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ABSTRACT

Topological entropy measures the number of distinguishable orbits in a dynamical system, thereby quantifying the complexity of
chaotic dynamics. One approach to computing topological entropy in a two-dimensional space is to analyze the collective motion
of an ensemble of system trajectories taking into account how trajectories “braid” around one another. In this spirit, we introduce
the Ensemble-based Topological Entropy Calculation, or E-tec, a method to derive a lower-bound on topological entropy of two-
dimensional systems by considering the evolution of a “rubber band” (piece-wise linear curve) wrapped around the data points
and evolving with their trajectories. The topological entropy is bounded below by the exponential growth rate of this band. We
use tools from computational geometry to track the evolution of the rubber band as data points strike and deform it. Because
we maintain information about the configuration of trajectories with respect to one another, updating the band configuration
is performed locally, which allows E-tec to be more computationally efficient than some competing methods. In this work, we
validate and illustrate many features of E-tec on a chaotic lid-driven cavity flow. In particular, we demonstrate convergence of
E-tec’s approximation with respect to both the number of trajectories (ensemble size) and the duration of trajectories in time.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5045060

From the stirring of dye in viscous fluids to the availability
of essential nutrients spreading over the surface of a pond,
nature is rife with examples of mixing in two-dimensional
fluids. The long-time exponential growth rate of a thin fila-
ment of dye stretched by the fluid is a well-known proxy for
the quality of mixing in two dimensions. In the real-world
study ofmixing, this stretching ratemay be hard to compute;
the velocity field may not be known or may be expensive
to recover or approximate, thus limiting our knowledge of
the governing system and underlying mechanics driving the
mixing. One alternative is to use time-ordered trajectory
data, often obtained from tracer particles such as ocean
drifters. In this paper, we use the collective motion of such
trajectories, along with tools from computational geome-
try, to develop a lower bound to the stretching rate. The
lower bound is obtained by approximating the filament of
dye with a piece-wise linear, non-intersecting “rubber band”

stretched around the data points. We call our algorithm the
Ensemble-Based Topological Entropy Calculation, or E-tec.

I. INTRODUCTION

A variety of techniques have been used to quantify com-
plexity and uncertainty in dynamical systems theory. These
tools include the finite-time Lyapunov exponent (FTLE) field,1,2

which measures the exponential rate of separation between
points in a small neighborhood; the finite-time entropy (FTE)
field,3 a probabilistic approach to measuring local stretching
and determining the uncertainty in a trajectory’s final posi-
tion; operator-theoretic methods, such as the eigenfunctions
and eigenvalues of the Koopman operator;4 and numerical
evolution of a two-dimensional material-curve, whose growth
rate is shown to be equivalent to the topological entropy,5–9
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which measures the proliferation of distinguishable orbits.10

Such knowledge aids greatly in a wide variety of natural and
industrial fluid systems, including the large-scale dispersion
of pollutants in the Earth’s atmosphere and oceans;11 for exam-
ple, understanding how regions of fluid remain isolated from
each other helps predict the fate of oil spills.12,13Understanding
mixing in the rapidly developing field of microfluidics14,15 could
lead to new classes of self-mixing active solvents that fur-
ther our understanding of the kinetics of mass transport and
chemical reactions. Obvious industrial applications include
the optimization of stirring devices in viscous fluids, such as
the rod-stirring devices used to effectively knead dough, pull
taffy,16,17 or manufacture glass compounds.16,18

However, a problem remains for many techniques—the
fine-scale structure of a system may not appear without a
high point density. A sufficient number of system trajectories
and/or the linearizations about these trajectories may simply
be too expensive to compute or to measure experimentally.
We seek techniques that can accommodate such sparse data.

Our goal is to compute material-line stretching rates
using only 2D particle trajectories, like those collected
from oceanic floats19,20 or fluorescent beads in microfluidic
systems.21,22 These data sets may be sparse and hence may
not fully sample all of the 2D space. We are motivated by
Budišić, Allshouse, and Thiffeault,20,23,24 who use braiding the-
ory to compute a lower bound for topological entropy of flows
from such data sets. The initially embedded material-curve is
thought of as an elastic line whose growth rate is computed
using the collective motion of all available trajectories mov-
ing through space in concert. In essence, the relative motion
of an ensemble of trajectories in space encodes global infor-
mation that is not contained in any one individual trajectory.
That is, extra information is “hiding” in an ensemble of tra-
jectories, which is not exploited in a trajectory-by-trajectory
approach.

In this paper, we focus on these underlying stretch-
ing and folding processes that drive mixing in two dimen-
sional fluids. We apply computational geometry techniques to
develop a 2D algorithm titled the Ensemble-based Topolog-
ical Entropy Calculation (E-tec), which may be downloaded
at https://doi.org/10.5281/zenodo.1405656. E-tec achieves
three main goals: (a) estimation of a lower bound to the topo-
logical entropy on data sets, (b) convergence to the topological
entropy as ensemble size increases, and (c) linear scaling in
runtime with the length of trajectories and Nk logN scal-
ing with the number of trajectories N. (Values of k range
from 1/3 ≤ k ≤ 3/2 and typically k . 1. We point the reader to
the Appendix for a discussion.) E-tec does not require the flow
to be area preserving or incompressible.

The remainder of this paper is broken up into six sections.
We first review topological entropy (Sec. II) and then summa-
rize (Sec. III) and give procedural details (Sec. IV) of our E-tec
algorithm. We next evaluate the performance of E-tec on a
chaotic, lid-driven cavity flow as a test case (Sec. V) and show
that results are consistent with the braiding approach. Finally,
we demonstrate E-tec’s robustness and show evidence that
the E-tec runtime compares favorably to braiding algorithms

(Sec. VI). The Appendix contains details regarding E-tec’s
runtime scaling and computational bottlenecks.

