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Abstract This work discusses four algorithms for the solution of linear discrete ill-
posed problems with several right-hand side vectors. These algorithms can be applied,
for instance, to multi-channel image restoration when the image degradation model
is described by a linear system of equations with multiple right-hand sides that are
contaminated by errors. Two of the algorithms are block generalizations of the stan-
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dard Golub–Kahan bidiagonalization method with the block size equal to the number
of channels. One algorithm uses standard Golub–Kahan bidiagonalization without
restarts for all right-hand sides. These schemes are compared to standardGolub–Kahan
bidiagonalization applied to each right-hand side independently. Tikhonov regular-
ization is used to avoid severe error propagation. Numerical examples illustrate the
performance of these algorithms. Applications include the restoration of color images.

Keywords Golub–Kahan bidiagonalization ·BlockGolub–Kahan bidiagonalization ·
Global Golub–Kahan bidiagonalization ·Tikhonov regularization · Ill-posed problem ·
Multiple right-hand sides · Color image restoration

Mathematics Subject Classification 6510 · 65F22

1 Introduction

This paper discusses the use of iterative methods based on standard or block
Golub–Kahan-type bidiagonlization, combined with Tikhonov regularization, to the
restoration of a multi-channel image from an available blur- and noise-contaminated
version. Applications include the restoration of color images whose RGB (red, green,
and blue) representation uses three channels; see [9,17]. The methods described also
can be applied to the solution of Fredholm integral equations of the first kind in two or
more space dimensions and to the restoration of hyper-spectral images. The latter kind
of images generalize color images in that they allowmore than three “colors”; see, e.g.
[21]. For definiteness, we focus in this section on the restoration of k-channel images
that have been contaminated by blur and noise, and formulate this restoration task as
a linear system of equations with k right-hand side vectors, where each spectral band
corresponds to one channel. To simplify our notation, we assume the image to be rep-
resented by an array of n× n pixels in each one of the k channels, where 1 ≤ k � n2.
Let b(i) ∈ R

n2 represent the available blur- and noise-contaminated image in channel
i , let e(i) ∈ R

n2 describe the noise in this channel, and let x̂ (i) ∈ R
n2 denote the desired

unknown blur- and noise-free image in channel i . The corresponding quantities for all
k channels b, x̂, e ∈ R

n2k are obtained by stacking the vectors b(i), x̂ (i), e(i) of each
channel. For instance, b = [(b(1))T , . . . , (b(k))T ]T . Here and throughout this paper,
the superscript T denotes transposition.

The degradation model is of the form

b = Hx̂ + e (1.1)

with blurring matrix

H = Ak ⊗ A ∈ R
n2k×n2k .

Here ⊗ denotes the Kronecker product, the matrix A ∈ R
n2×n2 represents within-

channel blurring, which is assumed to be the same in all channels, and the small
matrix Ak ∈ R

k×k models cross-channel blurring.
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Solution methods for linear discrete ill-posed problems... 557

Sometimes it is convenient to gather images for the different channels in “block
vectors.” Introduce the block vectors B = [b(1), . . . , b(k)] ∈ R

n2×k , ̂X =
[̂x (1), . . . , x̂ (k)] ∈ R

n2×k , and E = [e(1), . . . , e(k)] ∈ R
n2×k . Using properties of

the Kronecker product, the model (1.1) can be expressed as

B = A (̂X) + E, (1.2)

where the linear operator A is defined by

A : Rn2×k → R
n2×k

A (X) := AX AT
k . (1.3)

Its transpose is given by A T (X) := AT X Ak . The model (1.2) is said to have cross-
channel blurring when Ak �= Ik ; when Ak = Ik , there is no cross-channel blurring. In
the latter situation, the blurring is said to be within-channel only, and the deblurring
problem decouples into k independent deblurring problems. The degradation model
(1.1) then can be expressed in the form

B = ÂX + E . (1.4)

For notational simplicity, we denote in the following both the matrix A in (1.4) and
the linear operator A in (1.2) by A, and we write A (X) as AX .

The singular values of a blurring matrix or operator A typically “cluster” at the
origin, i.e., A has many singular values of different orders of magnitude close to zero.
It follows that the solution (if it exists) of the linear system of equations

AX = B (1.5)

is very sensitive to the error E in B. Linear systems of equations with a matrix of this
kind are commonly referred to as linear discrete ill-posed problems.

Let ̂B denote the (unknown) noise-free block vector associated with B. The system
of equations AX = ̂B is assumed to be consistent, and ̂X stands for the solution of
minimal Frobenius norm of this system. The Frobenius norm of a matrix M is defined
by ‖M‖F = trace(MT M)1/2.

We would like to determine an accurate approximation of ̂X given B and A. This
generally is a difficult computational task due to the error E in B and the presence of
tiny positive singular values of A. Tikhonov regularization reduces the sensitivity of
the solution of (1.5) to the error E in B by replacing (1.5) by a penalized least-squares
problem of the form

min
X∈Rn2×k

{‖AX − B‖2F + μ−1‖X‖2F }, (1.6)

where μ > 0 is the regularization parameter. The normal equations associated with
this minimization problem are given by

(AT A + μ−1 I )X = AT B. (1.7)
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558 A. H. Bentbib et al.

They have the unique solution

Xμ =
(

AT A + μ−1 I
)−1

AT B (1.8)

for any μ > 0. The size of μ determines how sensitive Xμ is to the error in B and how
close Xμ is to the desired solution ̂X . We will comment on the use of μ−1 in (1.6)
instead of μ below.

