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Multicell Massive MIMO Multicast Transmission
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Abstract—This paper investigates the precoding design for mul-
ticast transmission in multicell massive multiple-input multiple-
output (MIMO) systems with finite-alphabet inputs. The users
within each cell are interested in common information, and dif-
ferent cells provide distinct information. Focusing on the weighted
max–min fairness (MMF) problem with only statistical channel
state information at the base station, we provide the necessary con-
ditions of the optimal precoding vectors to maximize the minimum
weighted achievable ergodic rate, and an iterative algorithm is pro-
posed to optimize the precoding vectors. To achieve lower compu-
tational complexity, we then derive a lower bound on the achievable
ergodic rate for finite-alphabet inputs. Considering the problem of
the minimum weighted rate lower bound maximization, we utilize
the concave–convex procedure (CCCP) to develop a CCCP-based
algorithm, which is proven to converge to a local optimum. Fur-
thermore, exploiting the channel characteristic in massive MIMO
systems, we prove that the optimal precoding vectors, maximizing
the minimum weighted rate lower bound, are linear combinations
of eigenvectors of transmit correlation matrices, and the original
problem can be shifted into a lower dimensional space. Motivated
by this insight, a relation-based algorithm is devised to obtain the
optimal solution of the weighted MMF problem by using the dual-
ity between the MMF problem and the quality of service problem.
Numerical results illustrate the tightness of the achievable ergodic
rate lower bound and the significant performance of the devised
algorithms.

Index Terms—Multicast transmission, massive MIMO,
finite-alphbet signals, statistical CSI.

I. INTRODUCTION

W ITH the advent of data-hungry applications and services,
new wireless communication technologies are proposed

to utilize energy and spectrum resources more efficiently [1]. In
wireless networks, transmitting common information, such as
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regular system updates, financial data or headline news, to sev-
eral mobile terminals simultaneously is a typical scenario. To
enable such service, multicast transmission has been consid-
ered in different releases of the Third Generation Partnership
Project (3GPP) [2]. Generally, with channel state information
at transmitter (CSIT), multicasting can be performed by pre-
coding to increase the received signal-to-interference-plus-noise
ratio (SINR). In the pioneering work of multicast beamforming
for a single group of users [3], it was proven that both quality
of service (QoS) and max-min fairness (MMF) problems were
NP-hard. Then, the work in [3] was further extended to the case
of multiple groups where a duality between the QoS and MMF
problems was revealed [4]. In [5], joint multicast beamforming
for multigroup multicell systems was investigated under the per-
cell power constraints. Furthermore, the work in [6] proposed
a cooperative multicast transmission scheme for the terrestrial-
satellite network. In [3]–[6], with perfect channel state informa-
tion (CSI), the semidefinite relaxation (SDR) method is adopted
to find near-optimal solutions.

Recently, massive multiple-input multiple-output (MIMO) is
regarded as a promising technology for next generation wireless
systems to achieve significant performance in terms of spectrum
efficiency and reliability [7]–[10]. In massive MIMO systems,
the base station (BS) is equipped with a large number of antennas
to simultaneously serve a number of mobile terminals in the
same time-frequency resource. It was first proven in [7] that the
intra-cell interferences and uncorrelated noises can be mitigated
by employing unsophisticated beamforming in noncooperative
massive MIMO systems with unlimited numbers of BS antennas.
Since the publication of [7], massive MIMO systems has been
investigated from various aspects, for example, in [11]–[14].

Motivated by the potential benefits of massive MIMO, several
works were dedicated to the research of multicast transmission
for massive MIMO communications [15]–[18]. Considering
noncooperative multicell massive MIMO multicast transmis-
sion, the authors in [15] not only derived asymptotically optimal
beamforming with perfect instantaneous CSIT, but also pro-
posed a contamination-free pilot scheme to tackle the multicast
beamforming with imperfect instantaneous CSIT. To find an
efficient beamforming algorithm for multi-group multicasting
in large-scale systems, [16] proposed a fast algorithm which
adopts the concave-convex procedure (CCCP) [19] and the
alternating direction method of multipliers (ADMM) [20]
methods. Also, a two-layer precoding scheme was proposed in
[17] for multigroup multicasting in large-scale antenna systems,
aiming to reduce the computational burden of precoder design.
In addition, with minimum mean-square error (MMSE) channel
estimation, the performance of different multigroup multicast
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precoding schemes was analyzed for six possible scenarios in
massive MIMO systems [18]. Note that the aforementioned
works on massive MIMO multicast transmission are founded on
the assumption that the instantaneous CSI of users is available
at the BS.

For massive MIMO systems, one serious challenge is the
acquisition of accurate instantaneous CSIT. In general, the in-
stantaneous CSIT can be acquired by exploiting the channel
reciprocity in time-division duplex (TDD) systems or uplink
feedback in frequency-division duplex (FDD) systems. Never-
theless, as mobility of terminals increases, the fluctuations of
channel changes more rapidly and thus the accurate instanta-
neous CSIT acquisition can be challenging, where the delays
obtaining the instantaneous CSIT are non-negligible with re-
spect to the channel coherence time, resulting in outdated in-
stantaneous CSIT. Therefore, in such case, exploiting statistical
CSIT appears to be more reasonable for its robustness. More-
over, most existing precoding designs for massive MIMO multi-
cast transmission focus on the received SINR, while achievable
rate with finite-alphabet inputs can be a more specific metric
to study the multicast transmission in massive MIMO systems.
Although Gaussian inputs are information-theoretic optimal sig-
nals, it is important to note that practical transmit signals are of-
ten generated from finite constellation sets, e.g., phase-shift key-
ing (PSK) and quadrature amplitude modulation (QAM). Ad-
ditionally, the system throughput with finite-alphabet inputs is
significantly different from using Gaussian inputs, which brings
a substantial performance gap between the precoding schemes
based on finite-alphabet inputs and those based on Gaussian
inputs [21], [22]. In [22], the globally optimal linear precoder
with finite-alphabet inputs was studied for point-to-point MIMO
communication, and optimization problems of precoding ma-
trix with finite-alphabet inputs for distinct scenarios were fur-
ther investigated in [23]–[26]. With only statistical CSIT, pre-
coding algorithms to improve the achievable ergodic rate have
been investigated for finite-alphabet inputs [27]–[29]. However,
to the best of our knowledge, the precoding design for multi-
cell massive MIMO multicast transmission with finite-alphabet
inputs and statistical CSIT is still an open and challenging
problem.

This paper investigates the multicast transmission for multi-
cell massive MIMO communications with finite-alphabet inpus,
where each BS only has access to the statistical CSI of users.
Our key contributions are summarized as follows:
� We provide the necessary conditions of the optimal precod-

ing vectors to maximize the minimum weighted achievable
ergodic rate, where finite-alphabet inputs and Gaussian in-
terference approximation are considered. Based on these
conditions, an iterative algorithm to search the optimal pre-
coding vectors is proposed in this paper.

� To avoid the cumbersome computations of the achievable
ergodic rate, we derive a lower bound on the achievable
ergodic rate, which hinges on the transmit correlation ma-
trices. Investigating the weighted MMF problem with the
rate lower bound, we develop an iterative algorithm for
precoding design by utilizing the CCCP method. It can
be proven that the precoding vectors generated from the
CCCP-based algorithm converge to a locally optimal solu-
tion of the weighted MMF problem.

Fig. 1. Illustration of multicell multicast network with massive MIMO.

� By exploiting the channel characteristic in massive MIMO
systems, we obtain the structure of the optimal precod-
ing vectors to maximize the minimum weighted rate lower
bound, which reveals that the optimal precoding vectors
should be linear combinations of eigenvectors of transmit
correlation matrices, and the optimization problem can be
simplified into a lower dimensional space. Based on this
result, an iterative algorithm is developed to search the op-
timal solution of the weighted MMF problem by using the
duality between the QoS problem and the MMF problem.

Notation: Boldface lower case letters and boldface upper case
letters denote vectors and matrices respectively. The operators
(·)H , (·)T , and (·)∗ denote the matrix conjugate-transpose, trans-
pose and conjugate operations respectively. 1 denotes all-one
vector and 0 denotes all-zero vector or matrix. The trace, en-
semble expectation, real part, absolute value and the Euclidean
norm operators are denoted by tr (·), E{·}, �{·}, | · | and ‖ · ‖.
we useA � 0 to denote a positive semidefinite Hermitian matrix
A and usea � 0 to denote vectora ∈ RM×1

+ .diag (A) indicates
a column vector, which is constituted by the main diagonal of
A. � denotes the Hadamard product.