II. TOPOLOGICAL ENTROPY

Topological entropy is a measure of the growth rate of
the number of distinguishable orbits.25 More formally, topo-
logical entropy is defined by considering equivalence classes
of trajectories of duration T that are only distinguished if
they are, at any point in time, further than some resolu-
tion ε > 0 apart. The number of these ε-distinct classes of
trajectories increases as both T → ∞ and ε → 0. Topological
entropy measures the growth of all ε-distinct trajectories as
T → ∞. Specifically, the topological entropy h is the exponen-
tial growth rate in time of the number of distinct trajectory
classes for arbitrarily small ε.

In two-dimensional flows, topological entropy h can be
estimated by embedding an initial material-curve, e.g., a line
of dye, of length L0 in the system and estimating its growth
under the evolution of the flow.8 At long times, the length L(t)
of the curve as a function of time t grows exponentially as

L(t) ≈ L0 e
ht. (1)

Thus, direct computation of the curve’s evolution is trouble-
some in chaotic flows since the length is expected to grow
exponentially fast, which requires an exponentially growing
number of trajectories to maintain sufficient point density of
the curve. Other techniques for extracting topological entropy
operate on a trajectory-by-trajectory basis, i.e., ensemble-
averaging some quantity (such as the Jacobian singular val-
ues) computed one trajectory at a time. This is the approach
taken in recent work on expansion entropy,26 a generaliza-
tion of topological entropy, which, unlike Eq. (1), scales to
higher dimensions for all flows and requires no computing or
measuring of multidimensional surfaces.

As an alternative approach for 2D systems, a lower bound
to the topological entropy may be computed with a finite
number of trajectories and no detailed knowledge of the veloc-
ity field. The material-curve to be advected is represented by
a taut elastic loop that wraps tightly around trajectories that
strike it. Since an advected material-curve may be continu-
ously deformed into this taut loop given the same trajectory
evolution, the need for maintaining material-curve point den-
sity is eliminated. The loop is stretched and folded over itself
exponentially many times in a chaotic flow. Its exponential
growth rate is a lower bound to the full system’s topological
entropy.20

In this more topological setting, braiding theory has been
used to compute this lower bound. The Finite-Time-Braiding-
Exponent (FTBE) method23 evolves the loop forward using the
entanglement of a finite number of trajectories. However, this
method scales quadratically in the number of points N due
to the braid approach requiring O(N2) algebraic generators
per unit time. This renders braiding exponent calculations
unwieldy for systems requiring many trajectories.

To develop a computationally efficient method to esti-
mate a lower bound on the topological entropy of a planar
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FIG. 1. Band deformation. (a) The white point strikes and deforms the band (red). (b) The white point detaches from the band. Notice the band edge is taut after detachment.
(c) An initial rubber band stretched between two points on the left with edge weights displayed. A more complicated band on the right. The edge weights correspond to the
number of times the band crosses an edge.

flow that scales sub-quadratically in the number of points N,
we compute the stretching rate of an advected elastic curve
directly. Referring now to the elastic curve or loop as a rub-
ber band, we use the same FTBE idea of trajectories working
in concert to stretch and fold the band. The E-tec algorithm
achieves this using the same input: (i) a set of (typically ape-
riodic) trajectories {xi(t), yi(t)} that are discretized over time
t1, t2, . . . and (ii) a user-specified, non-self-intersecting elas-
tic band which wraps around a set of trajectories. The output
is the number of edge segments in the band as a function
of time. However, instead of using a braid representation to
compute the stretching of the band, E-tec computes this
stretching, and thus the topological entropy, directly by using
a triangulation to detect all point-band collisions.

In summary, E-tec tracks the crossing of a trajectory with
only its neighboring edges in the triangulation, unlike the
braiding method which concerns itself with each trajectory’s
relative position with every other trajectory along a projection
axis. This idea leads to amore favorable sub-quadratic runtime
scaling ofO(Nk logN), where 1/3 ≤ k ≤ 3/2. (For a detailed dis-
cussion about the twomethods’ runtime scaling in the number
of points, we refer the reader to the Appendix.) The idea of
using an advected dynamic triangulation to compute topolog-
ical entropy was first proposed by Marc Lefranc.27–29 Lefranc’s
work was restricted to the entropy generated by periodic
orbits, and he did not develop a general algorithm to imple-
ment this. To our knowledge, this work is the first attempt to
fully generalize Lefranc’s ideas to aperiodic orbits.

III. OVERVIEW OF E-TEC

We first give an overview of E-tec and forgo the details
to Sec. IV. E-tec computes how an initial, closed, piecewise
linear, non-self-intersecting rubber band in R

2 evolves under
an ensemble of trajectories. The vertices of the band coin-
cide with trajectories from the ensemble. When trajectories
strike the band, they do not penetrate it but stretch it like a
piece of elastic [Fig. 1(a)]. In this manner, the band is stretched
and folded, typically producing a growing number of edges
wrapping around each other. Our algorithm tracks the config-
uration of the band. Care must also be taken in finding when
and how a trajectory detaches from an edge. This detach-
ment results in two band edges returning taut [Fig. 1(b)], in
much the same way a tight string will return taut once plucked
(stretched) and released (undoing the stretching). Each band

edge is assigned an integer weight ω indicating the number of
times the band stretches across it [Figs. 1(c) and 2]. For chaotic
advection, the total weight of the band will grow exponen-
tially, as shown in Sec. V. This exponential growth rate is a
lower bound to the true topological entropy of the dynam-
ical system. Even though the weight of all the edges grows
exponentially, the number of unique edges is bounded.

