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ABSTRACT: Ion mobility-mass spectrometry (IM-MS) has become an important addition to the structural biology toolbox, but 

separating closely related protein conformations remain challenging. Collision induced unfolding (CIU) has emerged as a valuable 

technique for distinguishing iso-crossectional protein and protein complex ions through their distinct unfolding pathways in the gas 

phase. The speed and sensitivity of CIU analyses, coupled with their information-rich datasets, have resulted in the rapid growth of 

CIU for applications, ranging from the structural assessment of protein complexes to the characterization of biotherapeutics. This 

growth has occurred despite a lag in the capabilities of informatics tools available to process the complex datasets generated by CIU 

experiments, resulting in laborious manual analysis remaining commonplace. Here, we present CIUSuite 2, a software suite de-

signed to enable robust, automated analysis of CIU data across the complete range of current CIU applications and to support the 

implementation of CIU as a true high-throughput technique. CIUSuite 2 uses statistical fitting and modeling methods to reliably 

quantify features of interest within CIU datasets, particularly in data with poor signal quality that cannot be interpreted with exist-

ing analysis tools. By reducing the signal-to-noise requirements for handling CIU data, we are able to demonstrate reductions in 

acquisition time of up to two orders of magnitude over current workflows. CIUSuite 2 also provides the first automated system for 

classifying CIU fingerprints, enabling the next generation of ligand screening and structural analysis experiments to be accom-

plished in a high-throughput fashion. 

Native mass spectrometry (MS) has become a widespread 

technique in structural biology due to its ability to preserve 

noncovalently associated protein-protein and protein-ligand 

contacts and determine the stoichiometry and connectivity of 

these interactions.
1–3

 The coupling of ion mobility to mass 

spectrometry (IM-MS) provides molecular shape information 

in addition to ion mass and charge, which has proven invalua-

ble in interrogating complex biomolecular structures.
4,5

 Native 

IM-MS has seen dramatic growth in recent years, with appli-

cations in biotherapeutic characterization
6
 and drug discov-

ery,
7
 joining more traditional analyses of protein complex 

structure and stoichiometry. A significant challenge in IM-MS 

is the separation of closely related protein conformations, as 

biologically relevant conformational variations often occur 

beyond the resolution limits of modern IM instrumentation. 

However, gas-phase activation provides a powerful approach 

to probe these subtle structural differences by assessing the 

resulting pattern of intermediate structural families produced 

from collisionally heating gas-phase protein ions. Early colli-

sion induced unfolding (CIU) experiments utilized this ap-

proach to differentiate charge-driven and disulfide bonding 

variations in small proteins.
8
 Subsequent CIU work uncovered 

different ligand-based stabilization mechanism in mutant TTR 

forms not detectable by IM-MS alone by introducing finger-

print plots that have now become a widespread analysis 

framework for such data.
9
 

Since these early reports, CIU has seen rapid growth as such 

data have provided valuable approaches for a wide range of 

applications across the biological and pharmaceutical sciences. 

The characterization of protein structure and dynamics, one of 

the original driving forces behind the development of CIU, 

remains a highly active area. Several groups have used com-

parative CIU of protein variants to determine the importance 

of specific residues, domains, and post-translational modifica-

tions on the structure and function of biomolecules.
10–14

 CIU 

has been used to rapidly probe the details of protein structure 

in response to solution and gas-phase stimuli.
15–20

 CIU exper-

iments have also been used to determine the orientation of 

ubiquitin non-covalent dimers through comparisons with vari-

ous covalently linked dimers
21,22

 as well as assess the domain-

specific unfolding of gas-phase serum albumins.
23

 Many re-

ports have described using CIU to assess ligand binding to a 

variety of protein targets
9,24

 in an effort to build information-

rich small molecule screening platforms. CIU can be used as 

an analogue to stability shift assays commonly carried out in 

solution, as differences in gas-phase stabilities can offer simi-

lar information for unpurified samples at lower concentrations 

and potentially resolve intermediate transitions that may be 

missed in low resolution binding assays.
25–27

 Others have lev-

eraged the detailed information provided by CIU to character-

ize the cooperativity,
28

 binding location,
29

 and  the allostery of 

ligand binding events within proteins.
30,31

 CIU has also been 

developed into a versatile tool for the characterization of bio-

therapeutic antibodies.
32

  For example, CIU has proven to be 

highly sensitive to the presence of immunoglobulin isoforms,
33

 

differences in glycosylation and disulfide bonding patterns,
34

 

antibody-drug conjugation patterns,
35

 and different binding 

epitopes.
36

 Its relative sensitivity and speed when compared to 

other biophysical probes has led to the deployment of CIU in 

broad comparisons of biosimilar therapeutics.
37–39

 Finally, CIU 

shows  promise in the context of  membrane proteins,
40–43

 

where such data has already proven critical in revealing some 

of the structural consequences of off-target drug binding.
44

 



