Journal of Computational and Applied Mathematics 355 (2019) 182-192

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

I.)

Check for
updates

Analysis of directed networks via the matrix exponential

Omar De la Cruz Cabrera, Mona Matar, Lothar Reichel *
Department of Mathematical Sciences, Kent State University, Kent, OH 44242, USA

ARTICLE INFO ABSTRACT

Article history: The matrix exponential has been identified as a useful tool for the analysis of undirected
Received 6 December 2017 networks, with sound theoretical justifications for its ability to model important aspects
Received in revised form 1 August 2018 of a given network. Its use for directed networks, however, is less developed and has been
Keywords: !ess sqccessful so far. In this article we discuss some metl'dods. to identify important no@es
Network analysis in a directed network using the matrix exponential, taking into account that the notion
Matrix exponential of importance changes whether we consider the influence of a given node along the edge
Linear algebra directions (downstream influence) or how it is influenced by directed paths that point to

it (upstream influence). In addition, we introduce a family of importance measures based
on counting walks that are allowed to reverse their direction a limited number of times,
thus capturing relationships arising from influencing the same nodes, or being influenced
by the same nodes, without sacrificing information about edge direction. These measures
provide information about branch points.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Often, a complex system can be modeled as a network: a set of nodes, any two of which might be connected by edges.
Mathematically, we represent a network by a graph, which may be directed or undirected [1,2]. In spite of their simplicity,
which makes mathematical analysis tractable, these concepts can capture much of the complexity of the behavior of the
system. Some examples are:

e Social networks: Nodes are individuals (human or animal), and edges represent social relationships (e.g., acquaintance,
friendship, allegiance).

e Road networks: Each intersection or endpoint is a node, and each road section connecting one node to another one is
an edge.

e In molecular biology, genes and/or proteins can be regarded as nodes, connected by relationships like regulation
(directed) or interaction (undirected) [3].

In this work, we are interested in determining the relative importance of nodes, as well as communicability between pairs
of nodes. In undirected networks, i.e., in networks in which each edge is a “two-way street”, quantities that try to capture
the intuitive notion of importance have come to be known as notions of centrality [1,4,5], based on the idea that important
nodes should be reachable from many nodes in fairly few steps. In directed networks, a node can be important in two ways:
a node can have high downstream influence (can reach many nodes in fairly few steps along the direction of the edges) or
high upstream influence (is reached by many nodes in fairly few steps along the direction of the edges); a node with high
centrality should have high influence both upstream and downstream.
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Various measures have been proposed for quantification of the centrality of a node and of the communicability between
two nodes; e.g., [1,2,4,6-9]. Some approaches (see, e.g., [4,6,7,10-12]) involve the use of matrix functions, like the matrix
exponential of the adjacency matrix; see Section 2.2 for further details. These methods have proved to be useful when applied
to undirected networks.

For directed networks, the record is less clear. Some authors claim that the application of matrix exponential methods
leads to counter-intuitive results in simple examples [ 13]; see Section 3.1. The hubs and authorities approach [9] was proposed
as a way to avoid some of those perceived shortcomings. A variation of this approach has recently been described in [7].

Katz [8] proposed that the resolvent of the adjacency matrix A or its transpose AT times the vector 1 =[1, 1, ..., 1]7 be used
as centrality measures. Thus, Katz considered the entries of the vectors
(I—pA ", (I—pAD) ™, (1.1)

where the scalar 4 > 0 is chosen sufficiently small so that the power series expansions of the above expressions converge;
see below for further details. More recently, Benzi et al. [4,7,11] considered analogues of the expressions (1.1) with the
resolvents replaced by the exponential functions of A or AT, as well as with the matrix A replaced by the matrix (3.1) defined
below. However, for directed networks very little computational analysis has been reported in the literature that sheds light
on the performance of the expressions e*1 and ¢*"1 as measures of a node’s importance and the ease of traveling to or from
nodes. It is the purpose of this paper to shed some light on these issues, as well as to introduce matrix functions that allow
a finite number of reversals of paths. These matrix functions are helpful in identifying branch points.

This paper is organized as follows. Section 2 introduces basic notions about graphs and matrix functions. Section 3
discusses several ways to measure the importance of a node. In particular, we discuss the application of e*1 and A1 as
measures to quantify aggregate upstream and downstream reachability, as well as relativized versions of this approach
that can identify the nodes that have most influence on a predetermined set of nodes. Section 4 discusses the possibility of
reverting the direction of the walk a limited number of times. We then give examples in Section 5 that show the functions e*1
and e/’ 10of a non-symmetric adjacency matrix A to provide meaningful ranking of the nodes in their roles as broadcasters
and receivers, respectively. Numerical methods for large-scale networks with direction reversal are discussed in Section 6.
We summarize our results in Section 7.