E-tec efficiently tracks band growth by simply shifting
edge weights to the appropriate edges when a point collides
with, or detaches from, the band. A key component of the
algorithm is the detection of all relevant point-edge colli-
sions. We achieve this by maintaining a triangulation of all
trajectories for all times. First, edge weights are determined
corresponding to the initial placement of the band. Next, the
data points may be triangulated in any manner consistent
with the initial placement of the band. For any initial band,
E-tec’s computation of the evolved band is independent of the
initial constrained triangulation. Here, we initialize with a con-
strained Delaunay triangulation.30 Note that the algorithm is
fast enough to run and compare many different initial bands
in a reasonable time.

The triangles that make up the triangulation are called
core triangles. Each edge of the stretched band lies within
the triangulation, so that each time a point strikes the band,
the orientation of one of the core triangles will be inverted.
We refer to this inversion as a triangle collapse. All band

FIG. 2. Edge weights. E-tec counts the number of edges of a rubber band as
it is stretched by moving points. As the two bottom points rotate, the red band,
initially wrapped around two points, is stretched and folded (left to right). E-tec
tracks the growth of this band by assigning a weight to each edge corresponding
to the number of times the band passes over this edge.
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FIG. 3. Events of E-tec algorithm. (a) As point 5 moves right, triangle (2, 4, 5)
collapses and inverts orientation. Two core triangles are re-triangulated, with the
new edge shown as dashed. The initial edge weight of 2 for segment (2, 4) is
shifted to segments (2, 5) and (4, 5). The blue-highlighted triangle (2, 4, 5) is the
new outer triangle of point 5. It records which triangle collapse would be needed
for the band to “snap back” taut, thereby undoing the collision. (b) As point 7
moves to the right, outer triangle (2,5,7) collapses and the band edges (2, 7) and
(5, 7) straighten into (2, 5). The three core triangles within pentagon (1,2,7,5,6)
are reconfigured into three new core triangles (1,2,6), (2,5,6), and (2,5,7). Point
7 is still a candidate for future detachment, with new outer triangle (3,4,7), which
also happens to be a core triangle. (c) In blue is a combined core and outer tri-
angle (2,4,5). As point 5 moves to the right and this triangle collapses, the band
returns taut around segment (2,4). Three core triangles (1,2,4), (2,3,5), and (3,4,5)
are reconfigured, with the new edge shown as dashed. Collapsed triangle (2,4,5)
(previously shaded) remains as a core triangle.

deformations will be detected since band edges remain in the
core triangulation. The triangulation must be updated upon
any triangle collapse. This update is local to the detection of
each event, resulting in the rearrangement of edges and tri-
angles near the collision only [illustrated in Fig. 3(a)]. Similarly,
the only edge weights that are shifted are those involved in
the collision. The update process is independent of both the
number of points N and the number of triangles.

In addition to collisions, we need to detect when a tra-
jectory detaches itself from a band edge. E-tec records which
edges of the band are candidates for detachment by storing
the triangle made up of the outer-most band edges attached
to each point, i.e., typically the most recent edges to have
struck a point. These triangles are called outer triangles and
are shown in blue in Fig. 3. Unlike the core triangles, the outer
triangles do not form a triangulation of space. Rather, there

is simply one outer triangle for each vertex crossed by the
band. When a point detaches from the band, its corresponding
outer triangle collapses and inverts its orientation. After the
outer band edge peels off the point, there may remain other
band edges still wrapped around the point. [Follow point 7 in
Fig. 3(b) for an example.] In this case, E-tec recalculates and
stores the new outer triangle. Note that the outer triangle of
a given point can always be recalculated from just the weights
of all edges adjacent to the point. Thus, E-tec must track when
both core and outer triangles collapse.

The triangulation update process following an outer tri-
angle inversion remains local, though the process differs from
the core triangle inversion update in one fundamental aspect:
the local re-triangulation is constrained to contain the band
that remains taut. This creates a possibly non-unique choice
in edges needed to complete the triangulation. As an exam-
ple, notice that edge (1, 5) could have replaced edge (2, 6) to
complete the triangulation in Fig. 3(b). Because of this, E-tec
will not generally recover the initial triangulation away from
the band if trajectories are run forward and then exactly back-
ward in time. However, the algorithm is time-reversible in that
the band returns to its initial configuration after running the
trajectories backwards to their initial positions.

In summary, there are two kinds of events that must be
detected: the collapse of either a core or an outer triangle.
In the given time interval, these events are detected by find-
ing the time for which their area first goes through zero. This
time of first collapse is simply the appropriate root of the area
quadratic polynomial, which is formed from the linear interpo-
lation of triangle point positions. (For any reader interested in
the scaling of the number of events with the number of trajec-
tories used, we refer them to the Appendix.) Once these events
are detected, they are put in a time-sorted list and processed
in order. Each event is “fixed” by locally updating the core tri-
angulation, outer triangles, and edge weights. In the course of
fixing an event, we may need to add or remove events from the
event list. Event lists become large for densely-packed ensem-
bles, though E-tec parses through each event and performs
each subsequent triangulation update efficiently, as verified in
Sec. V. A flowchart summarizing the E-tec algorithm is given
in Fig. 4. The algorithm steps found here are detailed in Sec. IV.

IV. E-TEC ALGORITHM DETAILS

This section details our implementation of the E-tec
algorithm.

Input: The following inputs are required by the
algorithm:

1. The precomputed (or experimentally measured) trajecto-
ries.

2. An initial, non-self-intersecting rubber band stretched
around a sequence of data points, specified by the set of
edges connecting pairs of data points. This is represented
as a counterclockwise ordering of this set of points. It is
often convenient to choose an initial band that encloses
two distant points.

Chaos 29, 013124 (2019); doi: 10.1063/1.5045060 29, 013124-4
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FIG. 4. E-tec algorithm flowchart. As described in Sec. III, E-tec employs com-
putational geometry techniques for tracking the evolution of a piecewise-linear
band. Full details are given in Sec. IV.

Output: E-tec tracks the evolution of the band, as we will
describe below, and outputs:

1. The state of the stretched rubber band as a function of
time, recorded as a (core) triangulation of all data points
and a set of edge weights of this triangulation.

