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ABSTRACT: Ion mobility-mass spectrometry (IM-MS) has become an important addition to the structural biology toolbox, but
separating closely related protein conformations remain challenging. Collision induced unfolding (CIU) has emerged as a valuable
technique for distinguishing iso-crossectional protein and protein complex ions through their distinct unfolding pathways in the gas
phase. The speed and sensitivity of CIU analyses, coupled with their information-rich datasets, have resulted in the rapid growth of
CIU for applications, ranging from the structural assessment of protein complexes to the characterization of biotherapeutics. This
growth has occurred despite a lag in the capabilities of informatics tools available to process the complex datasets generated by CIU
experiments, resulting in laborious manual analysis remaining commonplace. Here, we present CIUSuite 2, a software suite de-
signed to enable robust, automated analysis of CIU data across the complete range of current CIU applications and to support the
implementation of CIU as a true high-throughput technique. CIUSuite 2 uses statistical fitting and modeling methods to reliably
quantify features of interest within CIU datasets, particularly in data with poor signal quality that cannot be interpreted with exist-
ing analysis tools. By reducing the signal-to-noise requirements for handling CIU data, we are able to demonstrate reductions in
acquisition time of up to two orders of magnitude over current workflows. CIUSuite 2 also provides the first automated system for
classifying CIU fingerprints, enabling the next generation of ligand screening and structural analysis experiments to be accom-

plished in a high-throughput fashion.

Native mass spectrometry (MS) has become a widespread
technique in structural biology due to its ability to preserve
noncovalently associated protein-protein and protein-ligand
contacts and determine the stoichiometry and connectivity of
these interactions.'” The coupling of ion mobility to mass
spectrometry (IM-MS) provides molecular shape information
in addition to ion mass and charge, which has proven invalua-
ble in interrogating complex biomolecular structures.*’ Native
IM-MS has seen dramatic growth in recent years, with appli-
cations in biotherapeutic characterization® and drug discov-
ery, joining more traditional analyses of protein complex
structure and stoichiometry. A significant challenge in IM-MS
is the separation of closely related protein conformations, as
biologically relevant conformational variations often occur
beyond the resolution limits of modern IM instrumentation.
However, gas-phase activation provides a powerful approach
to probe these subtle structural differences by assessing the
resulting pattern of intermediate structural families produced
from collisionally heating gas-phase protein ions. Early colli-
sion induced unfolding (CIU) experiments utilized this ap-
proach to differentiate charge-driven and disulfide bonding
variations in small proteins.® Subsequent CIU work uncovered
different ligand-based stabilization mechanism in mutant TTR
forms not detectable by IM-MS alone by introducing finger-
print plots that have now become a widespread analysis
framework for such data.’

Since these early reports, CIU has seen rapid growth as such
data have provided valuable approaches for a wide range of
applications across the biological and pharmaceutical sciences.
The characterization of protein structure and dynamics, one of
the original driving forces behind the development of CIU,

remains a highly active area. Several groups have used com-
parative CIU of protein variants to determine the importance
of specific residues, domains, and post-translational modifica-
tions on the structure and function of biomolecules.'”'* CIU
has been used to rapidly probe the details of protein structure
in response to solution and gas-phase stimuli.”** CIU exper-
iments have also been used to determine the orientation of
ubiquitin non-covalent dimers through comparisons with vari-
ous covalently linked dimers”"** as well as assess the domain-
specific unfolding of gas-phase serum albumins.” Many re-
ports have described using CIU to assess ligand binding to a
variety of protein targets™* in an effort to build information-
rich small molecule screening platforms. CIU can be used as
an analogue to stability shift assays commonly carried out in
solution, as differences in gas-phase stabilities can offer simi-
lar information for unpurified samples at lower concentrations
and potentially resolve intermediate transitions that may be
missed in low resolution binding assays.”> >’ Others have lev-
eraged the detailed information provided by CIU to character-
ize the cooperativity,” binding location,” and the allostery of
ligand binding events within proteins.***' CIU has also been
developed into a versatile tool for the characterization of bio-
therapeutic antibodies.”> For example, CIU has proven to be
highly sensitive to the presence of immunoglobulin isoforms,”
differences in glycosylation and disulfide bonding patterns,
antibody-drug conjugation patterns,” and different binding
epitopes.’® Its relative sensitivity and speed when compared to
other biophysical probes has led to the deployment of CIU in
broad comparisons of biosimilar therapeutics.”” >’ Finally, CIU
shows promise in the context of membrane proteins,’*
where such data has already proven critical in revealing some
of the structural consequences of off-target drug binding.**



