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ABSTRACT: Collision-induced unfolding (CIU) has emerged as a valuable method for distinguishing iso-crossectional protein
ions through their distinct gas-phase unfolding trajectories. CIU shows promise as a high-throughput, structure-sensitive screening
technique with potential applications in drug discovery and biotherapeutic characterization. We recently developed a CIU classifi-
cation workflow to support screening applications that utilized CIU data acquired from a single protein charge state to distinguish
immunoglobulin (IgG) subtypes and membrane protein lipid binding. However, distinguishing highly similar protein structures,
such as those associated with biotherapeutics, can be challenging. Here, we present an expansion of this classification method that
includes CIU data from multiple charge states, or indeed any perturbation to protein structure that differentially affects CIU, into a
combined classifier. Using this improved method, we are able to improve the accuracy of existing, single state classifiers for IgG
subtypes and develop an activation-state sensitive classifier for selected Src kinase inhibitors when data from a single charge state
was insufficient to do so. Finally, we employ the combination of multiple charge states and stress conditions to distinguish a highly
similar innovator/biosimilar biotherapeutic pair, demonstrating the potential of CIU as a rapid screening tool for drug discovery and

biotherapeutic analysis.

Native mass spectrometry (MS) and ion mobility-mass
spectrometry (IM-MS) have been increasingly adopted tech-
niques for the determination of protein-protein and protein-
ligand contacts, stoichiometry, and shape.'” Native IM-MS
has seen rapid growth in the characterization of proteins®’
protein-ligand complexes,”” and multi-protein complexes.® A
significant challenge in these analyses remains the relatively
low resolution of IM in the context of protein structure, limit-
ing the ability of IM-MS to distinguish subtle, but biologically
relevant, conformational variations that occur below the reso-
lution limits of modern instrumentation. The activation of
protein ions in the gas phase prior to IM separation in an effort
to follow their subsequent structural transitions represents a
useful method to distinguish such structural differences. This
approach, termed collision-induced unfolding (CIU) when the
ion activation is accomplished using collisions with an inert
gas, has a rich history in the IM-MS analysis of protein struc-
ture” " and has seen rapid growth for drug discovery'* ' and
biotherapeutic characterization."> " The relative speed of CIU,
combined with detailed comparative structure information,
make it a promising technique for the development of struc-
ture-sensitive screening methods at medium to high through-
put.

A number of reports have demonstrated proof-of-principle
methods using CIU to distinguish ligand binding sites for ki-
nases inhibitors,'**" quantifying cooperative binding of lig-
ands within a protein complex,” and detecting protein allo-
stery upon ligand attachment.” Screening approaches sensitive
to these structural parameters are in great demand for a wide
range of applications associated with protein biophysics. The
relative comparison of CIU fingerprints under different condi-
tions, for example following ligand binding to a target protein
or after applying heat stress to a biotherapeutic, enables the

determination of useful information about the structure of a
protein and its response to perturbations.

Converting the complex datasets generated in CIU experi-
ments into this structural information requires robust statistical
methods. Several recent reports have developed quantitative
methods to compare CIU fingerprints in support of these anal-
yses.”*® For screening workflows in particular, supervised
learning approaches show great promise. In these methods,
“training” CIU data is acquired using known standards and
used to generate a classifier that can then distinguish unknown
CIU data. We recently developed CIUSuite 2, a software
package that includes an automated workflow to construct
classifiers for CIU data.” This approach was used to differen-
tiate ligand and lipid binding modes in a membrane protein
system’’ and shows promise for high-throughput screening
and characterization of biotherapeutics.

Despite these successes, the current method is limited to the
comparison of a single charge state of CIU data and relatively
small quantities of training data. Native IM-MS experiments
using electrospray ionization (ESI) typically generate multiple
charge states, each with a unique CIU fingerprint. Recent
work has demonstrated the benefits of including CIU infor-
mation from multiple charge states in distinguishing the struc-
tures of monoclonal antibodies.”’ The incorporation of all in-
formation available from multiple charge states provides, in
principle, great potential for improving CIU classification and
screening methods without increasing data acquisition time. In
this report, we describe the creation of a supervised classifica-
tion algorithm that can accommodate CIU data from multiple
protein ‘states,” improve processing speed to enable pro-
cessing of large datasets, and expand the scope of the classifi-
cation workflow to include comparative analyses that move
beyond the concept of using a single group of charge states



alone. We demonstrate the utility of these approaches to char-
acterize ligand binding modes in a protein-inhibitor context
and in distinguishing a highly similar innovator/biosimilar pair
of biotherapeutic monoclonal antibodies.