2. The sum of all band edge weights ω as a function of time.
3. The exponential growth rate of the band (topological

entropy), determined by the slope of the best fit line for
the ln(ω) vs. time graph.

Data structures: E-tecmaintains the following data structures
as a function of time:

1. A core triangulation of all data points in the plane.
2. The weights on each edge in the triangulation. (Non-zero

weighted edges constitute the stretched rubber band.)
3. For each relevant data point, the outer band triangle

(abbreviated outer triangle) records the outermost wrap-
ping of the rubber band around that point. (See the blue
shaded triangles in Fig. 3.) During the algorithm’s run, the
outer triangle represents the piece of rubber band that has

FIG. 5. Numerical example of an E-tec implementation. (a) Initial data points
with the band wrapped around two points (in red). The core Delaunay triangulation
(in blue, dotted) is constrained to include the red band edge. (b) Final data point
positions at T = 20, the triangulation, and the stretched band evolved under the
motion of the trajectories. Dynamics is given by model in Sec. V with τf = 0.96.
(c) E-tec output: the number of band edges as a function of time (blue). The slope
of the best-fit line (red, dashed) is the topological entropy estimate. Multimedia
view: https://doi.org/10.1063/1.5045060.

struck the point most recently and hence is a candidate for
detachment at a future time. For example, upon inspection
of vertex 7 in Fig. 3(b), we may deduce that of all the red
band edges attached to it, the two that created the largest
angle would be the ones to snap back and revert to a single
edge. Specifically, edge (2, 5) will snap back taut if triangle
(2, 5, 7) changes orientation. Notice that outer triangles are
not necessarily contained in the set of all core triangles.

Steps: We outline the key steps taken by E-tec in tracking the
evolution of a rubber band. These steps are summarized in the
Fig. 4 flowchart.

1. We first initialize the core triangulation using a con-
strained Delaunay triangulation30 of the initial points (with
the initial placement of the rubber band as the constraint).
See Fig. 5(a) (Multimedia view).

In steps (2–6), we evolve the state of the system (core
triangulation, weights, and outer triangles) forward using
the next time-slice in the trajectory data as input. Notice
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that E-tec does not need the whole trajectory at once
in order to evolve the triangulation forward and, there-
fore, could be used in real-time during experimental data
collection.

2. For each core and outer triangle in the current state of
the system, we use the linear interpolation of point posi-
tions to determine if and when a triangle will pass through
zero area during this time step. These collapse events are
sorted by time into an event list.

3. If the event list is non-empty, we go to step 4 and deter-
mine the event type of the next collapse event. If the
event list is empty, we then add up the weights of every
edge to get the current total weight ω of the band and
store this value. This acts as a proxy for the length of
the band and grows with the same exponential rate in
time. If we are at the final time of the trajectory data,
we end by analyzing the accumulated weight data in step
7. Otherwise, we move on to the next trajectory time in
step 2.

4. A collapse event can be one of three general types: a
core triangle collapse [Fig. 3(a)], an outer triangle collapse
[Fig. 3(b)], or a combined core and outer triangle collapse
[see Fig. 3(c) for an illustration]. While the specifics of
how the three types of collapse events are handled are
different, the broad strokes, as seen in step 5, are the same.

5. For each collapse event type, there is a general tem-
plate for adding, removing, and/or modifying the core and
outer triangles that are adjacent to the collapsing triangle.
Crucially, this process is local, and the number of opera-
tions is bounded and does not grow with the number of
trajectories.

6. The local deletions, creations, and modifications of core
and outer triangles that result from handling a collapse
event potentially affect the overall event list for this time-
step. First, we consider the deleted and modified core
and outer triangles. If, before modification, they have a
time-to-zero-area that is in the remaining fraction of the
current time-step, then we search for and remove them
from the event list. Next, we consider the new and mod-
ified core and outer triangles. If, after modification, they
will collapse in the remaining time-step, we search for the
proper position to insert them into the sorted event list.
Both searches are binary and constitute one of the two
aspects of the algorithm that give usO(Nk logN) computa-
tional complexity, where 1/3 ≤ k ≤ 3/2 [O(logN) for binary
search andO(Nk) searches per time-step]. After modifying
the event list, we return to step 3.

7. Approximate the topological entropy by computing the
exponential growth rate for the total weight over time.

V. E-TEC ALGORITHM VERIFICATION

In this section, we verify the E-tec algorithm by running
E-tec on numerical trajectories sampled from a chaotic lid-
driven cavity flow used to study chaotic advection.32 A numer-
ical example of E-tec applied to real trajectory data (requiring

only seconds to run) is shown converging to the theoretical
topological entropy lower bound of the flow in Fig. 5 (Mul-
timedia view). In Sec. V C, we compare our results to lower
bounds on topological entropy computed from two different
methods; first, by a direct application of Eq. (1) to a grow-
ing material-line and second, by a technique called homotopic
lobe dynamics (HLD), which extracts symbolic dynamics from
finite-length pieces of stable and unstable manifolds attached
to fixed points of the fluid flow.31,34,35

A. Chaotic lid-driven cavity flow

The chaotic lid-driven cavity model32,33,36,37 is a two-
dimensional area-preserving flow defined over a 2D verti-
cal cross section of a rectangular cavity, extending vertically
from −b ≤ y ≤ b and horizontally from 0 ≤ x ≤ a. The flow

V(x, y, t) =

(

∂ψ

∂y
,−

∂ψ

∂x

)

(2)

is defined in terms of a stream function ψ(x, y). The stream
function is an exact solution of the biharmonic equation
∇2∇2ψ(x, y) = 0 defined in the rectangular domain. The
stream function is time-periodic with period τf and is given
explicitly by

ψ(x, y, t) =







































U1C1f1(y) sin
(πx

a

)

+ U2C2f2(y) sin

(

2πx

a

)

,

for nτf ≤ t < (n + 1/2)τf ,

−U1C1f1(y) sin
(πx

a

)

+ U2C2f2(y) sin

(

2πx

a

)

,

for (n + 1/2)τf ≤ t < (n + 1)τf ,
(3)

where

fk(y) =
2πy

a
cosh

(

kπb

a

)

sinh

(

kπy

a

)

−
2kπb

a
sinh

(

kπb

a

)

cosh

(

kπy

a

)

, k = 1, 2

and

Ck =
a2

2kπ2b

[

a

2kπb
sinh

(

2kπb

a

)

+ 1

]−1

, k = 1, 2.

