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Abstract—This paper investigates the hybrid precoding
design for millimeter wave (mmWave) multiple-input-multiple-
output (MIMO) systems with finite-alphabet inputs. The
mmWave MIMO system employs partially-connected hybrid
precoding architecture with dynamic subarrays, where each
radio frequency (RF) chain is connected to a dynamic subset of
antennas. We consider the design of analog and digital precoders
utilizing statistical and/or mixed channel state information (CSI),
which involve solving an extremely difficult problem in theory:
First, designing the optimal partition of antennas over RF
chains is a combinatorial optimization problem, whose optimal
solution requires an exhaustive search over all antenna parti-
tioning solutions; Second, the average mutual information under
mmWave MIMO channels lacks closed-form expression and
involves prohibitive computational burden; and Third, the hybrid
precoding problem with given partition of antennas is nonconvex
with respect to the analog and digital precoders. To address
these issues, this paper first presents a simple criterion and the
corresponding low complexity algorithm to design the optimal
partition of antennas using statistical CSIL. Then, it derives the
lower bound and its approximation for the average mutual
information, in which the computational complexity is greatly
reduced compared to calculating the average mutual information
directly. In addition, it also shows that the lower bound with a
constant shift offers a very accurate approximation to the average
mutual information. This paper further proposes utilizing the
lower bound approximation as a low-complexity and accurate
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alternative for developing a manifold-based gradient ascent
algorithm to find near-optimal analog and digital precoders.
Several numerical results are provided to show that our proposed
algorithm outperforms the existing hybrid precoding algorithms.

Index Terms— Hybrid precoding, finite-alphabet inputs, matrix
factorization, nonconvex optimization.

I. INTRODUCTION

ASSIVE multiple-input multiple-output (MIMO) sys-

tems operating in the Millimeter wave (mmWave) band
is a key technique candidate for future generation cellular
systems to address the wireless spectrum crunch. It makes
use of the frequency band from 30 GHz to 300 GHz, which
provides a much wider bandwidth than current cellular systems
operating in microwave bands. In addition, a short wavelength
of radio signals in the mmWave band enables very large
antenna arrays to be equipped at the transceivers, and this
can provide significant increase of the spectral efficiency.

For mmWave MIMO systems, hybrid analog and digital
precoding architectures have been proposed to achieve high
spectral efficiency with low cost and power consumption.
Extensive work has been devoted to designing hybrid precod-
ing algorithms under perfect channel state information (CSI)
and different constraints [1]-[8]. However, it is difficult to
obtain the perfect CSI in mmWave MIMO systems. The reason
is that the channel matrix measured at the baseband cannot be
obtained directly because it is intertwined with the choice of
analog precoders. Furthermore, conventional MIMO channel
estimation is incapable of utilizing array gain in mmWave
systems, and it leads to low signal-to-noise ratio (SNR).
Therefore, the conventional channel estimation requires long
training sequences to estimate mmWave MIMO channels,
which is impractical due to fast variation of mmWave MIMO
channels.

To address the challenge of training overhead, [9] pro-
posed a hybrid precoding algorithm for single-user MIMO
systems with partial knowledge of the CSI. For the multi-
user MIMO scenario, [10] devised a mix-CSI-based hybrid
precoding structure, where the analog precoding design is
based on the slow-varying channel statistics, and the digital
precoding design is based on the instantaneous CSI. Then
the dimension of the effective channel matrix (instantaneous
CSI) is greatly reduced. However, the work in [9] and [10]
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considered only the fully-connected hybrid architecture, which
requires much more phase shifters compared to the partially-
connected structure [11]. In the partially-connected structure,
the antenna array is partitioned into a number of smaller
disjoint subarrays, each of which is driven by a single radio
frequency (RF) chain [12]. This structure is an extension of
classic antenna selection methods, which allocate each RF
chain to an antenna element [13]. Gao ef al. [14] developed
a successive interference cancellation based hybrid precoding
for partially-connected structure with fixed subset of anten-
nas. The partially-connected structure with dynamic subset
of antennas is considered in [15], and a low complexity
greedy algorithm is also proposed to design the best parti-
tioning/grouping of antennas over the RF chains.

Furthermore, most existing works on hybrid precoding
assume Gaussian inputs, which are rarely realized in practice.
It is well known that practical systems utilize finite-alphabet
inputs, such as phase-shift keying (PSK) or quadrature ampli-
tude modulation (QAM). Precoding designs under Gaussian
inputs have been shown to be quite suboptimal for practi-
cal systems with finite-alphabet inputs [16]-[27]. Recently,
the authors in [28] presented a Broyden-Fletcher-Goldfarb-
Shanno based hybrid precoding algorithm for mmWave MIMO
systems with finite-alphabet inputs. The proposed algorithm
utilizes both gradient and Hessian information, and simulation
results showed that it outperforms existing hybrid precoding
algorithms including [3], [5], [6], [8].

A. Contributions

In this paper, we investigate the hybrid precoding design
for mmWave MIMO systems with finite-alphabet inputs under
the following assumptions: 1) the system employs partially-
connected hybrid precoding structure with dynamic subset of
antennas; 2) the partition of antennas and analog precoder are
designed based on statistical CSI, and the digital precoder is
designed based on either statistical CSI or instantaneous CSI.
We consider the statistical-CSI-based scenario and the mixed-
CSI-based scenario, and the corresponding hybrid precoding
problems under two scenarios have the same mathematical
form. Then we propose a manifold-based gradient ascent algo-
rithm to solve the hybrid precoding problem. The contributions
of this paper are summarized as follows:

+ We present a simple criterion to design the best partition
of antennas using statistical CSI. The corresponding
dynamic subarray design is a (nonconvex) combinatorial
optimization problem, and we propose a low complexity
algorithm to solve this problem.

+ We derive a lower bound of the average mutual infor-
mation for mmWave MIMO channels. The lower bound
plus a constant shift serves as a very accurate approxi-
mation to the average mutual information, and its com-
plexity is much lower than the original average mutual
information. To further reduce the complexity, we also
derive an accurate approximation of the proposed lower
bound.