Many of the CIU studies discussed above utilized manual
analysis for all or part of their CIU data processing. A number
of software packages are available to perform specific analyti-
cal tasks related to CIU data processing™** and while they
provide valuable capabilities, widespread adoption and use of
software for processing of CIU data is still emerging. With
CIUSuite 2, we combine additional capabilities for data pro-
cessing not currently available in any software package, such
as noise removal via Gaussian fitting and advanced classifica-
tion of CIU data, with the integration of many capabilities into
a single platform with a high degree of automation.

One of the most common outputs of CIU experiments is the
accelerating voltage necessary to convert fifty percent of a
compact protein form into an energetically adjacent extended
state, sometimes termed a “CIU50” value. CIU50s have been

used extensively to assess protein-ligand binding” ** and the
stability of domains within larger protein
11,12,14,15,18,34

constructs. The Pulsar software package uses fea-
ture models to fit CIU50 values,*” but requires manual annota-
tion of the features prior to analysis. Other packages, including
the original CIUSuite” and Benthesikyme,” annotate CIU
features but lack an automated method to fit CIU50s. Another
common output involves the root mean squared deviation
(RMSD) analysis of CIU data, which is currently supported by
several software packages™*® and has proven a useful ap-
proach to detect quantitative differences in CIU fingerprints.
RMSD analysis of CIU data is highly sensitive to chemical
noise and to overall fluctuations in signal intensity because all
differences between datasets are included in quantification.
RMSD is effectively an ensemble measurement of all differ-
ences between fingerprints, which can obscure the contribu-
tions of individual changes in complex datasets. In practice,
extensive signal averaging is often used to overcome some of
the noise-related limitations in RMSD analyses of CIU data,
but this substantially limits the throughput of such experi-
ments.

To address these challenges, we have developed CIUSuite
2, a software package that utilizes established fitting and sta-
tistical methods to enable the robust quantitation of CIU data
across a broad range of CIU applications and analysis types,
especially for enabling the analysis of low intensity CIU da-
tasets. CIUSuite 2 extracts CIU50 values through a combina-
tion of improved feature detection and fits to logistic (sig-
moid) curves that describe CIU transitions, enabling the fully
automated and robust analysis of protein stabilities. By direct-
ly fitting features of interest, the signal-to-noise (S/N) ratios
required for reliable analyses are reduced dramatically. These
improved capabilities have, for example, enabled us to gener-
ate nearly identical output values from CIU data collected in
60-fold less time than previously published results. CIUSuite 2
significantly improves CIU fingerprint classification using
linear discriminant analysis and support vector machines to
enable next-generation high-throughput screening experi-
ments. Finally, by modeling CIU data as mixtures of Gaussian
functions, we are able to remove chemical noise and enable
advanced feature detection within CIU datasets, producing
robust analysis workflows for challenging CIU datasets. We
have developed these algorithms with input from ongoing CIU
projects that involve the assessment of biotherapeutic antibod-
ies, membrane protein lipid binding events, protein-ligand
interactions, and multiprotein complexes in an effort to pro-
vide a valuable set of quantitative tools for the broadest possi-
ble range of CIU applications. These capabilities are packaged

into a user-friendly graphical interface that supports automat-
ed, high-throughput processing of large numbers of CIU da-
tasets. CIUSuite 2 supports data collected on any IM-MS plat-
form, and automated converters from vendor-specific data
formats to the text file input needed for CIUSuite 2 are availa-
ble. Finally, CIUSuite 2 is a fully open-source software pack-
age and designed to be modular and readily extensible for
researchers wishing to modify its capabilities for any CIU
application.