 

Many of the CIU studies discussed above utilized manual 

analysis for all or part of their CIU data processing. A number 

of software packages are available to perform specific analyti-

cal tasks related to CIU data processing
42,45–48

, and while they 

provide valuable capabilities, widespread adoption and use of 

software for processing of CIU data is still emerging. With 

CIUSuite 2, we combine additional capabilities for data pro-

cessing not currently available in any software package, such 

as noise removal via Gaussian fitting and advanced classifica-

tion of CIU data, with the integration of many capabilities into 

a single platform with a high degree of automation.  

One of the most common outputs of CIU experiments is the 

accelerating voltage necessary to convert fifty percent of a 

compact protein form into an energetically adjacent extended 

state, sometimes termed a “CIU50” value. CIU50s have been 

used extensively to assess protein-ligand binding
25–28

 and the 

stability of domains within larger protein 

constructs.
11,12,14,15,18,34

 The Pulsar software package uses fea-

ture models to fit CIU50 values,
42

 but requires manual annota-

tion of the features prior to analysis. Other packages, including 

the original CIUSuite
45

 and Benthesikyme,
47

 annotate CIU 

features but lack an automated method to fit CIU50s. Another 

common output involves the root mean squared deviation 

(RMSD) analysis of CIU data, which is currently supported by  

several software packages
45,48

 and has proven a useful ap-

proach to detect quantitative differences in CIU fingerprints. 

RMSD analysis of CIU data is highly sensitive to chemical 

noise and to overall fluctuations in signal intensity because all 

differences between datasets are included in quantification. 

RMSD is effectively an ensemble measurement of all differ-

ences between fingerprints, which can obscure the contribu-

tions of individual changes in complex datasets. In practice, 

extensive signal averaging is often used to overcome some of 

the noise-related limitations in RMSD analyses of CIU data, 

but this substantially limits the throughput of such experi-

ments. 

To address these challenges, we have developed CIUSuite 

2, a software package that utilizes established fitting and sta-

tistical methods to enable the robust quantitation of CIU data 

across a broad range of CIU applications and analysis types, 

especially for enabling the analysis of low intensity CIU da-

tasets. CIUSuite 2 extracts CIU50 values through a combina-

tion of improved feature detection and fits to logistic (sig-

moid) curves that describe CIU transitions, enabling the fully 

automated and robust analysis of protein stabilities. By direct-

ly fitting features of interest, the signal-to-noise (S/N) ratios 

required for reliable analyses are reduced dramatically. These 

improved capabilities have, for example, enabled us to gener-

ate nearly identical output values from CIU data collected in 

60-fold less time than previously published results. CIUSuite 2 

significantly improves CIU fingerprint classification using 

linear discriminant analysis and support vector machines to 

enable next-generation high-throughput screening experi-

ments. Finally, by modeling CIU data as mixtures of Gaussian 

functions, we are able to remove chemical noise and enable 

advanced feature detection within CIU datasets, producing 

robust analysis workflows for challenging CIU datasets. We 

have developed these algorithms with input from ongoing CIU 

projects that involve the assessment of biotherapeutic antibod-

ies, membrane protein lipid binding events, protein-ligand 

interactions, and multiprotein complexes in an effort to pro-

vide a valuable set of quantitative tools for the broadest possi-

ble range of CIU applications. These capabilities are packaged 

into a user-friendly graphical interface that supports automat-

ed, high-throughput processing of large numbers of CIU da-

tasets. CIUSuite 2 supports data collected on any IM-MS plat-

form, and automated converters from vendor-specific data 

formats to the text file input needed for CIUSuite 2 are availa-

ble. Finally, CIUSuite 2 is a fully open-source software pack-

age and designed to be modular and readily extensible for 

researchers wishing to modify its capabilities for any CIU 

application.  

Methods 

Experimental Section. Translocator Protein (TSPO) was 

purified and expressed using established protocols.
49

 All lipids 

purchased from Avanti Polar Lipids (Alabaster, AL). Ammo-

nium acetate and Octyl β-D-glucopyranoside (OG) were pur-

chased from Sigma Aldrich (St. Louis, MO). All CIU data was 

collected using a Synapt G2 HDMS IM-Q-ToF mass spec-

trometer (Waters, Milford, MA). Intact protein ions were gen-

erated using a direct infusion nESI source in positive mode. 