+ We propose a manifold-based gradient ascent algorithm
to design hybrid precoders. Simulation results show that
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1) the proposed algorithm converges to a near globally
optimal solution from arbitrary initial points; 2) the
performance of mixed-CSI-based hybrid precoding is
very close to that of instantaneous-CSI-based hybrid
precoding. 3) the statistical-CSI-based hybrid precoding
can achieve higher energy efficiency than the fully-
connected hybird precoding.

B. Notations

The following notations are adopted throughout the paper:
Boldface lowercase letters, boldface uppercase letters, and
calligraphic letters are used to denote vectors, matrices and
sets, respectively. The real and complex number fields are
denoted by R and C, respectively. The superscripts (-)T,
(-)* and (-)¥ stand for transpose, conjugate, and conjugate
transpose operations, respectively. tr(-) is the trace of a matrix;
|| - || denotes the Euclidean norm of a vector; | - || represents
the Frobenius norm of a matrix; E'x(-) represents the statistical
expectation with respect to x; Xj; represents the (k,[)-th
element of X; I and O denote an identity matrix and a zero
matrix, respectively, with appropriate dimensions; o represents
the Hadamard matrix product; Z(-) represents the mutual
information; R and < are the real and imaginary parts of a
complex value; log(-) is used for the base two logarithm.

II. SYSTEM AND CHANNEL MODELS

In this section, we present system and channel models for
mmWave MIMO systems.

A. System Model

Consider a point-to-point mmWave MIMO system, where
a transmitter with N; antennas sends N data streams to
a receiver with N, antennas. The number of RF chains at
the transmitter is N, which satisfies N; < Ny < N;.
We consider the hybrid precoding scheme, where N; data
streams are first precoded using a digital precoder, and then
shaped by an analog precoder. The received baseband signal
y € CVr*! can be written as
vy =HFBx+n (D
where H € CN-*N: jg5 the mmWave channel matrix;
F € CNv*N« js the analog precoder; B € CN«*N: is the
digital precoder; x € CM=*1 is the input data vector and
n € CN:-x1l js the independent and identically distributed
(i.i.d.) complex Gaussian noise with zero-mean and covariance
o?1. To simplify our system model, we omit the analog and
digital combiner, which can be designed similarly as the hybrid
precoder.
In this paper, the analog precoder F is implemented by
a dynamic phase shifter subarray, where each RF chain is
connected to a dynamic subset of transmit antennas. Let
&; denote the collection of transmit antennas connected to
jth RF chain. We partition Ny transmit antennas into Ny¢
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subsets satisfying

Neg

Nr i85
s={sKmlUsi=0.2.
j=1

1Nt}:

SiNnSg=0, Vj#k 2)
Since each RF chain can be connected to different number of
antennas, the cardinalities of {S; }jv:rfl are different. In addi-
tion, if the ¢th transmit antenna is connected to the jth RF
chain, ie.i € &j, the (4, j)th entry of F has unit modulus,
otherwise it is zero. Therefore, the constraints on F can be
expressed by

Fij| = 1s,(2), V(3,79) 3)
where 1, (i) is the indicator function:
1 ifses;
1s,(i) = ! 4
5() {0 otherwise. “)

The transmitted signal is restricted by a total power
constraint P:

Ex |FBx|? = tr (BYF¥FB) < P. 5)

To decouple F and B in coupled power constraint (5),
we consider the following change of variables:

F = F(FPF) > (©6)
B = (F7F):B. (M
Then the power constraint in (5) becomes
B={B|tr (B”B) < P} (®)
and the constraints on F can be expressed by
P {F'|Fij| = 18;1~ %15, (), ‘v’(z‘,j)}. ©)

Furthermore, by plugging F and B into the system model
in (1), we have

y = HFBx +n. (10)

Combining (8) and (10), we observe that HF and B can
be regarded as the effective channel and precoder for typical
MIMO Gaussian channels, respectively. Since there exists a
one-to-one mapping between (F, B) and (F, B), we will focus
on designing the effective analog and digital precoders (F, B)
throughout the rest of this paper.

B. Channel Model

The mmWave MIMO channel is characterized by a standard
multi-path model [29, ch. 7.3.2]:

[N.N, &
B/ =" vea(bre)a(8:,e)”
£=1

where L denotes the number of physical propagation paths
between the transmitter and the receiver; ~, represents the
complex gain of the /th propagation path; We assume that

(11)
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7¢ are i.i.d. complex Gaussian distributed with zero-mean and
unit-variance; a(f; ) and a(f; ) represent the receive and
transmit array steeﬁng vectors, with 0:¢ and 6, being the
angles of arrival (AOA) and the angles of departure (AOD),
respectively. In this paper, the transmitter and receiver adopt
uniform linear arrays, whose array steering vector a(#) is
given by
1

a(b) = —=

5 2 ’ T
[1, e—j%\’—rdsmﬂa L 13_32T“d(N_1) smﬂ]

(12)

where N is the number of antenna element, A is the wave-
length of the carrier frequency and d = )\ is the antenna
spacing.

The channel model in (11) can be rewritten more com-
pactly as

H= }J A TAT (13)
where T' = diag(y1,...,72); Ar € CM*L and A, €

CMN<L are stacked array steering vectors of AOA and AOD
respectively, given by

A, = [a(f1), ..., a(001)]
A[ = [8(9[11): “aay 8(9[1_{,)] =

This work assumes that the small scale fading I'" varies
rapidly while the variation of angle information A, and A,
is slow [30]. Since the angle information changes slowly,
we further assume that the transmitter can obtain statistical
CSI through feedback, i.e., the transmitter knows A; and A,.

(14)
(15)

III. PROBLEM FORMULATION

For mmWave MIMO systems, it may not be practical to
obtain the instantaneous CSI by conventional channel estima-
tion techniques because 1) the channel matrix measured in the
baseband depends on the choice of analog precoder; 2) the
training blocks may be prohibitively long due to the large
bandwidth and low signal-to-noise ratio (SNR). To mitigate
this difficulty, we propose new formulations in which analog
and/or digital precoders are designed under statistical CSI.