Methods

Experimental Section. Translocator Protein (TSPO) was
purified and expressed using established protocols.*’ All lipids
purchased from Avanti Polar Lipids (Alabaster, AL). Ammo-
nium acetate and Octyl p-D-glucopyranoside (OG) were pur-
chased from Sigma Aldrich (St. Louis, MO). All CIU data was
collected using a Synapt G2 HDMS IM-Q-ToF mass spec-
trometer (Waters, Milford, MA). Intact protein ions were gen-
erated using a direct infusion nESI source in positive mode.
Glycosylated antibody data were collected as described previ-
ously.” Briefly, enzymes were used to cleave at specific gly-
can residues from an antibody standard (SILuLite SigmaMADb
Universal Antibody Standard human (product number:
MSQC4), Sigma Aldrich, St. Louis, MO) to leave glycans of
known molecular weight attached to the antibody, which was
then buffer exchanged (Micro Biospin6 spin columns (Bio-
Rad, Hercules, CA)) into 100 mM ammonium acetate and
analyzed by IM-MS. TSPO was buffer and detergent ex-
changed simultaneously from 5 mM Tris, 150 mM NacCl ,
0.20% DM, pH 8.0 to 40 mM OG , 200 mM ammonium ace-
tate, pH 8.0 using 100kDa Amicon Ultra-0.5 Centrifugal Filter
Units (MilliporeSigma, Burlington, MA). Lipid binding stud-
ies were performed following established protocols.”® Instru-
ment settings were tuned to completely remove the micelle
prior to IM separator, including source temperature (40° C),
helium cell gas flow (100 mL/min), and sampling cone (120
V). All CIU analyses were performed by increasing the trap
collision voltage in a stepwise manner from 5 — 200 V (anti-
bodies) or 50 — 150 V (membrane proteins) in 5 V increments.

Raw Data Extraction. Raw data was converted from Wa-
ters .raw format to a text-based format (“ raw.csv”, as de-
scribed previously)*” using TWIMExtract.”' Briefly, data from
the m/z range corresponding to a single protein charge state
was summed across the m/z and IM drift time dimensions to
generate a series of collision voltage resolved IM datasets.
For those analyses that compared different instrument acquisi-
tion times, data was summed across an indicated subset of the
total acquisition time at each collision voltage. Extracted pro-
files are concatenated by TWIMExtract into a single _raw.csv
file that serves as the input to CIUSuite 2. Raw data conver-
sion is in development for the Agilent .d IM-MS data format.
Similar converters for any additional formats (for example, an
open IM-MS data format if one is developed) can be added as
needed.

CIUSuite 2 Overview. CIUSuite 2 was developed in Py-
thon 3.5 utilizing the SciPy ecosystem™, including NumPy,**
Matplotlib,” and Scikit-learn.® The graphical user interface
was developed using the Pygubu GUI builder
(https://github.com/alejandroautalan/pygubu).

Analysis of CIU data begins by importing any number of
_raw.csv (text) format files. Each file (CIU dataset) undergoes
smoothing and normalization. A 2D Savitzky-Golay filter of
user-specified size is the default recommended setting; how-



ever, users may also select a 1D Savitzky-Golay filter of vari-
able size or no smoothing as options. Additional pre-
processing
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Figure 1. CIUSuite 2 overview. (A) Import of raw data from text (.csv)
format and data preprocessing. (B) Stability analysis (“CIU50”") workflow:
i) loading of preprocessed CIU datasets, ii) detection of features, iii)
logistic function fitting to determine CIUS50 value(s), and iv) comparison
of CIU50 values among multiple datasets. (C) Classification workflow: i)
Assignment of CIU training data into classes, ii) Selection of voltages
most capable of differentiating classes, iii) Cross validation for model
selection, and iv) Use of the selected model to perform LDA and build a
SVM for classification. The capabilities illustrated here are not intended
to provide a comprehensive walkthrough of CIUSuite 2 capabilities.

options are available in CIUSuite 2, including cropping, inter-
polating (resampling) data along one or both axes, and averag-
ing multiple datasets. Once this pre-processing is complete, a
“.ciu” file (a serialized file created with Python’s pickle mod-
ule to store the CIU data and the results of any processing) is
created (Figure 1A). An RMSD comparison module, similar to
the one provided in the original CIUSuite, is included in
CIUSuite 2, offering the ability to compare individual files or
groups of files to generate pairwise RMSD values. All other
analysis functions described below are unique to CIUSuite 2.