II. SYSTEM MODEL AND PRELIMINARIES

We consider a multicell multicast transmission system de-
picted in Fig. 1, comprising L cells and K users per cell. Dif-
ferent from the widely investigated multiuser massive MIMO
transmission for the user-specific information, we consider the
scenario that there are a group of K users seeking for com-
mon information in each cell [15], [30]. For convenience, we
define L � {1, 2, . . . , L} as the cell index set and Gj as the in-
dex set of the users in the jth cell, where |Gj | = K. Each BS
is equipped with M transmit antennas, and K single-antenna
users are uniformly distributed within each cell. Let xj denote
the common information signal for the K users in the jth cell
with E

{
|xj |2

}
= 1 and pj ∈ CM×1 denote the corresponding

multicast precoding vector. The maximum transmit power at
the jth BS is defined as Pj , i.e., ‖pj‖2 ≤ Pj . Then, the received
signal at the kth user in the jth cell can be expressed as

yj,k = hH
j,j,kpjxj +

∑
i	=j

hH
i,j,kpixi + zj,k (1)

where zj,k ∼ CN (0, 1). The vector hi,j,k ∈ CM×1 denotes the
channel from the ith BS to the kth user in the jth cell. In this
paper, the correlated fading channel is adopted, and hi,j,k is
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modeled as [31]

hi,j,k = R
1
2
i,j,kgi,j,k (2)

where Ri,j,k ∈ CM×M is the transmit correlation matrix and
gi,j,k ∈ CM×1 has independent identically distributed (i.i.d.)
complex Gaussian entries with zero-mean and unit variance.
In addition, the correlation matrix Ri,j,k can be expressed as

Ri,j,k = Vi,j,kR̃i,j,kV
H
i,j,k (3)

where R̃i,j,k ∈ CM×M is a diagonal matrix and Vi,j,k ∈
CM×M is a deterministic unitary matrix. In massive MIMO
systems, as M → ∞, matrices Vi,j,k tend to be an identical de-
terministic unitary matrix V, which only hinges on the topology
of BS antenna array [32], i.e.,

Ri,j,k → VR̃i,j,kV
H , as M → ∞. (4)

Especially, if the uniform linear array (ULA) is adopted at the
BS, the discrete Fourier transform (DFT) matrix offers a good
approximation to matrix V [33].

In this paper, we assume that the transmit correlation matri-
ces Ri,j,k are perfectly known at the BSs.1 Instead of adopting
the conventional assumption of Gaussian input data, we con-
sider the transmit data symbols of the jth BS are generated from
a discrete constellation of size Qj with i.i.d. uniform distribu-
tion. Moreover, in a practical system, for the users in the jth
cell, users may not have knowledge about the precoding vectors
pi (i 	= j) of interfering users. Thus, it is practically impossible
to exploit the finite-alphabet nature of the interferences. Con-
sequently, we assume that each user views the interference as
Gaussian while modeling its intended signal as finite-alphabet
[24]. Based on the Gaussian interference approximation, for the
kth user in the jth cell, the variance of the interference plus noise∑

i	=j h
H
i,j,kpixi + zj,k can be expressed as

σ2
j,k =

∑
i	=j

|hH
i,j,kpi|2 + 1. (5)

With the finite-alphabet signal Gaussian interference approx-
imation, the received signal yj,k can be rewritten as

yj,k = hH
j,j,kpjxj + z′j,k (6)

where z′j,k is a zero-mean additive Gaussian noise with variance
σ2
j,k. Then, the achievable ergodic rate for the kth user in the jth

cell can be expressed as [27]

Rj,k = logQj − 1/Qj

×
Qj∑
m=1

E

⎧⎨
⎩log

Qj∑
n=1

exp

(
−
∣∣hH

j,j,kpjd
m,n
j + z′j,k

∣∣2 − |z′j,k|2∑
i	=j |hH

i,j,kpi|2 + 1

)⎫⎬
⎭
(7)

where scalar dm,n
j � aj,m − aj,n and aj,m is the mth element

in the constellation range for xj .

1Owing to the fact that the transmit correlation matrices are independent of
sub-carriers [11], [34], the transmit correlation matrices acquisition process can
be simplified. Moreover, with the statistical channel model [35], a relatively
small number of parameters need to be counted, and the transmit correlation
matrices Ri,j,k can be obtained efficiently by utilizing the channel correlation
matrices acquisition method in [11].

III. PRECODING DESIGN WITH ERGODIC RATE

In this section, the multicast precoding design based on the
achievable ergodic rate in (7) is investigated. By solving the
corresponding weight MMF problem, we derive the necessary
conditions of the optimal precoding vectors that maximizing the
minimum weighted achievable ergodic rate. Then, we propose
an iterative algorithm to optimize the precoding vectors with
these necessary conditions.

For multicast transmission, the performance of the worst user
is the bottleneck. Aiming to maximize the minimum weighted
achievable ergodic rate among all KL served users in L cells,
the corresponding MMF problem can be formulated as

F : max
{pj}Lj=1

min
j∈L,k∈Gj

1
θj,k

Rj,k

s.t. ‖pj‖2 ≤ Pj , ∀j ∈ L (8)

where θj,k is the predetermined target rate for the kth user in
the jth cell. Note that specifying the target achievable ergodic
rate for each user makes the problem F more general, where
each user’s achievable ergodic rate is scaled by the weight factor
1/θj,k to consider for different levels of service. Furthermore,
for problemF , since it is difficult to obtain the expression for the
partial derivative of the objective function with respect to pj . To
tackle problemF easier, we introduce an auxiliary (positive real)
variable t to lower bound the minimum weighted rate 1

θj,k
Rj,k,

where problem F can be equivalently formulated as [3]–[6]

Ft : max
{pj}Lj=1,t

t

s.t. Rj,k ≥ θj,kt, ∀k ∈ Gj , ∀j ∈ L

‖pj‖2 ≤ Pj , ∀j ∈ L. (9)

Then, we derive the necessary conditions in the following propo-
sition, which characterizes the optimal solution of problem Ft.

Proposition 1: The optimal precoding design, which is the
optiaml solution of Ft, satisfies the following conditions

K∑
k=1

ζj,kE
{
ε1,j,kh

∗
j,j,k

}
−
∑
i	=j

K∑
k=1

ζi,kE
{
ε2,j,i,kh

∗
j,i,k

}

− λjp
∗
j = 0, ∀j ∈ L (10a)

ζj,k(Rj,k − θj,kt) = 0, Rj,k ≥ θj,kt, ∀j∈L, ∀k∈Gj (10b)

λj(‖pj‖2 − Pj) = 0, ‖pj‖2 ≤ Pj , ∀j ∈ L (10c)

1 −
∑
j,k

ζj,kθj,k = 0 (10d)

where ζj,k ≥ 0 and λj ≥ 0. ε1,j,k and ε2,j,i,k are random vari-
able given in (52) and (55), respectively.