2. Basic definitions and properties

2.1. Graphs
A network can be described mathematically by a graph G = (V, E), where V = {vy, v, ..., vy} is the set of nodes (or
vertices) and E = {eq, ey, ..., e} is the set of edges; basic facts about graphs can be found, e.g., in [1,2]. We assume G to

be a simple graph, i.e., G has no multiple edges and no self-loops. A directed edge e, pointing from node v; to node v; can be
identified with the ordered pair (v;, v;); for an undirected edge, this pair is not ordered. If some of the edges are directed,
then we call the graph directed, otherwise we call it undirected.

The out-degree of a node counts the number of edges emerging from that node, and the in-degree counts those pointing
directly at it. A (standard) walk of length k is a sequence v;, vj,, . .. v;,,, of nodes and a sequence e;,, e;,, ..., €; of edges
such that ej; points from vj; to vy, ;. An alternating walk from node v;; to node v;, is a sequence of nodes v;,, vj,, . .., v;,, such
that the direction of the edges is reversed at each step. We are interested in identifying nodes that are good broadcasters or
good receivers, i.e., nodes that originate several (standard) walks (originate much information flow) or are targets of several
(standard) walks. We remark that good broadcasters or receivers are not necessarily good hubs or authorities, respectively;
see Section 3.1.2 for a discussion of the latter concepts and references to the literature.

We can describe a network of n nodes by the adjacency matrix A = [Ay]}szl € R™" associated with the graph that
defines the network. Here A; = 1 if an edge from node v; points to node v;, and A; = 0 otherwise. The choice of 1 for all
nonzero elements of A indicates that all connections are equally important. A network is said to be directed if at least one of
its edges is directed. The adjacency matrix associated with an undirected network is symmetric, while it is nonsymmetric
for a directed network. The transpose, AT, of the adjacency matrix can be thought of as the adjacency matrix of the graph
obtained by reversing the direction of the edges.

2.2. The matrix exponential and other matrix functions

The (i, j)th element of A* gives the number of walks of length k starting at node v; and ending at node vj. A matrix function
is defined by a power series of the form

fA) =) A (2.1)
p=0

and can be interpreted as the sum of weighted numbers of walks of various lengths between the nodes. The coefficients
cp are weights; they are nonnegative and decreasing as p increases. Hence, long walks are weighted less than short walks,
i.e., long walks are considered less important than short walks. The coefficients ¢, should decrease to zero quickly enough so
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Fig. 1. Graph of a directed chain of nodes.

Table 1

Ranking the nodes in Fig. 1 by bipartizing the graph.
(a) (b)
Hub role Authority role
Node v; est Node v; et i
V1 1.543081 vy 1.543081
V2 1.543081 v3 1.543081
v3 1.543081 Vs 1.543081
Vs 1.543081 Vs 1.543081
Vs 1 U1 1

that the series (2.1) converges. A nice introduction to the use of matrix functions in network analysis is provided by Estrada
and Higham [12].

Commonly used matrix functions for network analysis include the matrix exponential, obtained by taking ¢, = 1/p!, and
the resolvent

fAA) =+ pA)y ' =1+ puA+ A+ (2.2)

where the scalar 4 > 0is chosen small enough so that the above series converges; see [ 12] for a discussion and illustrations.
The subgraph centrality of node v;, given by [f(A)];;, can be applied to measure the importance of the node; see [5,12]. A
relatively large value indicates that the node is important.

3. Node importance and communicability using the matrix exponential
3.1. Existing methods

3.1.1. Methods for undirected networks

Measures of importance include simple notions like vertex degree (degree centrality) as well as more elaborate concepts
[1,4,5,14], including subgraph centrality.

Benzi et al. [7] discussed the application of the matrix exponential to the adjacency matrix for a directed network and
observed that it may not be meaningful to use the diagonal entries of the exponential as a measure of importance of the
nodes of a directed network. They considered the directed network of Fig. 1.

The associated adjacency matrix is an n x n Jordan block with diagonal entries zero. All diagonal entries of the exponential
of this matrix are one, giving the same importance to each of the nodes. This result was not satisfying for the authors, since
the first and last nodes should not be equally important. Benzi et al. [7] therefore proposed to bipartite the network into
hubs and authorities. We outline this approach in the following subsection.

3.1.2. Directed networks: Bipartization

The out-degree and in-degree are simple measures of the importance of a node in its roles as hub and authority,
respectively. These measures only consider local information of each node, and may not be appropriate measures of
importance.