Stability Shift (“CIU50”) Analysis. To determine quantita-
tive stability values from CIU datasets, a series of processing
and modeling steps is performed (Figure 1B). First, features in
the dataset are detected by grouping observed drift time peaks
that are present across multiple collision voltages (Figure 1B,
ii). The tolerances from median drift times, as well as the
number of stable collision voltages required to define a fea-
ture, can be user-adjusted. Following feature detection, the
transition region between features is modeled as a logistic
(generalized sigmoid) function (Figure 1B, iii, text S5). The

logistic function parameters describe the lower and upper as-
ymptotes (centroid drift times of the features before and after
the transition), the steepness of the transition, and its midpoint
voltage, which we term the “CIUS50” value. Specifically, we
define the CIUS0 as the voltage at which 50% of a relatively
compact state of the protein transitions to a more extended
one, making it the effective midpoint between two adjacent
features on a CIU fingerprint. An arbitrary number of CIU
datasets can be fit in a single CIUSuite 2 analysis, enabling
high-throughput analyses and comparisons of stability values
for all transitions detected across many CIU fingerprints (Fig-
ure 1B, iv).

Classification. In an effort to further improve our ability to
differentiate CIU fingerprint data, we developed a new classi-
fication workflow capable of sorting CIU datasets into groups
using robust statistical methods. Briefly, a classification
scheme is built based on training datasets from each group.
First, our workflow implements a univariate feature selection
(UFS) method based on an analysis of variance (ANOVA) F-
test’ to assess the significance of activation energies capable
of differentiating CIU fingerprints (Scheme S1). We iterate
over all possible combinations of a training dataset in order to
obtain the mean and standard deviation of —log;o(p value)
which serves as the score for each collision voltage (Figure
1C, ii). Second, we employ a “leave one out” cross-validation
scheme™ that examines the accuracy of classification, which is
comprised of a linear discriminant analysis® (LDA) step fol-
lowed by support vector machine® (SVM) classification of the
linear discriminants, using subsets of CIU data from collision
voltages in decreasing order relative to the score assigned dur-
ing UFS analysis (Figure S2). This enables optimal selection
of collision voltages to use for the resulting model and can be
used to detect under- or over-fitting in the final model selected
(Figure 1C, iii). Finally, classification is performed on the
model dataset with the optimized set of collision voltages,
dividing the linear discriminant space into “decision regions”
corresponding to the provided groups (Figure 1C, iv). The
resulting classification scheme can then be used to evaluate
“unknown” CIU datasets (not used in training) to predict the
class and probability for each unknown. We have also includ-
ed a ‘manual’ classification mode, where users can select any
number of specific collision voltages to build a classification
model. This is particularly helpful in scenarios where the accu-
racy observed in the cross-validation step is unacceptably low.

Gaussian Fitting and Automated De-noising. An optional
Gaussian-fitting module enables modeling of the observed IM
arrival time distribution at each collision voltage as a sum of
Gaussian functions in order to provide a method for automated
noise removal in complex datasets. An initial curve fitting™ is
performed to generate high quality initial values prior to a
primary analysis run by fitting a single peak to the arrival time
distribution and adding peaks until the fit to the observed data
(R?) exceeds 0.99. Fitting can be performed in both “no de-
noising” and “denoising” modes to model a noise-free arrival
time distribution or remove chemical noise, respectively. In
each mode, the primary fitting run samples a range of Gaussi-
an components (peaks) and scores each by its goodness of fit
(R?), peak width, and degree of overlap amongst its protein
components. To perform a fit, Gaussian peak models for each
component are assembled and fit to the arrival time data using
LMFit."" In denoising mode, the IM peak width of each
Gaussian feature is used to distinguish between protein and
non-protein components (Text S6). The highest scoring fit at



each collision voltage is then taken for further evaluation, such
as feature detection, CIUS0 analysis, and classification work-
flows. The denoising workflow allows for the removal of
chemical noise or other variability from CIU data prior to
analysis, improving quantitative results (see below). Gaussian
fit data can also be uploaded in a text format, enabling the use
of other Gaussian fitting programs for CIU data as an alterna-
tive data input into CIUSuite 2. Data imported in this way can
be analyzed using all of the tools described above.