Methods

Sample Preparation. SilLuLite SigmaMab Universal anti-
body standard, IgG12, and IgG4A from human myeloma were
purchased from Sigma-Aldrich and supplied as lyophilized
powder (St. Louis, MO). Samples were reconstituted using
Milli-Q water (Millipore) to a concentration of 2 mg/mL un-
less specified otherwise. Avastin® (Genentech, 25 mg/mL)
and Avegra® (Biocad, 25 mg/mL) were purchased and sup-
plied in solution formulation (158.6 mM Trehalose dehydrate,
40.9mM Sodium Phosphate, 0.16% Polysorbate 80, pH 6.2).
Biotherapeutic samples were diluted to 1mg/mL using 0.9%
bacteriostatic sodium chloride injection, USP. (Pfizer Inc.
New York City, NY). Stressed samples were incubated at 40
°C with 250 RPM orbital shaking for 4 weeks. All antibody
samples were buffer exchanged into 200 mM ammonium ace-
tate buffer using Micro Bio-spin 30 columns (Bio-Rad, Hercu-
les, CA). Buffer exchanged samples were then diluted to a
working concentration of 1 mg/mL (~6.7 uM).

Src kinase domain DNA was synthesized by GeneArt (Life
Technologies, Grand Island, NY) using E. coli modified co-
dons and subcloned into pET28a with a modified TEV-
protease cleavable N-terminal 6x-His tag. The plasmid was
transformed by electroporation into BL21 DE3 electrochemi-
cally competent cells with a YopH in pCDFDuet-1. Cell
growth, protein expression, and purification were adapted
from protocols previously developed for the c-Src kinase do-
main® without cleavage of the His-tag. Dasatinib, staurospor-
ine, foretinib, and ponatinib were purchased from LC Labora-
tories (Woburn, MA). Protein was reconstituted and buffer
exchanged into 200 mM ammonium acetate (Sigma-Aldrich,
St. Louis, MO) at pH 7.0 using Micro Bio-Spin 6 columns
(BioRad, Hercules, CA) to a final concentration of 10 pM.
Samples were incubated at a ratio of 3:1 inhibitor:protein, on
ice for 15 minutes prior to analysis by IM-MS.

CIU Acquisition. All CIU data were acquired using a Syn-
apt G2 quadrupole-ion mobility-time-of-flight mass spectrom-
eter (Q-IM-ToF MS) instrument (Waters, Milford, MA). Sam-
ple was transferred to a gold-coated borosilicate capillary nee-
dle (prepared in-house), and ions were generated by direct
infusion using a nano-electrospray ionization (nESI) in posi-
tive mode. The electrospray capillary was operated at voltages
of 1.5-1.7 kV with the sampling cone at 40 V. The backing
pressure was set to 7.9-8.1 mbar for antibody samples or 5.0
mbar for kinase samples. The trap collision cell was pressur-
ized to 4-5 x 10* mbar of argon gas, helium cell flow to
1.4x10° mbar, traveling-wave IM separator to 3.4 mbar, and
ToF MS to 1.5 x 10™° mbar. IM wave height and wave veloci-
ty were 20 V and 150 m/s, respectively, for Src kinase domain
or 40 V and 600 m/s for antibodies. CIU experiments were
performed by ramping the collision voltage in the trap cell
from 5 to 200 V (antibodies) or 10 to 125 V (Src kinase) in 5
V increments with a dwell time of 6 s at each collision volt-
age.

Data Processing and Classification. IM arrival time data
was extracted from raw data for each charge state using
TWIMExtract” and smoothed with CIUSuite 2*° (Savitzky-
Golay 2D smoothing, window 5, 2 iterations). An updated
version of the CIUSuite 2 classification interface that recog-