Kleinberg [9] proposed to split a directed network into hubs and authorities and Benzi et al. [7] constructed a related
symmetric matrix that makes it possible to compute the hub centrality and authority centrality of nodes using the matrix
exponential. Specifically, Benzi et al. [7] considered the symmetric matrix

0 A
determined by the nonsymmetric adjacency matrix A associated with the given directed graph. The diagonal entry e;!.“, for
1 < i < n, gives a measure of the hub centrality of node v;. Likewise the diagonal entry enAﬂnH, for1 < i < n,gives a

measure for the authority centrality of node v;.

However, while determining the importance of nodes by ranking their hub and authority roles using the diagonal entries
of the exponential e yields valuable information in many situations, it is not satisfactory for identifying good broadcasters
and receivers. For instance, consider the network of Fig. 1 and let n = 5. Following the process described above, we obtain
the ranking displayed in Table 1.

Although this ranking shows node vs to be the least important node in its hub role, and node v, is seen to be least
important in its authority role, this approach fails to give a reasonable ranking for the other nodes in the graph, which
appear to be equally important as hubs and authorities. However, since node v is able to send information to all the other
nodes in the network, its role as broadcaster should be the largest. In the next section, we discuss an alternative way to rank
the nodes of a directed network, without bipartization of the graph.
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3.2. Aggregate upstream and downstream reachability

Consider the exponential of a nonsymmetric adjacency matrix A associated with a directed network. Introduce the vector
u = [uq, Uy, ..., u,]" for measuring how important it is to reach each node of the network; we let u; = 0 if the node v; is
considered an uninteresting destination. A large value of u; indicates that node v; is a highly targeted node. In the following
we only consider entries u; € {0, 1}. Now e*u allows us to determine which nodes are most important for the requested flow,
. . . . 7T T . .
i.e., which nodes are the most important broadcasters. Similarly, (u e"‘) = e u gives a ranking of the nodes according to
their role as receivers from the nodes specified by the nonzero entries of u.

We define the aggregate downstream reachability as the vector

ADR = ¢'1. (3.2)

Thus, here u = 1. This vector gives the same importance to the goal of reaching any node in the network. Similarly, the
aggregate upstream reachability is defined as

AUR = €' 1. (3.3)

ADR provides a reasonable ranking for the nodes in their broadcaster role, i.e., in their ability to broadcast information
through the network. Likewise, AUR can be used to rank the nodes according to their receiver role. We remark that Benzi
etal. [7, Section 8.1] tabulated the column sum of e*, but did not discuss this approach in any detail.

For the graph of Fig. 1, the ADR and AUR methods determine the rankings displayed in Table 2. These rankings satisfy the
requirements mentioned at the end of Section 3.1.2.

4. Walks with a bounded number of reversions

An appealing feature of the hubs-and-authorities model described by Benzi et al. [7] is that two nodes v;, v; can be
considered related in situations when edges are connected by alternating walks; the drawback is that only strictly alternating
walks are considered. On the other hand, measures based solely on e*, such as ADR and AUR, fail to capture these “lateral”
connections. In this section we consider an approach that allows us to recover some of these connections. Taking lateral
connections into account helps us identify important branch points.

A simple way to include lateral connections is to transform the directed network into an undirected one by disregarding
edge directions. This can be achieved by symmetrizing the adjacency matrix, i.e., by computing the exponential of the
symmetric matrix As = %(A + AT) instead of the exponential of A. The matrix As is the closest symmetric matrix to A in
the Frobenius norm. Of course, all directionality information is lost when replacing A by As. Nevertheless, for comparison
purposes, we define the symmetrized aggregate reachability by

SAR = "*zf‘ 1.

. . la1 . . . . .
Consider now the matrix e2e24" . This matrix equals the one used in SAR if and only if A and AT commute. We have

o] T oo 00 i TV

1, L A" (AT)" Al (AT)

exier = <Z Z”H!) (Z 21! ZZ 21+Jﬂ]! : (41)
n=0 n=0 i=0 j=0

Since the entries of Al (AT) count walks that move along i edges, and then in reverse along j edges, erhe2 is comprised of
weighted sums of counts of walks that start in the forward direction, and have exactly one change of direction (either leg of
the walk may be of length zero). Similarly, eéATe% contams weighted sums of walks that start in reverse, and then change
direction exactly once. The vectors e7%e2A 1and e2*’ e7*1 are helpful in identifying branch points of directed networks. This
will be illustrated in Section 5.