Proof: See Appendix A. �
Proposition 1 provides the necessary conditions of the opti-

mal precoding vectors which maximize the minimum weighted
achievable ergodic rate among the KL users. Generally, due to
the non-convexity and the complex representation of problem
Ft, it is impractical to obtain a closed-form expression for the
optimal precoding vectors pj . Nevertheless, Proposition 1 re-
veals the partial derivative of Rj,k with respect to pj . Based
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on these results, we develop an iterative algorithm to search the
optimal precoding vectors numerically. Here, we first utilize the
barrier method [36] to approximately reformulate the inequal-
ity constrained problem Ft into the following unconstrained
problem

min
{pj}Lj=1,t

h({pj}Lj=1, t) = −αt+
∑
j

φj(pj)

+
∑
j,k

ϕj,k({pi}Li=1, t) (11)

where α > 0 sets the accuracy of the approximation, and the
quality of the approximation improves as α grows. φj(pj) and
ϕj,k({pi}Li=1, t) are the log barrier functions corresponding to
the inequality constraints ‖pj‖2 ≤ Pj and Rj,k ≥ θj,kt, respec-
tively. φj(pj) and ϕj,k({pi}Li=1, t) can be expressed as

φj(pj) =

{
+∞, ‖pj‖2 ≥ Pj

− log(Pj − pH
j pj), ‖pj‖2 < Pj

(12)

and

ϕj,k({pi}Li=1, t)=

{
+∞, Rj,k ≤ θj,kt

− log(Rj,k−θj,kt), Rj,k > θj,kt.
(13)

Then, we solve problem in (11) with the gradient descent method
[23], where the partial derivative of h({pl}Ll=1, t) with respect
to pj and t, respectively, are given by

∂h({pl}Ll=1, t)

∂pj
=

p∗
j

Pj − pH
j pj

−
K∑
k=1

E
{
ε1,j,kh

∗
j,j,k

}
Rj,k − θj,kt

+
∑
i	=j

K∑
k=1

E
{
ε2,j,i,kh

∗
j,i,k

}
Ri,k − θi,kt

(14)

∂h({pl}Ll=1, t)

∂t
= −α+

∑
j,k

θj,k
Rj,k − θj,kt

. (15)

During each iteration, the backtracking line search method [36]
is utilized to choose the step size. The detailed steps of the de-
veloped gradient-based algorithm are given in Algorithm 1.

Algorithm 1 provides a method to numerically solve problem
Ft. However, without closed-form expression, evaluating (14)
and (15) with Monte-Carlo method is computationally cumber-
some. Therefore, in the next section, we derive a lower bound on
the achievable ergodic rate and devise two efficient algorithms,
maximizing the minimum weighted rate lower bound among the
KL users in L cells.

IV. PRECODING DESIGN WITH ACHIEVABLE ERGODIC

RATE LOWER BOUND

In this section, we introduce a lower bound on the achievable
ergodic rate in (7). Based on the rate lower bound, the MMF
problem to maximize the minimum weighted rate lower bound
is investigated, and an iterative algorithm with the CCCP is de-
veloped to find the local optimum of the weighted MMF prob-
lem. Then, since a large number of BS antennas are considered
in this paper, we propose another iterative algorithm to search
the optimal solution of the weighted MMF problem, where the

Algorithm 1: Gradient-based Precoding Design.

1: Initialization. Choose vectors pj as pj=
√

Pj

M 1, ∀j∈L.
Then, calculate the corresponding rate Rj,k for each user
and initialize t as t = min

j,k

1
θj,k

Rj,k. Set α := α(0) > 0

and c > 1.
2: repeat
3: Set u := 0, x(0)

j = pj and t
(0)
in = t.

4: repeat
5: Choose step size μ and ν by backtracking line

search.
6: Update x

(u+1)
j = x

(u)
j + μ

∂h({xi}Li=1,tin)
∂xj

, t(u+1)
in =

t
(u)
in + ν

∂h({xi}Li=1,tin)
∂tin

, and calculate increment
τ =∣∣h({x(u+1)

i }Li=1, t
(u+1)
in )− h({x(u)

i }Li=1, t
(u)
in )

∣∣.
7: Set u = u+ 1.
8: until τ < ε1 (ε1 is a predefined tolerance.)
9: Update pj = x

(u)
j , t = t

(u)
in , and α = cα.

10: until 1
α < ε2 (ε2 is a predefined tolerance.)

channel characteristic of massive MIMO systems and the duality
between the QoS problem and the MMF problem are exploited.

A. Achievable Ergodic Rate Lower Bound

In general, it is impractical to derive the achievable ergodic
rate Rj,k in closed-form, which indicates that evaluating Rj,k

with Monte-Carlo method can be computationally inefficient. To
avoid the cost of the Monte-Carlo averaging over the noise and
channels, we introduce an achievable ergodic rate lower bound
Rlb,j,k.

Proposition 2: The achievable ergodic rate Rj,k in (7) is
lower bounded by

Rlb,j,k = logQj − (1/ ln 2 − 1)

− 1
Qj

Qj∑
m=1

log

Qj∑
n=1

(
1+

1
2

|dm,n
j |2pH

j Rj,j,kpj∑
i	=j p

H
i Ri,j,kpi + 1

)−1

.

(16)

Proof: See Appendix B. �
In Proposition 2, we derive a closed-form lower bound on

the achievable ergodic rate, where the closed-form lower bound
Rlb,j,k only hinges on the modulation type, the precoding vec-
tors pj and the transmit correlation matrices Ri,j,k. Therefore,
instead of tedious Monte-Carlo averaging over every channel
realization, it is an efficient method to evaluate the system per-
formance by using the rate lower bound. In order to reduce the
complexity of precoding design, we turn to consider the MMF
problem which maximizes the minimum weighted rate lower
bound of the KL served users in L cells, and we can find that
the MMF problem with the rate lower bound can be further
simplified by utilizing the property of the lower bound. First,
the MMF problem of the minimum weighted rate lower bound
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maximization can be written as

Flb : max
{pj}Lj=1

min
j∈L,k∈Gj

1
θlb,j,k

Rlb,j,k

s.t. ‖pj‖2 ≤ Pj , ∀j ∈ L (17)

where θlb,j,k is the predetermined target rate lower bound for
the kth user in the jth cell.

To solve Flb efficiently, we first analyze the expression of the
rate lower bound Rlb,j,k in (16). Define the parameter γj,k as

γj,k =
pH
j Rj,j,kpj∑

i p
H
i Ri,j,kpi + 1

. (18)

Then, the derivative of Rlb,j,k with respect to γj,k ≥ 0 is given
by

dRlb,j,k

dγj,k
=

1
ln 2 ·Qj

Qj∑
m=1

1∑Qj

n=1 2
(
1 + 1

2 |d
m,n
j |2γj,k

)−1

×
Qj∑
n=1

|dm,n
j |2(

1 + 1
2 |d

m,n
j |2γj,k

)2

≥ 0. (19)

From (19), it is easy to find that Rlb,j,k monotonously increases
with the increase of γj,k, which means that the rate lower bound
Rlb,j,k can be characterized by the parameter γj,k. Instead of
solving the MMF optimization probelm Flb with achievable
ergodic rate lower bound, we consider the following equivalent
optimization problem by introducing an auxiliary positive real
variable t

Flb,t : max
{pj}Lj=1,t

t

s.t. γj,k ≥ ρj,kt, ∀j ∈ L, ∀k ∈ Gj

‖pj‖2 ≤ Pj , ∀j ∈ L (20)

where ρj,k is the predetermined target for γj,k. After reformu-
lating the weighted MMF optimization problem, we propose
two efficient algorithms, which are CCCP-based algorithm and
relation-based algorithm, to solve problem Flb,t.

B. CCCP-Based Algorithm

Generally, problemFlb,t is a non-convex problem with a non-
convex feasible set. To tackle this problem, we define vector sj
as sj � [pT

j , t]
T and rewrite problem Flb,t into the following

form

F̂lb,t : max
{pj}Lj=1,t

t

s.t. fj,k ({pi}i	=j)− gj,k(sj) ≤ 0, ∀j ∈ L, ∀k ∈ Gj

‖pj‖2 ≤ Pj , ∀j ∈ L (21)

where functions fj,k ({pi}i	=j) and gj,k(sj) are defined as

fj,k ({pi}i	=j) =
∑
i	=j

pH
i Ri,j,kpi + 1 (22)

gj,k(sj) =
pH
j Rj,j,kpj

ρj,kt
. (23)

Meanwhile, the first-order Taylor expression [37] of the function
gj,k(sj) at s(n)j � [(p

(n)
j )T , t(n)]T is given by

ḡj,k(s
(n)
j , sj) = 2�

{(
p
(n)
j

)H
Rj,j,kpj

ρj,kt(n)

}

−
(
p
(n)
j

)H
Rj,j,kp

(n)
j

ρj,k
(
t(n)

)2 t. (24)

Note that the first inequality constraint in F̂lb,t refers to a dif-
ference of convex (DC) functions. Consequently, problem F̂lb,t

is a DC problem, which can be transformed into the following
sequence of convex programs by utilizing the CCCP

F̂lb,iter,t : [p
(n+1)
1 , . . . ,p

(n+1)
L , t(n+1)] = argmax

{pj}Lj=1,t

t

s.t. fj,k ({pi}i	=j)− ḡj,k(s
(n)
j , sj) ≤ 0, ∀j∈L, ∀k∈Gj

‖pj‖2 ≤ Pj , ∀j ∈ L. (25)

As can be seen from problem F̂lb,iter,t, the main idea of the
CCCP method is utilizing Taylor series expansion to linearize
the convex part gj,k(sj) around a solution obtained from the pre-
vious iteration, which results in a convex feasible set. Then, the
original problem F̂lb,t is tackled as a sequence of convex pro-
grams. In order to further explain the feasibility of this approach,
we present the following proposition.