The computation of an accurate approximation Xμ of ̂X requires that a suitable
value of the regularization parameter μ be used. Several methods for determining
such a μ-value have been suggested in the literature. These include so-called heuristic
methods that do not require knowledge of the size of the error E in B, such as the
L-curve criterion, generalized cross validation, and the quasi-optimality criterion; see,
e.g. [2,8,11,15,19,20,24] for discussions and illustrations.Wewill use the discrepancy
principle, discussed, e.g. in [6], to determine μ in the computed examples reported in
Sect. 5. The discrepancy principle requires that a bound ε > 0 of ‖E‖F be available
and prescribes that μ > 0 be chosen so that the solution (1.8) of (1.6) satisfies

‖B − AXμ‖F = ηε, (1.9)

where η > 1 is a user-specified constant independent of ε. A zero-finder can be applied
to determine a μ-value such that the associated Tikhonov solution (1.8) satisfies (1.9).
When the matrix A is of small to moderate size, the left-hand side of (1.9) easily
can be evaluated by using the singular value decomposition (SVD) of A. However,
computation of the SVD is impractical when the matrix A is large.

We will discuss how an approximate solution of (1.6) can be computed by first
evaluating a partial block Golub–Kahan bidiagonalization (BGKB) of A and then
solving (1.6) in a subspace so defined.

Alternatively, we may reduce A to a small bidiagonal matrix with the aid of global
Golub–Kahan bidiagonalization (GGKB), which also is a block method, and then
apply the connection between GGKB and Gauss-type quadrature rules to determine
upper and lower bounds for the left-hand side of (1.9). This allows the computation of
a suitable value of μ in a simple manner. This approach has previously been applied
in [1]; the GGKB method was first described in [26]. The BGKB and GGKB block
methods are compared to the application of Golub–Kahan bidiagonalization (with
block size one) in two ways. One approach applies Golub–Kahan bidiagonalization
with initial vector b(1) and generates a solution subspace that is large enough to solve
all systems of equations

Ax (i) = b(i), i = 1, . . . , k, (1.10)

with Tikhonov regularization. The other approach is to simply solve each one of the k
systems of equations (1.10) independently with Golub–Kahan bidiagonalization and
Tikhonov regularization, i.e., by using the algorithm described in [3] k times.

This paper is organized as follows. Section 2 describes the BGKB method and
discusses its application to the solution of (1.6). The determination of a regularization
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parameter such that the computed solution satisfies the discrepancy principle is also
described. Section 3 reviews the use of the GGKB method to reduce A. The connec-
tion between this reduction and Gauss-type quadrature rules is exploited to compute
bounds for the left-hand side of (1.9). The solution of (1.6) by applying Golub–Kahan
bidiagonalization (with block size one) determined by A and the initial vector b(1) is
discussed in Sect. 4. Sufficiently many bidiagonalization steps are carried out so that
all systems (1.10) can be solved with solution subspaces determined by A and b(1).
We also consider the solution of the k systems (1.10) independently by Golub–Kahan
bidiagonalization and Tikhonov regularization as described in [3]. Section 5 presents
a few numerical examples. Concluding remarks can be found in Sect. 6.

2 Solution by partial block Golub–Kahan bidiagonalization

Introduce for μ > 0 the function

φ(μ) = ‖B − AXμ‖2F . (2.1)

Substituting (1.8) into (2.1) and using the identity

I − A(AT A + μ−1 I )−1AT = (μAAT + I )−1 (2.2)

shows that (2.1) can be written as

φ(μ) = tr
(

BT fμ(AAT )B
)

(2.3)

with

fμ(t) = (μt + 1)−2.

The determination of a value of the regular parameter μ > 0 such that (1.9) holds
generally requires the function φ to be evaluated for several μ-values. Each evalua-
tion of φ is very expensive for large-scale problems. We therefore approximate the
expression BT fμ(AAT )B by a simpler one, which we determine with a few steps
of block Golub–Kahan bidiagonalization as follows. Introduce the QR factorization
B = P1R1, where P1 ∈ R

n2×k has orthonormal columns and R1 ∈ R
k×k is upper

triangular. Then � steps of the BGKB method applied to A with initial block vector
P1 gives the decompositions

AQ(k)
� = P(k)

�+1C̄
(k)
� , AT P(k)

� = Q(k)
� C (k)T

� , (2.4)

where the matrices P(k)
� = [P1, . . . , P�] ∈ R

n2×�k , P(k)
�+1 = [P1, . . . , P�+1] ∈

R
n2×(�+1)k , and Q(k)

� = [Q1, . . . , Q�] ∈ R
n2×�k have orthonormal columns, and
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C̄ (k)
� :=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

L1
R2 L2

. . .
. . .

R� L�

R�+1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

∈ R
k(�+1)×k�

is lower block bidiagonal with lower triangular diagonal blocks L j ∈ R
k×k and upper

triangular blocks R j ∈ R
k×k . Moreover, C (k)

� is the leading k� × k� submatrix of

C̄ (k)
� . In case A denotes the operator A defined by (1.3), the expressions AQ(k)

� and

AT P(k)
� in the left-hand sides of (2.4) should be replaced by [A (Q1), . . . ,A (Q�)]

and [A T (P1), . . . ,A T (P�)], respectively. When the block size is k = 1, the decom-
positions (2.4) simplify to the decompositions computed by the algorithm bidiag1 by
Paige and Saunders [23]. In particular, the decompositions (2.4) differ from the ones
described by Golub et al. [13], who compute an upper block bidiagonal matrix. In our
discussion, we will assume that � is small enough so that the triangular matrices L j ,
j = 1, . . . , �, and R j , j = 2, . . . , � + 1, are nonsingular.