A. Statistical-CSI-Based Formulation

We assume that the transmitter has the knowledge of statis-
tical CSI, including A,, A and the distribution of I". Then we
design the analog and digital precoder to maximize the average
mutual information. Suppose each entry of the input data
vector X is uniformly distributed from a given constellation set
with cardinality M. The average mutual information between
x and y is given by

Enl(x;y/H) (16)

where 7Z(x;y|H) is the instantaneous mutual information
between x and y [20]

K K
I(x;y|H) = log K — % > En {logzem(—dmk)} :
m=1 k=1
(17)
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Here K = MP"- is a constant number, and d,z =
o072 (|HFB(xm — xx¢) +1||* — |[n[?), with X, and x
being two possible data vectors taken from x. The average
mutual information maximization problem can then be formu-
lated as

R({S;
maximize R({S;))

(18)
where R({S;}) is the maximum average mutual information
with given partition of subsets, i.e.,

R({S;}) =

ma}l,mlznp EuI(x;yH). (19)

Problem (18) is a combinatorial optimization problem for
which finding the optimal solution requires an exhaustive
search over all nonempty {S; }Nrf in S. The total number
of combinations is known as Stlrllng number of the second
kind [31] and is given by

Nig N
T k t N
S| = _N,Ej(l)f (k)k : 20)
Then we can rewrite problem (18) as
maximize R({S;.}) (21)

£e{1,...,IS1}

where {S;.} represents the fth given partition of subsets
belonging to S.

Although (21) provides a theoretically possible way for
solving problem (18), its computational complexity is pro-
hibitive even for a small number of transmit antennas and RF
chains. For example, when N; = 16 and N, = 4, |S]| is equal
to 1.718 x 108, which implies that we need to solve problem
(19) over ten million times to obtain the optimal analog and
digital precoder.

We propose a new formulation to reduce the computational
complexity of problem (18). Recall that {S; }Nr‘ represent
positions of nonzero entries in F, and the role of F is
to reshape the effective channel matrix HF. Therefore, we
design {S; } 7 and the corresponding F such that the average
effective channel gain Fy||HF||% is maximized. The dynamic
subarray design problem can then be formulated as

maximize Fytr (FHHHHF)

(22)
FcF,[S;}eS

We solve problem (22) to obtain its optimal solutions,
denoted by F}; and {S} }N'f Then we solve problem
(19) with given {S*}l.\r_r‘I to obtain the optimally effective
analog and digital precoders (F*, B*). Note that since F%;, is
not obtained by maximizing the average mutual information,
we do not use it directly as the optimally effective analog
precoder. However, the solution F? ., serves as a good initial
point for solving problem (19). Therefore, we first design a low
complexity algorithm to solve problem (22), and then design
an effective algorithm to solve the hybrid precoding problem
(19) with given {S3} 7.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 67, NO. 6, JUNE 2019

B. Mixed-CSI-Based Formulation

The basic idea of mixed CSI based formulation is to design
the analog precoder based on statistical CSI, and then estimate
the reduced-dimensional effective channel matrix HF*, where
F* = F(FEF)~z is the optimally effective analog precoder
based on statistical CSI. After that, the transmitter utilizes the
instantaneous effective channel matrix HF* to design effec-
tive digital precoder B, and this is a typical MIMO precoding
problem. In this case, the burden of channel estimation is
greatly reduced because the dimension of HF* & CNe*Nef
is much smaller than that of H € CN=*Nt,

Given the instantaneous effective channel matrix HF, the
digital precoding problem can be expressed by

C(HF) = maximize Z(x;y|H) (23)
BeB

where C(HF) is the maximum mutual information under the

given effective channel matrix HF'. Then the mixed-CSI-based

hybrid precoding problem can be formulated as

maximize ExC(HF).

(24)
FcF.{S;}e8

Problem (24) is intractable because it is prohibitive to com-
pute the objective function EHC(HF) In order to estimate
ExC(HF) at a given point F, we need to solve the nonconvex
problem (23) thousands of times for randomly generated
channel matrix H. To mitigate this difficulty, we replace
ExC(HF) by a computationally efficient bound. Invoke
Jensen’s inequality, FyyC(HF') can be lower bounded by

ExC(HF) > magdrgjze EnZ(x;y|H). (25)
Be

Replacing EiC(HF) by its lower bound, problem (24) is

approximated as

maximize

EuI(x;y/H
FeF,{S8;}e8,BeB nZ(x;y|[H)

(26)
which is exactly the same as problem (18). Then we can
use the same procedure to solve this problem, i.e., we first
solve problem (22) to obtain {S} };-Véfp and then solve problem
(19) with given {8;‘}?2‘1 to obtain the optimally effective
analog precoder. Note that although the statistical-CSI-based
formulation and the mixed-CSI-based formulation solve the
same optimization problem, there is an important difference
between them. The optimization variable B in the mixed-
CSI-based formulation is just an auxiliary variable made for
analog precoder design. After obtaining the optimally effective
analog precoder, the real digital precoder should be obtained
by solving problem (23).

IV. DYNAMIC SUBARRAY DESIGN

In this section, we propose a low complexity algorithm to
solve problem (22). Note that the objective function in problem
(22) can be rewritten as

Eutr (FPHPHF) =
_ NN,
L

- EN *Ertr (FEATH AR A, TAFF)

tr (FYAAF) (27)
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where the second equality in equation (27) holds btlacause
Er(TEAEAT) = I Plugging F = F(FZF) 2 into
equation (28), we obtain the following problem

maximize tr [(FHF)—%FHA,AF F(FHF)—%]

F.{5;}
subject to |Fy;| = 1s,(7), (7,7)

{8} €S. (28)

It is difficult to solve problem (28) directly because the feasible
set of problem (28) is characterized by F and {Sj};.\rzrfl.
To address this issue, the following proposition rewrites the
feasible set as explicit constraints of F.

Proposition 1: The feasible set of problem (28) can be

expressed by

|F§j| € {0: 1}3 \UJ{Z,_’})

[[Fiallo =1, Vi (29)
where F;, denotes the ith row of F, and || - || represents the
total number of nonzero elements in a vector.