Glycosylated antibody data were collected as described previ-

ously.
34

 Briefly, enzymes were used to cleave at specific gly-

can residues from an antibody standard (SILuLite SigmaMAb 

Universal Antibody Standard human (product number: 

MSQC4), Sigma Aldrich, St. Louis, MO) to leave glycans of 

known molecular weight attached to the antibody, which was 

then buffer exchanged (Micro Biospin6 spin columns (Bio-

Rad, Hercules, CA)) into 100 mM ammonium acetate and 

analyzed by IM-MS. TSPO was buffer and detergent ex-

changed simultaneously from 5 mM Tris, 150 mM NaCl , 

0.20% DM, pH 8.0 to 40 mM OG , 200 mM ammonium ace-

tate, pH 8.0 using 100kDa Amicon Ultra-0.5 Centrifugal Filter 

Units (MilliporeSigma, Burlington, MA). Lipid binding stud-

ies were performed following established protocols.
50

 Instru-

ment settings were tuned to completely remove the micelle 

prior to IM separator, including source temperature (40° C), 

helium cell gas flow (100 mL/min), and sampling cone (120 

V). All CIU analyses were performed by increasing the trap 

collision voltage in a stepwise manner from 5 – 200 V (anti-

bodies) or 50 – 150 V (membrane proteins) in 5 V increments.  

Raw Data Extraction. Raw data was converted from Wa-

ters .raw format to a text-based format (“_raw.csv”, as de-

scribed previously)
45

 using TWIMExtract.
51

 Briefly, data from 

the m/z range corresponding to a single protein charge state 

was summed across the m/z and IM drift time dimensions to 

generate a series of collision voltage resolved  IM datasets. 

For those analyses that compared different instrument acquisi-

tion times, data was summed across an indicated subset of the 

total acquisition time at each collision voltage. Extracted pro-

files are concatenated by TWIMExtract into a single _raw.csv 

file that serves as the input to CIUSuite 2. Raw data conver-

sion is in development for the Agilent .d IM-MS data format. 

Similar converters for any additional formats (for example, an 

open IM-MS data format if one is developed) can be added as 

needed.  

CIUSuite 2 Overview. CIUSuite 2 was developed in Py-

thon 3.5 utilizing the SciPy ecosystem
52,53

, including NumPy,
54

 

Matplotlib,
55

 and Scikit-learn.
56

 The graphical user interface 

was developed using the Pygubu GUI builder 

(https://github.com/alejandroautalan/pygubu).  

Analysis of CIU data begins by importing any number of 

_raw.csv (text) format files. Each file (CIU dataset) undergoes 

smoothing and normalization. A 2D Savitzky-Golay filter of 

user-specified size is the default recommended setting; how-



 

ever, users may also select a 1D Savitzky-Golay filter of vari-

able size or no smoothing as options. Additional pre-

processing  

Figure 1. CIUSuite 2 overview. (A) Import of raw data from text (.csv) 

format and data preprocessing. (B) Stability analysis (“CIU50”) workflow: 

i) loading of preprocessed CIU datasets, ii) detection of features, iii) 

logistic function fitting to determine CIU50 value(s), and iv) comparison 

of CIU50 values among multiple datasets. (C) Classification workflow: i) 

Assignment of CIU training data into classes, ii) Selection of voltages 
most capable of differentiating classes, iii) Cross validation for model 

selection, and iv) Use of the selected model to perform LDA and build a 

SVM for classification.  The capabilities illustrated here are not intended 
to provide a comprehensive walkthrough of CIUSuite 2 capabilities. 

options are available in CIUSuite 2, including cropping, inter-

polating (resampling) data along one or both axes, and averag-

ing multiple datasets. Once this pre-processing is complete, a 

“.ciu” file (a serialized file created with Python’s pickle mod-

ule to store the CIU data and the results of any processing) is 

created (Figure 1A). An RMSD comparison module, similar to 

the one provided in the original CIUSuite, is included in 

CIUSuite 2, offering the ability to compare individual files or 

groups of files to generate pairwise RMSD values. All other 

analysis functions described below are unique to CIUSuite 2. 