We follow Grover et al.32 and assign U1 = 9.92786,
U2 = 8.34932, a = 6, and b = 1. Figures 6(a) and 6(b) show
streamlines for the two steady flows in Eq. (3). Each flow is
separately integrable and is asymmetric in x, with a large vor-
tex on one side and a smaller vortex on the other. The system
alternates between each flow for a half-period τf/2. It is this
alternating flow that introduces positive topological entropy
into the system.

When τf is sufficiently large, τf ≥ τ ∗
f ≈ 0.9553, there exists

a period-three orbit, ri, i = 1, 2, 3, such that

M(r1) = r2, M(r2) = r3, M(r3) = r1, (4)

where M is defined to be the flow map that evolves a point
(x, y) forward to the point (x′, y′) = M(x, y) after a single period
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FIG. 6. Dynamics of chaotic lid-driven cavity flow. We depict streamlines of
the flow, Eq. (3). (a) Motion under the first half-period, nτf ≤ t < (n + 1/2)τf .
(b) Motion under the second half-period, (n + 1/2)τf ≤ t < (n + 1)τf . (c)
Illustration of a period-three orbit ri . Each color (blue, green, orange) represents
the trajectory evolving forward one period.

τf . Figure 6(c) shows the points ri and their time evolution
over one period. In the first half-period, nτf ≤ t < (n + 1/2)τf ,
the two trajectories on the left swap positions in a clock-
wise fashion, while in the second half-period, (n + 1/2)τf ≤

t < (n + 1)τf , the two trajectories on the right swap positions
in a counterclockwise fashion. Grover et al.32 characterize
the ri as a set of three strands braiding around one another
in a nontrivial fashion. The presence of this braid guaran-
tees that the topological entropy is at least hpo3 = 0.9624,
the topological entropy which Boyland et al.38–40 computed
using the Bestvina-Handel train-track algorithm.41 We note
that this period-three orbit lives within a larger coherent
set, a period-three island chain33 when τf is strictly greater
than τ ∗

f .

B. Period-three orbit and convergence in ensemble

size

Here we investigate the convergence of the E-tec
algorithm by studying trajectories from the chaotic lid-driven
flow with period τf = 0.96, where we are guaranteed the

existence of a period-three island chain.32,43,44 As illustrated in
Fig. 7(d), no trajectory starting in an island leaves the island,
and no trajectories enter. These islands braid around one
another as they swap places in the same fashion depicted in
Fig. 6(c). In the analysis of Sec. A, each trajectory is sampled
with time step 1t = 10−2 between points. This choice of 1twill
be shown to be sufficient in Sec. VI C.

First, we run E-tec on a set of three trajectories with
the initial condition for each trajectory chosen in a different
period-three island [Fig. 7(a)]. We place an initial band around
the right two points and observe exponentially growing band
weights [Fig. 7(b)]. At T = 15 our estimate for the topological
entropy is within 0.1% of the topological entropy guaranteed
by the braid [Fig. 7(c)].

Next, we run E-tec on a set of 75 trajectories consisting of
the 3 previously selected trajectories along with 72 randomly
chosen ones. We calculate topological entropy by considering
the time evolution of the same initial band [Fig. 7(b)]. While
the dynamics appear far more complicated than in Fig. 7(a),
our estimate of topological entropy is within fitting error
to hpo3 = 0.9624 [Fig. 7(c)]. Our results demonstrate that the
periodic islands, and their braiding, are what drives most of
the system entropy.45,46 Furthermore, this demonstrates that
for certain systems, topological approaches such as E-tec (as
well as braiding approaches) are capable of producing accu-
rate estimates of topological entropy with only a small set of
carefully chosen trajectories.

Although the coherent sets for our example were
straightforward to locate, for other examples and practical
applications, coherent sets may be harder to identify. As such,
there is no guarantee trajectories from coherent sets, whose
dynamics might be governing the topological entropy of the
system, will be sampled appropriately. To investigate how E-
tec would perform under conditions like this, we examine
our ability to accurately recover the topological entropy when
randomly sampling initial conditions uniformly in space, but
removing any point chosen in the period-three islands. E-tec
was run on increasingly larger but nested sets of such trajec-
tories. That is, the points chosen in the 20 trajectory analysis
contain all of the points in the 10 trajectory analysis, and so
forth. As shown in Fig. 8(a), E-tec converges rather quickly in
the number of points to the topological entropy lower bound
guaranteed by the period-three islands. Estimates may fluctu-
ate based on the interval used to fit, especially when fewer
trajectories are used. In Fig. 8, we see apparent oscillatory
behavior, though we expect these to dampen at longer times
and for results to converge if taken to infinite time. We note
that in the above figure that E-tec does not require many
long trajectories to compute a reasonable approximation to
the topological entropy.