Proof: See Appendix. [ ]

According to Proposition 1, we rewrite problem (28) as
maxjmize tr [(FHF)—%FHAtA{f F(FHF)—%}
subject to |Fy;| € {0,1}, V(i,j)

|Fisllo =1, V. (30)

Problem (30) is still intractable due to nonconvex discrete

constraints |F;;| € {0, 1} and ||Fy4||o = 1. Therefore, we first
drop the constraints and consider the unconstrained problem

maximize tr [(FHF)—%FHAtA{f F(FHF)—%] . @

Problem (31) is a generalized eigenvalue problem, and its
optimal solution is given by [15]

F=UasR (32)

where Up € CVexNif s the left singular vectors of A, corre-
sponding to the largest Ny singular values, and R € C/Vet >Nt
is an arbitrary unitary matrix. Note that when L < Ny, the
remaining Nyy — L left singular vectors in Ua can be chosen
arbitrarily as long as U, satisfies UfUp =L

In general, if there exists a unitary matrix R such that
the unconstrained optimal solution U R satisfies (29), then
UaR is the globally optimal solution of problem (30).
However, such R may not exist and thus we use U R to find
a nearby feasible solution. Specifically, consider the following
optimization problem

T _ 2
minimize IF —UaR| R
subject to |Fy;| € {0,1}, Y(i, )

| Fiallo =1, Wi (33)

where U denotes the set of unitary matrices. Since the
optimization variables F and R are separate, we adopt the
alternating minimization approach to solve problem (33).
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Given R, the optimal F of problem (33) has a simple closed
form solution. Let j*(i) = argmax;<;<y, |[UaR];;|, then
the optimal F' of problem (33) can be expressed by

UaR]J;;
ARl = o0
I[UaR];]

0 otherwise.

F;;j = (34)

Given F, problem (33) is reduced to an orthogonal pro-
crustes problem

- . . _ L.
T |F —UaR|%. (35)
Let the singular value decomposition of Z = FH¥ U, be
Z=FIUp = UzxzVH (36)

where Uz is a unitary matrix with left singular vectors,
¥z is a diagonal matrix with singular values arranged in
decreasing order, and Vz is another unitary matrix with right
singular vectors. Then the optimal solution of problem (35) is
given by [32]

R=VzUj. (37)

Combining (34) and (37), we propose a simple alternating
minimization algorithm to solve problem (33) and obtain the
corresponding near optimal partition of subsets {S; };V:rfl The
details of this algorithm is summarized in Algorithm 1.

Algorithm 1 Dynamic Subarray Design

1. Given the stacked array steering vectors of AOD A..
Compute A.’s left singular vectors Ua and generate an
arbitrary initial unitary matrix R.
2. While the stopping criterion is not satisfied

« Given R, solve problem (33) to obtain the optimal F

in (34).

« Given F, solve problem (33) to obtain the optimal R
in (37).

3. Return F%,, = F(FHF)~z and the corresponding {S5}-

We conclude this section with several remarks on
Algorithm 1:

+ The convergence of Algorithm 1 is guaranteed because
the objective function ||F — U R||% is bounded, and it
is decreasing in each iteration.

» Since problem (33) is a nonconvex problem, the solution
obtained by Algorithm 1 depends on the initial unitary
matrix R. Therefore, we can run Algorithm 1 several
times with different initial R, and then choose the solu-
tion corresponding to the largest || AFF}; ||

« When F%,, = F(FHF)~7 is determined, the corre-
sponding {S}} is given by

Sj = {3 |[[Fiscles| # 0}, F=TpNips

V. HYBRID PRECODING WITH FINITE-ALPHABET INPUTS

In this section, we first derive the lower bound for the
average mutual information Fy7Z(x;y|H), and then propose
an effective algorithm to design analog and digital precoders.
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A. Lower Bound for Average Mutual Information

It is difficult to compute and optimize the average
constellation-constrained mutual information directly because
both ExZ(x;y|H) and its gradient have no closed form
expressions. To estimate Fy7 (x; y|H) as well as its gradient,
we need to use Monte Carlo method and/or numerical integral,
whose computational complexity are prohibitively high.

This difficulty can be partially mitigated by the following
proposition, which provides the lower bound of FxZ(x; y|H)
in closed form.

Proposition 2: The  average  constellation-constrained
mutual information of mmWave MIMO channels can be
lower bounded by

In2

P 5 7 =1

% Zl log } det I+ (A7 A)" 0 Wi
(38)

where
N:N, . _ s

Wonk = 575 If AT T Bl —milxa = BoFY Ax
(39)
Proof: See Appendix. |

The computational complexity of the lower bound L(F, B)
is still very high because it needs to calculate the determinant
K? times. For example, when we adopt 16QAM modulation
(M = 16) and the number of data streams N is 4, K2 is equal
to 4.295 x 10°. To further reduce the complexity, we notice that
the receive steering vectors are asymptotically orthogonal to
each other when the number of receive antennas N, approaches
infinity, i.e., limy, o Aff A, = 1. Based on this observation,
we derive a low complexity approximation of L(F, B) in the
following proposition.

Proposition 3: The lower bound L(F,B) can be approxi-
mated by

_ 1
Lu(F,B) =logK — N, (E_l)

K K L =]
—% > logd 1 (1+§;2N£ |;8mk£|2)
m=1

k=1¢=1
(40)

where Bmke = a(0)PFB(Xm — Xi), with a(f,,) being
the ¢th column of A,. In addition, the limit of L 4(F,B) is
L(F,B) as N, approaches infinity.
Proof: See Appendix. [ ]
The accuracy and computational complexity of the lower
bound and its approximation will be shown in Fig. 1 and
Table 1 in the simulation result section.

B. Hybrid Precoding Design

In this section, we solve the hybrid precoding problem
(19) with given {S;}F"l obtained by Algorithm 1. First,
by replacing the average mutual information FxZ(x;y|H)
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with the approximated lower bound L 4(F, B), problem (19)
can be approximated as

maximize LA(F, B)
F.B

_ 1
subject to |Fy| = [S}| ™2 15,(3), (i, 5)
tr (BPB) < P. (41)
Note that the constraint |F;;| = |S}‘|_%133. (¢) implies that
only the phase of nonzero |F;;| can be changed. Therefore,
instead of using F as the optimization variable, it is more

convenient to optimize the phase of nonzero entries in F.
Define the phase matrix ® as

Qij = éFijls_; (@), ¥(,7) (42)
where /F;; represents the phase of F;;. Then F can be
expressed as

= -1 . o

Fij = 85|72 exp(s®i)1s: (3), V(i 5)-
Using @ as the optimization variable and defining a new
function R(®,B) £ L,(F(®),B), problem (41) can be
rewritten as

(43)

maximize R(®,B)
%B
subject to tr (BHB) =R

Here we express the power constraint as tr (B¥B) = P
because R(®,B) is monotonically increasing with respect
to | B||%. Then we provide the gradient of R(®,B) in the
following proposition, which forms the foundation for solving
problem (44).