Proposition 3: The sequence
{
p
(n)
1 , . . . ,p

(n)
L

}∞
n=1 gener-

ated from problem F̂lb,iter,t converges to a stationary point of
the original problem F̂lb,t.

Proof: See Appendix C. �
Proposition 3 reveals that, utilizing the CCCP, we can obtain

a locally optimal solution of the DC problem F̂lb,t, which in-
dicates a candidate optimal precoding design. Then, for each
iteration in F̂lb,iter,t, it is a convex quadratically constrained
quadratic program (QCQP), and we also utilize the barrier
method to transfer F̂lb,iter,t into the following unconstrained
problem

[p
(n+1)
1 , . . . ,p

(n+1)
L , t(n+1)] = argmin

{pj}Lj=1,t

−αt

+
∑
j

φj(pj) +
∑
j,k

ϕ̂
(n)
j,k ({pi}Li=1, t)

(26)

where ϕ̂(n)
j,k ({pi}Li=1, t) is the log barrier function corresponding

to the inequality constraint

q
(n)
j,k

(
{pi}Li=1, t

)
�fj,k ({pi}i	=j)−ḡj,k(s

(n)
j , sj) ≤ 0 (27)

and ϕ̂
(n)
j,k ({pi}Li=1, t) is given by

ϕ̂
(n)
j,k ({pi}Li=1, t)=

{
+∞, q

(n)
j,k

(
{pi}Li=1, t

)
≥ 0

− log
(
−q

(n)
j,k

(
{pi}Li=1, t

))
, else.

(28)

Then, the problem in (26) can be solved by the gradient de-
scent method, where the step size in precoder update is chosen
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Algorithm 2: CCCP-based Precoding Design.

1: Initialization. Set n := 0. Choose vectors p(0)
j as

p
(0)
j =

√
Pj

M 1, and then set t(0) as

t(0) = min
j,k

(p
(0)
j )HRj,j,kp

(0)
j

ρj,k

(∑
i	=j(p

(0)
i )HRi,j,kp

(0)
i + 1

) .
2: repeat
3: Set α := α(0) > 0 and c > 1. Choose feasible

vectors p̄1, p̄2, . . . , p̄L and t̄.
4: repeat
5: Set u := 0, x(0)

j = p̄j and t
(0)
in = t̄.

6: repeat
7: Choose step size μ, ν by backtracking line

search.
8: Update x

(u+1)
j = x

(u)
j + μ

∂ĥ(n)({xi}Li=1,tin)
∂xj

,

t
(u+1)
in = t

(u)
in + ν

∂ĥ(n)({xi}Li=1,tin)
∂tin

, and calculate

increment τ =
∣∣ĥ(n)({x(u+1)

i }Li=1, t
(u+1)
in )−

ĥ(n)({x(u)
i }Li=1, t

(u)
in )

∣∣.
9: Set u = u+ 1.

10: until τ < ε1 (ε1 is a predefined tolerance.)
11: Update p̄j = x

(u)
j , t̄ = t

(u)
in , and α = cα.

12: until 1
α < ε2 (ε2 is a predefined tolerance.)

13: Update p
(n+1)
j = p̄j , t(n+1)= t̄ and n = n+ 1.

14: until |t(n)−t(n−1)| < ε3 (ε3 is a predefined tolerance.)

by backtracking line search method. We define the objective
function in problem (26) as ĥ(n)({pl}Ll=1, t). The partial deriva-
tive of ĥ(n)({pl}Ll=1, t) with respect to pj and t, respectively,
are given by

∂ĥ(n)({pl}Ll=1,t)

∂pj
=

p∗
j

Pj−pH
j pj

−
∑
i	=j

K∑
k=1

RT
j,i,kp

∗
j

q
(n)
i,k

(
{pl}Ll=1, t

)

+
K∑
k=1

RT
j,j,k

(
p
(n)
j

)∗

ρj,kt(n)q
(n)
j,k

(
{pl}Ll=1, t

) (29)

∂ĥ(n)({pl}Ll=1,t)

∂t
=−α−

∑
j,k

(
p
(n)
j

)H
Rj,j,kp

(n)
j

ρj,k
(
t(n)

)2
q
(n)
j,k

(
{pl}Ll=1,t

) .
(30)

Based on the above definitions, the steps of the proposed CCCP-
based algorithm are given in Algorithm 2.

C. Relation-Based Algorithm

As mentioned in Section II, for massive MIMO systems, the
eigenmatrices Vi,j,k of the transmit correlation matrices Ri,j,k

become a unique deterministic unitary matrix V as M → ∞,
where unitary matrix V is independent of users. According to

this characteristic, we obtain the following result, which equiv-
alently simplify the original problem Flb,t and reveals the struc-
ture of the optimal solution of Flb,t.

Proposition 4: The optimal solution of problem Flb,t can be
obtained by solving the following problem

F̃lb,t : max
{wj}Lj=1,t

t

s.t. ρj,kt

(∑
i	=j

wT
i r̃i,j,k + 1

)

−wT
j r̃j,j,k ≤ 0, ∀k ∈ Gj , ∀j ∈ L

1Twj ≤ Pj , ∀j ∈ L
wj � 0, ∀j ∈ L (31)

where r̃i,j,k � diag
(
R̃i,j,k

)
and wj ∈ RM×1. For the optimal

w�
j of problem F̃lb,t, the optimal precoding vector at the jth

BS maximizing the minimum weighted rate lower bound can be
expressed as

p�
j =

∑
m∈Tj

√
w�

j,mvm (32)

where w�
j,m is the mth entry of w�

j and vm is the mth column
of matrix V. The set Tj is defined as

Tj =
{
m

∣∣∣∣∑
k

r̃j,j,k,m 	=0, �m′ : (m,m′) satisfies (34)

}
(33)

where r̃i,j,k,m is the mth entry of r̃i,j,k and (34) is given by{
r̃j,j,k,m < r̃j,j,k,m′ , ∀k ∈ Gj

r̃j,i,k,m > r̃j,i,k,m′ , ∀k ∈ Gi, ∀i 	= j.
(34)

Proof: See Appendix D. �
From Proposition 4, the optimal precoding vectors, which

maximize the minimum weighted rate lower bound among the
KL served users, are linear combinations of the columns of a
unique and deterministic matrix V. Note that the columns of V
are the eigenvectors of different user’s channel correlation ma-
trix, which only hinge on the topology of the BS antenna array.
Recalling the beam domain transmission proposed in [11], each
column of V is corresponding to a beam direction, which means
that vectors r̃j,j,k represent the beam gains and the entries of wj

can be regarded as the power allocated to the corresponding
beams. Furthermore, owing to the channel sparsity in massive
MIMO systems, most elements in r̃j,j,k are approximately zero
[38]. Thus, when the number of users in each cell is relatively
small, the value of

∑K
k=1 r̃j,j,k,m will approximate to zero for

most m. For this case, the size of the set Tj , i.e., Mj = |Tj |, is
much smaller than M , and we only need to optimize the vec-
tors wj over a lower dimensional real space Mj × 1, which
implies that the beam domain transmission can maximize the
minimum weighted rate lower bound with lower computational
complexity.