Finally, in Fig. 8(b), we investigate the E-tec convergence
using the 100 point ensemble in Fig. 8(a) by adding additional
points in each of the three islands. E-tec performs increasingly
better as the island points are added. The result with no island
points, given in Fig. 8(a), is then taken as a worst-case scenario.
This assures our confidence in E-tec results as ensemble sizes
are increased in Sec. V C.
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FIG. 7. E-tec analysis of the chaotic lid-driven cavity flow. We show E-tec results on trajectories governed by Eq. (3) with τf = 0.96, guaranteeing the existence of a
period-three orbit, seen in Fig 6(c). (a) We show E-tec results when considering only 3 points close to the period-three orbit and contained in period-three islands. We consider
an initial band around the two right points (top). This band evolves (bottom) into a highly stretched band (edge weights in red) around all three points by T = 15. (b) We
consider the same 3 initial points, but add 72 random trajectories (top). The dynamics are more complex (bottom, weights omitted). (c) The growth rate in the number of
edges, i.e., our estimate of the topological entropy, for (a, red) and (b, blue) are the same. This indicates the entropy is driven by the period-three islands as also shown by
Ref. 31. (d) The coherent period-three islands, noted in Refs. 31 and 33, are clearly seen in the Poincaré return map of a long-lived trajectory in blue. Ten long-live trajectories
inside the islands are shown in red.

C. Topological entropy for a range of period driving

parameter τf

With confidence in E-tec’s ability to characterize topo-
logical entropy when τf = 0.96, we next explore how the topo-
logical entropy changes as τf varies. As mentioned previously,
the period-three orbit is born at τ ∗

f ≈ 0.9553 and persists for

larger values. Thus, entropy for values τf < τ ∗
f will be bounded

above by the braiding entropy of hpo3 = 0.9624, while hpo3

remains a lower bound for τf > τ ∗
f . In all cases, the same initial

band is chosen and evolved forward.
As shown in Fig. 9, our estimate of topological entropy

using E-tec is within error of the direct calculation of
material-line stretching when 0.85 ≤ τf ≤ 0.98 and the num-
ber of data points is at least 1000. For τf < τ ∗

f , there are no

known island chains that drive the complexity. Despite this,
E-tec performs well here, as shown in Fig. 9. For low values
of τf , when τf < 0.85, E-tec produces an estimate slightly less
than that of direct stretching but consistent with the value
produced by HLD. However, E-tec’s discrepancy becomes
smaller with increasing numbers of samples. For high val-
ues of τf , when τf > 0.98, both E-tec and HLD produce lower
estimates for topological entropy than the calculated direct
stretching value. We note that E-tec with 1000 trajectories still
produces estimates consistent with HLD, and with 10000 tra-
jectories, E-tec exceeds the HLD estimate but is still below the
direct material-line stretching.

To more clearly see what drives the increase in entropy
for high values of τf , we show the band stretched by E-tec
for three different values of τf each computed from a set of
1000 independently chosen trajectories (see Fig. 10). Exponen-
tial stretching and folding is present in all tested parameter
values, though Fig. 10 shows the band is stretched in a more

complex fashion at higher τf values. Here, additional island
chains emerge33 resulting in secondary folding47 that seems
less “smooth.” This secondary folding results in kinks near
the islands that propagate forward, which in turn are fur-
ther stretched under the dynamics. These small areas with
kinks give significant contribution to the topological entropy,
but because the entropy estimates (Fig. 9) were generated
from uniformly random samples, these highly-kinked regions
may remain undersampled. As such, a good portion of the
stretching may remain undetected by E-tec in Fig. 10(c).

VI. E-TEC ROBUSTNESS

In this section, we investigate the robustness of E-tec’s
results. More specifically, we examine how E-tec’s ability to
correctly estimate topological entropy is impacted by the
choice of initial band and the time-step associated with trajec-
tories. Finally, we discuss how the E-tec algorithm’s run-time
scales with the duration and number of sampled trajectories.

A. Robustness to choice of initial band

Wemake the following conjecture: if all trajectories reside
in the same ergodic component, then the choice of initial
band does not affect the topological entropy computed by E-
tec as long as the trajectories are sufficiently long. Figure 11
supports this conjecture. All initial bands eventually become
stretched at the same rate despite some differences at early
times. Adjacent points may remain close for some time, though
the chaotic nature of the flow causes nearby trajectories to
eventually diverge, thereby making the band’s deformation
inevitable. Thus, as long as it is possible to obtain sufficiently
long trajectories within a single ergodic component, E-tec’s
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FIG. 8. Convergence of E-tec in the length and number of trajectories. (a)
We demonstrate convergence of E-tec to hpo3 = 0.9624 with increasing sample
size and trajectory duration. For E-tec, the same initial band is stretched under
ensembles of increasing size. All trajectories are sampled from outside the islands
in the chaotic lid-driven flow with period-driving parameter τf = 0.96. The entropy
reported at time T is the fitting slope and 95 interval to the log of the total number of
edge weights over time t for the range t ∈ [5, T ]. (b) We demonstrate consistency
between E-tec and FTBE results (calculated using the freely available Matlab
package braidlab42). The same ensembles of trajectories are used for both.
To stay consistent with the braidlab calculations, E-tec reports the entropy
as the fit from initial time to reported time (or rather, it is the fit from t ∈ [0, T ]).
(c) E-tec output using the 100 point ensemble with a single trajectory added into
one, two, and three of the periodic islands.

topological entropy calculation appears to be invariant to the
choice of initial band.

Some chaotic flows have more than one ergodic com-
ponent or a mixture of ergodic and non-ergodic regions.
This is true of the model flow in Fig. 7(d). In such systems,
the choice of initial band will impact the topological entropy

FIG. 9. Verification of E-tec for increasing τf . E-tec topological entropy results
over a range of τf values using increasing ensemble sizes.We compare to the esti-
mate of topological entropy from directly stretching a material line31 and through
another topological technique, homotopic lobe dynamics.34,35

estimate. For example, a band placed entirely in one of the test
flow’s period-three islands [Fig. 7(d)] will undergo no signifi-
cant stretching under the flow and thus yield zero topological
entropy.

