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ABSTRACT: Collision-induced unfolding (CIU) has emerged as a valuable method for distinguishing iso-crossectional protein 

ions through their distinct gas-phase unfolding trajectories. CIU shows promise as a high-throughput, structure-sensitive screening 

technique with potential applications in drug discovery and biotherapeutic characterization. We recently developed a CIU classifi-

cation workflow to support screening applications that utilized CIU data acquired from a single protein charge state to distinguish 

immunoglobulin (IgG) subtypes and membrane protein lipid binding. However, distinguishing highly similar protein structures, 

such as those associated with biotherapeutics, can be challenging. Here, we present an expansion of this classification method that 

includes CIU data from multiple charge states, or indeed any perturbation to protein structure that differentially affects CIU, into a 

combined classifier. Using this improved method, we are able to improve the accuracy of existing, single state classifiers for IgG 

subtypes and develop an activation-state sensitive classifier for selected Src kinase inhibitors when data from a single charge state 

was insufficient to do so. Finally, we employ the combination of multiple charge states and stress conditions to distinguish a highly 

similar innovator/biosimilar biotherapeutic pair, demonstrating the potential of CIU as a rapid screening tool for drug discovery and 

biotherapeutic analysis. 

Native mass spectrometry (MS) and ion mobility-mass 

spectrometry (IM-MS) have been increasingly adopted tech-

niques for the determination of protein-protein and protein-

ligand contacts, stoichiometry, and shape.
1–3

 Native IM-MS 

has seen rapid growth in the characterization of proteins
4,5

 

protein-ligand complexes,
6,7

 and multi-protein complexes.
8
 A 

significant challenge in these analyses remains the relatively 

low resolution of IM in the context of protein structure, limit-

ing the ability of IM-MS to distinguish subtle, but biologically 

relevant, conformational variations that occur below the reso-

lution limits of modern instrumentation. The activation of 

protein ions in the gas phase prior to IM separation in an effort 

to follow their subsequent structural transitions represents a 

useful method to distinguish such structural differences. This 

approach, termed collision-induced unfolding (CIU) when the 

ion activation is accomplished using collisions with an inert 

gas, has a rich history in the IM-MS analysis of protein struc-

ture
9–11

 and has seen rapid growth for drug discovery
12–14

 and 

biotherapeutic characterization.
15–20

 The relative speed of CIU, 

combined with detailed comparative structure information, 

make it a promising technique for the development of struc-

ture-sensitive screening methods at medium to high through-

put.  

A number of reports have demonstrated proof-of-principle 

methods using CIU to distinguish ligand binding sites for ki-

nases inhibitors,
13,14,21

 quantifying cooperative binding of lig-

ands within a protein complex,
22

 and detecting protein allo-

stery upon ligand attachment.
23

 Screening approaches sensitive 

to these structural parameters are in great demand for a wide 

range of applications associated with protein biophysics. The 

relative comparison of CIU fingerprints under different condi-

tions, for example following ligand binding to a target protein 

or after applying heat stress to a biotherapeutic, enables the 

determination of useful information about the structure of a 

protein and its response to perturbations.  

Converting the complex datasets generated in CIU experi-

ments into this structural information requires robust statistical 

methods. Several recent reports have developed quantitative 

methods to compare CIU fingerprints in support of these anal-

yses.
24–29

 For screening workflows in particular, supervised 

learning approaches show great promise. In these methods, 

“training” CIU data is acquired using known standards and 

used to generate a classifier that can then distinguish unknown 

CIU data. We recently developed CIUSuite 2, a software 

package that includes an automated workflow to construct 

classifiers for CIU data.
26

 This approach was used to differen-

tiate ligand and lipid binding modes in a membrane protein 

system
30

 and shows promise for high-throughput screening 

and characterization of biotherapeutics.  

Despite these successes, the current method is limited to the 

comparison of a single charge state of CIU data and relatively 

small quantities of training data. Native IM-MS experiments 

using electrospray ionization (ESI) typically generate multiple 

charge states, each with a unique CIU fingerprint. Recent 

work has demonstrated the benefits of including CIU infor-

mation from multiple charge states in distinguishing the struc-

tures of monoclonal antibodies.
31

 The incorporation of all in-

formation available from multiple charge states provides, in 

principle, great potential for improving CIU classification and 

screening methods without increasing data acquisition time. In 

this report, we describe the creation of a supervised classifica-

tion algorithm that can accommodate CIU data from multiple  

protein ‘states,’ improve processing speed to enable pro-

cessing of large datasets, and expand the scope of the classifi-

cation workflow to include comparative analyses that move 

beyond the concept of using a single group of charge states 



 

alone. We demonstrate the utility of these approaches to char-

acterize ligand binding modes in a protein-inhibitor context 

and in distinguishing a highly similar innovator/biosimilar pair 

of biotherapeutic monoclonal antibodies.  