nizes user-specified labels across multiple states (e.g. charge
states) was used to assemble the training data for each classifi-
er. Note that all states used must be present in all training data
used; for example, if charge states shift as a result of variations
in ESI over the training data acquisition period, only charge
states present in all inputs can be used as states for classifica-
tion. Classifiers were generated in ‘all data’ mode with cross
validation test sizes of 6, 1, and 3 for data presented in Figure
1, 2, and 3, respectively (adjusted to be approx. 1/3 of input
dataset size in each case). Input data for Figure 1 and Figure 2
was normalized but not standardized; input data for Figure 3
was both normalized and standardized. The classification algo-
rithm presented here is based on the original CIUSuite 2 algo-
rithm, utilizing the ‘scikit-learn’ Python library,* with the
following key differences: support for division of the input
data into multiple states throughout the classification, addition
of data standardization to improve classifier performance, and
implementation of random sampling cross validation to allow
large input training datasets to be used without prohibitive
memory and computation costs. Input training data is stand-
ardized within each state and collision voltage by scaling to
zero mean and unit variance. For input Gaussian data, each
attribute of each Gaussian peak (centroid, width, and ampli-
tude) is standardized separately because the initial values for
centroids are typically much larger than those for width or
amplitude. Thus, centroids are only standardized with cen-
troids, widths with widths, and amplitudes with amplitudes to
prevent one attribute from overwhelming the others as a result
of larger input values. Standardized and labeled training data
for each state is assessed separately by the univariate feature
selection (UFS) method in CIUSuite 2, which uses ANOVA
F-values to assess the variation within and between classes at
each collision voltage. The highest scoring collision voltages
are then chosen from amongst all states for cross validation
and final classifier construction, meaning that a classifier can
contain data from multiple states.

Cross validation is performed by holding back a portion of
the training data (of configurable size), constructing a classifi-
er with the remaining training data, then testing the withheld
data (the ‘test’ data) to see if it is classified correctly. This
accuracy can be used to assess the performance of the classifi-
er, with high accuracies indicating a classifier capable of ro-
bustly distinguishing between the provided classes. Typically,
high accuracy classifiers are those with several collision volt-
ages that achieve high scores with low variation, as this indi-
cates regions of the fingerprint that can reliably distinguish
between classes. As in CIUSuite 2, cross validation involves
adding ‘features’ in decreasing order of UFS score to deter-
mine the number of features that results in the most accurate
classifier. In the workflow describe here, the features represent
a single collision voltage from one of the states, so a particular
voltage can be included multiple times if it scores highly in
multiple states. The original CIUSuite 2 cross validation
method tested all possible permutations of training and test
data from an input dataset, which resulted in exponential time
and memory cost with increasing dataset size and proved pro-
hibitive for the larger datasets evaluated in this work. Random
sampling from the possible input permutations was imple-
mented to reduce this to a linear increase in performance cost
by sampling only a user-specified number of the possible per-
mutations, chosen at random. Following determination of the
optimal number of features to include, final classifiers are
generated as in CIUSuite 2.



Results and Discussion

Each charge state observed in a native IM-MS experiment
undergoes a substantially different unfolding trajectory during
CIU, providing potentially complementary information for a
multi-state CIU-based classifier. To evaluate the utility of
combining data from multiple charge states for CIU classifica-
tion, we compared data acquired for the monoclonal antibody
sub-classes IgG1 and IgG4, which differ only slightly in disul-
fide bonding pattern (Figure 1A). The native mass spectrum of
IgG1 shows charge states from 22-26°, with 24" being the
most abundant (Figure 1B). The CIU fingerprints of IgG1 and
IgG4 at the 24" charge state are quite similar, aside from minor
differences in the second CIU feature in the range of 60-80 V
(Figure 1A, bottom). Performing a single charge state compar-
ison using the 24" charge state only, as would be done in the
original CIUSuite 2 workflow, results in a feature selection
plot showing minor differences in the 60-80 V region as ex-
pected, with minimal differences outside that region (Figure
1C). The classifier that can be trained from this data is of rela-
tively low quality, achieving a maximum cross validation ac-
curacy of 82% when using two features (70 and 75 V, Figure
1E). Assessing all charge states with the classification work-
flow, however, reveals that the 24" charge state, despite being
the highest signal in the mass spectrum, is not the optimal CIU
data to differentiate these two antibodies.