Proposition 4: The gradient of R(®, B) with respect to B
and @ are given by

(44)

FHa(,¢)a(6,.)" FBE,

[

VeR(®,B) =

LY

=1
L

VeR(@®,B) =23 3 [F7a(f,.)a(6,.)" FBE,BY o F*]
£=1

(45)

where

E, = ﬁ ; Crnre( Xon = Xp) (Xg— Kk)H (46)

with
202L N NN, ) S
Cmke = (mﬂﬁmkﬂ ) E (H—m | Bmkel )
K L = i
NN
: [Z I (1 e |f3mk£|2) l
k=1£=1 e
Proof: See Appendix. |

We propose a manifold-based gradient ascent algorithm to
optimize ® and B simultaneously using the gradient informa-
tion. At the kth iteration, the algorithm updates the current
solution (@, Bx) to (®ry1, Bxy1) by the following rules

&1 = D + px Ve R(®x, Bi)

Bk+1 = P]‘Oj [Bk + pkgradBR(‘I'k, Bk)] (47)
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where px > 0 is the stepsize, Proj [Bx] = P3||By||z'Bx,
and gradg R(®, B) is the gradient of R(®, B) on the follow-
ing (sphere) manifold

M = {B|tr (B”B)

=iy (48)

Based on the definition, gradg R(®, B) can be computed by
projecting Vg R(®,B) onto the tangent space Tg M at B,
where Tg M is given by

TaM = {X|tr (X¥B + B"X) =0}. (49)
Then gradg R(®, B) can be expressed by
gradg R(®, B) = |X-VsR[%.  (50)

cTgM

Using the standard Lagrangian multiplier method, the closed
form solution of problem (50) is given by

Rtr [(VBR)HE]
P

After obtaining the ascent direction, we need to determine
the stepsize py such that the objective function R(®,B) is
increasing in each iteration. We propose a modified back-
tracking line search method, which is usually more efficient
than the classic backtracking line search [33]. The main idea
is to use py_1 as the initial guess of pg, and then either
increases or decreases it to find the largest p; such that

f(pr) & R(®r+1,Bis1) — R(®x, Bi)
— piBea (|| Vo R(®x, Br)|| 7
+ |lgradg R(®%, By)||7) > 0

gradgR(®,B) = V5 R(®,B) — B. 1)

where [z € [0,0.5] is a constant to control the stepsize.
Specifically, the stepsize p. is set as

“pr—1 if f(pxk—1) =0
Pr = e .
(%) ~pr—1 if f(pr—1) <O

where Ky > 0 is the smallest integer such that
f(2K1pr_1) <0, and K3 > 0 is the smallest integer such
that f([3]%2px_1) > 0. The details of our proposed manifold-
based gradient ascent algorithm is summarized in Algorithm 2.

2K]_ -1
(52)

VI. SIMULATION RESULTS

We provide several examples in this section to illustrate
the relationship and the computational complexity comparison
between average mutual information and its lower bound as
well as the lower bound approximation. We also show the
convergence of the proposed hybrid precoding algorithm and
the efficacy of the designed hybrid precoders. For convenience,
we rewrite the angles of arrival {6, g}ﬁ‘zl as a vector 6., whose
{th element corresponds to #; ,. Similarly, the angles of depar-
ture {6, ¢}+_, can be expressed by 6;. The angles of arrival
follow the Laplacian distribution with a fixed or uniformly
distributed mean angle ér, and a constant angular spread
(standard deviation) of ;5. The angles of departure follow
the Laplacian dlstnbutlon w1th a fixed mean angle 6;, and
an angular spread of 75
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Algorithm 2 Manifold-Based Gradient Ascent Algorithm

1. Given {S* * (obtained by Algorithm 1), €, and By.
Set pp =2, ,Sga—04 and e = 1074,
2. For k =0,1,2,... (outer iterations)

« Compute the gradient of R(®,B) with respect to ®
and B at (®x,Bg) by (45). Then use Vg R(®x, Bx)
to compute the gradient of R(®,B) at By on the shere
manifold by (51).

o If | Ve R(®%, Bi)||% + ||gradg R(®x, Br)||% < e, stop.

« Utilize the modified backtracking line search to compute
the stepsize pp via (52).

. Update (@k,Bk) to (‘I’k+1,Bk+1) by

.1 = B + pp Vo R(®x, By)
Bi+1 = Proj [B + prgradg R(®x, B)] .

A. Example 1: Average Mutual Information
and Lower Bound

This example is utilized to show that 1) the lower bound
L(F,B) plus a constant is a very accurate approximation to
the average mutual information; 2) the lower bound approxi-
mation L 4 (F, B) plus a constant is also a good approximation
to the average mutual information; 3) the computational com-
plexity of L(F,B) is a few orders of magnitudes lower than
that of the average mutual information.

We begin with the consideration of limits of the average
mutual information. When the noise power o approaches
0 and +oo, the limits are given by

lz'LmOEHI(x; y|H) =log K (53)
lim FEnZ(x;y/H) = s0. (54)
o240
At the same time, the limits of L(F, B) are given by
1
lim L(F,B) =log K — N; 1 55
gty Lo (1(2) ) .
1