Results and Discussion

CIU Stability Shift Analysis. Assessing a shift in the gas-
phase stability of a protein or protein complex in response to
some stimulus is one of the most common applications of
CIU, but current methods lack the ability to return robust
quantitative values for complex or low-intensity datasets. Pre-
vious work from our laboratory has utilized RMSD analysis to
detect a strong correlation between CIU fingerprint data and
single-sugar changes in the glycans attached to intact mono-
clonal antibodies (mAbs), as generated through enzymatic
reactions (Figure 2A).>* While the capability to detect such
subtle differences in glycan structure within a 150 kDa protein
is potentially enabling for mAb development, the length of
time required to generate the data necessary to accurately
quantify the above-described trends may make the adoption
CIU technology for mAb assessments where rapidity is a re-
quirement challenging. For example, in order to collect our
previously reported glycoform-resolved mAb CIU dataset,*
60 seconds of data was summed at each of 40 collision voltag-
es probed (5 — 200 V) across 6 glycoforms in triplicate, for
both intact mAbs and Fc fragments, resulting in a total acqui-
sition time of approximately 24 hours. Because the quantita-
tive comparison of each glycoform relied on a total RMSD
analysis of each CIU fingerprint collected, minor fluctuations
in signal intensity and chemical noise can dramatically influ-
ence the values extracted. In our previous report,”* we elected
to employ extended signal averaging in order to reduce the
impact of such variations, at the cost of acquisition speed.

CIUSuite 2 directly models the transitions between features of
CIU fingerprints, enabling the direct assessment of stability
shifts without interference from other sources of variability or
noise. Since our previously-reported RMSD differences large-
ly arise from a shift in the stability of the second feature in the
CIU fingerprints recorded,”® we fit this transition using
CIUSuite 2 in order to generate a CIU50 value for each glyco-
form we studied previously (Figure 2B). Critically, because
only the transition between the two features is used to extract
correlations between sugar structures and CIU responses, the
S/N ratios required for the precise assessments of such correla-
tions are far lower than with our previous RMSD method. To
demonstrate the speed improvement this affords, we extracted
sub-sections of the original raw data corresponding to 1 sec-
ond (a single scan collected by the instrument), 5 seconds, 15
seconds, 30 seconds, and the full 60 seconds of ion signal used
in the original analysis. The S/N ratio observed in the 1-
second data is approximately 60-fold lower than the full 60
seconds as expected, but the fit for the resulting logistic func-
tion that defines the CIU50 values extracted remains high
quality, as shown in Figure 2B. Plotting the observed CIU50
value for each glycoform as a function of signal collection
time demonstrates that there is essentially no difference (less
than 0.5 V) between the results obtained using any amount of
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Figure 2. CIU50 analysis mAb glycoforms using CIUSuite 2. (A) Enzy-
matic reactions were used to produce glycans of varying size (cleavage
site indicated by arrows), as described previously.” (B) CIU transition
region shown for intact and fully deglycosylated mAbs. Larger glycans
stabilize the transition between CIU features. (C) CIU50 values fit for
each mAb glycoform plotted as a function of signal collection time for
individual collision voltage values. Minimal variation is observed across
the collection time axis, indicating that faster data acquisition is possible
without affecting CIU50 values. (D) Plot of either CIU50 values from 1 s
of data (blue) or previously published® RMSD using 60 s of data (red),
against masses of mAb-attached glycans for each sample analyzed.

signal averaging probed here (Figure 2C). As such, we can
reconstruct our previous correlation between CIU response
and glycan mass using only 1 second of our original data (Fig-
ure 1D). The curves have similar slopes, indicating a similar
glycoform sensitivity, though some variation as fundamentally
different quantities different quantities are extracted from the
data in the two approaches compared. Importantly, since our
CIUSuite 2 method requires only 1 second of signal averaging
at each collision voltage, we can reduce our total data collec-
tion time by 60-fold, resulting in a total of 24 minutes needed
to quantify the same trend with equivalent precision as de-
scribed in our previous report.**

Furthermore, we estimate that the S/N ratio of the 1-second
data is still far greater (on the order of 10%) than is required for
accurate fitting, indicating that greater reductions in acquisi-



tion time are possible with shorter (sub-second) instrument
scans.
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Figure 3. Classification of different IgG standards. (A) LDs for both
training (filled circle) and test (filled pentagon) datasets corresponding to
IgGl (red), IgG2 (green), IgG3 (blue), and IgG4 (magenta) subclasses are
well separated into clusters in three-dimensional space, defined by LDI,
LD2, and LD3 axes. (B) Probabilities associated with each replicate (la-
beled as 1 and 2) in terms of categorizing the CIU data into different IgG
groups. Each dataset is correctly assigned to its respective IgG subclass.