Stability Shift (“CIU50”) Analysis. To determine quantita-

tive stability values from CIU datasets, a series of processing 

and modeling steps is performed (Figure 1B). First, features in 

the dataset are detected by grouping observed drift time peaks 

that are present across multiple collision voltages (Figure 1B, 

ii). The tolerances from median drift times, as well as the 

number of stable collision voltages required to define a fea-

ture, can be user-adjusted. Following feature detection, the 

transition region between features is modeled as a logistic 

(generalized sigmoid) function (Figure 1B, iii, text S5). The 

logistic function parameters describe the lower and upper as-

ymptotes (centroid drift times of the features before and after 

the transition), the steepness of the transition, and its midpoint 

voltage, which we term the “CIU50” value. Specifically, we 

define the CIU50 as the voltage at which 50% of a relatively 

compact state of the protein transitions to a more extended 

one, making it the effective midpoint between two adjacent 

features on a CIU fingerprint. An arbitrary number of CIU 

datasets can be fit in a single CIUSuite 2 analysis, enabling 

high-throughput analyses and comparisons of stability values 

for all transitions detected across many CIU fingerprints (Fig-

ure 1B, iv).  

Classification. In an effort to further improve our ability to 

differentiate CIU fingerprint data, we developed a new classi-

fication workflow capable of sorting CIU datasets into groups 

using robust statistical methods. Briefly, a classification 

scheme is built based on training datasets from each group. 

First, our workflow implements a univariate feature selection 

(UFS) method based on an analysis of variance (ANOVA) F-

test
57

 to assess the significance of activation energies capable 

of differentiating CIU fingerprints (Scheme S1). We iterate 

over all possible combinations of a training dataset in order to 

obtain the mean and standard deviation of –log10(p value) 

which serves as the score for each collision voltage (Figure 

1C, ii). Second, we employ a “leave one out” cross-validation 

scheme
58

 that examines the accuracy of classification, which is 

comprised of a linear discriminant analysis
59

 (LDA) step fol-

lowed by support vector machine
60

 (SVM) classification of the 

linear discriminants, using subsets of CIU data from collision 

voltages in decreasing order relative to the score assigned dur-

ing UFS analysis (Figure S2). This enables optimal selection 

of collision voltages to use for the resulting model and can be 

used to detect under- or over-fitting in the final model selected 

(Figure 1C, iii). Finally, classification is performed on the 

model dataset with the optimized set of collision voltages, 

dividing the linear discriminant space into “decision regions” 

corresponding to the provided groups (Figure 1C, iv). The 

resulting classification scheme can then be used to evaluate 

“unknown” CIU datasets (not used in training) to predict the 

class and probability for each unknown. We have also includ-

ed a ‘manual’ classification mode, where users can select any 

number of specific collision voltages to build a classification 

model. This is particularly helpful in scenarios where the accu-

racy observed in the cross-validation step is unacceptably low.  

Gaussian Fitting and Automated De-noising. An optional 

Gaussian-fitting module enables modeling of the observed IM 

arrival time distribution at each collision voltage as a sum of 

Gaussian functions in order to provide a method for automated 

noise removal in complex datasets. An initial curve fitting
52

 is 

performed to generate high quality initial values prior to a 

primary analysis run by fitting a single peak to the arrival time 

distribution and adding peaks until the fit to the observed data 

(R
2
) exceeds 0.99. Fitting can be performed in both “no de-

noising” and “denoising” modes to model a noise-free arrival 

time distribution or remove chemical noise, respectively. In 

each mode, the primary fitting run samples a range of Gaussi-

an components (peaks) and scores each by its goodness of fit 

(R
2
), peak width, and degree of overlap amongst its protein 

components. To perform a fit, Gaussian peak models for each 

component are assembled and fit to the arrival time data using 

LMFit.
61

 In denoising mode, the IM peak width of each 

Gaussian feature is used to distinguish between protein and 

non-protein components (Text S6). The highest scoring fit at 



 

each collision voltage is then taken for further evaluation, such 

as feature detection, CIU50 analysis, and classification work-

flows. The denoising workflow allows for the removal of 

chemical noise or other variability from CIU data prior to 

analysis, improving quantitative results (see below). Gaussian 

fit data can also be uploaded in a text format, enabling the use 

of other Gaussian fitting programs for CIU data as an alterna-

tive data input into CIUSuite 2. Data imported in this way can 

be analyzed using all of the tools described above. 

