytical Chemistry. 66, 4195–4201 (1994). 

doi:10.1021/ac00095a014 

55.  Wu, C., Siems, W.F., Asbury, G.R., Hill, H.H.: Electrospray ionization high-resolution ion mobility 

spectrometry - Mass spectrometry. Analytical Chemistry. 70, 4929–4938 (1998). doi:DOI 

10.1021/ac980414z 

56.  Zhong, Y., Hyung, S.-J., Ruotolo, B.T.: Characterizing the resolution and accuracy of a second-

generation traveling-wave ion mobility separator for biomolecular ions. The Analyst. 136, 3534 



27 
 

(2011). doi:10.1039/c0an00987c 

57.  Hudgins, R.R., Ratner, M.A., Jarrold, M.F.: Design of helices that are stable in vacuo. Journal of 

the American Chemical Society. 120, 12974–12975 (1998). doi:DOI 10.1021/ja983021q 

58.  Hudgins, R.R., Jarrold, M.F.: Helix formation in unsolvated alanine-based peptides: Helical 

monomers and helical dimers. Journal of the American Chemical Society. 121, 3494–3501 (1999). 

doi:DOI 10.1021/ja983996a 

59.  Giles, K., Williams, J.P., Campuzano, I.: Enhancements in travelling wave ion mobility resolution. 

Rapid Communications in Mass Spectrometry. 25, 1559–1566 (2011). doi:10.1002/rcm.5013 

60.  Dodds, J.N., May, J.C., McLean, J.A.: Correlating Resolving Power, Resolution, and Collision Cross 

Section: Unifying Cross-Platform Assessment of Separation Efficiency in Ion Mobility 

Spectrometry. Analytical Chemistry. 89, 12176–12184 (2017). 

doi:10.1021/acs.analchem.7b02827 

61.  Morsa, D., Gabelica, V., De Pauw, E.: Effective temperature of ions in traveling wave ion mobility 

spectrometry. Anal Chem. 83, 5775–5782 (2011). doi:10.1021/ac201509p 

62.  Merenbloom, S.I., Flick, T.G., Williams, E.R.: How hot are your ions in TWAVE ion mobility 

spectrometry? J Am Soc Mass Spectrom. 23, 553–562 (2012). doi:10.1007/s13361-011-0313-7 

63.  Swaim, C.L., Smith, J.B., Smith, D.L.: Unexpected products from the reaction of the synthetic 

cross-linker 3,3′-dithiobis(sulfosuccinimidyl propionate), DTSSP with peptides. Journal of the 

American Society for Mass Spectrometry. 15, 736–749 (2004). doi:10.1016/j.jasms.2004.01.011 

64.  Clifford-Nunn, B., Showalter, H.D.H., Andrews, P.C.: Quaternary Diamines as Mass Spectrometry 

Cleavable Crosslinkers for Protein Interactions. Journal of The American Society for Mass 

Spectrometry. 23, 201–212 (2012). doi:10.1007/s13361-011-0288-4 

65.  Rozbeský, D., Rosůlek, M., Kukačka, Z., Chmelík, J., Man, P., Novák, P.: Impact of Chemical Cross-



28 
 

Linking on Protein Structure and Function. Analytical Chemistry. 90, 1104–1113 (2018). 

doi:10.1021/acs.analchem.7b02863 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



29 
 

Figure Legends 

Figure 1. a) A mass spectrum recorded for a Ac-Alan-Lys peptide where n = 19. b) A plot of TWIM drift 

time versus m/z, where ion intensity denoted by color-coded contour scale as indicated, for the same 

data shown in a. In both a) and b) we observe both a singly and a doubly charged series for n = 6 – 19 of 

peptides, with the latter series is detected at substantially lower signal intensities when compared to the 

former. Contour plots that show the influence of c) resolution and d) fwhm as a function of V and v for 

singly-charged Ac-Ala18-Lys peptides, with values for both figures of merit indicated by the color axis 

shown. 

Figure 2. a) A plot of fwhm2 as a function of vt2/KE2 where linear regression analysis yields α as the slope 

and (γ + β tg
2) as the y-intercept, from Equation 5. The correlation coefficient and best fit equation from 

the linear regression analysis is shown on the plot. b) A plot of TWIM resolution as a function of E2/v. 

Color coded trends are shown to represent predictions derived from our empirical relationships for 

diffusion-limited (green) and initial pulse width limited (blue) TWIM resolution. The predicted trend from 

the complete empirical resolution model is also shown (red solid line), and exhibits a strong correlation 

to experimentally measured TWIM peak widths (black points). The value for E2/voptimal was determined 

using Equation 16, and is indicated on the plot (red, dashed line). c) A plot of fwhm as a function of E2/v, 

where TWIM data points (in black) are compared against the trend predicted from Equation 3 (red, solid 

line). The inset shows the correlation between TWIM fwhm values from both our empirical model and 

experiment, exhibiting an excellent level of correlation and a slope of 0.99. 

Figure 3. A plot of the conformational broadening parameter (δ) extracted from our TWIM peak fits as a 

function of number of alanine residues in the peptide ions measured. The error bars shown represent 

the experimental error, propagated from the slope of linear regression shown in Figure 2a. The dotted 

horizontal line at δ = 1 indicates the expected d value for diffusion limited TWIM peak widths. Larger δ 

values indicate significant conformational broadening. 
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Figure 4. a) A trend line analysis of Ac-Ala-Lys CCS data plotted as a function of Ala residues contained 

within the peptide (black dot points). Theoretical CCS values representing the mean of our MD-

generated structural ensembles are also shown, computed using the IMPACT (blue diamonds) and IMOS 

(green triangles) trajectory methods. Two linear regression models were required to fit the experimental 

CCS data as indicated by the red and blue dashed lines.  b), c) and d) show the clustered CCS 

distributions for Ac-Ala6-Lys peptide ions at 300 K, 400 K, and 500 K, respectively. e), f), and g) show 

similarly clustered CCS distributions for Ac-Ala19-Lys peptide ions at 300 K, 400 K, and 500 K, respectively. 

Clusters are numbered as 0 and 1, as referred to in the text. Ensembles of overlaid structures extracted 

from clusters are also shown below each CCS distribution plot, and are labelled with respect to their 

cluster of origin. 

Figure 5. Bar graph of δ values needed to fit TWIM peak widths recorded for unmodified and BS3 cross-

linked Avidin tetramer 15+ (blue) and 16+ (red) ions. We interpret the initial decreases in δ values upon 

treatment with CXL agents as evidence of rigidified protein structures, whereas increases in δ values 

observed at larger BS3 excesses are likely due to the prevalence of dead-end cross-links under such 

conditions, as illustrated in the schematic shown. 
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