s AT el (@‘1) (56)
which imply that a constant gap N; (111(2) — 1] exists

between the average mutual information FxZ(x;y|H) and
its lower bound L(F,B) at low and high SNR regimes.
Similarly, the same constant gap N (ﬁ — 1) exists between
EuZ(x;y|H) and La(F,B). Since the optimized hybrid
precoders will remain unchanged by adding a constant value
to the objective function, we demonstrate that the lower bound
L(F, B) and its approximation L 4 (F, B) plus a constant serve
as good approximations to the average mutual information.
We consider a mmWave MIMO system with N, = 32,
N; = 64, Ny = 4 and Ny = 4. The number of physical
propagation paths is set as L = 6, and the SNR is defined as
SNR = Z.. The input signal is drawn from QPSK modulation.
The mean angles of 6; and 6 are set as 6, = 0; = 7. Then we
generate the angles of arrival and departure, whose realizations
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TABLE I
RUNNING TIMES (IN SECS.) VERSUS SNR FOR AVERAGE MUTUAL INFORMATION AND ITS APPROXIMATIONS
SNR(dB) -35 -30 -25 -20 -15 -10 -5
Average mutual information 7.248s 8969s B.728s 8.775s B.857s 8918 8.630s
Lower bound w. const. shift 0.230s 0.159s 0.156s 0.197s 0.151s 0.156s 0.211s
Lower bound approx. w. const. shift  0.028s  0.016s 0.014s 0.016s 0.012s 0.012s 0.020s
8 : : : o 12 ;
O Average Mutual Information, Simulaion | .7~ & | O m ===
Lower Bound w. Const. Shift, Analysis a7 o B [N | (SN B s ik
’%]‘7'———'LmrBDundApprw.w.Coml.ShiltAnslysis g E 1 "-"""-
w r
S} s
s Sos8r
R @
E E
g4 £ osf
® ©
b= = 04F
[ g 0.2 Manifeld-based Gradient Ascent Algorithm
<< q | < = = =Rlock Coordinate Ascent Algerithm
==8==QPSK, No Hybrid P ding
DC 1 1 1 1 1 0 | 1 === D=0=5r §=-B=9=0
-35 -30 -25 -20 -15 -10 -5 ] 50 100 150 200 250 300 350

SNR (dB)

Fig. 1. Average mutual information with QPSK inputs for mmWave MIMO
channels (N; = 32, Nt = 64, Ny = 4, Ns =4, L = 6).

are given by

6, = [0.6833,0.5937, 0.5982, 0.5309, 0.7593,0.7719]7
6, = [0.7468,0.8778,0.8219, 0.8823, 1.0332, 1.1444]T. (57)

For illustration purpose, the effective analog precoder F is
obtained by Algorithm 1, and the effective digital precoder is
setas B=1L

The function values and running times for the average
mutual information, the lower bound with a constant shift
and the lower bound approximation with a constant shift
are presented in Fig. 1 and Table 1. The simulated curve is
obtained by the Monte Carlo method, which computes the
average mutual information using 3000 realizations of H and
n. From Fig. 1 and Table I, we have the following remarks:

1) With a constant shift, the lower bound provides a very
accurate approximation to the average mutual informa-
tion in whole SNR regimes.

2) The lower bound approximation plus a constant and the
average mutual information match exactly at low and
high SNR regimes, and their gap at medium SNR regime
is less than 0.5bps/Hz in our case.

3) The lower bound approximation consumes much lower
computational time than the average mutual information
and its lower bound, thus we design hybrid precoders
by maximizing the lower bound approximation.

B. Example 2: Convergence of the Manifold-Based
Gradient Ascent Algorithm

In this subsection, we consider a mmWave MIMO system
with N, = 16, N; = 64, N = 4 and Ny = 4. The number
of physical propagation paths is set as L = 6, and the SNR
is given by SNR = —22.5dB. The input signal is drawn

Iteration Index

Fig. 2. Evolution of average mutual information as the hybrid precoders
are optimized with the proposed manifold-based gradient ascent and the
block coordinate ascent algorithms. The input signal is drawn from QPSK;
SNR is —22.5 dB.

from QPSK modulation. The mean angle of 8, is uniformly
distributed over [0,27], i.e., 6y ~ unif(0,2w). In contrast,
the mean angle of 6, is set as 0, = % The realizations of
6, and 6, are given by

0, = [4.6448,4.7492, 4.9337,4.8962, 5.3448, 4.4681]T
6, = [0.8806, 1.4545, 0.8359, 1.1047, 1.2880,0.8917]7. (58)

The initial point of the effective analog precoder Finie is
obtained by Algorithm 1, and the initial point of the effective
digital precoder Bipi; is set as the right singular vectors
of A{f Finit-

The evolution of the proposed manifold-based gradient
ascent algorithm is shown in Fig. 2. For comparison, it also
shows the hybrid precoding with block coordinate ascent
algorithm, and the average mutual information without hybrid
precoding. The block coordinate ascent algorithm solves the
hybrid precoding problem (44) by optimizing ® and B alter-
natively with initial point (Finit, Binit). The effective analog
and digital precoders in no hybrid precoding case are set as

1 sz O
N rf

Nt. 7] .‘. bt ]
B mea 1

(59)

From Fig. 2, we observe that our proposed manifold-based
gradient ascent algorithm converges to 1.165 bps/Hz after
16 iterations while the block coordinate ascent algorithm
requires over 320 iterations to approach the same value. There-
fore, the proposed manifold-based gradient ascent algorithm is
much faster than the block coordinate ascent algorithm. This
phenomenon occurs mainly because our proposed algorithm
updates ® and B simultaneously while the block coordinate
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[ fold-based Gradient Ascent Algart |f

Empirical Cumulative Distribution
© © @ © o ©o o o
L] w - L] o -~ oo w

o
=

1.1 112 1.14 1.16 1.18 1.2
Average Mutual Information (bps/Hz)

Fig. 3. Empirical cumulative distribution of average mutual information for
various initial points. The input signal is drawn from QPSK; SNR is —22.5 dB.

ascent algorithm updates ® and B alternatively. In addition,
we also observe that the performance of no hybrid precoding
is very poor because we do not exploit any channel state
information to design hybrid precoders.

The empirical cumulative distribution of average mutual
information for the hybrid precoder from various initial points
of the effective analog and digital precoders are further
depicted in Fig. 3, which is obtained by generating 3000 ran-
dom initial points (Finit, Binit). The initial analog precoders
Finit are obtained by Algorithm 1, whose output depends on
the random input matrix R. The initial digital precoders Binit
are generated with ii.d. zero-mean unit-variance complex
Gaussian entries, and then normalized to satisfy the power
constraint. The empirical cumulative distribution curve shows
that although the hybrid precoding design with given partition
of subsets is a nonconvex problem, our proposed manifold-
based gradient ascent algorithm can achieve a near globally
optimal solution from arbitrary initial points.