Analogously to (4.1), we can construct matrices containing information about walks with at most two reversions, namely

1A

3434’ o34

1T 1a 1aT

and e3” e3”e3

In general, we can build a matrix contammg welghted sums of numbers of walks with at most k reversions using alternating
products of k + 1 factors of the form ek+1 and ek+1

We introduce the bounded number of reversions notions of reachability, denoted by BNR(x, k), where x € {d, u}, by
[ SR S
BNR(d, k) = | ek+17ek+1" ... |1 (4.2)
and

A r 1,
BNR(u, k) = [ ek+17 ek+17 ... | 1. (4.3)

Here each product has k + 1 exponential factors.
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Table 2

Comparison of influence measures for the nodes in Fig. 1, including aggregate
reachability using walks with a bounded number of reversions, as well as
disregarding orientation altogether; see Section 4 for definitions.

Node v; ezt ADR BNR(d, 1) BNR(d, 2)

vy 1.54 2.71 1.99 2.14

v, 1.54 267 2.55 262

v3 1.54 2.50 265 264

vy 1.54 2.00 247 2.39

Vs 1.00 1.00 1.65 153

Node v; e i AUR BNR(u, 1) BNR(u, 2) SAR
vy 1.00 1.00 1.65 153 1.83
v, 1.54 2.00 247 2.39 253
v3 1.54 2.50 265 264 2.66
vy 1.54 267 2.55 262 253
Vs 1.54 271 1.99 2.14 1.83

We are mostly interested in small values of k (say, k = 1 or 2), since intuition suggests that the more reversals we allow,
the closer we get to losing all directional information, as in the SAR approach. This intuition is formalized by the following
result:

Proposition 4.1. lim_, ., BNR(d, k) = lim;_, .. BNR(u, k) = SAR.

Proof. The statement follows from the Lie product formula (see, e.g., [ 15, page 35]):
&Y = lim (eX/me"/m)".

m—o0
Taking X = JAand Y = 1A, we obtain for k = 2m — 1 that

L Y S U 1 La,r 11,\™ 1,7 1
ek+1A ek+1A...ek+1A = (em 24 em 24 — efA 24

1
as m — oo. The same happens for the products starting with e¥1. For k = 2m, we obtain terms of the form

(exp (1, 1 1AT) exp (1 1 14))" ezt
p m+1m2 p m+1m 2 :

. 14T, 1
The last factor converges to I as m — oo; the remaining part can be shown to converge to e2” *2” by the same method as

the proof of the Lie product formula in [ 15]. Finally, the result is obtained multiplying by 1 on the right. O

We remark that the matrices A and AT commute if and only if A is normal. In this case, both BNR(d, k) and BNR(u, k)
equal SAR, for all odd k. This means that the BNR measures may discard all directionality information, even for small k, but
only for a restrictive class of adjacency matrices. Indeed, equality of the diagonal entries of AAT and ATA implies that each
vertex has equal in-degree and out-degree, which is a reasonable condition if the directed network represents a volume-
preserving flow; equality of the off-diagonal entries imposes an even stronger restriction. Examples of non-symmetric
normal adjacency matrices include circulant matrices, which correspond to a cyclic arrangement of the nodes, and some
block-circulant matrices.

5. Examples
The vector u in all examples of Sections 5.1 and 5.2 is chosen to be 1.
5.1. Small examples

In this subsection we give examples of small synthetic directed networks, and rank their nodes in their broadcaster and
receiver roles. We compare our results with the ranking described in Section 3.1.2 for each of these networks.

5.1.1. Example 1: Simple chain
This example is illustrated in Fig. 1 for n = 5. The different measures discussed in this paper are summarized in Table 2.

5.1.2. Example 2: Simple chain with one branch
Regard the graph depicted in Fig. 2. Bipartization of this graph gives the nodes vy, v,, v4, and vs the same hub rank, since
they all point to only one node, that is not pointed to by any other node; see Table 3. However, the graph suggests an obvious
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Table 3

Comparison of influence measures for the nodes in Fig. 2, including aggregate
reachability using walks with a bounded number of reversions, as well as
disregarding orientation altogether; see Section 4 for definitions.

Node v; ezt ADR BNR(d, 1) BNR(d, 2)

v 1.54 2.92 2.03 220

vy 1.54 3.33 279 2.95

v3 2.18 4,00 3.68 3.86

vy 1.54 2.00 247 253

vs 1.54 2.00 247 253

Vg 1.00 1.00 1.65 1.55

vy 1.00 1.00 1.65 1.55

Node v; et i AUR BNR(u, 1) BNR(u, 2) SAR
vy 1.00 1.00 1.67 1.54 1.86
vy 1.54 2.00 2.63 2.48 272
v3 1.54 2.50 3.35 3.22 3.58
vy 1.59 2.67 2.88 2.80 272
s 1.59 2.67 2.88 2.80 272
vg 1.54 2.71 2.07 2.17 1.86
vy 1.54 271 2.07 2.17 1.86

V4 V6
U1 ) U3
»O >
Vs (%

Fig. 2. Graph of Example 2.