By directly modeling the relevant parts of a fingerprint,
CIUSuite 2 is thus able to dramatically improve the speed of
CIU analyses, vastly enhancing the throughput of CIU anal-
yses.

Classification of CIU data. The unfolding pathway of gas-
phase protein ions has been observed to be sensitive to chang-
es in protein structure that remain too subtle to detect using
IM-MS alone.”* As such, CIU fingerprints have been de-
ployed as means to classify protein structural states that result
from changes in post-translational modifications, sequence
variation, and ligand binding.’"* For example, recent reports
have demonstrated robust CIU classification schemes capable
of differentiating allosteric and active site competitive kinase
inhibitors,” as well as binding event across two remote sites
associated with transcriptional regulation.”> However, a lack
statistical methods capable of sorting of unknown CIU data
against known categories or of sorting between more than two
separate categories has proven to be an impediment in advanc-
ing such experiments beyond proof-of-concept demonstra-

tions. In CIUSuite 2, we have implemented a classification
workflow that uses rigorous statistical methods to generate
classifying schema from known fingerprints that allows for
facile evaluation of unknown samples against these schema for
rapid sorting.

Data shown in Figure 3 displays an example implementation
of our classification workflow, utilizing CIU data for immu-
noglobulin G (IgG) standards acquired across IgGl, 1gG2,
1gG3, and IgG4 subclasses. Each of our IgG CIU datasets con-
tained four replicates, which we subdivided evenly into both
training and test data in order to evaluate our approach. Of the
forty collision voltages acquired for each CIU dataset, only a
few were found to be highly differentiating between classes by
UFS, with 85 V having the maximum score (Figure S3E). This
voltage is near the value required for the first CIU transition
for each IgG subclass (Figures S3A — S3D). Cross-validation
of UFS results revealed a classification accuracy 92.2% using
only the CIU data isolated at 85 V, and decreases as additional
CIU data is added (Figure S3F). Thus, our algorithm selected
CIU data acquired at 85 V automatically in order to build a
classification scheme. Figure 3A shows the three-dimensional
plot of linear discriminants (LDs) constructed using this data,
which groups IgG CIU data into well-separated clusters. Fur-
thermore, test data clustered correctly in all cases using this
classification scheme (pentagons, Figure 3A). We further used
CIUSuite to compute the probability of each test dataset clus-
tering into each IgG subclass (Figure 3B), finding that each
dataset was classified correctly with probability values ranging
from 0.52 — 0.73 (Table S4). In general, our CIU classification
workflow is generalizable, rapidly processing data in an auto-
mated fashion and accommodating any grouping scheme.

Classifying Noisy, Low Intensity CIU Data. While many
existing tools are capable of analyzing high S/N data, low
intensity CIU data containing significant amounts of chemical
noise is exceptionally challenging to extract quantitative data
from using current analysis paradigms. Membrane protein CIU
data presents many of these challenges, as it frequently con-
tains low-intensity protein ion signals, overlapped with intense
chemical noise derived from detergents or other solubilizing
agents, and is collected in a mode that thwarts typical tandem
MS based CIU workflows.”™” The feature detection and
CIUS0 functions of CIUSuite 2 were designed to extract relia-
ble quantitative values from such datasets. Figure 4 illustrates
the capabilities of CIUSuite 2 for such applications using data
acquired for TSPO, a 36 kDa mitochondrial transmembrane
protein dimer associated with benzodiazepine binding and
cholesterol transport. Our feature detection workflow in
CIUSuite 2 considers only the most intense IM peaks ob-
served, and thus acts as an amplitude filter, removing such
detergent and lipid based chemical noise signals from subse-
quent analysis steps. CIU50 values can then be fit to the ob-
served transitions between features without interference (Fig-
ure 4A), so long as protein signals comprise the most intense
peaks in the IM data analyzed. If this is not the case, automat-
ed noise removal can be employed prior to fitting (see below).