C. Example 3: Performance of Mixed-CSI-Based
Hybrid Precoding

In this subsection, we evaluate the performance of mixed-
CSI-based hybrid precoding. We consider a mmWave MIMO
system with N, = 24, N; = 64, N;y = 4 and N; = 4.
The number of physical propagation paths is set as L = 8.
The input signal is drawn from BPSK modulation. The mean
angle of 6, satisfies , ~ unif(0, 27), and the mean angle of
6, is set as 0, = }. The realizations of 6, and 6, are given by

6, = [3.921,3.442, 3.550, 3.449, 3.514, 3.415, 3.314, 3.289]T
6, = [0.760,0.614,0.674,0.683,0.916, 0.749, 0.831, 0.777]7.
(60)

The mixed-CSI-based hybrid precoding utilizes channel
statistics to design the effective analog precoder F, and then
design the effective digital precoder based on the instantaneous
CSI. To evaluate the average mutual information, we generate
N = 1500 independent samples of the channel matrix

NrNt

Hi: L

ATAY, d=08 ...N

(61)
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Fig. 4. Average mutual information versus SNR for different scenarios in a
mmWave MIMO channel (N; = 24, Ny = 64, Ny = 4, Ny =4, L = 8).

Then we solve the digital precoding problem (23) for each
effective channel matrix H;F. Finally the average mutual
information is given by

1 N
= Y C(HiF)
g1

where C(H;F) is the maximum mutual information for given
channel matrix H,F.

We make comparisons between the mixed-CSI-based hybrid
precoding under finite-alphabet (FA) inputs and three interest-
ing scenarios, namely the optimal unconstrained precoder with
FA inputs [20], the instantaneous-CSI-based hybrid precoding
under FA inputs, and the instantaneous-CSI-based hybrid
precoding under Gaussian inputs [15]. All hybrid precoding
algorithms are designed for the dynamic subarray structure.
The instantaneous-CSI-based hybrid precoding with FA inputs
first solve the following dynamic subarray problem

maximize tr (FHHHHF) :
FeF,{S;}eS
Note that problem (63) has the same mathematical structure
with problem (22), thus we can solve it using Algorithm 1.
Then we design analog and digital precoders by maximizing
the mutual information with given partition of subsets, i.e., we
solve the following optimization problem

(62)

(63)

maximize 7(x; y|H) (64)
FcF . BeB
using the manifold-based gradient ascent algorithm

(Algorithm 2).

Fig. 4 demonstrates the average mutual information versus
SNR for different scenarios. From Fig. 4, we have the follow-
ing remarks:

1) The performance of optimal unconstrained precoders
is the benchmark for any hybrid precoding schemes, and
the proposed hybrid precoding with dynamic subarrays
has about 1dB performance loss compared with the
optimal unconstrained precoder. Therefore, the hybrid
precoding with dynamic subarrays provides a good
tradeoff between performance and complexity.
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2) The performance gap between our proposed mixed-CSI-
based hybrid precoding and the instantaneous-CSI-based
hybrid precoding is very small, while the mixed-CSI-
based hybrid precoding can greatly reduce the complex-
ity of hybrid precoding design and channel estimation.

3) The mixed-CSI-based hybrid precoding with finite-
alphabet inputs can achieve 3.5bps/Hz when SNR =
—17.5dB, while the instantaneous-CSI-based hybrid
precoding under Gaussian inputs requires —7.5dB to
approach the same value. Therefore, our proposed
mixed-CSI-based hybrid precoding has a maximum
10dB gain compared with the instantaneous-CSI-based
hybrid precoding under Gaussian inputs. This is mainly
because hybrid precoders designed under Gaussian
inputs will lead to significant performance loss when
applied to systems employing FA.

D. Example 4: Performance of Statistical-CSI-Based
Hybrid Precoding

In this subsection, we consider a mmWave MIMO system
with N, = 4, N; = 64, N,y = 4 and Ny = 4. The number of
physical propagation paths is set as L = 5. The input signal is
drawn from QPSK modulation. The mean angle of 6, satisfies
f; ~ unif(0, 27), and the mean angle of 6, is set as f; = Z.
The realizations of 6, and 6, are given by

6, = [0.4186,0.5499, 0.4839, 0.3135, 0.7505]7

6, = [0.9144,0.7117,0.7969, 0.8150, 0.6860]7.  (65)

We first evaluate the spectral efficiency of the statistical-
CSI-based hybrid precoding with dynamic subarrays. We set
the fully-connected hybrid precoding under statistical CSI
as the benchmark, and then make comparisons between the
statistical-CSI-based hybrid precoding with dynamic subarrays
and statistical-CSI-based hybrid precoding with fixed subar-
rays. All hybrid precoding algorithms are designed for FA
inputs. The fully-connected hybrid precoder under statistical
CSI factorizes the optimal unconstrained precoder into analog
and digital precoders [28], and the optimal unconstrained
precoder can be obtained by maximizing the lower bound
approximation with projected gradient algorithm [33]. The
statistical-CSI-based hybrid precoding with fixed subarrays
utilizes Algorithm 2 to solve problem (44) with the following
given {S; }:

S;={(G-1g+1,(G—1)g+2,...,(i —Dg+gq}, j

(66)

where g = ++=. The results in Fig. 5 show that the statistical-
CSI-based hybnd precoding with dynamic subarrays has about
1dB performance gain over the statistical-CSI-based hybrid
precoding with fixed subarrays in the medium and high SNR
regimes.

Then we evaluate the energy efficiency of the statistical-
CSI-based hybrid precoding with dynamic subarrays. Based on
the energy consumption model in [34], the energy efficiency
7 is defined as

Eul(x;y|H)

= 67
P+Nrfprf+Npsts ( )
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Fig. 5. Average mutual information versus SNR for mmWave MIMO channel
with Ny =4, Ny =64, Ny =4, Ny =4, L =5.
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Fig. 6. Energy efficiency versus SNR for mmWave MIMO channel with
N: =4, N =64, Nyg =4, No =4, L = 5.

where P is the transmit power, P is the power consumed
by RF chain, F,s is the power consumed by phase shifter,
Nt and Nps are the numbers of required RF chains and
phase shifters, respectively. In this paper, we use the practical
values Py = 250mW [35], Pps = ImW [36], and P = 1W
(about 30 dBm) in a small cell transmission scenario [37].
Fig. 6 shows the energy efficiency comparison for the fully-
connected hybrid precoding under statistical CSI as well as
the statistical-CSI-based hybrid precoding with dynamic and
fixed subarrays. We observe that our proposed statistical-CSI-
based hybrid precoding with dynamic subarrays outperforms
the fully-connected hybrid precoding under statistical CSI in
the high SNR regime.