To examine all charge states, we perform feature selection
sequentially for each, meaning that the 22" charge state of
IgG1 is compared to the 22" of IgG4, and such binary compar-
isons were replicated across all mAb charge states. This analy-
sis results in five feature selection plots, which can be overlaid
to evaluate the potential information content each charge state
(Figure 1D). The 22" charge state has the two highest scoring
individual voltages (black, 85 and 90 V), followed by 80 V in
the 23" charge state (blue), then 75 and 70 V in the 24" charge
state (green) (Figure 1F). As in a standard, single charge state
classification mode, cross validation is performed by incorpo-
rating the data into classifiers in decreasing order of feature
selection score; but in classifiers derived from multiple charge
states, the input data can originate in any of the charge states
included in the analysis. The cross validation indicates that the
optimal classifier in this case uses four collision voltages, two
from the 22" charge state and one each from the 23" and 24"
charge states, to achieve an accuracy of 95%, significantly
improved over the 82% accuracy achieved by the classifier
using just the 24" charge state (Figure 1F).

To complete the comparison, we generated single charge
state classifiers for all five charge states and compared the
cross validation accuracy at the optimal number of collision
voltages for each classifier (Figure 1G). Given the pair of very
high scores from the 22" charge state in the feature selection, it
is not surprising that it results in the best single charge state
classifier, and indeed achieves slightly higher accuracy than
the combined classifier that considered all charge states (95%
vs 94%). While it would be surprising for an individual charge
state to outperform the combined classifier, the difference in
accuracy between the 22+ and all-state classifiers is well with-
in error, indicating that the classifiers have similar overall
performance. The 23-26" charge states each individually
achieve accuracies in the 80-90% range, each lower than the
22" or combined classifiers. Combining these four charge
states into a combined classifier results in accuracy of 95%
(data not shown), matching the performance of the full com-
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Figure 1. Multiple charge state classification of IgGs. A) IgG1 and IgG4
subtypes differ primarily in disulfide bond linkage, resulting in slightly
different CIU fingerprints. B) Native mass spectrum of IgG1 with 22-26"
charge states. C) UFS score plot distinguishing IgG1 and IgG4 at the 24°
charge state only. D) UFS plot for all charge states of IgG1 and IgG4. E)
Cross validation accuracies for 1-10 features from the 24" charge state
alone and F) for all charge states incorporated into one classifier. G) Op-
timal cross validation accuracy from each individual charge state and all
charge states combined.
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bined classifier and the individual 22+ state classifier. As
such, the all charge state classification in this case functions
primarily as a means to rapidly identify the optimal charge
state and ensure it is incorporated into the final classifier. In-
deed, the 22" ions are the lowest intensity signals included in
the analysis, and would not be an obvious choice if using only
IM-MS precursor data. In cases where several charge states
achieve similar feature selection scores, however, combining
data from multiple charge states can generate a superior classi-
fier to any individual charge state.

We applied our multi-state classification workflow to a
number of challenging proteins and complexes that had previ-
ously confounded CIU classification efforts using data from a
single charge state. Src, a non-receptor protein tyrosine kinase,
plays a key role in several cell signaling processes’*® and has
been observed to be overexpressed in certain carcinomas and
glioblastomas.”” Several classes of inhibitors to kinases like
Src are known to target different conformations of the kinase.
Type I inhibitors like Dasatinib and Staurosporine bind to the
active state, in which the DFG loop is in the “in” confor-
mation, wrapping around the helices (green loop, Figure 2A).



Figure 2. Multiple charge state classification of Src kinase. Type I and II
kinase inhibitors target the active (A) or inactive (B) conformations of the
kinase. C) UFS plot comparing Src CIU fingerprints with bound Type I
(Dasatinib and Staurosporine) against Type 1l (Foretinib and Ponatinib)
inhibitors at all charge states. D) Cross validation accuracy for individual
charge state and combined classifiers using 2 features.

Type II inhibitors like Foretinib and Ponatinib bind the protein
in the inactive conformation, in which the DFG loop is in the
“out” conformation (green loop, Figure 2B). While single
charge state classifiers and analogous methods have been suc-
cessful in differentiating such tertiary structures within
AbL"? a related kinase, differentiating these binding modes
within Src using our previous single charge state classifica-
tion method has proven challenging. Using the multi-state
workflow developed here, we observe similar feature scores
that distinguish Type I from Type II kinase inhibitors for both
the 9" and 10" charge states (Figure 2C). As a result, the opti-
mal classifier uses a single collision voltage each from 9" and
10", resulting in a cross validation accuracy of 98% (Figure
2D). Individual classifiers created using data from only 9" and
10" charge states separately exhibited lower accuracies in the
80-90% range (Figure 2D). The large error bars for the indi-
vidual charge state classifier accuracies also indicate substan-
tial uncertainty in their performance, with lower accuracy pos-
sible for external validation. Thus, the combined classifier
using multiple charge states is superior in this case to any of
the individual charge state classifiers, and enabled robust clas-
sification of ligand binding modes in a system that had proven
challenging to classify with a single charge state alone.