U2

V4

U3

U5

Fig. 3. Graph of Example 3.

advantage for nodes v; and v,, because information from these nodes can spread to node v3, and from there deeper into the
network. The ADR ranking shows the nodes v, and v, to be the 2nd and 3rd most important broadcasters, respectively.

As far as the authority role, the nodes v4 and vs get the highest ranking by the bipartization method, because of
the alternating walks reaching them from v,. However, they actually only receive information from node v3. Using the
exponential of AT, v and vy are ranked the highest, since they receive information from the nodes they are directly attached
to, from node v3 through a walk of length 2, from node v, through a walk of length 3, as well as from node v, through a walk
of length 4. Thus, the AUR ranking determines an intuitively reasonable ordering.

The measures BNR(d, k) and BNR(u, k) identify v3 to be the most important node for both k = 1 and k = 2, because the
graph has a branch point at vs. This example suggests that the BNR(d, k) and BNR(u, k) measures can be applied to identify
important branch points. Node v is the most important node also if all directed edges are replaced by undirected ones.

5.1.3. Example 3: Branching at two levels

Consider the example in Fig. 3. Using the bipartization method, Table 4 indicates that the vertices v; and v3 have the same
importance as hubs. However, Fig. 3 suggests that this is clearly not the case, since node v; broadcasts to more nodes in the
network than node vs. In fact, v3 can reach directly two nodes v4 and vs, and v also reaches directly two nodes v, and vs, in
addition to the nodes v4 and vs through the hub role of node v;. When computing the ADR ranking, the role of v; as a more
important broadcaster is detected.

Regarding the receiver role of the nodes, we observe from Table 4 that AUR ranks the vertices v4 and vs as more important
receivers than v, and vs, since they receive more information from the network, whereas the bipartization method does not
show this difference.
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Table 4

Comparison of influence measures for the nodes in Fig. 3, including aggregate
reachability using walks with a bounded number of reversions, as well as
disregarding orientation altogether; see Section 4 for definitions.

Node v; ezt ADR BNR(d, 1) BNR(d, 2)
vy 2.18 4.00 291 3.25
v, 1.00 1.00 1.50 1.59
v3 2.18 3.00 3.12 3.36
vy 1.00 1.00 1.62 1.65
Vs 1.00 1.00 1.62 1.65
Node v; e i AUR BNR(u, 1) BNR(u, 2) SAR
vy 1.00 1.00 225 2.04 267
v, 1.59 2.00 212 2.01 1.85
v3 1.59 2.00 3.12 2.94 3.25
vy 1.59 2.50 228 226 1.99
Vs 1.59 2.50 228 226 1.99
% - MAPK1 @ TP53
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RPS2 ? e 27‘
8 CYP11A1
I
£ 2
3
8 YP@_ZJ.AZ
9_.) H
o <
- o
28
g 2
&
£
g g
2 &5 e
s 2
ZBTB48® ® ®@BACH1
o ZNF263
o
2
2 RBM12 oSPA17
[0
T T T T
1e+00 1e+02 1e+04 1e+06

Downstream aggregate reachability

Fig. 4. Gene network: B Cell Interactome. Upstream (17 exp(0.25A)) vs. downstream (exp(0.25A)1) aggregate reachability for genes in the network. Genes
on the top right are well known, highly influential genes, like MYC and TP53. The genes on the left, like CYP27A1, perform metabolic functions but have
little effect on other genes. Some ribosomal genes (RPS17, RPS27, etc.) form a small cluster. The gene COPE, which only has one incoming and one outgoing
edge, appears less extreme than others.

Turning to the measures BNR(d, 1) and BNR(d, 2), we observe that both of them identify the vertices v; and v; as
important; these are branch points for outflow of the graph. BNR(u, 1) and BNR(u, 2) are large for vertex vs, because this
vertex is a branch point for inflow. These measures are not large at vq, because there is no inflow to this vertex. This example
illustrates that the measures BNR(d, k) and BNR(u, k) for k > 1 reveal important information about branch points of a graph.

This subsection has compared rankings determined by bipartization, ADR, ADR, and BNR. When we are interested in
broadcasters and receivers, and how information flows, the latter ranking schemes appear to be appropriate.