VII. CONCLUSION

In this paper, we have considered the partially-connected
hybrid precoding design for millimeter wave (mmWave)
multiple-input multiple-output (MIMO) systems with finite-
alphabet inputs and dynamic subarrays. The analog and dig-
ital precoders are designed using either statistical CSI or
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mixed CSI. To simplify the original problem, we have pro-
posed a low complexity algorithm to design the near-optimal
partition of antennas using statistical CSI. Then a lower bound
and its approximation have been derived for the average
mutual information. The lower bound plus a constant offers a
very accurate approximation to the average mutual informa-
tion, and the computational complexity of the lower bound and
its approximation are a few orders of magnitudes less than that
of the average mutual information. Furthermore, a manifold-
based gradient ascent algorithm has been proposed to find
optimal analog and digital precoders via maximizing the
lower bound approximation of the average mutual information.
Several numerical results have also been provided to show that
our proposed algorithm outperforms existing hybrid precoding
algorithms.

APPENDIX

Proof of Proposition 1: We start with the necessary
condition, i.e., if F' is a feasible point of problem (28), then
F satisfies (29). Since |F;| = 1s,(i), we have |F;;| € {0,1}.
In addition, the following equations

Nt
U8j={1,2,...,Nt} (68)
i=1

S;NSe =0, Yj#k

implies Zf\;‘l |IFiello = N: and ||Fiello < 1, respectively.
Therefore, we have ||Fj,|lo = 1. This completes the first part
of the proof.

Next, we prove the sufficient condition, i.e., if F satisfies
(29), then F is a feasible point of problem (28). Let S; denotes
positions of nonzero entries in the jth column of F. Since
|Fi;| € {0,1}, we can express F as

(69)

1 ifies;
Fyl= ’ 70
IE] {0 otherwise. (70)
In addition, since ||Fi|lo = 1 for i € {1,2,...,nr}, {S;}
must satisfy
Nt
U8j={1,2,...,Nt} (71)
j=1
S;iNS =0, Vj#L (72)
Therefore, {S;}72] € S and this completes the proof. [ |

Proof of Proposmon 2: Note that log(x) is a concave
function for x > 0. Using Jensen’s inequality, the average
mutual information with finite-alphabet inputs ExZ(x;y|H)
can be lower bounded by

EnI(x;yH)

where e = HFB (X, — Xg).

Since n is the i.i.d. complex Gaussian noise, the expectation
over n in (73) can be calculated as

2
g (_||9mk+11|| )

o

1 lemk + n||? + ||n]|?
- - dn
(w?)N- / e’q’( o2
|emk il nzl = |n:s|2
(?TJ?)N' / He p( o2

1 7 12 12
_ H_2/ exp (_|emk,1+na| + |n4l ) dn; (74)
=1 T Jn

o2
where ek and n; are the ith element of e,; and n,
respectively. Applying the integrals of exponential function
and extending it to the complex-valued case, equation (74) is
rewritten as

N;
B lems +0)I*\ 71 |em,il?
R e _HEEXP T 202
1—1
1 el e
= o &P (—%) (75)

Then we insert e, = (NrN‘) A TAFFB(x,,, — x;) into
equation (75), and it yields
egkemk

P (_ 202

where W, = JeNe AHFB (X —Xi) (Xm —Xx) T BEFHA,.

Since I is a diagonal matrix, we have

) = exp [—tr (TWuT7AFAL)]  (76)

tr (CWnkL7ATTA) = d™ [(AFA)" o Wi d  (77)

where d is the diagonal entries of I'*. Since the diagonal
entries of I' are i.i.d. complex Gaussian distributed, d is
an i.i.d. complex Gaussian vector. Then the expectation of
equation (76) over I" can be expressed as

Erexp [—tr (FkaI‘HAFAr)]
= Eaexp [~d" (A7A)" 0 Wind]

= ﬂ%/exp [—dH (I+ (AFA,)Towmk)d} dd
d

= det [T+ (AFA)" o Wi - (78)

The combination of (73), (75), (76) and (78) yields the lower

bound. This completes the proof. |
Proof of Proposition 3: Since limpy, .., AZ A, =1, we can

replace A A, by I. Then L(F, B) can be approximated as

1

L(F,B) ~log K — N, (E e 1)

1 XK K E
——= log det |[I+1oW,,
K mzzjl ; [ "]

Note that T + T o Wy, is a diagonal matrix, with the fth
diagonal element being

(79)

NNt

[1 +1o ka]ﬂ — 7 1Bl (80)
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where Bimke = a(6y,e)” FB(x; — xi). Combining (79) and

(80) yields the lower bound approximation. This completes

the proof. [ ]
Proof of Proposition 4: We first rewrite L4 (F,B) as

K
L 1 1
La(F,B)=logK — N, (E - 1) _ Emzzjl

K T N.N
iVt 2
x log) exp [—) In (1 + ooz Bmkel ) :
k=1 £=1
(81)
Using the chain rule in differentiation, the differential of
Z4(F,B) with respect to P = FB is
dL 4 = tr (dP¥G + GHdP) (82)
where G = Yr_, a(f.¢)a(f.)"FBE,. Inserting dP =
FdB into equation (82), we obtain
dL, = (dBF”G + G"FdB). (83)
Since R(®,B) £ L 4(F(®), B), the gradient of R(®,B) with
respect to B is

VsR(®,B) = FEG. (84)

Similarly, inserting dP = dFB into equation (82),
we obtain
dL4 = tr (dF"GB" + BG"dF).

In addition, since dF;; = jF;;d®;;, the differential of F is
given by

(85)

dF =3d® o F.

Inserting dF = 3d® o F into equation (85) and using the
following two equations

(86)

R(®,B) £ Ls(F(®),B) (87)
tr[(A o B)C] = tr [A(CoBT)] (88)
we conclude that
Ve R(®,B) =23 (GB7 o F*). (89)
This completes the proof. [ ]
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