In practice, to make sure all ergodic components are
sampled, it is prudent to check that the final band stretches

FIG. 10. Stretched band visualization. E-tec band stretching due to flow advec-
tion for period-driving parameters: (a) τf = 0.80, (b) τf = 0.96, and (c) τf = 1.05.
Colorbar corresponds to edge weights. All bands are stretched by ensembles of
1000 uniformly distributed trajectories.
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FIG. 11. Initial bands. E-tec output is the logarithm of the sum of edge weights
as a function of time. E-tec’s estimate of topological entropy is the best-fit linear
slope through these data. Here, we show 10 different outputs from E-tec for the
same set of 100 trajectories. In each case, we chose a different pair of points
around which to stretch our band. Despite some initial differences in the increase
in edge weights due to initial adjacent points staying close to one another (left
inset), eventually all the bands grow at similar rates (right inset). When we fit the
exponential growth rate, starting at T = 5, we find that the values for each of the
10 bands agree within 5 decimal places and average out to 0.9617.

around nearly all of the data points. Alternatively, one could
sample many initial bands taking the maximum growth rate of
all sampled bands as the best estimate of the entropy.48 E-tec
is fast enough to run multiple bands, each with a different
initial triangulation constrained to the initial band choice, in
ensembles of fewer than 106 trajectories in a reasonable time.
An alternative approach to choosing a single initial band is
to evolve a “web” of initial bands that covers the entire ini-
tial triangulation. This guarantees that all ergodic components
sampled by the data will be included. As opposed to the initial
triangulation being constrained to the choice of initial band,
the initial “web” is constrained to the edges of the choice of
initial triangulation.

B. Algorithm scaling and FTBE comparison

The computational runtime of E-tec is linearly propor-
tional to the duration of the trajectories. This is because the
number of edges tracked by E-tec is constant, and it is only
the values of the weights that grow exponentially in time.
This scaling is the same as the FTBE calculation and stands in
contrast to algorithms that precisely evolve a material-curve
forward, which requires inserting exponentially more points
to maintain sufficient point density.49

One advancement we have made over the FTBE calcu-
lation is the run-time scaling with respect to the number
of trajectories used (see Fig. 12). The FTBE calculation scales
quadratically in the number of trajectories N due to the braid
approach requiring N2 algebraic generators per unit time
step.23 Overall, E-tec runtime scales asO(N + Nk logN), where
k is the collapse event rate scaling factor. In general, the value
of k largely depends on the complexity of the flow being stud-
ied. For the chaotic, lid-driven cavity flow trajectories, we find
k ≈ 1.05, though we find values as low as k = 1/3 for trajecto-
ries with highly correlated movement and as high as k = 3/2
for random trajectories. We refer the reader to the Appendix
for more details. As a practical matter, the E-tec runtime for
small to moderate ensembles (roughly up to 5000 trajectories)
is dominated by the linear behavior in Fig. 12.

FIG. 12. E-tec runtimes. Runtime comparison of E-tec and braidlab, a
freely available Matlab package implementing the FTBE calculation. Both used
the same trajectories from the chaotic model flow for τf = 0.96. All computations
were completed using a 2.8 GHz Intel Core i7 processor.

One illustrative example highlighting the runtime dif-
ference between the two algorithms is rigid rotational flow.
While an admittedly special case, there would be no new col-
lapse events (except for the ones associated with the bound-
ary) making E-tec very fast, whereas the number of braid
generators needed would be proportional to N2. However, one
advantage the braid approach has over E-tec is that once the
braid is extracted from the trajectory data, it may be applied
to any initial band. E-tec only propagates a single curve for-
ward. However, for topological entropy calculations, a single
sufficiently long curve is typically sufficient (as evidenced in
Fig. 11).

C. Robustness to step size 1t

Because E-tec is based on the computational analysis of
evolving trajectories, it is necessary to consider discretized
time. We next investigate how the trajectory time step 1t
affects the entropy calculation and show that E-tec returns
trustworthy results even when poorly resolved trajectories are
used as input. We use two ensembles of trajectories (of sizes
100 and 1000) sampled at a fine scale using the same reference
time step of 1t∗ = 10−4 to generate two reference topolog-
ical entropies h∗

t . We then vary the time step 1t (keeping
the trajectories the same) and compute both ensembles’ cor-
responding ht. The effect of time step 1t is quantified by
computing the relative error

∣

∣

∣

∣

1 −
ht

h∗
t

∣

∣

∣

∣

, (5)

which is plotted in Fig. 13. The data show the relative error
grows linearly with the time step1t. As the trajectory informa-
tion is input into E-tec using larger step sizes, we detect more
events between steps. E-tec detects events individually for all
values of 1t, but the order in which these events are detected
is potentially different as 1t increases, due to the differences
in the interpolation of trajectories. In fact, undersampled tra-
jectory data may lead to entirely different events. This explains
the larger relative errors for the 1000 trajectory ensemble;
at higher point densities, there are simply more events that
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FIG. 13. Relative error as a function of step size. The effect of time step 1t
on the relative error in the topological entropy calculation with respect to the ref-
erence time step1t∗ = 10−4. Graph displays calculations done on two separate
ensembles of size 1000 and 100.

E-tec must resolve, resulting in more erroneous and misor-
dered event detections. Despite this, Fig. 13 shows that the
E-tec error due to step size is still relatively small. It is compa-
rable to (or smaller than) the error due to other sources, such
as trajectory length and ensemble size [Fig. 8(a)], for 1t < 10−2,
at least for smaller ensemble sizes.

VII. CONCLUSION

We introduced the Ensemble-based Topological Entropy
Calculation (E-tec), an algorithm that computes topological
entropy in a planar flow from an ensemble of system trajec-
tories. We verified E-tec’s convergence to the correct topo-
logical entropy with increasing numbers of trajectories on a
highly chaotic, lid-driven cavity flow. E-tec’s performance was
shown to be robust with respect to the choice of initial band,
as well as changes in the time sampling interval (1t). Notably,
we have shown that E-tec’s runtime scales as O(Nk logN),
where 1/3 ≤ k ≤ 3/2 and N is the number of trajectories in the
ensemble.

