
PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

Sensitivity analysis of a
multibranched light guide for real time
hyperspectral imaging systems

Craig M. Browning, Samuel  Mayes, Joshua  Deal, Arslan
Arshad, Samantha  Gunn Mayes, et al.

Craig M. Browning, Samuel  Mayes, Joshua  Deal, Arslan  Arshad, Samantha
Gunn Mayes, Marina  Parker, Thomas C. Rich, Silas J. Leavesley, "Sensitivity
analysis of a multibranched light guide for real time hyperspectral imaging
systems," Proc. SPIE 10871, Multimodal Biomedical Imaging XIV, 1087107
(27 February 2019); doi: 10.1117/12.2510506

Event: SPIE BiOS, 2019, San Francisco, California, United States

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 11 Mar 2019  Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 

Sensitivity analysis of a multibranched light guide for real time 
hyperspectral imaging systems 

Craig M. Browning1,2, Samuel Mayes1,2, Joshua Deal3,4, Arslan Arshad1, Samantha Gunn Mayes1, 
Marina Parker1,2, Thomas C. Rich3,4, Silas J. Leavesley1,3,4 

1Chemical and Biomolecular Engineering, University of South Alabama, AL 36688 
2Systems Engineering, University of South Alabama, AL 36688  

3Pharmacology, University of South Alabama, AL 36688 
4Center for Lung Biology, University of South Alabama, AL 36688 

 

ABSTRACT  

Hyperspectral imaging (HSI) is a spectroscopic technique which captures images at a high contrast over a wide range of 
wavelengths to show pixel specific composition. Traditional uses of HSI include: satellite imagery, food distribution 
quality control and digital archaeological reconstruction. Our lab has focused on developing applications of HSI 
fluorescence imaging systems to study molecule-specific detection for rapid cell signaling events or real-time 
endoscopic screening.  

Previously, we have developed a prototype spectral light source, using our modified imaging technique, excitation-
scanning hyperspectral imaging (HIFEX), coupled to a commercial colonoscope for feasibility testing. The 16 
wavelength LED array was combined, using a multi-branched solid light guide, to couple to the scope’s optical input. 
The prototype acquired a spectral scan at near video-rate speeds (~8 fps). The prototype could operate at very rapid 
wavelength switch speeds, limited to the on/off rates of the LEDs (~10 μs), but imaging speed was limited due to optical 
transmission losses (~98%) through the solid light guide. Here we present a continuation of our previous work in 
performing an in-depth analysis of the solid light guide to optimize the optical intensity throughput. The parameters 
evaluated include: LED intensity input, geometry (branch curvature and combination) and light propagation using outer 
claddings. Simulations were conducted using a Monte Carlo ray tracing software (TracePro). Results show that 
transmission within the branched light guide may be optimized through LED focusing lenses, bend radii and smooth 
tangential branch merges. Future work will test a new fabricated light guide from the optimized model framework.  
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1. INTRODUCTION  
Colorectal cancer is the 3rd highest ranked cancer in mortality and incidence rates in the United States.1–3 The gold 
standard for screening colorectal cancer is white light endoscopy using a colonoscope. A possible correlation to high 
ranking colorectal cancer is the reduced accuracy of detecting small and/or flat lesions in the colorectum.4,5 The major 
limitation of detecting these small/flat lesions is the low contrast to the surrounding mucosa.6–8 Detection then depends 
on the experience of the endoscopist for noticing subtle visual differences between a suspected lesion and surrounding 
mucosa. Additionally, current techniques provide little to no capabilities to determine the risk of the detected lesion 
(invasive potential or sessile, serrated markers linked to metastasis) or to render a diagnosis such as hyperplastic, 
precancerous or carcinoma. Alternative imaging techniques have been tested to increase detection accuracy within 
endoscopy including: narrow-band imaging and autofluorescence imaging. Narrow-band imaging (NBI) illuminates the 
mucosa with blue and green light to enhance the vasculature. Vasculature density differences can represent lesion or 
normal tissue (higher density correlates to adenomas). Studies show a 10-20% increase in detection sensitivity but 
decreased specificity of 5-10% providing only marginal, if any, improvement over standard white light endoscopy.6,7 
Autofluorescence imaging (AFI) excites the tissue with short wavelengths of light and the emission spectra (normally a 
longer wavelength) is collected to determine the differences in tissue. However, the studies using AFI result in little to 
no improvements for detection accuracy.6 The techniques represented here use either broad spectrum light (white light 
endoscopy) or single channel illumination (narrow-band or autofluorescence) attempting to generate enhanced contrast 
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between lesions and the surrounding mucosa. In light of the limited or negligible improvements offered by alternative 
imaging modalities, new imaging approaches need to be developed to discriminate abnormal growths from the mucosa 
in a high-contrast manner and to provide feedback in order to diagnose a lesion or other region of interest (i.e. 
inflammation, ulcerative colitis or Crohn’s disease).9,10 
Here we present a technique which harnesses spectroscopic data during a screening process to visually enhance and 
contrast the image feed and provide quantitative results through spectroscopic differences acquired with the images. This 
technique is hyperspectral imaging (HSI); which images a two-dimensional area over a spectral range collecting a three-
dimensional spectral image cube with component specific spectra per pixel. Hyperspectral imaging is historically 
significant in remote sensing of satellite or drone imagery showing agricultural differences in terrain and crops (i.e. 
nutrients monitoring and pest control).11,12 Other applications include food processing,13 historical art and documentation 
restoration14,15 and archaeology.16 While there are many alternative approaches for analyzing HSI data, the ability to 
determine relative abundances of either individual molecules or cancer-correlated signatures would provide enhanced 
contrast for optical diagnosis within endoscopy. We have previously reported on the ability to perform HSI on a 
microscope platform using a novel HSI technique, excitation-scanning hyperspectral imaging.17–20 This technique 
acquires the full emission spectra at every excitation wavelength (vs. acquiring key emission peaks by filtering the 
reflected or fluorescence emission spectra). We have also recently reported a prototype device implementing this 
technique in a light source which couples to a commercially accepted endoscope.21,22 This spectral light source used light 
emitting diodes (LED) of specific wavelengths for excitation instead of a broad spectrum source and tunable filter 
array.17 This allowed us to further increase acquisition speeds through electronic triggering of LEDs instead of 
mechanical switching of filters. Preliminary bench testing of the hyperspectral endoscopic system provided moderate 
resolution reflectance images at sub-video rates (~8 fps). This was due to the transmission losses (~98%) through our 
multi-furcated solid light guide design. The solid light guide was designed to collimate and combine multiple individual 
LEDs to a common output which couples to the illumination optics of the endoscope. The preliminary design was 
implemented for the proof-of-concept work mentioned above. The results showed the theoretical capability of this 
technique using a LED source, however, in order to achieve the desired image quality at video rates (20-30 fps) the 
optical throughput needed to increase. Here we present a theoretical optimization and design to improve the efficiency of 
the branched solid light guide. This in turn should allow acquisition of hyperspectral images in real time video format for 
optical discrimination of lesions and the mucosa as well as provide quantitative data to determine the predicted risk 
(normal, precancerous or cancerous) through the spectral signatures collected in the images of the lesion, with the end 
goal of increasing the detection accuracy of early stage colorectal cancer using a real-time HSI endoscopy system. 