5.2. Real-life large examples

5.2.1. Gene regulatory network of the human B-cell interactome

We consider a network of protein-protein, protein-DNA, and modulatory interactions in human B cells [16]. There are
5737 nodes (genes/proteins) and 84,892 directed edges. Taking the matrix exponential of the adjacency matrix (multiplied
by a coefficient of 0.25), we found one main strongly connected component (3891 genes) with 1833 genes downstream
(grouped in singletons, pairs, triplets, or quadruplets) and 13 individual genes upstream. Analyzing the main strongly
connected component, we are able to find the distribution of genes based on their aggregate downstream (exp(0.25A)1) and
aggregate upstream (17 exp(0.25A)) reachability; comparing the two, we can identify the overall role of genes as regulators,
regulated, or both. Fig. 4 displays the network.

Table 5 illustrates how ADR and AUR can be used to identify important nodes in a complex directed network, and their
different roles. Genes with high ADR and low AUR influence many genes, directly or indirectly, while being influenced by
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Table 5

Comparison of influence measures for the nodes in the Gene network, includ-
ing aggregate reachability using walks with a bounded number of reversions,
as well as disregarding orientation altogether; see Section 4 for definitions.

Top 10 ranked nodes v; using various measures

et ADR BNR(d, 1) BNR(d, 2)

MYC MYC MYC MYC

ESR1 ESR1 ESR1 ESR1

CREB1 CREB1 CREB1 CREB1

RBL2 RBL2 RBL2 RBL2

FOXM1 TP53 TP53 TP53

SP3 SP3 SP3 SP3

JUND EP300 EP300 EP300

POU2F2 E2F4 E2F4 E2F4

E2F4 MAPK1 MAPK1 MAPK1

TCF1 STAT1 STAT1 STAT1

et i AUR BNR(u, 1) BNR(u, 2) SAR
EP300 MAPK1 MAPK1 MAPK1 MYC
CREBBP TP53 TP53 TP53 ESR1
CDC2 GRB2 GRB2 GRB2 CREB1
PCNA FYN FYN FYN RBL2
BRCA1 CDC2 CDC2 CDC2 JUND
AURKA SRC SRC SRC SP3
CCNA2 MAPKS MAPKS MAPKS FOXM1
LYN JUNB JUNB JUNB POU2F2
LTK STAT3 STAT3 STAT3 E2F4
JUN TRAP1 TRAP1 TRAP1 STAT1

189

relatively few other genes; typically, these are transcription factors, that control the expression level of many other genes
through regulatory pathways (ZBTB48, ZNF263, BACH1, and SOX5 are transcription factors). Genes with low ADR and high
AUR can be expected to be “workhorse” genes, which perform important duties, and are therefore controlled by many
upstream genes, but do not have a regulatory function (CYP11A1, CYP27A1, and CYP21A2, for example, encode enzymes
with metabolic functions). Finally, genes with high ADR and high AUR can be regarded as very central in the network, brokers
of influence that collect information from many genes upstream and control the expression of many genes downstream,;
unsurprisingly, crucial master genes like TP53 and MAPK1 have extreme values in both measures. (The information about
specific genes mentioned above was obtained from Gene Cards [17].)

An approach described by Croft and Higham [ 18] is closely related, but designed with the goal of extracting a hierarchical
structure. In our notation, their measure becomes ADR — AUR, and it can be used to identify putatively influential
transcription factors; however, it would fail to distinguish between TP53 and a relatively unimportant gene like COPE. One
could define a measure for centrality given by ADR + AUR which would distinguish between TP53 and COPE; of course,
ADR — AUR and ADR + AUR are essentially an axis rotation of the measures ADR and AUR. It seems clear that a full picture
requires at least two separate measures. In this example the BNR measures do not seem to add much beyond what is provided
by ADR and AUR, at least for the top ranked genes.

We remark that scaling of an adjacency matrix may enhance the usefulness of the ordering determined. An interpretation
of graphs as oscillator networks in which the scaling coefficient corresponds to inverse temperature is provided in [19].
Although the proper choice of scale is an important issue, it falls outside the scope of this work; our choice of 0.25 as scaling
factor is approximately the largest value that prevents the entries of e* from growing to the point of numerical overflow.

5.3. Bus route network targeting specific nodes

In this example we rank the nodes according to their downstream or upstream influence on particular nodes. Consider
the Kent State University main campus bus system, illustrated in Fig. 5, left panel. The route consists of four working loops:
Front Campus/Summit East (in blue), Reverse Loop (in green), Gateway Loop (in orange), and Alberton (in purple). Due to
road construction, Campus Loop (in red) was not running at the time of writing, and is not included in our example.

The bus stops are the nodes v, vy, ..., vip, Which are connected by directed edges according to the map and schedule
information [20]. We assign only one node to each named bus stop, even when the bus stops on both sides of the street. The
graph of the directed network is shown in Fig. 5, right panel. We assign the same weight to all edges regardless of travel
length.