It follows from (2.4) that the range of the matrix P(k)
� is the block Krylov subspace

K�(AA
T , B) = range[P1, AAT P1, (AA

T )2P1, . . . , (AA
T )�−1P1].

Similarly, the range of the matrix Q(k)
� is the block Krylov subspace

K�(A
T A, AT B) = range[AT P1, A

T AAT P1, (A
T A)2AT P1, . . . , (A

T A)�−1AT P1].

Multiplying the rightmost equation in (2.4) by A from the left yields

AAT P(k)
� = P(k)

�+1C̄
(k)
� C (k)T

� .

Therefore,

P(k)T

� AAT P(k)
� = C (k)

� C (k)T

� .

This suggests that fμ(AAT )maybe approximated by evaluating fμ(C (k)
� C (k)T

� ),which
is much easier to compute than fμ(AAT ) when A is large. Let E1 denotes the block
vector of appropriate dimensions with blocks of size k × k, with the first block equal
to Ik and all other blocks equal to 0. It follows from results by Golub and Meurant
[14] on the symmetric block Lanczos algorithm that the expression

G� fμ = RT
1 E

T
1 fμ

(

C (k)
� C (k)T

�

)

E1R1 (2.5)

can be interpreted as an �-block Gauss quadrature rule for the approximation of
BT fμ(AAT )B, i.e.,

G� f = BT f (AAT )B ∀ f ∈ P2�−1,
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where P2�−1 denotes the set of all polynomials of degree at most 2� − 1; see also [7]
for related discussions. We therefore approximate (2.3) by

φ�(μ) = tr(G� fμ) (2.6)

and let the regularization parameter be the solution of

φ�(μ) = η2ε2. (2.7)

The following result shows that φ�(μ) is decreasing and convex. This makes it con-
venient to compute the solution μ� of (2.7) by Newton’s method; see below.

Proposition 2.1 The functions φ(μ) and φ�(μ), defined by (2.3) and (2.6) for μ > 0,
respectively, satisfy

φ′(μ) < 0, φ′′(μ) > 0, φ′
�(μ) < 0, φ′′

� (μ) > 0.

Proof The derivative of φ(μ) is given by

φ′(μ) = −2 tr(BT (μAAT + I )−3AAT B).

It follows from (μAAT + I )−1A = A(μAT A + I )−1 that

φ′(μ) = −2 tr(BT A(μAT A + I )−3AT B).

Substituting the spectral factorization AT A = SΛST , ST S = I , into the above
expression and letting W = [w1, . . . , wk] = ST AT B yields

φ′(μ) = −2 tr(WT (μΛ + I )−3W ) = −2
k

∑

j=1

wT
j (μΛ + I )−3w j < 0.

Thus, φ(μ) is a decreasing function of μ. Turning to the second derivative, we have

φ′′(μ) = 6 tr(BT AAT (μAAT + I )−4AAT B),

and can proceed similarly as above to show that φ′′(μ) > 0.

The derivative of φ�(μ) is given by

φ′
�(μ) = tr(RT

1 E
T
1 C

(k)
� (μC (k)T

� C (k)
� + I )−3C (k)T

� E1R1), (2.8)

where we again use the identity (μC (k)
� C (k)T

� + I )−1C (k)
� = C (k)

� (μC (k)T

� C (k)
� + I )−1.

The stated properties of φ′
�(μ) and φ′′

� (μ) can be shown by substituting the spectral

factorization of C (k)T

� C (k)
� into (2.8). ��
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Since φ�(μ) is decreasing and convex, Newton’s method converges monotonically
and quadratically to the solution μ� of (2.7) for any initial approximate solution
μinit < μ�. This makes it easy to implement the Newton method. For instance, we
may use μinit = 0 when φ� and its derivative are suitably defined at μ = 0; see [3] for
a detailed discussion of the case when the block size is one.

We note that the function μ → φ�(1/μ), which corresponds to the regularization
termμ‖X‖2F in (1.6), is not guaranteed to be convex. Therefore, Newton’s method has
to be safeguarded when applied to the solution of φ�(1/μ) = ε2. This is the reason
for considering Tikhonov regularization of the form (1.6).

Proposition 2.2 Let PN (M) denote the orthogonal projector onto the null space
N (M) of the matrix M. Then

φ(0) = tr(BT B), lim
μ→∞ φ(μ) = tr(BT PN (AAT )B),

φ�(0) = tr(BT B), lim
μ→∞ φ�(μ) = tr(RT

1 E
T
1 PN (R�RT

� )E1R1).

Proof The value at zero and limit of φ follow from (2.3). The expression (2.5) and the
definition of the upper triangular matrix R1 in the QR factorization B = P1R1 yield

φ�(0) = tr
(

RT
1 E

T
1 f0

(

C (k)
� C (k)T

�

)

E1R1

)

= tr(RT
1 R1) = tr(BT B).