 

Results and Discussion 

CIU Stability Shift Analysis. Assessing a shift in the gas-

phase stability of a protein or protein complex in response to 

some stimulus is one of the most common applications of 

CIU, but current methods lack the ability to return robust 

quantitative values for complex or low-intensity datasets. Pre-

vious work from our laboratory has utilized RMSD analysis to 

detect a strong correlation between CIU fingerprint data and 

single-sugar changes in the glycans attached to intact mono-

clonal antibodies (mAbs), as generated through enzymatic 

reactions (Figure 2A).
34

 While the capability to detect such 

subtle differences in glycan structure within a 150 kDa protein 

is potentially enabling for mAb development, the length of 

time required to generate the data necessary to accurately 

quantify the above-described trends may make the adoption 

CIU technology for mAb assessments where rapidity is a re-

quirement challenging. For example, in order to collect our 

previously reported glycoform-resolved mAb CIU dataset,
34

 

60 seconds of data was summed at each of 40 collision voltag-

es probed (5 – 200 V) across 6 glycoforms in triplicate, for 

both intact mAbs and Fc fragments, resulting in a total acqui-

sition time of approximately 24 hours. Because the quantita-

tive comparison of each glycoform relied on a total RMSD 

analysis of each CIU fingerprint collected, minor fluctuations 

in signal intensity and chemical noise can dramatically influ-

ence the values extracted. In our previous report,
34

 we elected 

to employ extended signal averaging in order to reduce the 

impact of such variations, at the cost of acquisition speed.  

CIUSuite 2 directly models the transitions between features of 

CIU fingerprints, enabling the direct assessment of stability 

shifts without interference from other sources of variability or 

noise. Since our previously-reported RMSD differences large-

ly arise from a shift in the stability of the second feature in the 

CIU fingerprints recorded,
34

 we fit this transition using 

CIUSuite 2 in order to generate a CIU50 value for each glyco-

form we studied previously (Figure 2B). Critically, because 

only the transition between the two features is used to extract 

correlations between sugar structures and CIU responses, the 

S/N ratios required for the precise assessments of such correla-

tions are far lower than with our previous RMSD method. To 

demonstrate the speed improvement this affords, we extracted 

sub-sections of the original raw data corresponding to 1 sec-

ond (a single scan collected by the instrument), 5 seconds, 15 

seconds, 30 seconds, and the full 60 seconds of ion signal used 

in the original analysis. The S/N ratio observed in the 1-

second data is approximately 60-fold lower than the full 60 

seconds as expected, but the fit for the resulting logistic func-

tion that defines the CIU50 values extracted remains high 

quality, as shown in Figure 2B. Plotting the observed CIU50 

value for each glycoform as a function of signal collection 

time demonstrates that there is essentially no difference (less 

than 0.5 V) between the results obtained using any amount of  

 

Figure 2. CIU50 analysis mAb glycoforms using CIUSuite 2. (A) Enzy-

matic reactions were used to produce glycans of varying size (cleavage 

site indicated by arrows), as described previously.34 (B) CIU transition 
region shown for intact and fully deglycosylated mAbs. Larger glycans 

stabilize the transition between CIU features. (C) CIU50 values fit for 

each mAb glycoform plotted as a function of signal collection time for 
individual collision voltage values. Minimal variation is observed across 

the collection time axis, indicating that faster data acquisition is possible 

without affecting CIU50 values. (D) Plot of either  CIU50 values from 1 s 
of data (blue) or previously published34 RMSD  using 60 s of data (red), 

against masses of mAb-attached glycans for each sample analyzed. 

signal averaging probed here (Figure 2C). As such, we can 

reconstruct our previous correlation between CIU response 

and glycan mass using only 1 second of our original data (Fig-

ure 1D). The curves have similar slopes, indicating a similar 

glycoform sensitivity, though some variation as fundamentally 

different quantities different quantities are extracted from the 

data in the two approaches compared. Importantly, since our 

CIUSuite 2 method requires only 1 second of signal averaging 

at each collision voltage, we can reduce our total data collec-

tion time by 60-fold, resulting in a total of 24 minutes needed 

to quantify the same trend with equivalent precision as de-

scribed in our previous report.
34

 

Furthermore, we estimate that the S/N ratio of the 1-second 

data is still far greater (on the order of 10
4
) than is required for 

accurate fitting, indicating that greater reductions in acquisi-



 

tion time are possible with shorter (sub-second) instrument 

scans.  