We compute e*u for two vectors u. As mentioned in Section 3.2, the entries of the vector u indicate how important it
is to reach each node in the network. In this example we let these entries be either 0 or 1, depending on whether we are
interested in reaching a node or not.

For Table 6, we let all entries of u; be zero except for the fourth entry. Thus, we are interested in ranking the nodes
according to how much they contribute to reaching node v4. Table 7 shows how much each node contributes to receiving
from node v4. This is a new way of calculating the communicability among the nodes.



190 0. De la Cruz Cabrera, M. Matar and L. Reichel / Journal of Computational and Applied Mathematics 355 (2019) 182-192

Fig. 5. Left: Kent State University main campus bus route [20]. Right: Network graph of Kent State University main campus bus route . (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 6

Comparing the top 5 ranked nodes in Fig. 5 as broadcasters where u; =

[0,0,0,1,0,0,0,0,0,0]" andu, = [0,0,0,1,0,0,1,0,0,0]".
Broadcasting

Node v; (e*1); Node v; (ehuy); Node v; (e*uy);

Vg 10.00 Vg 1.02 Vg 1.61

Vg 9.56 U3 1.00 Vg 1.47

V1 9.31 Vg 0.60 v7 1.20

v7 5.34 V1 0.20 v3 1.19

V10 5.34 v7 0.19 V1 0.81
Table 7

Comparing the top 5 ranked nodes in Fig. 5 as receivers, where u; =
[0,0,0,1,0,0,0,0,0,0]" andu, =[0,0,0,1,0,0,1,0,0,0]".

Receiving

Nodewv;  (e'1)  Node v; (" uy); Node v; (" uy);
vo 1151 v 1.37 Vo 183

Vg 8.33 Vg4 1.02 vy 1.61

" 7.23 v 0.61 ve 1.47

vs 5.74 v 0.59 s 1.20

vy 5.74 vs 0.59 vy 0.81

Let the vector u, have the fourth and the seventh entries equal to 1 and the other entries zero. Thus, we are interested in
determining the best node to place our information in order to reach nodes v4 or v;. This is displayed by Table 6. The best
node to gather information coming from nodes v,4 or v7 is shown by Table 7.

Take the scenario of a driver who would like to drop off four students at the university. One of the students is going to
node vy, the second one to v, the third to vg, and the last one to node v1o. The driver can only take them to one bus stop.
Where should he/she stop the car? Table 6 indicates that it is best to take the students to node vg, from where each one of
them rides the bus to his/her destination. Table 7 shows that it is best that they all ride the bus to node vy, where the driver
picks all of them up at the same time.

6. Numerical considerations

When a network has fairly few nodes and, therefore, the associated adjacency matrix A is small, evaluation of the matrix
exponential is quite inexpensive. We then can calculate expressions of the forms (3.2), (3.3), (4.2) and (4.3) by first evaluating
¢ and then computing the desired expression(s), where we may use thate’’ = (e*)7. However, when the network has many
nodes and the adjacency matrix A is large, the explicit calculation of e* is too expensive to be attractive. This section discusses
how approximations of the expressions (3.2), (3.3), (4.2) and (4.3) can be evaluated fairly inexpensively for large adjacency
matrices with the aid of the Arnoldi process.

Let || - || denote the Euclidean vector norm. Application of £ steps of the Arnoldi process to the matrix A with initial vector
w # 0 gives the decomposition

AW, = W,H, + gej, (6.1)
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where the matrix W, = [wy, Wy, ..., w;] € R"™¢ has orthonormal columns that span the Krylov subspace K,(A, w) =
span{w, Aw, ..., A*"'w} with w; = w/|w]|. The matrix H, € R*¢ is of upper Hessenberg form, g, € R" satisfies
W[gg =0,ande; =[0,...,0,1,0,...,0]" denotes the £th column of an identity matrix of appropriate order; see, e.g., Saad

[21, Chapter 6] for details on the Arnoldi process. We assume that ¢ is small enough so that the decomposition (6.1) with
the stated properties exists. This is the generic situation. The computation of this decomposition requires the evaluation of
£ matrix-vector products with the matrix A.

Expressions of the form e*w are commonly approximated by the right-hand side of

etw ~ Weete |wi,

see, e.g., [22,23] for discussions. In particular, we obtain an approximation of (3.2) by letting w = 1. When A is large,
the dominating computational work for calculating this approximation is the evaluation of the ¢ matrix-vector products
required to determine the decomposition (6.1).

An approximation of the expression (3.3) can be determined similarly: we apply the Arnoldi process to the matrix A"
with initial vector W = 1. This gives the decomposition

AW, = WH, +8el, (6.2)
which is analogous to (6.1). We then evaluate the right-hand side of
AW~ Weellte, W) (6.3)

When A is large, the dominating computational effort to calculate this approximation is the evaluation of the £ matrix-vector
products with AT needed to determine the decomposition (6.2).