Our work suggests several further directions for the
analysis of trajectories with E-tec, which we intend to
explore in future studies. First, we shall seek to extend
E-tec to three dimensions and higher. Braiding theory, the
basis for FTBE calculations, cannot be readily generalized to
higher dimensions.50 The computational geometry framework
in which E-tec is based might perhaps be more naturally
extended.27–29 Instead of a rubber band in a planar flow, we
would consider a two-dimensional rubber sheet stretched
around a collection of points in a three-dimensional flow. A
3D triangulation may still be used to track point-face or edge-
edge collisions, and the rubber sheet may be chosen as one
of the faces in the initial triangulation. As the points evolve
in time, they carry the sheet along with them, stretching
and folding it so that its growth reflects the flow complex-
ity. Though there clearly remain some significant challenges to
executing this generalization to three dimensions, we antici-
pate a host of interesting theoretical opportunities that this
route may provide. Finally, by tracking all the trajectories
in concert, we believe E-tec’s algorithm may be naturally

adapted toward identifying and tracking coherent sets and
other emergent structures.
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APPENDIX: E-TEC RUNTIME SCALING WITH THE

NUMBER OF POINTS

The main bottleneck in the computational complexity of
E-tec comes from the creation and maintenance of a time-
sorted collapse-event list at each time-step. Since every core
and outer triangle, of which there areO(N), is checked for col-
lapse in this process, E-tec will scale no better than linear in
N. Sorting is a worst-case and average-case O(n logn) pro-
cess, for n items to sort. Assuming that the number of collapse
events per unit time scales as O(Nk) for some k, the sorting
bottleneck implies an E-tec scaling of O(Nk logN). A similar
scaling comes from the maintenance of this event list. During
the handling of a collapse event, core and outer triangles may
be created, modified, or deleted. Importantly, this process is
local, and the time for handling one event does not change
with an increasing number of points. However, these amend-
ments to the triangulation necessitate adding or removing
events from the time-sorted event list. This is achieved with
a binary search, which is an O(logn) routine for a list length
of n. Given a list length that scales with the number of col-
lapse events per unit time, this constitutes a second avenue
for theO(Nk logN) scaling. Overall, the E-tec runtime scales as
O(N + Nk logN), where k is determined by the collapse event
rate scaling.

The scaling of the collapse event rate depends heavily on
the type of flow that produced the trajectory data. If there is
no correlation between the velocities of neighboring points,
then it can be as high as k = 3/2. If they are highly corre-
lated (e.g., rigid rotation), then it can be as low as k = 1/3.
For most flows, k . 1, with k generally increasing for more
complex flows.

To justify the worst-case scaling of k = 3/2, consider the
movement of a single point through a fixed length and against
a background of stationary points, as depicted in Fig. 14. The
number of collapse events produced by this motion will be
proportional to the number of core triangles in the path of
the moving point. Given that the average area of a core tri-
angle scales as O(N−1), a characteristic triangle length goes
as O(N−1/2). Therefore, the number of characteristic lengths
in the particle’s path, and from this the number of collapse
events, scales as O(N1/2). Moving to the general case where
every point is in motion, we could say that each of theN points
“sees” O(N1/2) triangles in its way, and, therefore, the overall
scaling for collapse events would be O(N3/2). For comparison
with FTBE calculations, the same one-point motion produces
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FIG. 14. Schematic of the movement of a single point (circled in red) against a
background of stationary points. The number of E-tec collapse events is propor-
tional to the number of average core triangles that would have an equivalent area
to that of the diagonal blue rectangle. For FTBE calculations, the number of braid
generators created by this same process is equal to the number of points in the
larger black rectangle.

a number of braid generators equal to the number of points
in the black rectangle of Fig. 14. Since this scales as O(N), the
general case where every point is in motion produces a braid
generator production rate that scales as O(N2).

The k = 3/2 scaling is also borne out in a numerical exper-
iment (see Fig. 15). Here, we track the collapse event rate for N
trajectories, whose initial and final positions are chosen ran-
domly within a fixed square and whose intermediate positions
are given by linear interpolation.

However, in most cases of interest, the trajectory motion
is generated by or sampled from an underlying flow, and
there will be substantial correlations between the movement
of nearby points. Points advected together can significantly
suppress the collapse event rate scaling. At the other extreme,
consider the case of points undergoing rigid-body rotation.
None of the triangles in the bulk will collapse, and the only
contribution to the collapse event rate comes from core tri-
angles associated with the fixed bounding auxiliary points
(stationary points that are added upon initialization which
help us avoid triangulation update issues at the boundary
edges of the triangulation). This numerical example, see Fig. 15,
gives a scaling value of k ≈ 1/3, likely the most favorable scal-
ing we can expect from a non-trivial flow. General flows will
fall between these two extremes. Our example of a chaotic lid-
driven cavity flow (see Fig. 15), with τ = 0.96, gives a scaling
value of k = 1.05. We have also simulated the collapse event

FIG. 15. The collapse event rate scaling for three numerical examples: random
motion, chaotic lid-driven cavity flow (for τ = 0.96), and rigid body rotation.

rate scaling for linear shear flow, k ≈ 0.66 and an irrotational
(Rankine) vortex, k ≈ 0.77.

Overall, we can expect the E-tec runtime to scale as
O(N + Nk logN), with 1/3 ≤ k ≤ 3/2, and typical flows resulting
in k . 1. This favorable computational complexity, compared
toO(N2) for the FTBE, comes from two sources. First, collapse
events are produced locally, whereas braid generators encode
more global information. Second, the correlated motion of
neighboring points further reduces the scaling for trajectories
derived from general flows.
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