CIU has been used to characterize lipid binding to membrane
proteins in order to assess stability shifts in the resulting com-
plexes.”™ Such data have been further used to distinguish
between biologically relevant and nonspecifically associated
lipids in membrane proteins.* Counterintuitively, such as-
sessments are often more straightforward to perform for larger
proteins and complexes, as they appear at m/z and IM drift



times that are frequently less contaminated by chemical noise.
Since TSPO is a relatively small membrane protein complex,
it is an exceptionally difficult target for CIU analysis. Prelimi-
nary
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Figure 4. CIU50 analysis and classification TSPO-lipid complexes. (A)
Feature fitting ignores low abundance chemical noise and CIUS0 analysis
reveals a stability shift associated with PG-bound TSPO. (B) Three volt-
ages (120 V, 125 V, and 140 V) are used to construct a classification
scheme from apo and PG-bound TSPO training sets, the inset shows a
cross-validation plot indicating a high accuracy classification. (C) Addi-
tional test data sets are correctly assigned to apo (pink) or PG-bound
(blue) TSPO.

screening of TSPO-lipid complexes revealed certain lipids,
such as phosphatidylglycerol (PG), that significantly stabilize
the protein so that CIU transitions appear distorted relative to
apo protein data, making the extraction of CIU50 values even
more challenging.”* We used the CIU50 module within
CIUSuite 2 to fit these highly stabilized TSPO-PG transitions,
allowing us to quantify stability imparted by lipid binding
(Figure 4A, lower panel). While this analysis provides high
quality stability shift values, high-throughput CIU protocols
require the rapid classification of ligands based on fingerprint
data. To that end, we classified PG-bound and apo TSPO CIU
signatures using CIUSuite 2. By using three replicates each of
apo and lipid bound data to build the classification scheme, we
identified 120 V, 125 V, and 140 V as the most differentiating
collision voltage values in our dataset (Figure 4B). For valida-
tion of our classification scheme, four data sets that were not
part of the training dataset were input as unknowns, and all
were correctly classified (Figure 4C). While it is clear that
mass analysis alone could be used to identify PG bound and
apo TSPO, these results illustrate a classification outcome that
is exceptionally challenging to achieve using current CIU
analysis tools.

Gaussian Fitting and Automated Denoising. The feature
detection and CIUS0 analyses presented in Figure 4A enable
the examination of CIU data containing a modest amount of
chemical noise by employing a simple high-pass amplitude
data filter and relying upon the presence of high-intensity pro-
tein signal. In many cases, however, protein signals are over-
lapped with chemical noise at intensity comparable to or ex-
ceeding that of the protein, rending a high-pass filter approach
ineffective. In such cases, quantified values extracted from
CIU data exhibit reduced accuracy, reproducibility, and in

some cases may be entirely unrecoverable. For example, the
TSPO CIU data shown in Figure SA contains chemical noise
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Figure 5. Automated de-noising of membrane protein CIU data using
Gaussian fitting. (A) TSPO CIU fingerprint with chemical noise prevent-
ing analysis of the final CIU transition observed (collision voltage >120
V). (B) Example mixed-model Gaussian fit produced from selected data
from A. Protein components (blue) exhibit widths within pre-defined
tolerances while non-protein components (red) are broader. (C) Plot pro-
tein (blue) and non-protein (red) Gaussian fit centroids from fingerprint
shown in (A). Horizontal arrays of blue dots indicate stable protein con-
formations (features). The region corresponding data displayed in panel B
is marked. (D) Removal of non-protein components after denoising results
in a centroid plot absent of the identified noise features. (E) CIU50 fitting
result prior to Gaussian denoising. The second protein CIU transition is
missed due to chemical noise. (F) CIU50 fitting of the same dataset as
shown in E after denoising, illustrating robust recovery of both CIU transi-
tions. (G) Histogram of CIU50 values extracted from 3 replicate datasets
prior to denoising, illustrating inconsistent results. (H) Histogram of
CIU50 values extracted from the same dataset as shown in panel G fol-
lowing denoising are highly reproducible.