The result for φ�(μ) as μ → ∞ follows similarly as for φ. ��
Let the regularization parameter μ� be computed by Newton’s method. We then

determine the corresponding approximate solution by projecting the normal equations
(1.7) with μ = μ� onto a smaller space determined by the decompositions (2.4). We
seek to determine an approximate solution of the form

Xμ�
= Q(k)

� Yμ�
, Yμ�

∈ R
k�×k�, (2.9)

by solving the normal equations (1.7) with μ = μ� by a Galerkin method,

(Q(k)
� )T (AT A + μ−1

� I )Q(k)
� Yμ�

= (Q(k)
� )T AT B, (2.10)

which simplifies to

(C̄ (k)T

� C̄ (k)
� + μ−1

� I )Yμ�
= C̄ (k)T

� E1R1. (2.11)

We compute the solution Y�,μ by solving a least-squares problem for which (2.11) are
the normal equations

min
Y∈Rk�×k�

∥

∥

∥

∥

∥

[

C̄ (k)
�

μ
−1/2

� I

]

Y −
[

E1R1
0

]

∥

∥

∥

∥

∥

2

F

. (2.12)

Our reason for computing the solution of (2.12) instead of (2.11) is that solving the
least-squares problem is less sensitive to errors for small values of μ� > 0.
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Proposition 2.3 Let μ� solve (2.7), and let Yμ�
solve (2.10). Then the associated

approximate solution Xμ�
= Q(k)

� Yμ�
of (1.6) satisfies

‖AXμ�
− B‖2F = tr

(

RT
1 E

T
1 fμ�

(C̄ (k)
� C̄ (k)T

� )E1R1

)

. (2.13)

Proof Using the expression of X�,μ and applying (2.4) shows that

AXμ�
− B = AQ(k)

� Yμ�
− B

= P(k)
�+1C̄

(k)
� Yμ�

− P1R1

= P(k)
�+1

(

C̄ (k)
� Yμ�

− E1R1

)

,

where we recall that B = P1R1. It follows from (2.11) that

P(k)
�+1

(

C̄ (k)
� Yμ�

− E1R1

)

= P(k)
�+1

[(

C̄ (k)
�

(

C̄ (k)T

� C̄ (k)
� + μ−1

� I
)−1

C̄ (k)T

� − I

)

E1R1

]

.

The identity (2.2) with A replaced by C̄ (k)
� now yields (2.13). ��

Algorithm 1 The BGKB-Tikhonov method.
Input: A, B, k, ε, η ≥ 1.
1. Compute the QR factorization B = P1R1.
2. For � = 1, 2, . . . until ‖AXμ�

− B‖F ≤ ηε

(a) Determine Q(k)
�

and P(k)
�+1 and block bidiagonal matrix C(k)

�
by BGKB.

(b) Update the value μ� by solving (2.7) with Newton’s method.
3. Determine Yμ�

by solving (2.12) and then Xμ�
by (2.9).

3 The GGKB method and Gauss-type quadrature

We discuss the application of the GGKBmethod to the computation of an approximate
solution of (1.6) and review how themethod can be used to compute inexpensive upper
and lower bounds for the discrepancy (1.9). These bounds help us to determine the
regularization parameter. This approach of solving (1.6) and determining bounds for
the discrepancy has recently been described in [1], where further details can be found.

Introduce the inner product

〈F,G〉 = tr(FTG), F,G ∈ R
n2×k .
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We have ‖F‖F = 〈F, F〉1/2. Application of � steps of the GGKB method to A with
initial block vector B determines the lower bidiagonal matrix

C̄� =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ρ1
σ2 ρ2

. . .
. . .

σ�−1 ρ�−1
σ� ρ�

σ�+1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ R
(�+1)×�

as well as the matrices

U (k)
�+1 = [U1,U2, . . . ,U�+1] ∈ R

n2×(�+1)k, V (k)
� = [V1, V2, . . . , V�] ∈ R

n2×�k

with orthonormal block columns Ui , Vj ∈ R
n2×k , where U1 = s1B and s1 > 0 is a

scaling factor. Thus,

〈Ui ,Uj 〉 = 〈Vi , Vj 〉 =
{

1 i = j,
0 i �= j.

We assume that � is small enough so that all nontrivial entries of the matrix C̄� are
positive. This is the generic situation. Denote the leading � × � submatrix of C̄� by
C�. The matrices determined satisfy

A
[

V1, V2, . . . , V�

] = U (k)
�+1(C̄� ⊗ Ik), (3.1)

AT [

U1,U2, . . . ,U�

] = V (k)
� (CT

� ⊗ Ik). (3.2)

When A is the operator A defined by (1.3), one should replace A
[

V1, V2, . . . , V�

]

and AT
[

U1,U2, . . . ,U�

]

on the left-hand sides of (3.1) and (3.2) by the expressions
[A (V1),A (V2), . . . ,A (V�)] and [A T (U1),A T (U2), . . . ,A T (U�)], respectively.

The functions (of μ)

G� fμ = ‖B‖2FeT1 (μC�C
T
� + I�)

−2e1,

R�+1 fμ = ‖B‖2FeT1 (μC̄�C̄
T
� + I�+1)

−2e1

can be interpreted as Gauss-type quadrature rules for the approximation of the expres-
sion φ(μ) defined by (2.3). The remainder formulas for these quadrature rules yield
the bounds

G� fμ ≤ φ(μ) ≤ R�+1 fμ; (3.3)

see [1] for details.
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We determine a suitable value of μ and an associated approximate solution of (1.6)
as follows. For � ≥ 2, we seek to solve the nonlinear equation

G� fμ = ε2 (3.4)

for μ > 0 by Newton’s method. If the solution μ� of (3.4) satisfies

R�+1 fμ�
≤ η2ε2, (3.5)

then it follows from (3.3) that there is a solution Xμ�
of (1.6) such that

ε ≤ ‖B − AXμ�
‖F ≤ ηε.