2. METHODS 
2.1 Solid Light Guide Component Modeling 

An alpha prototype system was developed for proof-of-concept in using the excitation-scanning HSI technique within 
the field of endoscopy. The alpha version contained a 16-channel branched solid light guide of optical grade acrylic to 
combine the respective LEDs (Figure 1). The resulting device was capable of microsecond interval wavelength cycling 
allowing for millisecond spectral image cube scans. However, the optical efficiency of the alpha prototype was limited 
and there was a trade-off between acquisition time and the intensity of light collected per scan. The low transmission 
required longer acquisition times to capture the majority of the light per wavelength. A compromise was to operate at the 
fastest acquisition speeds to visualize distinguishable vascular patterns. The acquisition speeds resulted in 100-200 ms 
allowing for 8 fps video speeds. It should be noted that the framerate represents the speed to acquire the spectral image 
cube not individual wavelength frames. This initial work demonstrates the need for an optimized beta prototype to 
acquire real time hyperspectral image data on endoscopic samples (i.e. swine colon or cadavers). The transition to robust 
bench testing and future clinical trials mandates consideration of the beta prototype on a larger scale and how it will fit 
into the screening process through the entire product lifecycle. The hyperspectral endoscopic system needs to be 
considered holistically including the needs and the desires of physicians and patients. This led us to the design a multi-
furcated solid light guide to not only increase optical intensity throughput but consider the maintainability, usability and 
safety of the component. Design aspects we determined to consider throughout the modeling and manufacturing of this 
light guide include: the number of wavelengths needed in an array, the minimum area needed for each LEDs circuit and 
heat dissipation, the ability to maintain a planar design (to not combine branches from another plane) to reduce 
complexity for cost and replacement (maintainability) and additional modifications to increasing internal reflectance or 
cladding for increased transmission as well as safety for the user. Other components and aspects are under consideration 
simultaneously with the optimization of the solid light guide, however, that discussion is beyond the scope of this paper.  
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Figure 1: The alpha prototype multi-furcated optical grade acrylic solid light guide 

The optimization of the solid light guide began with modeling various designs in a raytracing software (TracePro, 
Lambda Research) for optical intensity simulation measurements. TracePro software uses a Monte Carlo analysis by 
projecting a ray of light from the emitter (LED) in a randomized vector and reports the probability (of all the rays traced) 
of the amount of light collected (on the detection surface called an Exit Surface) as a function of the amount of light 
emitted by the illumination source (e.g., fractional or percent transmission). Current models consist of an emitter, the 
solid light guide design in the form of a pipe and a detection surface. The emitting surface has input parameters that 
match the intensity, shape, angle and wavelength of commercial LEDs used in the alpha prototype (SMB1N-525V-02, 
Roithner LaserTechnik). The size of the emitter matches the dimensions of the physical LED. The light pipe is 5 mm in 
diameter (the same as the LED and the previous light guide iteration) with input properties of acrylic plastic. The 
detector is the same 5 mm in diameter to match the light pipe and resemble the input of the endoscope. The detection 
surface is marked as an Exit Surface (to measure % transmission) and a perfect absorber at this time to reduce the 
possibility of back reflection and creating a false transmission measurement. The distances between LED and pipe and 
pipe and detector are 1 mm and 2 mm respectively to simulate the physical distance between these entities. These 
parameters and positions are all to simulate the physical version, both the alpha and beta prototype. 

The simulation modeling process was designed to begin with simple geometries and build complexity as the modeling 
advances and more channels are added. Testing by simulation was used: to reduce costs associated with multiple 
redesigns, to improve speed of the overall system design process, and to verify results from the initial alpha prototype to 
validate the model accuracy. The simulation process varies one or more independent variables (i.e. pipe diameter or pipe 
length) through a parametric sensitivity study. 100,000 rays were traced for all simulations except as noted. For each 
value of the independent variable, an irradiance map was produced of the detection surface showing the surface 
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