Methods 

Sample Preparation. SiLuLite SigmaMab Universal anti-

body standard, IgG1λ, and IgG4λ from human myeloma were 

purchased from Sigma-Aldrich and supplied as lyophilized 

powder (St. Louis, MO). Samples were reconstituted using 

Milli-Q water (Millipore) to a concentration of 2 mg/mL un-

less specified otherwise. Avastin® (Genentech, 25 mg/mL) 

and Avegra® (Biocad, 25 mg/mL) were purchased and sup-

plied in solution formulation (158.6 mM Trehalose dehydrate, 

40.9mM Sodium Phosphate, 0.16% Polysorbate 80, pH 6.2). 

Biotherapeutic samples were diluted to 1mg/mL using 0.9% 

bacteriostatic sodium chloride injection, USP. (Pfizer Inc. 

New York City, NY). Stressed samples were incubated at 40 

ºC with 250 RPM orbital shaking for 4 weeks. All antibody 

samples were buffer exchanged into 200 mM ammonium ace-

tate buffer using Micro Bio-spin 30 columns (Bio-Rad, Hercu-

les, CA). Buffer exchanged samples were then diluted to a 

working concentration of 1 mg/mL (~6.7 µM).  

Src kinase domain DNA was synthesized by GeneArt (Life 

Technologies, Grand Island, NY) using E. coli modified co-

dons and subcloned into pET28a with a modified TEV-

protease cleavable N-terminal 6x-His tag. The plasmid was 

transformed by electroporation into BL21 DE3 electrochemi-

cally competent cells with a YopH in pCDFDuet-1. Cell 

growth, protein expression, and purification were adapted 

from protocols previously developed for the c-Src kinase do-

main
32

 without cleavage of the His-tag. Dasatinib, staurospor-

ine, foretinib, and ponatinib were purchased from LC Labora-

tories (Woburn, MA). Protein was reconstituted and buffer 

exchanged into 200 mM ammonium acetate (Sigma-Aldrich, 

St. Louis, MO) at pH 7.0 using Micro Bio-Spin 6 columns 

(BioRad, Hercules, CA) to a final concentration of 10 μM. 

Samples were incubated at a ratio of 3:1 inhibitor:protein, on 

ice for 15 minutes prior to analysis by IM-MS. 

CIU Acquisition. All CIU data were acquired using a Syn-

apt G2 quadrupole-ion mobility-time-of-flight mass spectrom-

eter (Q-IM-ToF MS) instrument (Waters, Milford, MA). Sam-

ple was transferred to a gold-coated borosilicate capillary nee-

dle (prepared in-house), and ions were generated by direct 

infusion using a nano-electrospray ionization (nESI) in posi-

tive mode. The electrospray capillary was operated at voltages 

of 1.5-1.7 kV with the sampling cone at 40 V. The backing 

pressure was set to 7.9-8.1 mbar for antibody samples or 5.0 

mbar for kinase samples. The trap collision cell was pressur-

ized to 4-5 × 10
−2

 mbar of argon gas, helium cell flow to 

1.4x10
3
 mbar, traveling-wave IM separator to 3.4 mbar, and 

ToF MS to 1.5 × 10
−6

 mbar. IM wave height and wave veloci-

ty were 20 V and 150 m/s, respectively, for Src kinase domain 

or 40 V and 600 m/s for antibodies. CIU experiments were 

performed by ramping the collision voltage in the trap cell 

from 5 to 200 V (antibodies) or 10 to 125 V (Src kinase) in 5 

V increments with a dwell time of 6 s at each collision volt-

age. 