If either (3.4) does not have a solution or (3.5) does not hold, then we increase �.
Generally, it suffices to choose � quite small.

Assume that (3.4) and (3.5) hold for μ = μ�. We then compute the approximate
solution

Xμ�,� = V (k)
� (yμ�

⊗ Ik) (3.6)

of (1.6), where yμ�
solves

(C̄T
� C̄� + μ−1

� I�)y = d1C̄
T
� e1, d1 = ‖B‖F . (3.7)

The vector yμ�
is computed by solving a least-squares problem for which (3.7) are the

associated normal equations. The following result shows an important property of the
approximate solution (3.6). We include a proof for completeness.

Proposition 3.1 Letμ� solve (3.4) and let yμ�
solve (3.7). Then the associated approx-

imate solution (3.6) of (1.6) satisfies

‖AXμ�,� − B‖2F = R�+1 fμ�
.

Proof The representation (3.6) and (3.1) show that

AXμ�,� = U (k)
�+1(C̄� ⊗ Ik)(yμ�

⊗ Ik) = U (k)
�+1(C̄�yμ�

⊗ Ik).

Using the above expression gives

‖AXμ�,� − B‖2F = ‖U (k)
�+1(d1e1 ⊗ Ik) −U (k)

�+1(C̄�yμ�
⊗ Ik)‖2F

= ‖(d1e1 ⊗ Ik) − (C̄�yμ�
⊗ Ik)‖2F

= ‖d1e1 − C̄�yμ�
‖2F ,
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where we recall that d1 = ‖B‖F . We now express yμ�
with the aid of (3.7), and apply

the identity (2.2) with A replaced by C̄�, to obtain

‖AXμ�,� − B‖2F = d21‖e1 − C̄�(C̄
T
� C̄� + μ−1

� I�)
−1C̄T

� e1‖2F
= d21e

T
1 (μ�C̄�C̄

T
� + I�+1)

−2e1
= R�+1 fμ�

.

��
The following algorithm outlines the main steps for computing μ� and Xμ�,� that

satisfy (1.9).

Algorithm 2 The GGKB-Tikhonov method.
Input: A, B, k, ε, η ≥ 1.
1. Let U1 := B/||B||F .
2. For � = 1, 2, . . . until ‖AXμ�

− B‖F ≤ ηε

(a) Determine U (k)
�+1 and V (k)

�
, and the bidiagonal matrices C� and C̄� with GGKB algorithm.

(b) Determine μ� that satisfies (3.4) with Newton’s method.
3. Determine yμ�

by solving a least-quares problem for which (3.7) are the associated normal equations
and then compute Xμ�,�

by (3.6).

4 Golub–Kahan bidiagonalization for problems with multiple
right-hand sides

We may consider (1.5) as k linear discrete ill-posed problems that have the same
matrix A and different right-hand side vectors b(1), . . . , b(k); cf. (1.10). The solu-
tion of linear systems of equations with multiple right-hand sides that might not be
known simultaneously and a matrix that stems from the discretization of a well-posed
problem has received considerable attention in the literature; see e.g., [4,5,18,22,25]
and references therein. However, the solution of linear discrete ill-posed problems
with multiple right-hand sides that might not be available simultaneously has not. The
method described in this section is based on the analysis and numerical experience
reported in [12], where it is shown that it often suffices to apply only a few steps of
(standard) Golub–Kahan bidiagonalization (GKB) to a matrix A of a linear discrete
ill-posed problem to gain valuable information of subspaces spanned by the right and
left singular vectors of A associated with the dominant singular values.

Consider the first system of (1.10),

Ax (1) = b(1), (4.1)

where the right-hand side is the sum of an unknown error-free vector ̂b(1) and an
error-vector e(1). Thus, b(1) = ̂b(1) + e(1). A bound ‖e(1)‖ ≤ ε(1) is assumed to be
known. Let x̂ (1) denote the first column of the matrix ̂X in (1.4). We seek to compute
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an approximation of x̂ (1) by using (standard) partial Golub–Kahan bidiagonalization
(GKB) of A with initial vector b(1).

To explain some properties of the bidiagonalization computed, we introduce the
SVD of A,

A = WΣZT , (4.2)

where W, Z ∈ R
n2×n2 are orthogonal matrices and

Σ = diag
[

σ1, σ2, . . . , σn2
] ∈ R

n2×n2 ,

σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · = σn2 = 0.

Here r is the rank of A. Let 1 ≤ s ≤ r and let Zs andWs consist of the first s columns
of Z andW , respectively. Moreover, Σs denotes the leading s × s principal submatrix
of Σ . This gives the best rank-s approximation

As = WsΣs Z
T
s

of A in the spectral and Frobenius norms.
The computation of the full SVD (4.2) is too expensive for large-scale problems

without a particular structure to be practical. The computation of a partial GKB is
much cheaper. Application of � steps of GKB yields the decompositions

AV� = U�+1C̄�, ATU� = V�C
T
� , (4.3)

where the matrices V� = [v1, v2, . . . , v�] ∈ R
n2×� and U�+1 = [u1, u2, . . . , u�+1] ∈

R
n2×(�+1) have orthonormal columns, and U� consists of the first � columns of U�+1.