Finally, we examined a biotherapeutic innovator/biosimilar
pair, Avastin and Avegra, incorporating both multiple charge
states and stress conditions into a multi-state classifier (Figure
3A). Assessing a biosimilar, or generic form of an innovator
protein therapeutic, presents significant analytical challenges
due to the typical size and complexity of monoclonal antibod-
ies. Comparing higher order structure (HOS) information is
particularly challenging without resorting to low-throughput,
high-resolution structural biology techniques. As biosimilars,
Avastin and Avegra are highly similar, and classification using
CIU data across all charge states of the antibodies resulted in a
low degree of differentiation, with the optimal classifier
achieving accuracy of only 87% (Figure 3C). Charge states are
not the only states that can be examined using our multi-state
CIU data analysis algorithm, however. Our approach considers
data acquired across any state that results in a different CIU
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Figure 3. Stress-state classifiers distinguish Avastin and Avegra. A)
Stress applied to innovator and biosimilar (center) and typical mass spec-
trum showing charge states. B) Best cross validation accuracy for classifi-
ers using various stress states with a single charge state. C) Best cross
validation accuracy for classifiers using all charges states of unstressed
alone and both conditions (stressed and unstressed) Avastin and Avegra.
The two-state classifier from panel B is included for comparison.

pathway, so long as it can be applied equally across the classes
being compared. A key attribute monitored in biotherapeutics
is the propensity to aggregate during transport and storage,
which can be challenging to assess in the laboratory. Early
warning methods for aggregation that detect structural changes
following various types of stress (for example, heat or oxida-
tion) are thus highly useful. Avastin and Avegra were stressed
by heating to 40 °C and applying orbital shaking for 4 weeks
(Figure 3A). A two-state classifier was generated using the
stressed and unstressed antibody data at a single charge state
(27+, the most intense signal in the mass spectrum). The two-
state classifier yielded improved performance (95% accuracy)
compared to a single state classifier generated from the un-
stressed data alone (85% accuracy) (Figure 3B). However, the
single state classifier for the stressed data resulted in similar
performance to the two-state classifier from both stress states
(Figure 3B). Finally, we combined both types of states into a
multi-state classifier with 10 total states: all five charge states
from each of the two stress states. This 10-state classifier
achieved cross validation accuracy above 99% (Figure 3C),
indicating very robust differentiation between Avastin and
Avegra, outperforming the multi-state classifiers generated
from all charge states of the unstressed data only, and from
both stress states but a single charge state. A 5-state classifier
using all charge states of only the stressed data performs simi-
larly well, indicating that the stressed data is driving the per-
formance of the combined, 10-state classifier. Our analysis
indicates that Avastin and Avegra have different structural
responses to the stress employed in this study, which can be
utilized to develop a classifier capable of robustly distinguish-
ing between them using our multi-state classification method
and incorporating both charge states and stress states into clas-
sification.

Conclusions

CIU experiments generate rich datasets that have proven ca-
pable of distinguishing subtle differences in protein structures.
Applying our multi-state classification workflow presented
here to analyze all charge states observed within in a CIU ex-
periment maximizes the detection of these subtle differences



by incorporating more of the experimental data into the statis-
tical framework for classification. Improvements to the core
algorithm have increased the accuracy of the classifiers devel-
oped through data standardization and have dramatically re-
duced the computational requirements for large datasets, ena-
bling the extension of these algorithms to much larger training
sets than analyzed previously. Finally, we demonstrate incor-
porating states other than protein charge states by generating a
robust classifier to distinguish Avastin from its biosimilar
Avegra by incorporating CIU data from heat-stressed samples.
This work indicates the potential of the multi-state classifica-
tion workflow to be used with a wide range of conditions or
perturbations, as any change that causes differences in CIU for
an analyte of interest can be incorporated into a classifier us-
ing this method. Incorporating differential responses to stimu-
lus into CIU classification has the potential to make CIU sen-
sitive to even more subtle structural differences and provide a
rapid and informative workflow for evaluating protein struc-
tures.
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