Data Processing and Classification. IM arrival time data 

was extracted from raw data for each charge state using 

TWIMExtract
33

 and smoothed with CIUSuite 2
26

 (Savitzky-

Golay 2D smoothing, window 5, 2 iterations). An updated 

version of the CIUSuite 2 classification interface that recog-

nizes user-specified labels across multiple states (e.g. charge 

states) was used to assemble the training data for each classifi-

er. Note that all states used must be present in all training data 

used; for example, if charge states shift as a result of variations 

in ESI over the training data acquisition period, only charge 

states present in all inputs can be used as states for classifica-

tion. Classifiers were generated in ‘all data’ mode with cross 

validation test sizes of 6, 1, and 3 for data presented in Figure 

1, 2, and 3, respectively (adjusted to be approx. 1/3 of input 

dataset size in each case). Input data for Figure 1 and Figure 2 

was normalized but not standardized; input data for Figure 3 

was both normalized and standardized. The classification algo-

rithm presented here is based on the original CIUSuite 2 algo-

rithm, utilizing the ‘scikit-learn’ Python library,
34

 with the 

following key differences: support for division of the input 

data into multiple states throughout the classification, addition 

of data standardization to improve classifier performance, and 

implementation of random sampling cross validation to allow 

large input training datasets to be used without prohibitive 

memory and computation costs. Input training data is stand-

ardized within each state and collision voltage by scaling to 

zero mean and unit variance. For input Gaussian data, each 

attribute of each Gaussian peak (centroid, width, and ampli-

tude) is standardized separately because the initial values for 

centroids are typically much larger than those for width or 

amplitude. Thus, centroids are only standardized with cen-

troids, widths with widths, and amplitudes with amplitudes to 

prevent one attribute from overwhelming the others as a result 

of larger input values. Standardized and labeled training data 

for each state is assessed separately by the univariate feature 

selection (UFS) method in CIUSuite 2, which uses ANOVA 

F-values to assess the variation within and between classes at 

each collision voltage. The highest scoring collision voltages 

are then chosen from amongst all states for cross validation 

and final classifier construction, meaning that a classifier can 

contain data from multiple states.  

Cross validation is performed by holding back a portion of 

the training data (of configurable size), constructing a classifi-

er with the remaining training data, then testing the withheld 

data (the ‘test’ data) to see if it is classified correctly. This 

accuracy can be used to assess the performance of the classifi-

er, with high accuracies indicating a classifier capable of ro-

bustly distinguishing between the provided classes. Typically, 

high accuracy classifiers are those with several collision volt-

ages that achieve high scores with low variation, as this indi-

cates regions of the fingerprint that can reliably distinguish 

between classes. As in CIUSuite 2, cross validation involves 

adding ‘features’ in decreasing order of UFS score to deter-

mine the number of features that results in the most accurate 

classifier. In the workflow describe here, the features represent 

a single collision voltage from one of the states, so a particular 

voltage can be included multiple times if it scores highly in 

multiple states. The original CIUSuite 2 cross validation 

method tested all possible permutations of training and test 

data from an input dataset, which resulted in exponential time 

and memory cost with increasing dataset size and proved pro-

hibitive for the larger datasets evaluated in this work. Random 

sampling from the possible input permutations was imple-

mented to reduce this to a linear increase in performance cost 

by sampling only a user-specified number of the possible per-

mutations, chosen at random. Following determination of the 

optimal number of features to include, final classifiers are 

generated as in CIUSuite 2. 



 

Results and Discussion 

Each charge state observed in a native IM-MS experiment 

undergoes a substantially different unfolding trajectory during 

CIU, providing potentially complementary information for a 

multi-state CIU-based classifier. To evaluate the utility of 

combining data from multiple charge states for CIU classifica-

tion, we compared data acquired for the monoclonal antibody 

sub-classes IgG1 and IgG4, which differ only slightly in disul-

fide bonding pattern (Figure 1A). The native mass spectrum of 

IgG1 shows charge states from 22-26
+
, with 24

+
 being the 

most abundant (Figure 1B). The CIU fingerprints of IgG1 and 

IgG4 at the 24
+
 charge state are quite similar, aside from minor 

differences in the second CIU feature in the range of 60-80 V 

(Figure 1A, bottom). Performing a single charge state compar-

ison using the 24
+
 charge state only, as would be done in the 

original CIUSuite 2 workflow, results in a feature selection 

plot showing minor differences in the 60-80 V region as ex-

pected, with minimal differences outside that region (Figure 

1C). The classifier that can be trained from this data is of rela-

tively low quality, achieving a maximum cross validation ac-

curacy of 82% when using two features (70 and 75 V, Figure 

1E). Assessing all charge states with the classification work-

flow, however, reveals that the 24
+
 charge state, despite being 

the highest signal in the mass spectrum, is not the optimal CIU 

data to differentiate these two antibodies.  