Further, C̄� ∈ R
(�+1)×� is lower bidiagonal and C� is the leading � × � submatrix

of C̄�. We apply reorthogonalization of the columns of U�+1 and V� to secure their
numerical orthogonality. It is shown in [12] that for sufficiently many steps �, the
spaces range(U�+1) and range(V�) contain to high accuracy the subspaces range(Ws)

and range(Zs), respectively, for s ≥ 1 fixed and not too large. Computed examples
in [12] indicate that it often suffices to choose � ≤ 3s. Moreover, the columns of
the noise-free right-hand side matrix ̂B, generally, can be approximated quite well
by only the first few columns of the matrix W in the SVD (4.2) of A. This follows
from the discrete Picard condition [15]. These columns, in turn, typically can be
approximated fairly accurately by the first few columns of the matrix U�+1 in the
partial Golub–Kahan bidiagonalization (4.3). It is therefore unlikely that many steps
of this bidiagonalization process have to be carried out in order to be able to compute
useful approximations of the columns of the desired solution matrix ̂X .

Consider the Tikhonov regularization problem

min
x∈range(V�)

{‖Ax − b(1)‖22 + μ‖x‖22} = min
y∈R�

{‖C̄�y −UT
�+1b

(1)‖22 + μ‖y‖22}, (4.4)
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where x = V�y.Wedetermine the regularizationparameterμ > 0 so that the computed
solution yμ satisfies the discrepancy principle

‖C̄�yμ −UT
�+1b

(1)‖2 = ηε(1). (4.5)

If no such μ-value exists, then we increase � by one and try to solve (4.5) with �

replaced by �+1 in (4.4) and (4.5). The small least-squares problem on the right-hand
side of (4.4) is solved as described in [3]. We remark that the vector UT

�+1b
(1) can be

simplified to e1‖b(1)‖2. The solution yμ of (4.4) determines the approximate solution

x (1)
μ = V�yμ of (4.1).
We turn to the problem

Ax (2) = b(2) (4.6)

and compute an approximate solution by solving (4.4) with the vector b(1) replaced
by b(2). The vector UT

�+1b
(2) has to be explicitly computed. Therefore it is important

that the columns of the matrix U�+1 are numerically orthonormal. If no μ > 0 can be
determined so that (4.5) can be satisfied with b(1) replaced by b(2), then we carry out
one more step of Golub–Kahan bidiagonalization (4.3); otherwise, we compute the
solution yμ of (4.4) with the available decomposition.

Letμ be such that the discrepancy principle holds. Then we obtain the approximate
solution x (2)

μ = V�yμ of (4.6). We proceed in the same manner to solve Ax (i) =
b(i) for i = 3, 4, . . . , k. We will compare this algorithm and Algorithms 1 and 2

Algorithm 3 The GKB-Tikhonov method.

Input: A, k, b(1), b(2), . . . , b(k), ε(1), ε(2), . . . , ε(k), η ≥ 1.
1. Let u1 := b(1)/‖b(1)‖2.
2. Compute AV� = U�+1C̄�, ATU� = V�C

T
�

3. For i = 1, 2, . . . , k
(a) Compute min

yμ∈R�
{‖C̄�yμ −UT

�+1b
(i)‖22 + μ‖yμ‖22}

(b) If ‖C̄�yμ −UT
�+1b

(i)‖2 > ηε(i)

i. � := � + 1
ii. Return to step (a).

(c) Compute x(i)
μ = V�yμ

to the following “trivial” method that is based on solving each one of the linear
discrete ill-posed problems (1.10) independently with the aid of (standard) Golub–
Kahan bidiagonalization. Thus, we apply Algorithm 2 with block size one to each one
of the k linear discrete ill-posed problems (1.10) independently.We refer to this scheme
as Algorithm 4. We expect it to require the most matrix-vector product evaluations of
the methods in our comparison because we compute a new partial standard Golub–
Kahan bidiagonalization for each one of the vectors b( j), j = 1, . . . , k. Moreover, this
method does not benefit from the fact that on many modern computers the evaluation
of matrix-block-vector products with a large matrix A does not require much more
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time than the evaluation of a matrix-vector product with a single vector for small block
sizes; see e.g., [10] for discussions on this and related issues.

Algorithm 4 “Trivial” method.

Input:A, k, b(1), b(2), . . . , b(k), ε(1), ε(2), . . . , ε(k), η ≥ 1.
1. For i = 1, 2, . . . , k

(a) Let u1 := b(i)/‖b(i)‖2.
(b) Compute Golub–Kahan bidiagonalization AV� = U�+1C̄�, ATU� = V�C

T
�

(c) Compute min
yμεR�

{‖C̄�yμ −UT
�+1b

(i)‖22 + μ‖yμ‖22}

(d) If ‖C̄�yμ −UT
�+1b

(i)‖2 > ηε(i)

i. � := � + 1
ii. Return to step (b).

(e) Compute x(i)
μ := V�yμ

5 Numerical results

This section provides some numerical results that illustrate the performance of Algo-
rithms 1–4 when applied to the solution of linear discrete ill-posed problems with the
same matrix and different right-hand sides. The first example applies these algorithms
to the solution of a linear discrete ill-posed problem with several right-hand sides
defined by matrices that stem from Regularization Tools by Hansen [16]; the remain-
ing examples discuss applications to image restoration. We consider the restoration of
RGB images that have been contaminated by within-channel and cross-channel blur
and noise, as well as the restoration of a sequence of images from a video. All com-
putations were carried out using the MATLAB environment on an Intel(R) Core(TM)
i5-4590 CPU computer with 8GB of RAM. The computations were donewith approx-
imately 15 decimal digits of relative accuracy.