 

Figure 3. Classification of different IgG standards. (A) LDs for both 

training (filled circle) and test (filled pentagon) datasets corresponding to 

IgG1 (red), IgG2 (green), IgG3 (blue), and IgG4 (magenta) subclasses are 
well separated into clusters in three-dimensional space, defined by LD1, 

LD2, and LD3 axes. (B) Probabilities associated with each replicate (la-

beled as 1 and 2) in terms of categorizing the CIU data into different IgG 
groups. Each dataset is correctly assigned to its respective IgG subclass. 

 

By directly modeling the relevant parts of a fingerprint, 

CIUSuite 2 is thus able to dramatically improve the speed of 

CIU analyses, vastly enhancing the throughput of CIU anal-

yses.  

 

Classification of CIU data. The unfolding pathway of gas-

phase protein ions has been observed to be sensitive to chang-

es in protein structure that remain too subtle to detect using 

IM-MS alone.
23,45

 As such, CIU fingerprints have been de-

ployed as means to classify protein structural states that result 

from changes in post-translational modifications, sequence 

variation, and ligand binding.
31,45

 For example, recent reports 

have demonstrated robust CIU classification schemes capable 

of differentiating allosteric and active site competitive kinase 

inhibitors,
31

 as well as binding event across two remote sites 

associated with transcriptional regulation.
62

 However, a lack 

statistical methods capable of sorting of unknown CIU data 

against known categories or of sorting between more than two 

separate categories has proven to be an impediment in advanc-

ing such experiments beyond proof-of-concept demonstra-

tions. In CIUSuite 2, we have implemented a classification 

workflow that uses rigorous statistical methods to generate 

classifying schema from known fingerprints that allows for 

facile evaluation of unknown samples against these schema for 

rapid sorting.  

Data shown in Figure 3 displays an example implementation 

of our classification workflow, utilizing CIU data for immu-

noglobulin G (IgG) standards acquired across IgG1, IgG2, 

IgG3, and IgG4 subclasses. Each of our IgG CIU datasets con-

tained four replicates, which we subdivided evenly into both 

training and test data in order to evaluate our approach. Of the 

forty collision voltages acquired for each CIU dataset, only a 

few were found to be highly differentiating between classes by 

UFS, with 85 V having the maximum score (Figure S3E). This 

voltage is near the value required for the first CIU transition 

for each IgG subclass (Figures S3A – S3D). Cross-validation 

of UFS results revealed a classification accuracy 92.2% using 

only the CIU data isolated at 85 V, and decreases as additional 

CIU data is added (Figure S3F). Thus, our algorithm selected 

CIU data acquired at 85 V automatically in order to build a 

classification scheme. Figure 3A shows the three-dimensional 

plot of linear discriminants (LDs) constructed using this data, 

which groups IgG CIU data into well-separated clusters. Fur-

thermore, test data clustered correctly in all cases using this 

classification scheme (pentagons, Figure 3A). We further used 

CIUSuite to compute the probability of each test dataset clus-

tering into each IgG subclass (Figure 3B), finding that each 

dataset was classified correctly with probability values ranging 

from 0.52 – 0.73 (Table S4). In general, our CIU classification 

workflow is generalizable, rapidly processing data in an auto-

mated fashion and accommodating any grouping scheme.  

Classifying Noisy, Low Intensity CIU Data. While many 

existing tools are capable of analyzing high S/N data, low 

intensity CIU data containing significant amounts of chemical 

noise is exceptionally challenging to extract quantitative data 

from using current analysis paradigms. Membrane protein CIU 

data presents many of these challenges, as it frequently con-

tains low-intensity protein ion signals, overlapped with intense 

chemical noise derived from detergents or other solubilizing 

agents, and is collected in a mode that thwarts typical tandem 

MS based CIU workflows.
50,63

 The feature detection and 

CIU50 functions of CIUSuite 2 were designed to extract relia-

ble quantitative values from such datasets. Figure 4 illustrates 

the capabilities of CIUSuite 2 for such applications using data 

acquired for TSPO, a 36 kDa mitochondrial transmembrane 

protein dimer associated with benzodiazepine binding and 

cholesterol transport. Our feature detection workflow in 

CIUSuite 2 considers only the most intense IM peaks ob-

served, and thus acts as an amplitude filter, removing such 

detergent and lipid based chemical noise signals from subse-

quent analysis steps. CIU50 values can then be fit to the ob-

served transitions between features without interference (Fig-

ure 4A), so long as protein signals comprise the most intense 

peaks in the IM data analyzed. If this is not the case, automat-

ed noise removal can be employed prior to fitting (see below).   