To examine all charge states, we perform feature selection 

sequentially for each, meaning that the 22
+ 

charge state of 

IgG1 is compared to the 22
+
 of IgG4, and such binary compar-

isons were replicated across all mAb charge states. This analy-

sis results in five feature selection plots, which can be overlaid 

to evaluate the potential information content each charge state 

(Figure 1D). The 22
+
 charge state has the two highest scoring 

individual voltages (black, 85 and 90 V), followed by 80 V in 

the 23
+
 charge state (blue), then 75 and 70 V in the 24

+ 
charge 

state (green) (Figure 1F). As in a standard, single charge state 

classification mode, cross validation is performed by incorpo-

rating the data into classifiers in decreasing order of feature 

selection score; but in classifiers derived from multiple charge 

states, the input data can originate in any of the charge states 

included in the analysis. The cross validation indicates that the 

optimal classifier in this case uses four collision voltages, two 

from the 22
+
 charge state and one each from the 23

+
 and 24

+
 

charge states, to achieve an accuracy of 95%, significantly 

improved over the 82% accuracy achieved by the classifier 

using just the 24
+
 charge state (Figure 1F).  

To complete the comparison, we generated single charge 

state classifiers for all five charge states and compared the 

cross validation accuracy at the optimal number of collision 

voltages for each classifier (Figure 1G). Given the pair of very 

high scores from the 22
+
 charge state in the feature selection, it 

is not surprising that it results in the best single charge state 

classifier, and indeed achieves slightly higher accuracy than 

the combined classifier that considered all charge states (95% 

vs 94%). While it would be surprising for an individual charge 

state to outperform the combined classifier, the difference in 

accuracy between the 22+ and all-state classifiers is well with-

in error, indicating that the classifiers have similar overall 

performance. The 23-26
+
 charge states each individually 

achieve accuracies in the 80-90% range, each lower than the 

22
+
 or combined classifiers. Combining these four charge 

states into a combined classifier results in accuracy of 95% 

(data not shown), matching the performance of the full com-

bined classifier and the individual 22+ state classifier. As 

such, the all charge state classification in this case functions 

primarily as a means to rapidly identify the optimal charge 

state and ensure it is incorporated into the final classifier. In-

deed, the 22
+
 ions are the lowest intensity signals included in 

the analysis, and would not be an obvious choice if using only 

IM-MS precursor data. In cases where several charge states 

achieve similar feature selection scores, however, combining 

data from multiple charge states can generate a superior classi-

fier to any individual charge state.  

We applied our multi-state classification workflow to a 

number of challenging proteins and complexes that had previ-

ously confounded CIU classification efforts using data from a 

single charge state. Src, a non-receptor protein tyrosine kinase, 

plays a key role in several cell signaling processes
35,36

 and has 

been observed to be overexpressed in certain carcinomas and 

glioblastomas.
37

 Several classes of inhibitors to kinases like 

Src are known to target different conformations of the kinase. 

Type I inhibitors like Dasatinib and Staurosporine bind to the 

active state, in which the DFG loop is in the “in” confor-

mation, wrapping around the helices (green loop, Figure 2A). 

Figure 1. Multiple charge state classification of IgGs. A) IgG1 and IgG4 

subtypes differ primarily in disulfide bond linkage, resulting in slightly 
different CIU fingerprints. B) Native mass spectrum of IgG1 with 22-26+ 

charge states. C) UFS score plot distinguishing IgG1 and IgG4 at the 24+ 

charge state only. D) UFS plot for all charge states of IgG1 and IgG4. E) 
Cross validation accuracies for 1-10 features from the 24+ charge state 

alone and F) for all charge states incorporated into one classifier. G) Op-

timal cross validation accuracy from each individual charge state and all 
charge states combined. 



 

Type II inhibitors like Foretinib and Ponatinib bind the protein 

in the inactive conformation, in which the DFG loop is in the 

“out” conformation (green loop, Figure 2B). While single 

charge state classifiers and analogous methods have been suc-

cessful in differentiating such tertiary structures within 

Abl,
13,25

 a related kinase, differentiating these binding modes 

within Src using our  previous single charge state classifica-

tion method has proven challenging. Using the multi-state 

workflow developed here, we observe similar feature scores 

that distinguish Type I from Type II kinase inhibitors for both 

the 9
+
 and 10

+
 charge states (Figure 2C). As a result, the opti-

mal classifier uses a single collision voltage each from 9
+
 and 

10
+
, resulting in a cross validation accuracy of 98% (Figure 

2D). Individual classifiers created using data from only 9
+
 and 

10
+
 charge states separately exhibited lower accuracies in the 

80-90% range (Figure 2D). The large error bars for the indi-

vidual charge state classifier accuracies also indicate substan-

tial uncertainty in their performance, with lower accuracy pos-

sible for external validation. Thus, the combined classifier 

using multiple charge states is superior in this case to any of 

the individual charge state classifiers, and enabled robust clas-

sification of ligand binding modes in a system that had proven 

challenging to classify with a single charge state alone.   