5.1 Example 1

We would like to solve linear discrete ill-posed problems (1.10) with the matrix A ∈
R
702×702 determined by the function phillips in Regularization Tools [16]. The matrix

is a discretization of a Fredholm integral equation of the first kind that describes a
convolution on the interval −6 ≤ t ≤ 6. The function phillips also determines the
error-free data vector ̂b(1) ∈ R

702 and the associated error-free solution x̂ (1) ∈ R
702 .

The other error-free data vectors ̂b(i) ∈ R
702 , i = 2, . . . , k, are obtained by setting

x̂ (i) = x̂ (i−1) + y/2 for i = 2, . . . , k, where y is a vector obtained by discretizing a
function of the form 1

2 cos(
t
3 ) + 1

4 at equidistant points on the interval −6 ≤ t ≤ 6.
The error-free right-hand sides are obtained from ̂b(i) = Ax̂ (i) for i = 2, . . . , k. A
noise vector e(i) ∈ R

702 with normally distributed random entries with zero mean
is added to each data vector ̂b(i) to obtain the error-contaminated data vectors b(i),
i = 1, . . . , k, in (1.10). The error-vectors e(i) are scaled to correspond to a specified
noise level. This is simulated by
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Table 1 Results for the phillips test problem

Noise level Method MVP Relative error CPU-time (s)

10−3 Algorithm 1 100 1.46 × 10−2 0.30

Algorithm 2 200 1.31 × 10−2 0.43

Algorithm 3 16 2.28 × 10−2 0.31

Algorithm 4 162 1.43 × 10−2 2.08

10−2 Algorithm 1 80 2.54 × 10−2 0.24

Algorithm 2 120 2.61 × 10−2 0.30

Algorithm 3 10 2.52 × 10−2 0.19

Algorithm 4 140 2.60 × 10−2 1.32

e(i) := ˜δ ‖̂b(i)‖2 ẽ(i),

where˜δ is the noise level and the vectors ẽ(i) ∈ R
702 have normally distributed random

entries with mean zero and variance one.
When the data vectors b(i), i = 1, . . . , k, are available sequentially, the linear

discrete ill-posed problems (1.10) can be solved one by one by Algorithms 3 or 4.
If the data vectors are available simultaneously, then Algorithms 1 and 2 also can be
used to solve (1.10). The latter algorithms require that the noise level for each discrete
ill-posed problem (1.10) is about the same. This is a reasonable assumption for many
applications.

Table 1 compares the number of matrix-vector product evaluations and the CPU
time required by Algorithms 1–4 for k = 10 and noise-contaminated data vectors
b(i) corresponding to the noise levels ˜δ = 10−2 and ˜δ = 10−3. In all examples of
this section, the regularization parameter is determined with the aid of the discrepancy
principle with η = 1.1; cf. (1.9). The displayed relative error in the computed solutions
is the maximum error for each one of the k problems (1.10). The number of matrix-
vector products (MVP) shown is the number of matrix-vector product evaluations
with A and AT with a single vector. Thus, each iteration step of Algorithms 1 and 2
adds 2k matrix-vector product evaluations to the count. The number of matrix-vector
product evaluations does not give an accurate idea of the computing time required.
We therefore also present timings for the algorithms.

Table 1 shows Algorithm 3 to require the fewest matrix-vector product evaluations
and to give approximate solutions of comparable or higher quality than the other algo-
rithms. Algorithms 2 and 4 require about the same number of matrix-vector product
evaluations, but the former algorithm demands less CPU time because it implements
a block method.

5.2 Example 2

This example illustrates the performance of Algorithms 1–4 when applied to the
restoration of a 3-channel RGB color image that has been contaminated by blur and
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noise. The corrupted image is stored in a block vector B with three columns (one for
each channel). The desired (and assumed unavailable) image is stored in the block
vector ̂X with three columns. The blur-contaminated, but noise-free image associated
with ̂X , is stored in the block vector ̂B. The block vector E represents the noise in B,
i.e., B := ̂B + E . We define the noise level

ν = ||E ||F
||̂B||F

.

To determine the effectiveness of our solution methods, we evaluate the relative error

Relative error = ||̂X − Xμ�
||F

||̂X ||F
,

where Xμ�
denotes the computed restoration.

We consider within-channel blurring. Hence, the matrix A3 in (1.3) is the 3 × 3
identity matrix, and the matrix A in (1.3), which describes the blurring within each
channel, models Gaussian blur and is determined by the Gaussian PSF,

hσ (x, y) = 1

2πσ 2 exp

(

− x2 + y2

2σ 2

)

.

Thus, A is a symmetric block Toeplitz matrix with Toeplitz blocks. It is generated
with the MATLAB function blur from [16]. This function has two parameters, the
half-bandwidth of the Toeplitz blocks, r , and the variance, σ , of the Gaussian PSF.
We let σ = 4 and r = 6.