CIU has been used to characterize lipid binding to membrane 

proteins in order to assess stability shifts in the resulting com-

plexes.
42–44

 Such data have been further used to distinguish 

between biologically relevant and nonspecifically associated 

lipids in membrane proteins.
41

 Counterintuitively, such as-

sessments are often more straightforward to perform for larger 

proteins and complexes, as they appear at m/z and IM drift 



 

times that are frequently less contaminated by chemical noise. 

Since TSPO is a relatively small membrane protein complex, 

it is an exceptionally difficult target for CIU analysis. Prelimi-

nary  

 

Figure 4. CIU50 analysis and classification TSPO-lipid complexes. (A) 

Feature fitting ignores low abundance chemical noise and CIU50 analysis 
reveals a stability shift associated with PG-bound TSPO. (B) Three volt-

ages (120 V, 125 V, and 140 V) are used to construct a classification 

scheme from apo and PG-bound TSPO training sets, the inset shows a 
cross-validation plot indicating a high accuracy classification. (C) Addi-

tional test data sets are correctly assigned to apo (pink) or PG-bound 

(blue) TSPO. 

 

screening of TSPO-lipid complexes revealed certain lipids, 

such as phosphatidylglycerol (PG), that significantly stabilize 

the protein so that CIU transitions appear distorted relative to 

apo protein data, making the extraction of CIU50 values even 

more challenging.
64

 We used the CIU50 module within 

CIUSuite 2 to fit these highly stabilized TSPO-PG transitions, 

allowing us to quantify stability imparted by lipid binding 

(Figure 4A, lower panel). While this analysis provides high 

quality stability shift values, high-throughput CIU protocols 

require the rapid classification of ligands based on fingerprint 

data. To that end, we classified PG-bound and apo TSPO CIU 

signatures using CIUSuite 2. By using three replicates each of 

apo and lipid bound data to build the classification scheme, we 

identified 120 V, 125 V, and 140 V as the most differentiating 

collision voltage values in our dataset (Figure 4B). For valida-

tion of our classification scheme, four data sets that were not 

part of the training dataset were input as unknowns, and all 

were correctly classified (Figure 4C). While it is clear that 

mass analysis alone could be used to identify PG bound and 

apo TSPO, these results illustrate a classification outcome that 

is exceptionally challenging to achieve using current CIU 

analysis tools.  

Gaussian Fitting and Automated Denoising. The feature 

detection and CIU50 analyses presented in Figure 4A enable 

the examination of CIU data containing a modest amount of 

chemical noise by employing a simple high-pass amplitude 

data filter and relying upon the presence of high-intensity pro-

tein signal. In many cases, however, protein signals are over-

lapped with chemical noise at intensity comparable to or ex-

ceeding that of the protein, rending a high-pass filter approach 

ineffective. In such cases, quantified values extracted from 

CIU data exhibit reduced accuracy, reproducibility, and in 

some cases may be entirely unrecoverable. For example, the 

TSPO CIU data shown in Figure 5A contains chemical noise  

Figure 5. Automated de-noising of membrane protein CIU data using 

Gaussian fitting. (A) TSPO CIU fingerprint with chemical noise prevent-

ing analysis of the final CIU transition observed (collision voltage >120 

V). (B) Example mixed-model Gaussian fit produced from selected data 

from A. Protein components (blue) exhibit widths within pre-defined 
tolerances while non-protein components (red) are broader. (C) Plot pro-

tein (blue) and non-protein (red) Gaussian fit centroids from fingerprint 

shown in (A). Horizontal arrays of blue dots indicate stable protein con-
formations (features). The region corresponding data displayed in panel B 

is marked. (D) Removal of non-protein components after denoising results 

in a centroid plot absent of the identified noise features. (E) CIU50 fitting 
result prior to Gaussian denoising. The second protein CIU transition is 

missed due to chemical noise. (F) CIU50 fitting of the same dataset as 

shown in E after denoising, illustrating robust recovery of both CIU transi-
tions. (G) Histogram of CIU50 values extracted from 3 replicate datasets 

prior to denoising, illustrating inconsistent results. (H) Histogram of 

CIU50 values extracted from the same dataset as shown in panel G fol-
lowing denoising are highly reproducible. 