Finally, we examined a biotherapeutic innovator/biosimilar 

pair, Avastin and Avegra, incorporating both multiple charge 

states and stress conditions into a multi-state classifier (Figure 

3A). Assessing a biosimilar, or generic form of an innovator 

protein therapeutic, presents significant analytical challenges 

due to the typical size and complexity of monoclonal antibod-

ies. Comparing higher order structure (HOS) information is 

particularly challenging without resorting to low-throughput, 

high-resolution structural biology techniques. As biosimilars, 

Avastin and Avegra are highly similar, and classification using 

CIU data across all charge states of the antibodies resulted in a 

low degree of differentiation, with the optimal classifier 

achieving accuracy of only 87% (Figure 3C). Charge states are 

not the only states that can be examined using our multi-state 

CIU data analysis algorithm, however. Our approach considers 

data acquired across any state that results in a different CIU 

pathway, so long as it can be applied equally across the classes 

being compared. A key attribute monitored in biotherapeutics 

is the propensity to aggregate during transport and storage, 

which can be challenging to assess in the laboratory. Early 

warning methods for aggregation that detect structural changes 

following various types of stress (for example, heat or oxida-

tion) are thus highly useful. Avastin and Avegra were stressed 

by heating to 40 ºC and applying orbital shaking for 4 weeks 

(Figure 3A). A two-state classifier was generated using the 

stressed and unstressed antibody data at a single charge state 

(27+, the most intense signal in the mass spectrum). The two-

state classifier yielded improved performance (95% accuracy) 

compared to a single state classifier generated from the un-

stressed data alone (85% accuracy) (Figure 3B). However, the 

single state classifier for the stressed data resulted in similar 

performance to the two-state classifier from both stress states 

(Figure 3B). Finally, we combined both types of states into a 

multi-state classifier with 10 total states: all five charge states 

from each of the two stress states. This 10-state classifier 

achieved cross validation accuracy above 99% (Figure 3C), 

indicating very robust differentiation between Avastin and 

Avegra, outperforming the multi-state classifiers generated 

from all charge states of the unstressed data only, and from 

both stress states but a single charge state. A 5-state classifier 

using all charge states of only the stressed data performs simi-

larly well, indicating that the stressed data is driving the per-

formance of the combined, 10-state classifier. Our analysis 

indicates that Avastin and Avegra have different structural 

responses to the stress employed in this study, which can be 

utilized to develop a classifier capable of robustly distinguish-

ing between them using our multi-state classification method 

and incorporating both charge states and stress states into clas-

sification.  

Conclusions 

CIU experiments generate rich datasets that have proven ca-

pable of distinguishing subtle differences in protein structures. 

Applying our multi-state classification workflow presented 

here to analyze all charge states observed within in a CIU ex-

periment maximizes the detection of these subtle differences 

Figure 2. Multiple charge state classification of Src kinase. Type I and II 

kinase inhibitors target the active (A) or inactive (B) conformations of the 

kinase. C) UFS plot comparing Src CIU fingerprints with bound Type I 

(Dasatinib and Staurosporine) against Type II (Foretinib and Ponatinib) 

inhibitors at all charge states. D) Cross validation accuracy for individual 
charge state and combined classifiers using 2 features. 

Figure 3. Stress-state classifiers distinguish Avastin and Avegra. A) 

Stress applied to innovator and biosimilar (center) and typical mass spec-
trum showing charge states. B) Best cross validation accuracy for classifi-

ers using various stress states with a single charge state. C) Best cross 

validation accuracy for classifiers using all charges states of unstressed 
alone and both conditions (stressed and unstressed) Avastin and Avegra. 

The two-state classifier from panel B is included for comparison.  



 

by incorporating more of the experimental data into the statis-

tical framework for classification. Improvements to the core 

algorithm have increased the accuracy of the classifiers devel-

oped through data standardization and have dramatically re-

duced the computational requirements for large datasets, ena-

bling the extension of these algorithms to much larger training 

sets than analyzed previously. Finally, we demonstrate incor-

porating states other than protein charge states by generating a 

robust classifier to distinguish Avastin from its biosimilar 

Avegra by incorporating CIU data from heat-stressed samples. 

This work indicates the potential of the multi-state classifica-

tion workflow to be used with a wide range of conditions or 

perturbations, as any change that causes differences in CIU for 

an analyte of interest can be incorporated into a classifier us-

ing this method. Incorporating differential responses to stimu-

lus into CIU classification has the potential to make CIU sen-

sitive to even more subtle structural differences and provide a 

rapid and informative workflow for evaluating protein struc-

tures. 
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