that achieves greater intensity values than the detected pro-
tein ion signal at collision energies above 120 V, effectively
preventing CIU50 analysis from recognizing the second pro-
tein CIU transition, which appears at 130 V. In order to sur-
mount such signal processing difficulties, have developed a
Gaussian peak-fitting module within CIUSuite 2 that provides
automated noise removal from CIU fingerprints. Other CIU
analysis packages have performed Gaussian fits of CIU data
for feature detection,”” however, this approach has not been
previously applied to removal of noise components from CIU
data. IM peaks corresponding to protein ions exhibit a range of
peak widths produced primarily by ion diffusion and confor-
mational heterogeneity effects® *’ Thus, the likely range of IM



peak widths for protein signals can be utilized as a noise filter
for CIU analysis, where Gaussian fits corresponding to fea-
tures that exceed such a width tolerance are identified as noise
and subtracted from the final fingerprint. Fitting is performed
using two different types of components: protein components
(e.g. the blue traces in Figure 5B), which are Gaussian func-
tions constrained to a narrow distribution of peak widths, and
non-protein components (e.g. the red dashed lines in Figure
5B), which are allowed to have any width substantially larger
than the upper width limit allowed for protein components.
This approach intrinsically filters resulting fit results, allowing
noise components to be removed after the fitting is complete.
Figure 5C shows the results of this automated fitting approach
for phosphatidylcholine bound-TSPO CIU data displayed in
Figure 5A by plotting the peak centers determined for each
protein component in blue and those determined for each non-
protein component in red. Three clear features, or sets of pro-
tein peak centers that appear at consistent arrival times, can be
observed in the protein data, resembling a typical TSPO CIU
fingerprint when the broader features are subtracted from the
dataset (Figure 5D). This denoised data can then be analyzed
with any of the workflows available in CIUSuite 2, including
the CIU50 determination and classification modules. CIU50
analysis of the denoised dataset allows for the recovery of the
second TSPO CIU transition following the removal abundant
chemical noise (Figure 5F). Removing chemical noise can
greatly improve the accuracy and reproducibility of CIU anal-
yses, as in the replicate CIUS0 analyses shown in Figures 5G,
H. Analysis of the raw TSPO CIU data results in adequate fits
the second CIU transition in only one out of three datasets,
missing the transition in the second replicate (pictured in Fig-
ure 5E) and fitting a “negative” transition (an apparent shift
from longer to shorter IM drift times) to the chemical noise
observed, (Figure 5G). In contrast, all three replicates can be
reproducibly fit following Gaussian denoising, producing
CIUS50 values that vary by less than 0.4 V across all three rep-
licates (Figure SH).

The automated removal of chemical noise or other interfer-
ing signals from CIU data thus enables the analysis CIU da-
tasets that would be challenging to accomplish using current
tools, while requiring minimal user intervention. Protein and
noise components can be distinguished based on their differen-
tial peak widths, allowing such noise to be directly subtracted
from CIU fingerprints. Combined with CIU50 analysis and
classification workflows, Gaussian denoising represents a
substantial enhancement to the CIU signal processing toolbox.

Conclusions

CIU experiments generate complex datasets containing rich
protein structure information. CIUSuite 2 provides a frame-
work, built upon established statistical methods, for extracting
key information from CIU data in a robust, automated fashion.
Furthermore, CIUSuite 2 is designed to support a broad range
of existing CIU applications, including the analysis of noise-
contaminated membrane proteins and high-throughput screen-
ing. Our improvements to the automation CIU signal pro-
cessing and acquisition speed point towards the next genera-
tion of CIU workflows, where full CIU fingerprints are col-
lected in seconds and on-the-fly data reduction enables the
rapid generation of classification schema. With support from
autosampling devices, the potential exists to generate and ana-
lyze orders of magnitude more CIU data per unit time than
currently possible. The ability to generate such large datasets

would likely aide in answering fundamental questions regard-
ing the relationship between solution and gas-phase stabilities
and structures, while simultaneously providing a platform for
rapid structural assessments of biotherapeutics and pharma-
ceutically relevant protein complexes. CIUSuite 2 is available

for download at
https://sites.lsa.umich.edu/ruotolo/software/ciusuite-2/, and its
source code can be found at

https://github.com/RuotoloLab/CIUSuite?2.
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