We turn to the approximation of the expression (4.2) for k = 1. Extension to the situation when k > 1 is straightforward.
The expression (4.3) can be computed in a similar fashion. We first compute the Arnoldi decomposition (6.2) with initial
vector W = 1 and then evaluate the Arnoldi decomposition (6.1) with initial vector w = W,e"¢e;||1]||. This gives the
approximation

Weece; |w (6.4)
of (4.2). The following results shed some light on this approximant.

Proposition 6.1. Let f be a polynomial of degree at most £ — 1 and let W be an initial vector for the Arnoldi decomposition (6.2).
Consider the approximation

Wef (Ho e ||
of f(ATYW. Use the above vector as initial vector w for the decomposition (6.1) and compute the approximation
Wf(He)esllw| (6.5)

of f(A)f (AT YW. Then this approximation is exact. We assume that the required Arnoldi decompositions can be computed without
breakdown of the Arnoldi process.

Proof. Consider the decomposition (6.1). It is well known that for any polynomial f of degree at most £ — 1, we have
flA)w = W f(He)eq|lwl;

see, e.g, [22]. Clearly, an analogous result holds if the decomposition (6.1) is replaced by the decomposition (6.2). The desired
result follows. O

The approximation (6.5) of f(A)f(AT)W requires the evaluation of 2¢ matrix-vector products, £ with each one of the
matrices A and AT. When the adjacency matrix A is stored in a format that makes the evaluation of matrix-vector products
with AT more expensive than with A, it may be tempting to apply 2¢ steps of the Arnoldi process to A with initial vector W
and then use the low-rank matrices

E‘A ~ WzgeHnWZTZ, eAT ~ WzgeHZTZ WZTZ’ (66)

to approximate e’’’ W. The evaluation of this approximation requires the same number of matrix-vector product evalu-
ations as the approach described in Proposition 6.1. However, no analogue of this proposition is available for the approx-
imations (6.6) and, indeed, the approximation of AW typically is of significantly worse quality than an approximation
computed by the approach of Proposition 6.1.

We conclude this section with a comparison of the evaluation of the expression (4.2) for k = 1 for the matrix A of
Section 5.2.1 by explicitly computing the matrix exponential e* and by evaluating Arnoldi decompositions as described by
Proposition 6.1. The matrix A is of order 3891. The computation of the matrix exponential M = e*/? using the MATLAB



192 0. De la Cruz Cabrera, M. Matar and L. Reichel / Journal of Computational and Applied Mathematics 355 (2019) 182-192

function expm required 1222.15 s (= 20.37 min).! This is the dominating work. Letw = [1, 1, ..., 1]7 € R38°!, Having the
matrix M, we can calculate BNR(d, 1) by evaluating two matrix-vector products BNR(d, 1) = M(MTw). The top 10 ranked
nodes obtained in this manner are shown in column 3 in the top part of Table 5.

We turn to the approximation of the expression (4.2) with the aid of Arnoldi decompositions. First we compute the

decomposition (6.2) for £ = 6 and initial vector w. This required only 0.037 s and gives the approximationz := Wge”G er||wi|
of MTw. The total time needed to compute Z was 0.077 s. Next we evaluate the Arnoldi decomposition (6.1) with £ = 6
and initial vector Z. The calculation of this decomposition required 0.023 s. The difference in time required to compute the
decompositions (6.2) and (6.1) depends on the storage format for the matrix A used by MATLAB. The total time needed to
compute an approximation of (4.2) for k = 1 in this manner is only 0.129 s. The top 10 ranked nodes are those of column 3
in the top part of Table 5. Thus, the application of the Arnoldi process twice with £ = 6 as described by Proposition 6.1 gives

. . 1a 1,7 . .
the same ranking of the nodes as the evaluation of e2%e24 w and requires much less time.
7. Discussion and conclusion

Until now the use of matrix functions based on the exponential has not received much attention for ranking the nodes
of a directed network. Differently from the situation for undirected networks, it is generally not so useful to tabulate the
diagonal entries of the exponential of the adjacency matrix. This already has been observed in the literature; see, e.g., Benzi
etal. [7].

An important difference between directed and undirected networks is that in the former one measure of importance is
rarely sufficient. Instead, a combination of measures will often provide a more complete picture. The gene network example
(Section 5.2.1) illustrates this by combining upstream and downstream aggregate reachabilities to identify genes that play
different roles and are important in different ways.

We also introduced a family of reachability measures that consider walks that are allowed to change direction a finite
number of times. This allows us to take into account “lateral” relationships between nodes.
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