Next, for problem F̃lb,t, we utilize the duality between
the MMF and QoS problem to obtain the optimal solu-
tion. Introducing an additional constraint

∑
j 1

Twj ≤ PT

and an auxiliary variable s > 0, we formulate the following
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problem

F̃lb,t,s : max
{wj}Lj=1,t,s≥0

t

s.t. ρj,kt

(∑
i	=j

wT
i r̃i,j,k + 1

)

−wT
j r̃j,j,k ≤ 0, ∀k ∈ Gj , ∀j ∈ L

1Twj ≤ Pj , ∀j ∈ L
wj � 0, ∀j ∈ L∑

j

1Twj + s = PT. (35)

Note that, ifPT ≥ ∑
j Pj , the optimal solution of F̃lb,t,s is equal

to that of F̃lb,t, where the constraint
∑

j 1
Twj + s = PT can be

ignored. Then, we consider the QoS precoding design problem
which aims to minimize the total transmit power, while satisfy-
ing per-cell power constraints and the target γj,k defined in (18).
The QoS problem can be written as

Q̃lb : min
{wj}Lj=1

∑
j

1Twj

s.t. ρj,k

(∑
i	=j

wT
i r̃i,j,k + 1

)

−wT
j r̃j,j,k ≤ 0, ∀k ∈ Gj , ∀j ∈ L

1Twj ≤ Pj , ∀j ∈ L
wj � 0, ∀j ∈ L. (36)

Find that the QoS problem Q̃lb is a standard semidefinite pro-
gramming (SDP) problem, and it can be tackled by classic con-
vex optimization methods. Hence, we attempt to solve problem
F̃lb,t,s by utilizing the duality between the QoS problem and
the MMF problem. For concise representation, we define the
maximum value of t in F̃lb,t,s as t� = F̃lb,t,s (κ,ρ, PT) and the
minimum total transmitted power in Q̃lb as P �

m = Q̃lb (κ,ρ),
whereκ = [P1, . . . , PL] andρ = [ρ1,1, . . . , ρL,K ]. From [5], we
have the following relations

t� = F̃lb,t,s

(
κ,ρ, Q̃lb (κ, t

�ρ) + s�
)

(37)

PT − s� = Q̃lb

(
κ, F̃lb,t,s (κ,ρ, PT)ρ

)
(38)

where s� is the optimal value of s in F̃lb,t,s (κ,ρ, PT).
Based on the relations in (37) and (38), for given κ,

ρ and PT, the optimal objective values of Q̃lb (κ, tρ) and
F̃lb,t,s (κ,ρ, PT) are monotonically nondecreasing with t.
Therefore, iteratively solving the QoS problem Q̃lb (κ, tρ) with
bisection search over t, we can find the optimal solution of
problem F̃lb,t,s (κ,ρ, PT), which is actually the optimal so-
lution of problem F̃lb,t for PT ≥ ∑

j Pj . The detailed steps
of the proposed relation-based algorithm are summarized in
Algorithm 3.

For solving the SDP problem Q̃lb (κ, tρ) in step 3 of Algo-
rithm 3, we still utilize the barrier method in this paper. The

Algorithm 3: Relation-based Precoding Design.
1: Initialization. Decide the sets Tj . Initialize tlb = 0 and

the upper bound of t as

tub = max
j,k,m

Pj r̃j,j,k,m
ρj,k

.

2: repeat
3: Update t = tlb+tub

2 and solve the QoS problem
Q̃lb (κ, tρ) via Algorithm 4 to obtain vectors wj .

4: If problem Q̃lb (κ, tρ) is infeasible, set tub = t;
otherwise set tlb = t.

5: until tub − tlb ≤ ε (ε is a predefined tolerance.)
6: Obtain solution. Calculate pj =

∑
m∈Tj

√
wj,mvm.

corresponding unconstrained problem is given as follow

min
{wj}Lj=1

h̃({wj}Lj=1) = α
∑
j

1Twj +
∑
j

ψj(wj)

+
∑
j,k

ϕ̃j,k({wi}Li=1) (39)

where ψj(wj) and ϕ̃j,k({wi}Li=1) are the log barrier functions
corresponding to the inequality constraints in Q̃lb (κ, tρ), which
can be expressed as, respectively,

ψj(wj)=

⎧⎨
⎩
+∞, 1Twj ≥ Pj or wj ≺ 0

− log(Pj−1Twj)−
∑

m log(wj,m), else
(40)

and

ϕ̃j,k({wi}Li=1) =

⎧⎨
⎩
+∞, q̃j,k

(
{wi}Li=1

)
≥ 0

−log
(
−q̃j,k

(
{wi}Li=1

))
, else

(41)

where function q̃j,k
(
{wi}Li=1

)
is defined as

q̃j,k
(
{wi}Li=1

)
= tρj,k

(∑
i	=j

wT
i r̃i,j,k + 1

)
−wT

j r̃j,j,k. (42)

Then, the partial derivative of h̃({wi}Li=1) with respect to wj is
given by

∂h̃({wl}Ll=1)

∂wj
= α1+

1

Pj − 1Twj
−w†

j+
K∑
k=1

r̃j,j,k

q̃j,k
(
{wl}Ll=1

)

−
∑
i	=j

K∑
k=1

tρi,kr̃j,i,k

q̃i,k
(
{wl}Ll=1

) (43)

where w†
j � [w−1

j,1, w
−1
j,2, . . . , w

−1
j,M ]T .

We note that solving Q̃lb (κ, tρ) with the barrier method re-
quires a feasible starting point. However, with inappropriate
value of t, problem Q̃lb (κ, tρ) will be infeasible (the value
of t is too large), and we should update tub = t in Algorithm 3.
Thus, before solving (39), we have to find a feasible solution of
problem Q̃lb (κ, tρ) or determine that none exists. To do this,
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Algorithm 4: QoS Precoding Design.

1: Initialization. Solve problem Q̃ini by barrier method.
During the procedure of solving Q̃ini, once(
wini

1 , . . . ,wini
L , u

)
is feasible for Q̃ini with u ≤ 0,

choose starting point wj = wini
j . Otherwise, Q̃lb (κ, tρ)

is infeasible, and terminate Algorithm 4.
2: Set α := α(0) > 0 and c > 1.
3: repeat
4: Set u := 0, x(0)

j = wj .
5: repeat
6: Determine step size μ by backtracking line search.

7: Update x
(u+1)
j =x

(u)
j + μ

∂h̃({xi}Li=1)
∂xj

and calculate

increment τ =
∣∣h̃({x(u+1)

i }Li=1)− h̃({x(u)
i }Li=1)

∣∣.
8: Set u = u+ 1.
9: until τ < ε1 (ε1 is a predefined tolerance.)

10: Update wj = x
(u)
j and α = cα.

11: until 1
α < ε2 (ε2 is a predefined tolerance.)

we consider the following problem

Q̃ini : min
{wj}Lj=1,u

u

s.t. q̃j,k
(
{wi}Li=1

)
≤ u, ∀j ∈ L, ∀k ∈ Gj

1Twj ≤ Pj , ∀j ∈ L
wj � 0, ∀j ∈ L. (44)

The value of u can be interpreted as a bound on the infeasibility
of inequalities q̃j,k

(
{wi}Li=1

)
≤ 0. Specifically, if the optimal

value u� ≤ 0, then Q̃lb (κ, tρ) has a feasible solution. Other-
wise, if the optimal value u� > 0, problem Q̃lb (κ, tρ) is infea-
sible. Since we can initialize u = max

j,k
q̃j,k

(
{wi}Li=1

)
, problem

Q̃ini is always feasible. Then, the barrier method can be ap-
plied to solve problem Q̃ini. Notice that we do not need to solve
Q̃ini with high accuracy, and we can terminate when u ≤ 0.
Since if

(
wini

1 , . . . ,wini
L , u

)
is feasible for Q̃ini with u < 0,

then (wini
1 , . . . ,wini

L ) is a feasible starting point for Q̃lb (κ, tρ).
The steps to solve problem Q̃lb (κ, tρ) are summarized in
Algorithm 4.