 

that achieves greater intensity values than the detected pro-

tein ion signal at collision energies above 120 V, effectively 

preventing CIU50 analysis from recognizing the second pro-

tein CIU transition, which appears at 130 V. In order to sur-

mount such signal processing difficulties, have developed a 

Gaussian peak-fitting module within CIUSuite 2 that provides 

automated noise removal from CIU fingerprints. Other CIU 

analysis packages have performed Gaussian fits of CIU data 

for feature detection,
47

 however, this approach has not been 

previously applied to removal of noise components from CIU 

data. IM peaks corresponding to protein ions exhibit a range of 

peak widths produced primarily by ion diffusion and confor-

mational heterogeneity effects
65–67

 Thus, the likely range of IM 



 

peak widths for protein signals can be utilized as a noise filter 

for CIU  analysis, where Gaussian fits corresponding to fea-

tures that exceed such a width tolerance are identified as noise 

and subtracted from the final fingerprint. Fitting is performed 

using two different types of components: protein components 

(e.g. the blue traces in Figure 5B), which are Gaussian func-

tions constrained to a narrow distribution of peak widths, and 

non-protein components (e.g. the red dashed lines in Figure 

5B), which are allowed to have any width substantially larger 

than the upper width limit allowed for protein components. 

This approach intrinsically filters resulting fit results, allowing 

noise components to be removed after the fitting is complete. 

Figure 5C shows the results of this automated fitting approach 

for phosphatidylcholine bound-TSPO CIU data displayed in 

Figure 5A by plotting the peak centers determined for each 

protein component in blue and those determined for each non-

protein component in red. Three clear features, or sets of pro-

tein peak centers that appear at consistent arrival times, can be 

observed in the protein data, resembling a typical TSPO CIU 

fingerprint when the broader features are subtracted from the 

dataset (Figure 5D). This denoised data can then be analyzed 

with any of the workflows available in CIUSuite 2, including 

the CIU50 determination and classification modules. CIU50 

analysis of the denoised dataset allows for the recovery of the 

second TSPO CIU transition following the removal abundant 

chemical noise (Figure 5F). Removing chemical noise can 

greatly improve the accuracy and reproducibility of CIU anal-

yses, as in the replicate CIU50 analyses shown in Figures 5G, 

H. Analysis of the raw TSPO CIU data results in adequate fits 

the second CIU transition in only one out of three datasets, 

missing the transition in the second replicate (pictured in Fig-

ure 5E) and fitting a “negative” transition (an apparent shift 

from longer to shorter IM drift times) to the chemical noise 

observed, (Figure 5G). In contrast, all three replicates can be 

reproducibly fit following Gaussian denoising, producing 

CIU50 values that vary by less than 0.4 V across all three rep-

licates (Figure 5H).  

The automated removal of chemical noise or other interfer-

ing signals from CIU data thus enables the analysis CIU da-

tasets that would be challenging to accomplish using current 

tools, while requiring minimal user intervention. Protein and 

noise components can be distinguished based on their differen-

tial peak widths, allowing such noise to be directly subtracted 

from CIU fingerprints. Combined with CIU50 analysis and 

classification workflows, Gaussian denoising represents a 

substantial enhancement to the CIU signal processing toolbox.  

Conclusions 

CIU experiments generate complex datasets containing rich 

protein structure information. CIUSuite 2 provides a frame-

work, built upon established statistical methods, for extracting 

key information from CIU data in a robust, automated fashion. 

Furthermore, CIUSuite 2 is designed to support a broad range 

of existing CIU applications, including the analysis of noise-

contaminated membrane proteins and high-throughput screen-

ing. Our improvements to the automation CIU signal pro-

cessing and acquisition speed point towards the next genera-

tion of CIU workflows, where full CIU fingerprints are col-

lected in seconds and on-the-fly data reduction enables the 

rapid generation of classification schema. With support from 

autosampling devices, the potential exists to generate and ana-

lyze orders of magnitude more CIU data per unit time than 

currently possible. The ability to generate such large datasets 

would likely aide in answering fundamental questions regard-

ing the relationship between solution and gas-phase stabilities 

and structures, while simultaneously providing a platform for 

rapid structural assessments of biotherapeutics and pharma-

ceutically relevant protein complexes. CIUSuite 2 is available 

for download at 

https://sites.lsa.umich.edu/ruotolo/software/ciusuite-2/, and its 

source code can be found at 

https://github.com/RuotoloLab/CIUSuite2. 

The Supporting Information is available free of charge on the 

ACS Publications website. 

 Details of Classification univariate feature selection 

(UFS) and cross validation; UFS, cross validation, and test data 

probability results corresponding to Figure 3, details of logistic 

fitting for CIU50 analysis, timing benchmarks for Gaussian fitting 

and classification methods, and scoring functions and details for 

Gaussian fitting methods.  
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