The original (unknown) RGB image ̂X ∈ R
256×256×3 is the papav256 image

from MATLAB. It is shown on the left-hand side of Fig. 1. The associated blurred
and noisy image B = ÂX + E is shown on the right-hand side of the figure. The
noise level is ν = 10−3. Given the contaminated image B, we would like to recover

Fig. 1 Example 2: Original image (left), blurred and noisy image (right)
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Table 2 Results for Example 2

Noise level Method MVP Relative error CPU-time (s)

10−3 Algorithm 1 492 6.93 × 10−2 3.86

Algorithm 2 558 6.85 × 10−2 3.95

Algorithm 3 112 2.64 × 10−1 1.66

Algorithm 4 632 1.29 × 10−1 6.55

10−2 Algorithm 1 144 9.50 × 10−2 1.13

Algorithm 2 156 9.44 × 10−2 1.12

Algorithm 3 20 2.91 × 10−1 0.32

Algorithm 4 112 1.58 × 10−1 1.10

Fig. 2 Example 2: Restored image by Algorithm 1 (left), and restored image by Algorithm 2 (right)

an approximation of the original image ̂X . Table 2 compares the number of matrix-
vector product evaluations, the computing time, and the relative errors in the computed
restorations.

The restoration obtained with Algorithm 1 for the noise level ν = 10−3 is shown
on the left-hand side of Fig. 2. The discrepancy principle is satisfied when � = 82
steps of the BGKB method have been carried out. This corresponds to 3 × 2 × 82
matrix-vector product evaluations.

The restoration determined by Algorithm 2 is shown on the right-hand side of
Fig. 2. The GGKB method requires � = 93 steps to satisfy the discrepancy principle.
Algorithm 3 is the fastest, but yields restorations of lower quality than the other
algorithms for this example.

5.3 Example 3

Theprevious example illustrates the restoration of an image that has been contaminated
by noise and within-channel blur, but not by cross-channel blur. This example shows
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Fig. 3 Example 3: Cross-channel blurred and noisy image (left), restored image by Algorithm 2 (right)

the restoration of an image that has been contaminated by noise, within-channel blur,
and cross-channel blur. We use the same within-channel blur as in Example 2. The
cross-channel blur is defined by the cross-channel blur matrix

A3 =
⎡

⎣

0.7 0.2 0.1
0.25 0.5 0.25
0.15 0.1 0.75

⎤

⎦

from [17]. The blurred and noisy image is represented by B = ÂX AT
3 + E , where the

noise level is ν = 10−3. It is shownon the left-hand side of Fig. 3.We restore this image
with Algorithms 1–4. The quality of the restored images obtained with Algorithm 1,
2, and 4 is about the same, while the restoration determined by Algorithm 3 is of poor
quality. The best attainable restoration is shown on the right-hand side of Fig. 3. Table
3 compares the algorithms for this example.

5.4 Example 4

We evaluate the effectiveness of Algorithms 1–4 when applied to the restoration of
a video defined by a sequence of black and white images. Video restoration is the

Table 3 Results for Example 3

Noise level Method MVP Relative error CPU-time (s)

10−3 Algorithm 1 354 7.56 × 10−2 2.74

Algorithm 2 702 6.97 × 10−2 4.99

Algorithm 3 112 2.64 × 10−1 1.63

Algorithm 4 556 1.35 × 10−1 5.77
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Fig. 4 Frame no. 3: Original frame (left), blurred and noisy frame (right)

Table 4 Results for Example 4

Noise level Method MVP Relative error CPU-time (s)

10−3 Algorithm 1 1152 5.76 × 10−2 8.72

Algorithm 2 1188 5.66 × 10−2 6.23

Algorithm 3 130 1.19 × 10−1 1.69

Algorithm 4 1190 5.67 × 10−2 10.79

10−2 Algorithm 1 264 9.48 × 10−2 1.65

Algorithm 2 228 9.53 × 10−2 1.21

Algorithm 3 34 1.40 × 10−1 0.44

Algorithm 4 250 9.48 × 10−2 2.22

problem of restoring a sequence of k images (frames). Each frame is represented
by a matrix of n × n pixels. In the present example, we are interested in restoring
6 consecutive frames of a contaminated video. We consider the xylophone video
from MATLAB. The video clip is in MP4 format with each frame having 240 × 240
pixels. The (unknown) blur- and noise-free frames are stored in the block vector
̂X ∈ R

2402×6. These frames are blurred by a blurring matrix A of the same kind and
with the same parameters as in Example 2. Figure 4 shows the exact (original) frame
and the contaminated version, which is to be restored. Blurred and noisy frames are
generated by B = ÂX + E , where the matrix E represents white Gaussian noise of
levels ν = 10−3 or ν = 10−2. Table 4 displays the performance of the algorithms.
Algorithms 1 and 2 are seen to yields fairly accurate restorations, with the latter
algorithm requiring the leastCPU time. Figure 5 shows restorations of frame3obtained
with two of the algorithms for noise level ν = 10−3.
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Fig. 5 Frame no. 3: Restored frame by Algorithm 1 (left), and restored frame by Algorithm 2 (right)

6 Conclusion

This paper discusses four approaches to the solution of linear discrete ill-posed prob-
lems with multiple right-hand sides. Algorithm 4 is clearly the least attractive of the
algorithms considered. Algorithm 3 is the fastest for all examples, but determines
approximate solutions of worse quality than Algorithms 1 and 2 for all image restora-
tion examples. The accuracy achieved by Algorithm 3 depends on howwell-suited the
Krylov subspace generated by the matrix A and the first right-hand side b(1) is to rep-
resent the desired solutions associated with the other right-hand sides b(2), . . . , b(k).
Algorithms 1 and 2 are attractive compromises between high accucary and speed.
Their relative speed depends on the computer architecture.
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