Then, we discuss the computational complexities of the pro-
posed algorithms. In each iteration, the main complexity of
the CCCP-based algorithm comes from solving the QCQP
problem, which is O(LM +KL)3.5 [16]. For the relation-
based algorithm, the complexity in each iteration is mainly
contributed by the complexity of solving the SDP problem
Q̃lb. Because problem Q̃lb is transformed into a lower di-
mensional space, where we need to optimize a Mj × 1 real
vector for the jth cell, j = 1, . . . , L. The complexity of one
iteration in the relation-based algorithm will approximate to
O((

∑
j Mj)

3.5 +KL(
∑

j Mj)
1.5) [4]. Finally, we analyze the

convergence of the proposed algorithms. For the outer iteration
of the CCCP-base algorithm, Proposition 3 reveals that, utilizing
the CCCP, the algorithm guarantee converge to a locally opti-
mal solution. Considering its inner iteration, the corresponding
convex QCQP problem is solved by the barrier method and the
gradient descent method, where these methods have been proven

Fig. 2. Achievable ergodic rate and its lower bound.

to be convergent in [36]. As for the relation-base algorithm, since
variable t is upper bounded and lower bounded by tub and tlb, re-
spectively, the bisection search over t is convergent. Meanwhile,
the barrier method and the gradient descent method are also uti-
lized to solve the convex inner iterative problem Q̃lb (κ, tρ),
which makes the inner iteration of the relation-based algorithm
convergent.

V. SIMULATION RESULTS

In this section, we present the simulation results to illustrate
the performance of the developed algorithms. In our simula-
tions, the WINNER II channel model is utilized to generate
channel hi,j,k. For the WINNER II channel model, we consider
the suburban scenario with the non-line-of-sight (NLOS) condi-
tion. Both the path loss and shadow fading model of WINNER II
are utilized. For the topology of the cells, we consider a hexag-
onal grid of three-sectoral cells (L = 3), where the term cell
refers to a 120◦ sector and each BS is located at the vertex of
the hexagonal grid. K single-antenna users are uniformly dis-
tributed within each cell. Without loss of generality, we assume
the same achievable ergodic rate lower bound target for all users,
i.e., ρj,k = 1, ∀j ∈ L, ∀k ∈ Gj . In addition, users are uniformly
distributed within each cell.

We note that, when the SNR approaches to 0 (i.e., Pj → 0),
the limits of the achievable ergodic rate Rj,k in (7) and its lower
bound Rlb,j,k in (16) are given by, respectively,

lim
SNR→0

Rj,k = 0 (45)

lim
SNR→0

Rlb,j,k = 1 − 1
ln 2

. (46)

Here, limits (45) and (46) indicate that the achievable ergodic
rate and its lower bound has a constant gap in low SNR region.
Because the objective function plus a constant value remains the
optimized precoding vectors unchanged, we add a constant value

1
ln 2 − 1 to the rate lower bound. Fig. 2 shows the achievable
ergodic rate and the rate lower bound with a constant shift for
one of theKL users, where the simulated curve of the achievable
ergodic rate is obtained by the Monte-Carlo simulations. We
consider the case of QPSK inputs with M = 128 and K = 2.
Fig. 2 demonstrates that the rate lower bound with a constant
shift is a good approximation to the achievable ergodic rate for
QPSK inputs. By adding a constant, the rate lower bound are
nearly identical to the achievable ergodic rate at low and high
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Fig. 3. Achievable ergodic rate and its lower bound with a constant shift for
various input types.

SNR regions, and they approach to each other at medium SNR
region. Besides, we find that the computational complexity of
the rate lower bound is much lower than that of the achievable
ergodic rate, where the cost of the Monte-Carlo averaging is
avoided.

Fig. 3 further compares the achievable ergodic rate (7) and
its lower bound with a constant shift for various input types.
In low SNR region, the rate lower bound with a constant shift
approximates to the achievable ergodic rate for all input types.
As for medium and high SNR regions, the achievable ergodic
rate is still well approximated by shifted rate lower bound for
BPSK and QPSK input types. For the case of 16QAM inputs, the
shifted rate lower bound and the achievable ergodic rate close
to each other at high SNR region while there is a rate gap at
medium SNR region, and for 64QAM inputs, the corresponding
rate gap at medium and high SNR regions is larger than those of
other input types in Fig. 3. This is because that, as the transmit
power of each BS increases, inter-cell interferences dominate
the tightness between the rate and its lower bound, especially
for the input type with a large number of constellation points.
Then, when SNR is high enough, we find that both the achievable
ergodic rate and its lower bound will saturate.

Furthermore, in high SNR region, we can find that the
achievable ergodic rate all saturate at the rate maximum logQj

for various input types with the proposed precoding, which is
a common result for the case of finite-alphabet inputs [27],
[28]. However, the gap between the rate maximum logQj

and the shifted rate lower bound increases with the increase
of the order of input type. To interpret this result, we define
dmin
j,m = min

n
|dm,n

j |2, which indicates the minimum distance be-

tween the mth constellation point and the other constellation
points. Particularly, for a equiprobable zero-mean constellation
set, dmin

j � dmin
j,1 = · · · = dmin

j,Qj
. Then, we derive the following

relations

logQj −Rlb,j,k −
(

1
ln 2

− 1

)

=
1
Qj

Qj∑
m=1

log2

Qj∑
n=1

(
1 +

1
2
|dm,n

j |2γj,k
)−1

≥ 1
Qj

Qj∑
m=1

log

(
1 +

2
2 + dmin

j,mγj,k

)

Fig. 4. Minimum achievable ergodic rate performance for different precoding
algorithms.

= log

(
1 +

2
2 + dmin

j γj,k

)

� g(dmin
j , γj,k). (47)

From (47), we note that the gap between the rate lower
bound with a constant shift and the rate maximum logQj is
lower bounded by g(dmin

j , γj,k), where function g(dmin
j , γj,k)

monotonously increases with the decrease of dmin
j for fixed γj,k.

Then, for 64QAM inputs, whose corresponding dmin
j is much

smaller than those of other inputs types in Fig. 3, the gap be-
tween the rate lower bound with a constant shift and rate max-
imum logQj is larger than those of other inputs types in Fig. 3
at high SNR region.

Fig. 4 shows the minimum achievable ergodic rate for dif-
ferent precoding algorithms with M = 64, K = 3 and QPSK
inputs. In Fig. 4, the SDR-based algorithm studied in [3]–[6]
refers to an algorithm solving the following problem

max
{Xj}Lj=1,t

t

s.t. ρj,kt

(∑
i	=j

tr (XiRi,j,k) + 1

)

− tr (XjRj,j,k) ≤ 0, ∀k ∈ Gj , ∀j ∈ L
tr (Xj) ≤ Pj , ∀j ∈ L
Xj � 0, ∀j ∈ L (48)

where Xj � pjp
H
j . From [3]–[6], the problem in (48) is trans-

formed from the original problemFlb,t, while dropping the rank-
1 constraint, i.e., rank (Xj) = 1, ∀j ∈ L. After obtaining the
solution Xj , the corresponding precoding vectors are generated
by Gaussian randomization method with appropriate power scal-
ing factors [5], [6]. Simulation results show that the developed
gradient-based algorithm outperforms the other two algorithms,
which is because that the gradient-based algorithm directly op-
timizes the precoding vectors with the achievable ergodic rate in
(7). However, without closed-form expression for the gradients
in (14) and (15), the gradient-based algorithm is computation-
ally inefficient for high-order modulation. To reduce the compu-
tational complexity, we can adopt our proposed relation-based
algorithm which avoids the Monte-Carlo averaging. As shown
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Fig. 5. Minimum achievable ergodic rate performance for the proposed
CCCP-based algorithm and the proposed relation-based algorithm with different
number of users in each cell.

in Fig. 4, the relation-based algorithm achieves slightly worse
performance than that of the gradient-based algorithm, while
outperforming the SDR-based algorithm. In addition, we note
that the computational complexity of the SDR-based algorithm
is much higher than that of the proposed relation-based algo-
rithm, since the SDR-based algorithm lifts the original problem
into higher dimensional space.

Fig. 5 shows the performance of the max-min achievable
ergodic rate for the proposed CCCP-based algorithm and
relation-based algorithm with different number of users. Here,
we consider the 16QAM inputs with M = 128. For the num-
ber of users in each cell, we set K = 4, K = 10 and K = 20,
respectively. We can find that, for both CCCP-based algorithm
and relation-based algorithm, the minimum achievable ergodic
rate of all KL users degrades as K increases. This is intu-
itive because the more users there are, the more likely users’
channels are in deep fading condition, which results in the re-
duction of the minimum achievable ergodic rate. Moreover, as
shown in Fig. 5, the CCCP-based algorithm and the relation-
based algorithm can achieve nearly the same minimum achiev-
able ergodic rate at low and medium SNR regions, and the
relation-based perform slightly better when the SNR is high.
It is because that the precoding vectors generated from the
CCCP-based algorithm guarantee to converge to a locally op-
timal solution of the problem Flb,t, while the relation-based
algorithm can generate the optimal solution of the problem
Flb,t with perfect bisection search of parameter t. Neverthe-
less, it should be pointed out that the relation-based algorithm is
founded on the assumption that the number of BS antennas goes
to infinity, without which the CCCP-based algorithm can still
work.

To further illustrate the performance of the CCCP-based al-
gorithm and the relation-based algorithm. Fig. 6 compares the
max-min rate lower bound performance of the CCCP-based al-
gorithm and the relation-based algorithm for different number of
BS antennas. Considering 16QAM inputs, we set SNR= 20 dB
and K = 8. From Fig. 6, we can find that the CCCP-based
algorithm achieves a higher minimum rate lower bound than
that of the relation-based algorithm when M is relatively small.
However, as M increases, the minimum rate lower bound per-
formance of the relation-based algorithm become better than

Fig. 6. Comparison of the rate lower bound between the proposed CCCP-
based algorithm and the proposed relation-based algorithm with different
number of BS antennas.

that of the CCCP-based algorithm. Notice that the optimal-
ity of the relation-based algorithm is founded on the channel
characteristic, where the eigenmatrices of different user’s trans-
mit correlation matrices tend to be a unique deterministic ma-
trix V as M → ∞. When the number of BS antennas is rela-
tively small, the users’ channel may not satisfy this characteris-
tic. Therefore, the CCCP-based algorithm can achieve a better
performance, where it can obtain a locally optimal solution with-
out this characteristic. Then, as each BS is equipped with a large
number of antennas, where the channel characteristic is nearly
satisfied, the relation-based algorithm outperforms the CCCP-
based algorithm.

Meanwhile, as illustrated in Fig. 6, increasing the number of
BS antennas, the performance of both the CCCP-based algo-
rithm and the relation-based algorithm can be improved. It is
because that increasing the number of BS antennas allows the
resolution of more paths, resulting in less inter-cell interference.
Then, when the number of BS antennas M is large enough, the
gain obtained from the increase of the number of antennas will be
smaller, since the inter-cell interference has been substantially
canceled.

VI. CONCLUSION

We investigated multicell massive MIMO multicast transmis-
sion with finite-alphabet signals, where only statistical CSI of
users is available at the BSs. For finite-alphabet inputs, the nec-
essary conditions of the optimal precoding vectors to maximize
the minimum weighted achievable ergodic rate among all users
were obtained, assuming that the interference is Gaussian noise.
Based on these conditions, we proposed the gradient-based algo-
rithm to iteratively search the optimal precoding vectors. Then,
owing to the high computational burden of the achievable er-
godic rate with finite-alphabet inputs, we derived a lower bound
on the achievable ergodic rate, which depends on the transmit
correlation matrices. With this lower bound, we investigated the
corresponding weighted MMF problem and devised an efficient
iterative algorithm for precoding design by exploiting the CCCP
method, where the precoding vectors generated from the CCCP-
based algorithm can be proven to converge to a local optimum.
Moreover, in massive MIMO systems, the eigenmatrices of the
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ε2,j,i,k =
1

ln 2 ·Qi

Qi∑
m=1

∑Qi

n=1 exp
(
− fm,n,i,k

)(∣∣hH
i,i,kpid

m,n
i + z′i,k

∣∣2 − ∣∣z′i,k∣∣2 −�{(z′i,k)∗hH
i,i,kpid

m,n
i }

)
pH
j hj,i,k(∑

i′ 	=i |hH
i′,i,kpi′ |2 + 1

)2
·
(∑Qi

n=1 exp
(
− fm,n,i,k

)) (55)

transmit correlation matrices become an identical deterministic
unitary matrix as the number of BS antennas goes to infinity.
Utilizing this characteristic, we proved that the optimal precod-
ing vectors should be linear combinations of eigenvectors of
transmit correlation matrices, where the weighted MMF prob-
lem can be further simplified. For obtaining the optimal solution
of the simplified weighted MMF problem, we proposed an iter-
ative algorithm by using the duality between the QoS problem
and the MMF problem. The tightness of the achievable ergodic
rate lower bound and the significant performance of the devised
algorithms were illustrated through simulation results.

APPENDIX A
PROOF OF PROPOSITION 1

To solve problem Ft, we develop the cost function of the
optimal precoders as

C = t+
∑
j,k

ζj,k(Rj,k − θj,kt)−
L∑

j=1

λj(‖pj‖2 − Pj) (49)

where ζj,k ≥ 0 and λj ≥ 0 are Lagrange multipliers associated
with the inequality constraints Rj,k ≥ θj,kt and ‖pj‖2 ≤ Pj ,
respectively. The Karush-Kuhn-Tucker (KKT) conditions en-
able us to establish the equations for the optimal precoders pj ,
∀j ∈ L, which can be expressed as

∂C
∂t

= 1 −
∑
j,k

ζj,kθj,k = 0 (50a)

∂C
∂pj

=
∑
i,k

ζi,k
∂Ri,k

∂pj
− λjp

∗
j = 0, ∀j ∈ L

(50b)

ζj,k(Rj,k − θj,kt) = 0, Rj,k ≥ θj,kt, ∀j∈L, ∀k∈Gj (50c)

λj(‖pj‖2 − Pj) = 0, ‖pj‖2 ≤ Pj , ∀j ∈ L. (50d)

In (50b), the calculation of the derivative
∑

i,k
∂Ri,k

∂pj
includes

two parts. For i = j

∂Rj,k

∂pj
= E

{
ε1,j,kh

∗
j,j,k

}
(51)

where the random variable ε1,j,k given as (52),

ε1,j,k =
1

ln 2 ·Qj

Qj∑
m=1∑Qj

n=1 exp
(
− fm,n,j,k

)(
|dm,n

j |2pH
j hj,j,k + dm,n

j (z′j,k)
∗
)

(∑
i	=j |hH

i,j,kpi|2 + 1
)
·
(∑Qj

n=1 exp
(
− fm,n,j,k

))
(52)

In (52), fm,n,j,k is defined as

fm,n,j,k =

∣∣hH
j,j,kpjd

m,n
j + z′j,k

∣∣2∑
i	=j

∣∣hH
i,j,kpi

∣∣2 + 1
. (53)

For the case of i 	= j, we note that z′i,k is a zero-mean Gaussian
noise with variance

∑
i′ 	=i |hH

i′,i,kpi′ |2 + 1, and the correspond-
ing derivatives of Ri,k is given as

∂Ri,k

∂pj
= −E

{
ε2,j,i,kh

∗
j,i,k

}
(54)

where ε2,j,i,k given by (55), shown at the top of this page. Thus,
condition (50b) can be expressed as

K∑
k=1

ζj,kE
{
ε1,j,kh

∗
j,j,k

}
−

∑
i	=j

K∑
k=1

ζi,kE
{
ε2,j,i,kh

∗
j,i,k

}

−λjp
∗
j = 0. (56)

APPENDIX B
PROOF OF PROPOSITION 2

For the kth user in the jth cell, the corresponding achievable
ergodic rate Rj,k can be rewritten as

Rj,k = E{Ij,k(p1,p2, . . . ,pL)} (57)

where Ij,k(p1,p2, . . . ,pL) defined by (58).

Ij,k(p1,p2, . . . ,pL) = logQj −
1
Qj

Qj∑
m=1

Ehj,j,k,zj,k

⎧⎨
⎩log

Qj∑
n=1

exp
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−

∣∣hH
j,j,kpjd

m,n
j + z′j,k

∣∣2 − |z′j,k|2∑
i	=j |hH

i,j,kpi|2 + 1

)⎫⎬
⎭

(58)

Using the similarly method in [27], it is easy to find that
Ij,k(p1,p2, . . . ,pL) is lower bounded by

Ij,k(p1,p2, . . . ,pL) ≥ logQj − (1/ ln 2 − 1)− 1/Qj

×
Qj∑
m=1

log

Qj∑
n=1

(
1 +

1
2

|dm,n
j |2pH

j Rj,j,kpj∑
i	=j |hH

i,j,kpi|2 + 1

)−1

. (59)

Then, we consider function log
∑

i(1 + bi
x )

−1 with respect to
x > 0, where bi ≥ 0. We have

d2

dx2
log

∑
i

(
1 +

bi
x

)−1

≤ 0. (60)

Therefore, function log
∑

i(1 + bi
x )

−1 is a concave function with
respect to x > 0 and the Jensen’s inequality can be adopted to
obtain the lower bound on Rj,k. Combining (57) and (59), we
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can obtain the following relation by invoking Jensen’s inequality

Rj,k ≥ logQj − (1/ ln 2 − 1)− 1/Qj

×
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×
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H
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)−1
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APPENDIX C
PROOF OF PROPOSITION 3

Due to the convexity of function gj,k(sj), for the nth iteration

result
(
{p(n)

i }i	=j , s
(n)
j

)
in problem F̂lb,iter,t, we have

gj,k(s
(n)
j ) ≥ ḡj,k(s

(n−1)
j , s

(n)
j ). (62)

Then, the following relations hold

fj,k
{
p
(n)
i }i	=j

)
− ḡj,k(s

(n)
j , s

(n)
j )

= fj,k
(
{p(n)

i }i	=j

)
− gj,k(s

(n)
j )

≤ fj,k
(
{p(n)

i }i	=j

)
− ḡj,k(s

(n−1)
j , s

(n)
j )

≤ 0. (63)

From (63), the nth iteration results
(
{p(n)

i }i	=j , s
(n)
j

)
is also

a feasible solution for the (n+ 1)th iteration, which means
that {t(n)}∞n=1 is monotonic. Moreover, the set of {pj}Lj=1 is
closed and bounded, while the value of {t(n)}∞n=1 is upper
bounded to satisfy the constraints. Consequently, the sequence{
{p(n)

i }i	=j , s
(n)
j

}∞
n=1 generated from problem F̂lb,iter,t will

converge [39], and we have

lim
n→∞

fj,k
(
{p(n)

i }i	=j

)
− gj,k(s

(n)
j )

= fj,k ({p�
i }i	=j)− gj,k(s

�
j ) (64)

where
(
{p�

i }i	=j , s
�
j

)
is the generalized fixed point of CCCP. For

problem F̂lb,t, it is easy to find that
(
{p�

i }i	=j , s
�
j

)
satisfies the

KKT conditions of F̂lb,t [40], resulting in a stationary point of
problem F̂lb,t.

APPENDIX D
PROOF OF PROPOSITION 4

Recalling (4), in massive MIMO systems, we have

Ri,j,k = VR̃i,j,kV
H , ∀i, j ∈ L, ∀k ∈ Gj . (65)

Thus, by defining vectors p̃j � VHpj , problem Flb,t can be
rewritten as

max
{p̃j}Lj=1,t

t

s.t. p̃H
j R̃j,j,kp̃j − ρj,kt

(∑
i	=j

p̃H
i R̃i,j,kp̃i + 1

)
≥ 0,

∀j ∈ L, ∀k ∈ Gj

‖p̃j‖2 ≤ Pj , ∀j ∈ L. (66)

Observing problem (66), where R̃i,j,k are diagonal matrices,
problem Flb,t can be further equivalently reformulated as

F̃lb,t : max
{wj}Lj=1,t

t

s.t. ρj,kt

(∑
i	=j

wT
i r̃i,j,k + 1

)

−wT
j r̃j,j,k ≤ 0, ∀k ∈ Gj , ∀j ∈ L

1Twj ≤ Pj , ∀j ∈ L
wj � 0, ∀j ∈ L (67)

where wj � p̃j � p̃∗
j and r̃i,j,k � diag

(
R̃i,j,k

)
. Then, for the

optimal w�
j of problem F̃lb,t

2, the optimal precoding vectors p�
j

can be expressed as

p�
j =

M∑
m=1

√
w�

j,mvm (68)

where w�
j,m is the mth entry of w�

j and vm is the mth column
of matrix V.

Then, letting the mth entry of r̃i,j,k be r̃i,j,k,m, we investi-
gate the conditions such that w�

j,m = 0. First, for any m which

satisfies
∑

k r̃j,j,k,m = 0, we rewrite F̃lb,t as

max
{wl}Ll=1,t

t

s.t. wj,mr̃j,j,k,m +
∑

m′ 	=m

wj,m′ r̃j,j,k,m′

− ρj,kt

(∑
l 	=j

wT
l r̃l,j,k + 1

)
≥ 0, ∀k ∈ Gj

wT
i r̃i,i,k − ρi,kt

(
wj,mr̃j,i,k,m +

∑
m′ 	=m

wj,m′ r̃j,i,k,m′

+
∑

l 	=i,l 	=j

wT
l r̃l,i,k+1

)
≥ 0, ∀k ∈ Gi, ∀i 	= j

1Twl ≤ Pl, ∀l ∈ L
wl � 0, ∀l ∈ L. (69)

2Since we consider the power constraints 1Twj ≤ Pj , there might exist
different wj and w′

j achieving the maximal value of the objective function in

problem F̃lb,t. Here, the optimal solution refers to the vectors which achieve the
maximum objective function value while the total transmit power

∑
j
1Twj

is lowest.
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Given the condition
∑

k r̃j,j,k,m = 0, we can prove that
r̃j,j,k,m = 0 for ∀k ∈ Gj , which results in wj,mr̃j,j,k,m = 0 for
∀k ∈ Gj . Thus, observing problem (69), it is easy to find that
w�

j,m = 0.
Next, we consider another case where (m,m′) satisfies the

following condition{
r̃j,j,k,m < r̃j,j,k,m′ , ∀k ∈ Gj

r̃j,i,k,m > r̃j,i,k,m′ , ∀k ∈ Gi, ∀i 	= j.
(70)

Note that, for ∀j∈L, ∀k∈Gj , the KKT conditions for problem
F̃lb,t can be expressed as

1−
∑
j,k

ξj,kρj,k

(∑
i	=j

wT
i r̃i,j,k+1

)
=0 (71a)

K∑
k=1

ξj,kr̃j,j,k−
∑
i	=j

K∑
k=1

ξi,kρi,ktr̃j,i,k−λlb,j1+ηj =0 (71b)

ξj,k

(
ρj,kt

(∑
i	=j

wT
i r̃i,j,k + 1

)
−wT

j r̃j,j,k

)
=0 (71c)

ρj,kt

(∑
i	=j

wT
i r̃i,j,k + 1

)
−wT

j r̃j,j,k ≤0 (71d)

λlb,j(1
Twj − Pj)=0, 1Twj ≤Pj , wj �0 (71e)

ηj �wj =0 (71f)

where ξj,k ≥ 0, λlb,j ≥ 0 and ηj � 0 are Lagrange multipli-
ers associated with the inequality constraints in problem F̃lb,t.
Then, from the equation (71b), we have

K∑
k=1

ξj,kr̃j,j,k,m−
∑
i	=j

K∑
k=1

ξi,kρi,ktr̃j,i,k,m+ ηj,m=λlb,j (72)

K∑
k=1

ξj,kr̃j,j,k,m′ −
∑
i	=j

K∑
k=1

ξi,kρi,ktr̃j,i,k,m′+ ηj,m′ =λlb,j . (73)

Here, ηj,m and ηj,m′ are the mth and m′th entries of ηj , respec-
tively. Given the pair (m,m′) satisfying (70), subtracting (72)
from (73) and using the condition ηj,m′ ≥ 0, we can obtain the
following relations

ηj,m ≥ ηj,m − ηj,m′

=
K∑
k=1

ξj,k(r̃j,j,k,m′ − r̃j,j,k,m)

−
∑
i	=j

K∑
k=1

ξi,kρi,kt(r̃j,i,k,m′ − r̃j,i,k,m)

> 0. (74)

Note that the condition in (71a) indicates that there is at least one
ξj,k > 0. Thus, the last inequality in (74) strictly holds. Then,
owing to the KKT condition in (71f), we have ηj,mw�

j,m = 0,
and consequently, w�

j,m = 0.

Define the set Tj as

Tj=
{
m
∣∣∣∑

k

r̃j,j,k,m 	=0, �m′ : (m,m′) satisfies (70)

}
. (75)

Then, based on the above discussions, the optimal precoding
vectors p�

j can be expressed as

p�
j =

∑
m∈Tj

√
w�

j,mvm. (76)
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